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GLOBAL ATTRACTOR FOR SOME WAVE EQUATIONS
OF p− AND p(x)−LAPLACIAN TYPE

Nikolaos M. Stavrakakis and Athanasios N. Stylianou1
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(Submitted by: Reza Aftabizadeh)

Abstract. We study the existence of solutions for the equation utt −
∆p(x)u − ∆ut + g(u) = f(x, t), x ∈ Ω (bounded) ⊂ IRn, t > 0 in
both the isotropic case (p(x) ≡ p, a constant) and the anisotropic case
(p(x) a measurable function). Furthermore, in the isotropic case we
obtain results concerning the asymptotic behavior of solutions. Since
uniqueness for this type of problem seems rather difficult, a method
implementing generalized semiflows is being used to prove the existence
of a global attractor in the phase space W 1,p

0 (Ω)× L2(Ω), when p ≥ n.

1. Introduction

The study of quasilinear wave equations involving the p−Laplacian opera-
tor in the principal part and viscosity damping originates from the nonlinear
Voight model of longitudinal motion of a rod made from a viscoelastic ma-
terial. Specifically, for the so-called Ludwick materials, it can be shown that
they obey the following equations, under the effect of an external force f .
For the Euler rod

ρ
∂2u

∂t2
= K

∂

∂x

(∣∣∣∂u
∂x

∣∣∣n−1∂u

∂x

)
+ f,

for the Euler beam

ρI ′
∂2u

∂t2
=

∂2

∂x2

(
KIn

∣∣∣∂2u

∂x2

∣∣∣n−1∂2u

∂x2

)
+ f,
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and finally, for the plate

ρh
∂2u

∂t2
= dn

[ ∂2

∂x2

(
|D(u)|n−1

(∂2u

∂x2
+ ν

∂2u

∂y2

))
+

∂2

∂y2

(
|D(u)|n−1

(∂2u

∂x2
+ ν

∂2u

∂y2

))
+ (1− ν)

∂2

∂x∂y

(
|D(u)|n−1 ∂2u

∂x∂y

)]
+ f,

where ρ is the density of the material, A the cross-sectional area of the rod,
h the thickness of the plate, dn a characteristic parameter of the material
and

D(u) =

√(∂2u

∂x2

)2
+
( ∂2u

∂x∂y

)2
+
(∂2u

∂y2

)2

(see [18]). Motivated by these models, Biazutti studied thoroughly an ab-
stract evolution wave equation in a bounded domain, applying the existence
and uniqueness results in examples of PDEs, when the principal part is of
p−Laplacian type and of Kirchhoff type. She generalized previous results by
Yamada, Zuazua and Dinh, concerning specific quasilinear wave equations
(see [4] and the references therein). However, the uniqueness argument of the
evolution equation is based on a rather special assumption on the principal
part and cannot be applied in our case.

To obtain uniqueness results one must either consider specific nonlinear-
ities, or reduce the equation to a semilinear one. Implementing nonlinear
dissipative terms, principal parts and viscous damping make it difficult for
one to obtain any uniqueness result. As a result, existence of attractors
has barely been studied in the above context, since the classical semigroup
theory for dynamical systems demands a unique solution. Biazutti’s work
initiated a sequence of papers in such hyperbolic equations, where, in gen-
eral, uniqueness is not present. Ma and Soriano in [11] study the existence
and exponential decay of an evolution equation with a p−Laplacian princi-
pal part and viscous damping. Park et al., in [15], extend the work of Ma
and Soriano, by assuming a discontinuous nonlinearity. On the other hand,
Melnik and Valero, in [13], deal with parabolic p−Laplacian inclusions, using
multivalued semiprocesses.

An attractor is obtained through that method and it seems that, using the
theory of multivalued functions, one can study the existence of attractors in
equations with nonuniqueness. Another method, presented by Chepyzhov
and Vishik in [6], using the so-called trajectory attractors, can be applied
in equations with nonuniqueness, but it is quite complicated and practically
inapplicable in quasilinear equations with complicated terms. Ball in [1]
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deploys another method, using the notion of a generalized semiflow, an ex-
tension of the classical single-valued semigroup, to obtain a global attractor.
However, his method is based on estimates of the system as a whole and, as
a result, it is also inapplicable in cases where the presence of nonlinearities is
quite strong. In his most recent paper [2] though, he develops a method ex-
tending ideas from the classical semigroup decomposition to the generalized
semiflow theory. This is the method that we will use in the present work.
Furthermore, we study the equivalent problem with the p(x)−Laplacian op-
erator

−∆p(x)u = −div
(
|∇u|p(x)−2∇u

)
.

Such a generalization models the same mechanical phenomena, involving
structures made of anisotropic materials, rather than making the assumption
that the various parameters of the system are space-invariant. The study
of the corresponding Lebesgue - Sobolev spaces is quite old (see [7] and
references therein), but there is still little knowledge concerning elliptic and
evolutionary problems (see [5], [8] and references therein).

