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Abstract. In this paper we prove the existence and uniqueness of solutions

for the following evolution system of Klein-Gordon-Schrödinger type

iψt + κψxx + iαψ = φψ + f(x),

φtt − φxx + φ+ λφt = −Reψx + g(x),

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0,

where x ∈ Ω, t > 0, κ > 0, α > 0, λ > 0, f(x) and g(x) are the driving terms

and Ω (bounded) ⊂ IR. Also we prove the continuous dependence of solutions
of the system on the initial data as well as the existence of a global attractor.

1. Introduction. The aim of this paper is to prove the existence of a global attrac-
tor for the following Klein-Gordon-Schrödinger type system defined in a bounded
interval Ω ⊂ IR

iψt + κψxx + iαψ = φψ + f(x), x ∈ Ω, t > 0, (1)
φtt − φxx + φ+ λφt = −Reψx + g(x), x ∈ Ω, t > 0, (2)

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω, t > 0, (3)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0, κ > 0, α > 0, λ > 0, (4)

where f(x), g(x) are the driving terms. Systems of Klein-Gordon-Schrödinger type
have been studied for many years. To our knowledge, it seems that the first prob-
lems of this type is the so called Yukawa System [11], which goes back to 1935 (see,
[2] and the references therein). An other model which is of the same type is the so
called Zakharov System, which is formed by V. E. Zakharov [13] in early seventies
(see, [3] and [4] and the references therein).
Here we consider a Klein-Gordon-Schrödinger system of a third type, which is the
problem (1) - (4). This problem is the outcome of a modeling process, described
in all details in a work by N. Karachalios, N. Stavrakakis and P. Xanthopoulos [6].
Problem (1) - (4) models the Upper Hybrid Heating (UHH) scheme for plasmas in
fusion devices. (UHH) is the dominant branch of the general Electron Cyclotron
Resonance Heating (ECRH) scheme, which, for Tokamaks and Stellarators, consti-
tutes a basic method of plasma build-up and heating. The celebrated Zakharov
system, is highly successful in a multitude of applications. However, regarding the
study of (UHH) Zakharov system cannot not be implemented for certain reasons.
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The variable ψ stands for the dimensionless low frequency electron field, whereas
the (real) variable φ denotes the dimensionless low frequency density. For more
details on the physical interpretation and the modeling process of the system the
reader may refer to [6], [12] and the references therein.
In this paper we prove the existence of a global attractor in the space (H1

0 (Ω) ∩
H2(Ω))2 × H1

0 (Ω) which attracts all bounded sets of (H1
0 (Ω) ∩ H2(Ω))2 × H1

0 (Ω)
in the norm topology. This paper is divided in four Sections. In the Second
Section, we derive some useful estimates on the solutions of the system (1) -
(4) in (H1

0 (Ω) ∩ H2(Ω))2 × H1
0 (Ω). The Third Section, is based on an energy

method first introduced by J. Ball [1]. We are going to use the energy equations
of the problem to prove the continuity of solutions on the initial data in the space
(H1

0 (Ω) ∩H2(Ω))2 ×H1
0 (Ω). In Section 4, we show the asymptotic compactness of

the dynamical system and the existence of a global attractor. In a recent joint work
we study the finite dimensionality of the global attractor (see, [10]).
Notation: Denote by Hs both the standard real and complex Sobolev spaces. For
simplicity reasons sometimes we use Hs, Ls for Hs(Ω), Ls(Ω) and ||.||, (., .) for the

norm and the inner product of L2(Ω), respectively.
∫
dx denotes the integration

over Ω. Finally, C is a general symbol for any positive constant.