The rest of the paper is organized as follows. In Section 2, first we state an
existence theorem for the (isotropic) p−Laplacian problem. Next, we deploy
the theorems needed to apply our method and do the necessary estimations.
Then, we use the generalized semiflow theorems to obtain the existence of
the global attractor. Finally, in Section 3, an existence result is presented
for the (anisotropic) p(x)−Laplacian problem.

2. The Isotropic Case

2.1. Existence of Solutions. The Generalized Semiflow. The p−Lap-
lacian operator

−∆p = −div
(
|∇u|p−2∇u

)
, p > 1

is nonlinear, monotone, bounded and hemicontinuous from the spaceW 1,p
0 (Ω)

to W−1,p′(Ω). Moreover, if u(t) ∈ W 1,p
0 (Ω), the following relations are true

(e.g., see the references [10], [11], [15]):

〈−∆pu(t), u′(t)〉 =
1
p

d

dt
‖∇u(t)‖pp and 〈−∆pu(t), u(t)〉 = ‖∇u(t)‖pp.

Let Ω be a bounded subset of IRn. Then the problem under consideration
may be stated as follows:

u′′(t)−∆pu(t)−∆u′(t) + g(u) = f(x, t), x ∈ Ω, t > 0, p ≥ n,
u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω, (2.1)
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u(x, t) = 0, x ∈ ∂Ω, t > 0, where (u0, u1) ∈W 1,p
0 (Ω)× L2(Ω).

Also, for the functions g, f we assume that g is continuous and for each b > 0
there exists a Cb > 0, such that

|g(s)| ≤ Cb exp(b|s|
p
p−1 ), for all s ∈ R, and (2.2)

f ∈ L2((0,∞);L2(Ω)). (2.3)

Under the above assumptions, the following existence result is well known.

Theorem 2.1. Let p = n. Then there exists a function u : (0,∞) ×
Ω → IR, where u ∈ L∞((0,∞);W 1,p

0 (Ω)) and u′ ∈ L∞((0,∞);L2(Ω)) ∩
L2((0,∞);W 1,p

0 (Ω)), satisfying system (2.1).

Proof. For the proof we refer to [11]. �

Uniqueness results are not known for the problem (2.1), even in the special
case of p = n. Now we proceed to prove the analogue of the above result for
the more general case p ≥ n. To this end one needs the following estimate.

Lemma 2.2. Let p ≥ n and u ∈ W 1,p
0 (Ω). Then the following inequality is

true: ∫
Ω
exp
(
a|u|

p
p−1

)
dx <∞.

Proof. (i) (p = n). This case is the well-known Trudinger’s inequality (see
[3]).

(ii) (p > n). Since u ∈W 1,p
0 (Ω) Morrey’s theorem implies that u ∈ L∞(Ω).

Thus, u ∈ L
pn
p−1 (Ω). Then, the following estimates are implied by Orlicz’

inequality (see [3]):∫
Ω

exp
(
a|u|

p
p−1

)
dx ≤ c · exp

(
a

∫
Ω
|u|

pn
p−1dx+ b

∫
Ω

∣∣∣∇|u| p
p−1

∣∣∣ndx)
≤ c · exp

(
a

∫
Ω
|u|

pn
p−1dx+

bpn

(p− 1)n

∫
Ω

∣∣∣|u| 1
p−1

u

|u|
∇u
∣∣∣ndx)

= c · exp
(
a

∫
Ω
|u|

pn
p−1dx+

bpn

(p− 1)n

∫
Ω
|u|

n
p−1 |∇u|ndx

)
≤ c · exp

(
a

∫
Ω
|u|

pn
p−1dx+

bpn

(p− 1)n
(

ess supx∈Ω|u|
n
p−1

∫
Ω
|∇u|ndx

))
<∞

and this completes the proof. �

Lemma 2.3. Suppose p ≥ n, g satisfies hypothesis (2.2) and {um} is a
bounded sequence in L∞((0, T ); W 1,p

0 (Ω)). If um → u almost everywhere
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in (0, T ) × Ω, for some u ∈ L∞((0, T );W 1,p
0 (Ω)), then g(um) ⇀ g(u) in

L2((0, T );L2(Ω)).

Proof. By Lemma 2.2 the boundedness of {um} implies that {g(um)} is a
bounded sequence in L2((0, T );L2(Ω)). In addition, since um → u, almost
everywhere in (0, T ) × Ω, it follows from the continuity of g that g(um) →
g(u), almost everywhere in (0, T ) × Ω. Then, the proof is completed by a
result from [10, Lemma 1.3]. �

The main existence result is now stated as follows.

Theorem 2.4. Let hypotheses (2.2)-(2.3) be satisfied and p > n. Then,
there exists a function u : (0,∞) × Ω → IR, with u ∈ L∞((0,∞);W 1,p

0 (Ω))
and u′ ∈ L∞((0,∞);L2(Ω)) ∩ L2((0,∞);W 1,2

0 (Ω)), satisfying system (2.1).

Proof. Define G(u) =
∫ u

0 g(u)du. Using Fubini’s theorem and Lemma 2.2,
one can show that G(u) ∈ W 1,p

0 (Ω), for all u ∈ W 1,p
0 (Ω). Next, one may

follow the standard Galerkin scheme. For any integer r > p
2 , the embedding

W r,2
0 (Ω) ↪→W 1,p

0 (Ω) is continuous. Let {w1, w2, ...} be an orthonormal basis
of W r,2

0 (Ω). For any m ∈ N, consider the space Vm = span{w1, w2, ..., wm}.
Since W r,2

0 (Ω) is dense in W 1,p
0 (Ω), one may choose two sequences {u0m}

and {u1m} in Vm, such that they converge strongly to the initial data of the
equation under consideration. Thus, the approximate o.d.e. system in the
spaces Vm, can be defined and is known to possess a local solution um(t) in
some interval [0, tm), 0 < tm < T . Next, following the ideas presented in
[11], multiply the o.d.e. system by u′m(t) and integrate over (0, t) to obtain

1
2
‖u′n(t)‖22 +

1
p
‖∇un(t)‖pp +

∫ t

0
‖∇u′n(s)‖22ds+

1
2

∫
Ω
G(un(t))dx ≤ C. (2.4)

Using Lemma 2.2 and the fact that the p−Laplacian is a bounded opera-
tor, the approximate solutions can be extended to the whole [0,T] and the
sequences {um}, {u′m}, {−∆pum} are bounded in the appropriate spaces.
Moreover, using a standard projection argument on the approximated equa-
tion, we obtain that {u′′m} is bounded in L2((0, T );W−r,2(Ω)). Applying
the Aubin-Lions compactness lemma, one sees that um → u and u′m → u′,
strongly in L2((0, T );L2(Ω)). Moreover, −∆pum

∗
⇀ ξ (weak-∗) in L∞((0, T );

W−1,p′(Ω)). So, from Lemma 2.2, g(um) ⇀ g(u). Thus, passing to the limit
of the approximated o.d.e. problem and using monotonicity arguments, it
follows that ξ = −∆pu. Moreover, the above estimates are independent of
T , so the solutions can be extended to the whole interval (0,+∞). �
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Define the energy functional of problem (2.1) as

E(t) =
1
2
‖u′(t)‖22 +

1
p
‖∇u(t)‖pp +

∫
Ω
G
(
u(t)

)
dx.

Then the next energy decay result is true.

Theorem 2.5. Assume that g(s)s−G(s) > 0, for all s ∈ R, and the function
f(x, t) decays to zero as t → ∞. Then, the solutions of the problem (2.1)
satisfy the following decay properties:

(a) If p = 2, then there exist positive constants γ and c, such that

E(t) ≤ c · e−γt, for all t > 0, and

(b) if p ≥ 3, then there exists a positive constant c, such that

E(t) ≤ (1 + t)−
p
p−2 , for all t > 0.

Proof. The proof follows the ideas developed in [11, Theorem 2]. �

Remark 2.6. It is a direct consequence of Theorem 2.5 that u ∈ Lp((0,∞);
W 1,p

0 (Ω)). Indeed, if p=2,

1
2
‖u(t)‖22 ≤ E(t) ≤ c · e−γt,∫ t

0
‖u(s)‖22ds ≤ 2c

∫ t

0
e−γsds =

2c
γ

(
1− e−γt

)
≤ 2c

γ
, for all t > 0.

Similarly, if p ≥ 3, then∫ t

0
‖u(s)‖ppds ≤

p− 2
2

(
1− (1 + t)−

2
p−2

)
≤ p− 2

2
, for all t > 0.

It is essential for the rest of the paper to give the following definition.

Definition 2.7. Let X be a Banach space. A generalized semiflow G on X
is a family of maps φ : [0,∞)→ X satisfying the following hypotheses:

(H1) (Existence) For each z ∈ X there exists at least one φ ∈ G with
φ(0) = z.

(H2) (Translates of solutions are solutions) If φ ∈ G and τ ≥ 0, then
φ(t+ τ) ∈ G, where t ∈ [0,∞).

(H3) (Concatenation)If φ, ψ ∈ G, t ≥ 0, with ψ(0) = φ(t), then θ ∈ G,
where

θ(τ) =
{
φ(τ) for 0 ≤ τ ≤ t,
ψ(τ − t) for t < τ.
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(H4) (Upper-semicontinuity with respect to initial data) Let the sequence
{φj} ⊂ G with φj(0) → z. Then there exists a subsequence {φm} of {φj}
and φ ∈ G with φ(0) = z, such that φm(t)→ φ(t), for each t ≥ 0.

The definition of a generalized semiflow is the natural extension of the
classical semigroup theory, if uniqueness is dropped. From now on, for con-
sistency reasons, we will represent a generalized semiflow G with the usual
semigroup notation {Gt}t∈R+ , but we will continue to assume that the gen-
eralized semiflow consists of solutions of the problem under consideration.