2. Global Existence. In this section we derive a priori estimates for the solutions
of the Klein-Gordon-Schrödinger system. Let us introduce the transformation θ =
φt +δφ, where θ is real, with δ a small positive constant to be specified later. Then,
system (1) - (4) takes the form

iψt + κψxx + iαψ = φψ + f, x ∈ Ω, t > 0, (5)
φt + δφ = θ, x ∈ Ω, t > 0, (6)

θt + (λ− δ)θ − φxx + (1− δ(λ− δ))φ = −Reψx + g, x ∈ Ω, t > 0, (7)

Also the initial and boundary conditions take the form

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), x ∈ Ω (8)
ψ(x, t) = φ(x, t) = 0, x ∈ ∂Ω, t > 0. (9)

Lemma 1. Let ||ψ0(t)|| ≤ R, for some R > 0 and f ∈ L2(Ω). Every solution of
(5)-(9) satisfies

||ψ(t)|| ≤ R∗, t ≥ t1,

where R∗ is a constant depending on α, ||f ||; t1 depending on α, ||f || and R.

Proof The proof is analogue to the one of Lemma 2.1 in [9]. C

Lemma 2. Assume that f, g ∈ L2(Ω) and ||(ψ0, φ0, θ0)||H1
0×H1

0×L2 ≤ R, where
R > 0. Then, there exists a constant δ1 such that when δ ≤ δ1, every solution
(ψ, φ, θ) of problem (5)-(9) satisfies

||ψ(t)||H1
0

+ ||φ(t)||H1
0

+ ||θ(t)|| ≤M1, t ≥ t2,

where M1 depends on α, κ, λ, δ1, ||f ||, ||g|| and t2 on α, κ, λ, δ1, ||f ||, ||g|| and R.

Proof. Multiplying equation (5) by −ψt, integrating and taking the real part gives

1
2
d

dt

(
κ||ψx||2 +

∫
φ|ψ|2 + 2Re

∫
fψ̄

)
+κα||ψx||2+

(
α+

δ

2

)∫
φ|ψ|2

=
1
2

∫
θ|ψ|2 + αRe

∫
fψ̄.

(10)
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Next, multiplying equation (7) by θ and substituting θ from equation (6) implies

1
2
d

dt
(||θ||2 + ||φx||2 + (1− δ(λ− δ))||φ||2) + (λ− δ)||θ||2 + δ||φx||2

+ δ(1− δ(λ− δ))||φ||2 = −Re
∫
θψx +

∫
gθ.

(11)

Adding relations 2× (10) and 2× (11) gives

F
′

1(t) + δF1(t) = G1(t), (12)

where for simplification reasons the following quantities are introduced

F1 :=κ||ψx||2 +
∫
φ|ψ|2dx+ ||θ||2 + ||φx||2 + (1− δ(λ− δ))||φ||2 + 2Re

∫
fψ̄,

G1 :=(δ − 2κα)||ψx||2 − 2α
∫
φ|ψ|2 + (3δ − 2λ)||θ||2 − δ(1− δ(λ− δ))||φ||2

− δ||φx||2 +
∫
θ|ψ|2 + 2(δ − α)Re

∫
fψ̄ − 2Re

∫
θψx + 2

∫
gθ.

Taking δ small enough such that δ − 2κα < 0, 3δ − 2λ < 0, 1 − δ(λ − δ) > 0, one
can render several terms of G1 negative. Let us proceed by majorizing the integrals
of G1 as follows∣∣∣∣ ∫

θ|ψ|2
∣∣∣∣ ≤ ||θ|| ||ψ||24 ≤ ||θ|| ||ψ||1/2||ψ||3/2 ≤ ε1

2
||θ||2 +

ε2
2
||ψx||2 + C,

∣∣∣∣2α ∫
φ|ψ|2

∣∣∣∣ ≤ ε3||φ||2 +
ε2
2
||ψx||2 + C,

and
∣∣∣∣ ∫

θψx

∣∣∣∣ ≤ ||ψx|| ||θ|| ≤
ε

2
||ψx||2 +

1
2ε
||θ||2,∣∣∣∣2(δ − α)

∫
fψ̄

∣∣∣∣ ≤ C||f || ||ψ|| ≤ C, and
∣∣∣∣2 ∫

gθ

∣∣∣∣ ≤ 2||g|| ||θ|| ≤ ε1
2
||θ||2 + C.