Theorem 2.6. The solution operators {Gt}t∈R+ of the problem (2.1) are
well defined and form a generalized semiflow.

Proof. Property (H1) is implied by the existence Theorem 2.4. (H2) and
(H3) are derived from the definition of a solution. Concerning property
(H4), let {un(t)} be a sequence of solutions for the problem (2.1), satisfying
the hypotheses stated in (H4). Then, by Galerkin estimates, {un(t)} con-
verges strongly to a solution u(t) in L2((0,∞);L2(Ω)). Thus there exists a
subsequence that converges almost everywhere. �

2.2. Existence of a Global Attractor. The following definitions are nec-
essary for the rest of this work.

Definition 2.8. A generalized semiflow {Gt}t∈R+ in X is called asymptot-
ically compact, if for any sequence {φj} ⊂ G with {φj(0)} bounded and for
any sequence {tj}j∈N, where limj→+∞ tj = +∞, the sequence {φj(tj)} has a
convergent subsequence.

Definition 2.9. A generalized semiflow {Gt}t∈R+ in X is called eventually
bounded, if for any bounded B ⊂ X, there exists τ ≥ 0, such that γτ+(B) is
bounded, where γτ+(B) =

⋃
x∈B γ

τ
+(x) and γτ+(x) is the positive orbit starting

from x at time τ .

Definition 2.10. A generalized semiflow {Gt}t∈R+ in X is called point dis-
sipative, if there exists a bounded set B0 ⊂ X, such that for any solution
u ∈ G, u(t) ∈ B0 for all sufficiently large t.

Definition 2.11. A semigroup {Gt}t∈R+ belongs in the class AK if it pos-
sesses the following property: for every bounded subset B in X such that
γ0

+(B) is bounded, any sequence of real positive numbers {tk}k∈N, with
limk→+∞ tk = +∞ and any sequence {xk} in B, the sequence of the form
{Gtk(xk)}k∈N is precompact.
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In the generalized semiflow cases the following statements are necessary
for the method to be used for the proof of the existence of a global attractor.

Theorem 2.12. Suppose the semigroup {Gt}t∈R+ is defined on a Banach
space X with a norm ‖ · ‖X . Suppose also that St can be decomposed in the
sum Wt + Vt with the following properties:

(a) {Vt}t∈R+ is a family of operators such that for any bounded set B ⊂ X
we have ‖Vt(B)‖X ≤ m1(t)m2(‖B‖X), for m1,m2 : IR+ → IR+ continuous
and limt→∞m1(t) = 0, ‖B‖X = supx∈B‖x‖X ;

(b) for any bounded subset B of X, Wt(B) is precompact. Then {Gt}t∈R+

is of class AK.

Proof. For the proof we refer to [9]. �

Proposition 2.13. A generalized semiflow is asymptotically compact, if and
only if it is of class AK and eventually bounded.

Proof. For the proof we refer to [2]. �

Theorem 2.14. A generalized semiflow has a global attractor A, if and only
if it is point dissipative and asymptotically compact. The global attractor A

is the unique maximal compact invariant subset of X and it is given by

A = ω(X) =
⋃
{ω(B) : B ⊂ X, B bounded}

Proof. For the proof we refer to [1]. �

Let us now deal with the decomposition of the semiflow. To that end one
needs the following result.

Lemma 2.15. Let n < p < +∞ and the function g : R → R satisfy the
growth condition (2.2). Suppose u ∈ Lp((0,∞);W 1,p

0 (Ω)). Then g(u(t)) ∈
L2((0,∞);L2(Ω)).

Proof. First, using the Orlicz inequality we obtain∫ t

0

‖g(u(s))‖22ds =
∫ t

0

∫
Ω

|g(u(x, s))|2dxds ≤ Cb

∫ t

0

∫
Ω

exp(2b|u(x, s)|
p

p−1 )dxds

≤ Cbc

∫ t

0

exp
(

2bα
∫

Ω

|u(x, s)|
pn

p−1 dx+ 2bβ
∫

Ω

|∇|u(x, s)|
p

p−1 |ndx
)
ds

≤ Cbcc
′ · exp

[
α′
∫ t

0

{
2bα

∫
Ω

|u(x, s)|
pn

p−1 dx+ 2bβ
∫

Ω

∣∣∣∇|u(x, s)|
p

p−1

∣∣∣n}ds
+ β′

∫ t

0

{(
2bα

∫
Ω

|u(x, s)|
pn

p−1 dx+ 2bβ
∫

Ω

|∇|u(x, s)|
p

p−1 |ndx
)′}

ds
]
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= Cbcc
′ · exp

[
α′
{

2bα
∫ t

0

∫
Ω

|u(x, s)|
pn

p−1 dxds+ 2bβ
∫ t

0

∫
Ω

∣∣∣∇|u(x, s)|
p

p−1

∣∣∣ndxds}
+ β′

{(
2bα

∫ t

0

∫
Ω

|u(x, s)|
pn

p−1 dxds+ 2bβ
∫ t

0

∫
Ω

|∇|u(x, s)|
p

p−1 |ndxds
)′}]

, (2.5)

where α, β, c, α′, β′, c′ are the Orlicz constants. Since p > n and Ω
is bounded Morrey’s embedding theorem and Calderon’s lemma imply that
u(s) belongs to L

pn
p−1 (Ω). Hence,∫ t

0

(∫
Ω
|u(x, s)|

pn
p−1dx

)
ds ≤ c1

∫ t

0
‖u(s)‖ppds. (2.6)

Similarly, using Calderon’s lemma, Morrey’s and Sobolev’s embedding the-
orems and Hölder’s inequality we obtain∫ t

0

(∫
Ω
|∇|u(x, s)|

p
p−1 |ndx

)
ds

=
∫ t

0

(∫
Ω

∣∣∣|u(x, s)|
1
p−1

u(x, s)
|u(s)|

∇u(x, s)
∣∣∣ndx)ds

=
∫ t

0

(∫
Ω
|u(x, s)|

n
p−1 |∇u(x, s)|ndx

)
ds

≤
∫ t

0

(
ess supx∈Ω

{
|u(x, s)|

n
p−1

}∫
Ω
|∇u(x, s)|ndx

)
ds

≤
(
c2ess supt∈R‖u(t)‖p

)
·
(
c3

∫ t

0
‖u(s)‖p

W 1,p
0

ds
)
, (2.7)

where c1, c2, c3 are embedding constants. Now, use estimates (2.6) and
(2.7) in the inequality (2.5) to get∫ t

0
‖g(u(s))‖22ds ≤ Cbcc′ · exp

[
2α′abc1

∫ t

0
‖u(s)‖ppds (2.8)

+ 2α′bβ
(
c2ess supt∈R‖u(t)‖p

)(
c3

∫ t

0
‖u(s)‖p

W 1,p
0

ds
)

+ 2bβ′αc1

(
‖u(t)‖pp − ‖u(0)‖pp

)
+ 2bββ′c2c3

(
‖u(t)‖pp‖u(t)‖p

W 1,p
0

− ‖u(0)‖pp‖u(0)‖p
W 1,p

0

)]
<∞, t ∈ R.

To complete the proof of the lemma, we take the limit of (2.8), as t →
+∞. �

Now, for the decomposition of the semiflow one has the following.
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Proposition 2.16. Let p > n and hypotheses (2.2) and (2.3) be satisfied.
Then the generalized semiflow {Ut}t∈R+ of problem (2.1) is of class AK.

Proof. (a) Consider the linearization of problem (2.1)

v′′(t)−∆v′(t) = f − g + ∆pu(t), v(0) = v′(0) = 0, (2.9)

where u(t) is a solution of (2.1). Now, multiply equation (2.9) by v′, integrate
over Ω and use the Cauchy-Schwartz and Young inequalities to obtain

d

dt
‖v′(t)‖22 +

2
λ1
‖v′(t)‖22 ≤ 2(‖f − g‖2 + ‖∆pu(t)‖W−1, q)‖v′(t)‖2,

d

dt
‖v′(t)‖22 +

2
λ1
‖v′(t)‖22 ≤ ε(‖f − g‖2 + ‖∆pu(t)‖W−1, q)2 +

1
ε
‖v′(t)‖22,

d

dt
‖v′(t)‖22 ≤ ε(‖f − g‖2 + ‖∆pu(t)‖W−1, q)2 +

(1
ε
− 2
λ1

)
‖v′(t)‖22,

‖v′(t)‖22 ≤ ε
∫ t

0

(
‖f(x, s)− g(u(s))‖2 + ‖∆pu(s)‖W−1, q

)2
ds

+
(1
ε
− 2
λ1

)∫ t

0
‖v′(s)‖22ds.

The use of Gronwall’s inequality implies that

‖v′(t)‖22 ≤ ε
[ ∫ t

0

(
‖f(x, s)− g(u(s))‖2 + ‖∆pu(s)‖W−1, q

)2
ds
]
e

( 1
ε
− 2
λ1

)t
.