The next step is to estimate the arbitrary positive constants ε1, ε2, ε, such that the

following two inequalities hold simultaneously true ε1 +
1
2ε
≤ −(3δ− 2λ), ε2 +

ε

2
≤

−(δ − 2κα). Let ν > 0, ν 6= 1
2 , ᾱ = −(3δ − 2λ) and β̄ = −(δ − 2κα). Setting

ε1 =
ᾱ

2ν
, ε2 =

β̄

2ν
we have the following necessary condition: ᾱβ̄ ≥ ν2

(2ν − 1)2
.

Since ᾱ, β̄ > 0 the inequality is always true for sufficiently small ν. Finally, taking
ε3 small enough, so that ε3 < −δ(1− δ(λ− δ)) implies

F
′

1(t) + δF1(t) ≤ C.

The application of Gronwall’s Inequality completes the proof.

Lemma 3. Assume that f, g ∈ H1
0 (Ω) and ||(ψ0, φ0, θ0)||(H1

0∩H2)2×H1
0
≤ R, where

R > 0. Then, there exists a constant δ1 such that when δ ≤ δ1, every solution
(ψ, φ, θ) of the problem (5)-(9) satisfies

||ψ(t)||H1
0∩H2 + ||φ(t)||H1

0∩H2 + ||θ(t)||H1
0
≤M2, t ≥ t3,

where M depends on α, κ, λ, δ1, ||f ||H1
0
, ||g||H1

0
; and t3 on α, κ, λ, δ1, |f ||H1

0
, ||g||H1

0
, R.
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Proof. Multiplying relation (5) by ψxx,t+αψxx and taking the real part, produces

1
2
d

dt

(
κ||ψxx||2 − 2Re

∫
φψψ̄xx + 2Re

∫
fxψ̄x

)
+ κα||ψxx||2

− (2α+ δ)Re
∫
φψψ̄xx = −Re

∫
θψψ̄xxdx− Im

∫
φ2ψψ̄xx − αRe

∫
fxψ̄x.

(13)

Next, multiplication of equation (7) by −θxx and integration gives

1
2
d

dt

(
||θx||2 + ||φxx||2 + (1− δ(λ− δ))||φx||2

)
+ (λ− δ)||θx||2

+ δ||φxx||2 + δ(1− δ(λ− δ))||φx||2 = −Re
∫
θxψxx +

∫
gxθx.

(14)

Furthermore, the addition of equations 2× (13) and 2× (14) implies,

F
′

2(t) + δF2(t) = G2(t), t ≥ t3,

where for simplification reasons the following notation is introduced

F2 := κ||ψxx||2 − 2Re
∫
φψψ̄xx + 2Re

∫
fxψ̄x + ||θx||2 + ||φxx||2

+ (1− δ(λ− δ))||φx||2,
G2 := (δ − 2κα)||ψxx||2 + (3δ − 2λ)||θx||2 − δ||φxx||2 − δ(1− δ(λ− δ))||φx||2

+ 4αRe
∫
φψψ̄xx − 2Re

∫
θxψxx − 2Re

∫
θψψ̄xxdx− 2Im

∫
φ2ψψ̄xx

+ 2(δ − α)
∫
fxψ̄x + 2

∫
gxθx.

Taking δ small enough one can render several terms of G2 negative. Following
the same procedure as the one used for the first estimate we can deduce that,

F
′

2(t) + δF2(t) ≤ C, t ≥ t3,

therefore by applying Gronwall’s Inequality the proof is completed. C

Repeating a similar procedure to the one used in the preceding Lemmas we ob-
tain the following results on a finite time interval.

Lemma 4. Assume that f, g ∈ L2(Ω). Let ||ψ0, φ0, θ0||H1
0×H1

0×L2 ≤ R, where
R > 0. Then, there exists a constant δ1 such that when δ ≤ δ1, every solution
(ψ, φ, θ) of the problem (5)-(9) satisfies

||ψ(t)||H1
0

+ ||φ(t)||H1
0

+ ||θ|| ≤ L1, 0 ≤ t ≤ T,

where L1 depends on α, κ, λ, δ, ||f ||, ||g|| and T.