(2.10)
Furthermore, since u′′(t) ∈ L2((0,∞);H−r(Ω)) (see [11]), one has∫ t

0

(
‖f(x, s)− g(u(s))‖2 + ‖∆pu(s)‖W−1, q

)2
ds

≤ 2
∫ t

0

(
‖f(x, s)− g(u(s))‖22 + ‖∆pu(s)‖2W−1, q

)
ds

= 2
∫ t

0
‖f(x, s)− g(u(s))‖22ds+ 2

∫ t

0
‖∆pu(s)‖2W−1, qds

= 2
∫ t

0
‖f(x, s)− g(u(s))‖22ds

+ 2
∫ t

0
‖u′′(s)−∆u(s) + g(u(s))− f(x, s)‖2W−1, qds

≤ 8
∫ t

0
‖f(x, s)‖22ds+ 8

∫ t

0
‖g(u(s))‖22ds+ 6

∫ t

0
‖u′′(s)‖2−rds
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+ 6
∫ t

0
‖∆u′(s)‖2W−1, qds ≤M (2.11)

by Lemma 2.15 and the boundedness of the Laplace operator. Thus, in-
equalities (2.10) and (2.11) imply that∥∥∥∫ t

0
v′(s)ds

∥∥∥
2
≤
∫ t

0
‖v′(s)‖2ds ≤ Kε(t), (2.12)

where

Kε(t) =
2ελ1

√
εM

2ε− λ1

(
1−

√
exp

[(1
ε
− 2
λ1

)
t
])
.

If we choose ε = ε(t) = (1 + e−t)λ1
2 , then

lim
t→+∞

[( 1
ε(t)
− 2
λ1

)
t
]

= 0.

Thus
lim

t→+∞
Kε(t) = 0, (2.13)

which implies decay for the solutions of the linearized system (2.9).
(b) Now consider the following equation:

w′′(t)−∆w′(t) = 0, w(0) = u0, w
′(0) = u1. (2.14)

Multiplying equation (2.14) by w′(t), integrating over Ω and using the inte-
gration by parts rule, we obtain

d

dt
‖w′(t)‖22 +

2
λ1
‖w′(t)‖22 ≤ 0, and ‖w′(t)‖22 ≤ ‖u1‖22 exp(− 2

λ1
t). (2.15)

Consider (2.14) as a first-order equation with respect to t; i.e., substitute
w′(t) = z(t). This problem is known to possess a global attractor, which im-
plies that the semigroup {Zt}t∈R+ , associated with solutions z(t), is asymp-
totically compact. Suppose that uk1, k = 1, 2, 3, .... is a bounded sequence of
initial conditions and tk →∞. Then the sequence of functions {Ztk(uk1)}k∈N
has a convergent subsequence. Moreover, relation (2.15) implies that the
convergence is uniform. Thus, the integral over (0, t) of the subsequence
converges, which, in turn, implies asymptotic compactness for the semigroup
{Wt}t∈R+ associated with the solutions w(t) of problem (2.14). Equation
(2.1) is the sum of (2.9) and (2.14). So, the application of Theorem 2.12
completes the proof. �

We can now state the main result about the attractor.
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Theorem 2.17. Let hypotheses (2.2)–(2.3) be satisfied. Then, problem (2.1)
possesses a unique global attractor in the space W 1,p

0 (Ω)× L2(Ω).

Proof. Since u ∈ L∞((0,∞);W 1,p
0 (Ω)), the generalized semiflow {Ut}t∈R+

is point dissipative and eventually bounded. Thus, following Proposition
2.13 and Theorem 2.14, we conclude that problem (2.1) possesses a global
attractor. �

Remark 2.18. In the case of p = n, the necessary L∞ embedding in Lemma
2.15 fails. To avoid such a situation, one has to impose a stronger assumption
on the function g.

Theorem 2.19. Let p = n and the continuous function g : R → R satisfy
the following property: there exists a positive number S, such that for s < S

g is bounded and, for s ≥ S, one has that |g(s)| ≤ α|s|
p
2 , for some α > 0.

Then problem (2.1) possesses a global attractor.

Proof. We have to prove as in Lemma 2.15 that g ∈ L2((0,∞);L2(Ω)).
Indeed, we have∫ ∞

0
‖g(u(s))‖22ds ≤

∫ T

0
‖g(u(s))‖22ds+ α

∫ ∞
T

∥∥∥|u(s)|
p
2

∥∥∥2

2
ds <∞.

The rest of the proof follows the same steps as in the case p > n. /

3. The Anisotropic Case

In this section we deal with the p(x)-Laplacian case, which is more com-
plicated than the classical one, due to a number of reasons. First, the p(x)-
Laplacian operator is inhomogeneous and second, it may not possess a first
eigenvalue; i.e., there are situations where the sequence λn of eigenvalues
converges to zero (see [8]). The natural spaces where the solutions of an
equation with the p(x)-Laplacian operator lie are the anisotropic Lebesgue
and Sobolev spaces Lp(x)(Ω) and Wm,p(x)(Ω). Next, some general notation
and results on these spaces will be presented together with a compactness
lemma in order to establish the necessary embeddings needed to deploy the
standard Galerkin method.

Again, consider Ω an open, bounded subset of IRn. For u : Ω × (0, T ) →
IR and p : Ω→ IR, measurable, with p(x) ≥ 1 for all x ∈ Ω̄, define

−∆p(x)u(t) = −div
(
|∇u(t)|p(x)−2∇u(t)

)
.