Lemma 5. Assume that f, g ∈ H1
0 (Ω). Let ||ψ0, φ0, θ0||(H1

0∩H2)2×H1
0
≤ R, where

R > 0. Then, there exists a constant δ1 such that when δ ≤ δ1, every solution
(ψ, φ, θ) of the problem (5)-(9) satisfies

||ψ(t)||H1
0∩H2 + ||φ(t)||H1

0∩H2 + ||θ||H1
0
≤ L2, 0 ≤ t ≤ T,

where L2 depends on α, κ, λ, δ, ||f ||H1
0
, ||g||H1

0
and T .

Therefore we are ready to state the main result of this section.
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Theorem 1. Assume that f, g ∈ H1
0 (Ω). Let ||ψ0, φ0, θ0||(H1

0∩H2)2×H1
0
≤ R, where

R > 0. Then, there exists a constant δ1 such that when δ ≤ δ1, the system (5) - (9)
admits a unique solution satisfying

ψ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), ψt ∈ L∞(0,∞;L2(Ω)),

φ ∈ L∞(0,∞;H1
0 (Ω) ∩H2(Ω)), φt ∈ L∞(0,∞;H1

0 (Ω)), φtt ∈ L∞(0,∞;L2(Ω)),
ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ Ω.

Proof. The proof follows the lines of Theorem 3.1 in [6].

3. The Solution Semigroup. Problem (5)-(9) defines a semigroup S(t),

S(t) : (H1
0 ∩H2)2 ×H1

0 → (H1
0 ∩H2)2 ×H1

0 (Theorem 1)
Let B1, B2 denote the following balls of center zero and radius M1,M2 respectively

B1 = {(ψ, φ, θ) ∈ H1
0 ×H1

0 × L2 : ||ψ||H1
0

+ ||φ||H1
0

+ ||θ|| ≤M1},
B2 = {(ψ, φ, θ) ∈ (H1

0 ∩H2)2 ×H1
0 : ||ψ||H1

0∩H2 + ||φ||H1
0∩H2 + ||θ||H1

0
≤M2},

(15)

where M1, M2 are the constants introduced in Lemmas 2, 3. Therefore, B1, B2 are
bounded absorbing sets for (5)-(9). Since B1 is bounded, we see that there exists a
constant T (B1) depending on B1 such that S(t)B1 ⊂ B1, for all t ≥ T (B1).

Lemma 6. If (ψn, φn, θn) ⇀ (ψ, φ, θ) weakly in H1
0 (Ω)×H1

0 (Ω)× L2(Ω), then
for every T > 0, we have

S(·)(ψn, φn, θn) ⇀ S(·)(ψ, φ, θ), weakly in L2(0, T ;H1
0 ×H1

0 × L2), (16)
S(t)(ψn, φn, θn) ⇀ S(t)(ψ, φ, θ), weakly in H1

0 ×H1
0 × L2, 0 ≤ t ≤ T. (17)

Proof. From the weak convergence and Lemma 4 it follows that {S(t)(ψn, φn, θn)}
is bounded in L∞(0, T ;H1

0 ×H1
0 × L2) with{

∂

∂t
S(t)ψn

}
,

{
∂

∂t
S(t)θn

}
bounded in L∞(0, T ;H−1),{

∂

∂t
S(t)φn

}
bounded in L∞(0, T ;L2).

Therefore, exist a subsequence
{
(ψnj

, φnj
, θnj

)
}

of {(ψn, φn, θn)} and (ψ∞, φ∞, θ∞) ∈
L∞(0, T ;H1

0 ×H1
0 × L2) such that

S(t)(ψnj
, φnj

, θnj
) ⇀ (ψ∞, φ∞, θ∞), weakly in L2(0, T ;H1

0 ×H1
0 × L2), (18)

∂

∂t
S(t)ψnj ⇀

∂

∂t
φ∞ and

∂

∂t
S(t)θnj ⇀

∂

∂t
θ∞, weakly in L2(0, T ;H−1), (19)

∂

∂t
S(t)φnj ⇀

∂

∂t
φ∞, weakly in L2(0, T ;L2). (20)