We now move on to discuss the anisotropic Lebesgue and Sobolev spaces.
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Definition 3.1. Suppose that the function p : Ω→ IR is measurable and let
p− = ess infx∈Ωp(x) and p+ = ess supx∈Ωp(x), such that 1 ≤ p− ≤ p+ <∞.
Define

Lp(x)(Ω) =
{
u : Ω→ IR measurable :

∫
Ω
|u(x)|p(x)dx <∞

}
and

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) | ∇u ∈

(
Lp(x)(Ω)

)n}
.

As usual, we define W
1,p(x)
0 (Ω) to be the closure of the space C∞0 (Ω) in

W 1,p(x)(Ω). The above spaces are Banach spaces endowed with the Luxem-
burg norm

‖u‖p(x) = inf
λ>0

{∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)
dx ≤ 1

}
and ‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

Moreover, the norm ‖∇u‖p(x) is equivalent to ‖u‖1,p(x) in W
1,p(x)
0 (Ω).

These spaces have geometric and topological properties similar to the
classical Lebesgue - Sobolev spaces. However, there are some difficulties
arising in density theorems, which depend on the exponent function p(x) and,
thus, require a finer approach, but these issues will not be addressed here.
For more detailed information on the definition and properties of generalized
Lebesgue - Sobolev spaces see [7] and the references therein. The following
theorems summarize the basic embedding and density properties of these
spaces.

Theorem 3.2. The following statements are true.
(a) The spaces

(
Lp(x)(Ω), ‖·‖p(x)

)
and

(
W 1,p(x)(Ω), ‖·‖1,p(x)

)
are separable;

(b) if Ω is open, then C∞0 (Ω) is dense in
(
Lp(x)(Ω), ‖ · ‖p(x)

)
;

(c) if p− > 1, then Lp(x)(Ω) and W 1,p(x)(Ω) are uniformly convex and
reflexive;

(d) for all u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω), where 1/p(x) + 1/q(x) = 1, one
has ∣∣∣ ∫

Ω
u(x)v(x)dx

∣∣∣ ≤ 2‖u‖p(x)‖v‖q(x); and

(e) the dual of Lp(x)(Ω) is Lq(x)(Ω), where 1/p(x)+1/q(x) = 1 and the Riesz
representation theorem is valid.

Theorem 3.3. The following statements are true.
(a) Let p1(x) ≤ p2(x) almost everywhere in Ω. Then the embeddings

Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and W 1,p2(x)(Ω) ↪→W 1,p1(x)(Ω) are continuous;
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(b) let the exponent functions p(x), q(x) satisfy also that p, q ∈ C(Ω̄) and
that

p(x) < n, q(x) <
np(x)
n− p(x)

, for all x ∈ Ω̄;

then the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is continuous and compact;
(c) assume that there exists L > 0, such that for all x, y ∈ Ω̄ one has that

− |p(x)− p(y)| · ln |x− y| ≤ L; (3.1)

then, C∞(Ω) and C∞0 (Ω) are dense in W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) respec-

tively.

Let us now formulate the analogous problem

u′′(t)−∆p(x)u(t)−∆u′(t) + g(u) = f(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω, (3.2)

u(x, t) = 0, x ∈ ∂Ω, t > 0, where (u0, u1) ∈W 1,p(x)
0 (Ω)× L2(Ω),

under the assumptions (2.2)-(2.3). The main result of this section is the
following.

Theorem 3.4. Let the function p satisfy the assumptions of Definition 3.1
and relation (3.1), with n/2 < p(x) < n, almost everywhere in Ω. Then,
there exists a function u : [0,+∞)×Ω→ IR, with u ∈ L∞

(
(0,∞);W 1,p(x)

0 (Ω)
)

and u′ ∈ L∞
(
(0,∞);L2(Ω)

)
∩L2

(
(0,∞);W 1,2

0 (Ω)
)
, satisfying problem (3.2).

In order to prove the above theorem, we need the following lemmas.

Lemma 3.5. Let p satisfy the assumptions of Theorem 3.4 and
u ∈W 1,p(x)

0 (Ω). Then, the following inequality is true:∫
Ω

exp
(
a|u|

p(x)
p(x)−1

)
dx <∞.

Proof. Since u ∈ W 1,p(x)
0 (Ω), from the variable exponent Sobolev embed-

ding theorem (see [7]), one has that W 1,p(x)
0 (Ω) ↪→ L

np(x)
p(x)−1 (Ω), continuously

and compactly. Thus, |u|
p(x)
p(x)−1 ∈ Ln(Ω) and using Orlicz’ inequality one

gets∫
Ω

exp
(
a|u|

p(x)
p(x)−1

)
dx ≤ c exp

(
a

∫
Ω
|u|

p(x)n
p(x)−1dx+ b

∫
Ω

∣∣∣∇|u| p(x)
p(x)−1

∣∣∣ndx)
≤ c exp

(
a

∫
Ω
|u|

p(x)n
p(x)−1dx+ b

∫
Ω

( p(x)
(p(x)− 1)

)n∣∣∣|u| 1
p(x)−1

u

|u|
∇u
∣∣∣ndx)
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≤ c exp
(
a

∫
Ω
|u|

p(x)n
p(x)−1dx+ b ·meas(Ω) · ess supx∈Ω

{( p(x)
(p(x)− 1)

)n}
×
∫

Ω
|u|

n
p(x)−1 |∇u|ndx

)
≤ c exp

(
a

∫
Ω
|u|

p(x)n
p(x)−1dx

+ 2b ·meas(Ω) · ess supx∈Ω

{( p(x)
(p(x)− 1)

)n}
‖u‖ np(x)

p(x)−1

‖∇u‖ np(x)
p(x)−1

)
<∞,

by the use of the anisotropic Cauchy-Schwartz inequality, since p(x) and
p(x)
p(x)−1 are conjugate exponents. �

The following compactness result is simple but essential.

Lemma 3.6. Let p satisfy the assumptions of Theorem 3.4. Then

L∞
(
(0, T );W 1,p(x)

0 (Ω)
)
↪→ L2

(
(0, T );L2(Ω)

)
, continuously and compactly.

Proof. The embedding theorem for anisotropic Sobolev Spaces implies that
W

1,p(x)
0 (Ω) is compactly embedded in L2(Ω). This means that, if un(t) is a

bounded sequence in W
1,p(x)
0 (Ω), considering t as a parameter, there exists

a u(t) = limn→∞un(t) ∈ L2(Ω), such that un(t) → u(t), in L2(Ω) (possibly
through a subsequence). Equivalently, the sequence of positive numbers
‖un(t)− u(t)‖22 → 0. From Lebesgue’s dominated convergence theorem and
the fact that ess supt∈[0,T ]‖un(t)‖2 <∞, uniformly for all n, one obtains∫ T

0
‖un(t)− u(t)‖22dt→ 0,

which completes the proof. �

The next proposition is quite useful for calculations concerning the p(x)-
Laplacian operator. It generalizes the well-known properties of the ordinary
p−Laplacian and illustrates the fact that the operator is inhomogeneous in
the anisotropic case.

Proposition 3.7. Let u be a function in W
1,p(x)
0 (Ω). Then the following

properties hold:

(i) 〈−∆pu(t), u′(t)〉 =
d

dt

∫
Ω

|∇u(t, x)|
p(x)

p(x)

dx

(ii) 〈−∆pu(t), u(t)〉 =
∫

Ω
|∇u(t, x)|p(x)dx.
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Proof. The second property is a direct consequence of Green’s identity. For
the first one, we obtain∫

Ω

(
−∆p(x)u(t, x)

)
u′(t, x)dx

=
∫

Ω
‖∇u(t, x)‖p(x)−2

Rn (∇u(t, x),∇u′(t, x))Rndx

=
1
2

∫
Ω
‖∇u(t, x)‖p(x)−2

Rn · d
dt
‖∇u(t, x)‖2Rndx

=
1
2

∫
Ω

(
‖∇u(t, x)‖2Rn

) p(x)−2
2 · d

dt
‖∇u(t, x)‖2Rndx

=
1
2

∫
Ω

2
p(x)

d

dt

(
(‖∇u(t, x)‖2Rn)

p(x)
2

)
dx,

which concludes the proof. �

Proof of Theorem 3.4. The proof will follow the same steps as in Theorem
2.4. We will only show how to obtain the estimates and the necessary embed-
dings. The projection and the monotonicity arguments remain the same. We
take, in the approximate equation in the finite-dimensional Galerkin spaces,
the product with u′n(t), and integrate over Ω and (0, t), to obtain, after the
application of the Cauchy-Schwartz inequality, the uniform Gronwall lemma
and Lemma 3.5 that

1
2
‖u′n(t)‖22 +

∫
Ω

‖∇un(t)‖p(x)
Rn

p(x)
dx+

∫ t

0
‖∇u′n(s)‖22ds+

1
2

∫
Ω
G(un(t))dx ≤ C.

Thus, we extend the approximate solutions un(t) to the whole interval [0, T ]
and we get that

un is bounded in L∞
(
(0, T );W 1,p(x)

0 (Ω)
)
,

u′n is bounded in L∞
(
(0, T );L2(Ω)

)
and

u′n is bounded in L2
(
(0, T );W 1,2

0 (Ω)
)
.

Now, applying Lemma 3.6, going to a subsequence if necessary, one ob-
tains that un → u strongly in L2((0, T );L2(Ω)), and u′n → u′ strongly in
L2((0, T );L2(Ω)), which implies that g(un) ⇀ g(u) in L2((0, T );L2(Ω)) (see
[10, Lemma 1.3]). Note that the hemicontinuity and monotonicity of the
p−Laplacian operator are still valid in the anisotropic case. �

Remark 3.8. Setting p(x) = p and imposing the same assumptions on p,
we can prove the existence of solutions for the classic p−Laplacian, when
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n/2 < p < n and thus have a general result on the existence of solutions for
problem (2.1).
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