Then, it can be shown that (ψ∞, φ∞, θ∞) is a solution of the system (5)-(9) with
initial conditions (ψ∞(0), φ∞(0), θ∞(0)) = (ψ, φ, θ). But in Theorem 1 we estab-
lished the uniqueness of solutions, that implies (ψ∞, φ∞, θ∞) = S(t)(ψ, φ, θ) which
together with (18) concludes the proof of (16).
Now for equation (17), let us choose t ∈ [0, T ] fixed. From the weak convergence
and Lemma 4 {S(t)(ψn, φn, θn)} is bounded in H1

0 ×H1
0 ×L2. So there exists a sub-

sequence
{
(ψnj,t , φnj,t , θnj,t)

}
of {(ψn, φn, θn)} such that S(t)(ψnj,t , φnj,t , θnj,t) ⇀

(ψt, φt, θt) weakly in H1
0 × H1

0 × L2, with (ψt, φt, θt) ∈ H1
0 × H1

0 × L2, where
(ψnj,t

, φnj,t
, θnj,t

) and (ψt, φt, θt) both depend on t. By (18)-(20) we can see that
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(ψ∞, φ∞, θ∞) is a solution of the system with (ψ∞(0), φ∞(0), θ∞(0)) = (ψ, φ, θ)
as well as (ψ∞(t), φ∞(t), θ∞(t)) = (ψt, φt, θt). Therefore, by the uniqueness of the
solution we have (ψt, φt, θt) = (ψ∞(t), φ∞(t), θ∞(t)) = S(t)(ψ, φ, θ). Hence we have
proved that any sequence S(t)(ψn, φn, θn) has a weakly convergent subsequence that
will converge to the same limit S(t)(ψ, φ, θ). Therefore by contradiction arguments
we conclude that relation (17) holds. C

Theorem 2. Assume that f, g ∈ L2(Ω). The solutions (ψ, φ, θ) ∈ C(IR+,H1
0×H1

0×
L2) of the problem (5)-(9) depend continuously on the initial data in H1

0×H1
0×L2.

Proof. Assume that (ψ0,n, φ0,n, θ0,n) → (ψ0, φ0, θ0) in H1
0 ×H1

0 × L2, therefore we
need to prove that S(t)(ψn, φn, θn) → S(t)(ψ, φ, θ),∀t > 0, as n→∞. Given t > 0,
we choose T > t. From the statement above we know that {(ψ0,n, φ0,n, θ0,n)} is
bounded and therefore by Lemma 4 there exists a solution such that

||ψn(τ)||H1
0

+ ||φn(τ)||H1
0

+ ||θn(τ)|| ≤ C, 0 ≤ τ ≤ T, (21)

will hold where (ψn(τ), φn(τ), θn(τ)) = S(τ)(ψ0,n, φ0,n, θ0,n). But from the system

(5)-(9) we can see that
∥∥∥∥ ∂

∂τ
ψn

∥∥∥∥
L2(0,T ;H−1

0 )

+
∥∥∥∥ ∂

∂τ
φn

∥∥∥∥
L2(0,T ;L2)

≤ C. Hence, there

exists a (ψ(τ), φ(τ), θ(τ)) ∈ L∞(0, T ;H1
0 ×H1

0 × L2), such that

(ψn(τ), φn(τ), θn(τ)) ⇀ (ψ(τ), φ(τ), θ(τ)), weakly in L2(0, T ;H1
0 ×H1

0 × L2),
∂

∂τ
ψn ⇀

∂

∂τ
ψ, weakly in L2(0, T ;H−1

0 ),
∂

∂τ
φn ⇀

∂

∂τ
φ, weakly in L2(0, T ;L2).

(22)

Thereby, using the relations above and standard compactness results we have

(ψn, φn) → (ψ, φ) strongly in L2(0, T ;L2 × L2). (23)

Using similar arguments as the ones above and equation (21) we can deduce with
the help of Lemma 2 that for a fixed t there exists a (ψ(t), φ(t), θ(t)) such that

(ψn(t), φn(t), θn(t)) ⇀ (ψ(t), φ(t), θ(t)) weakly in H1
0 ×H1

0 × L2,

where (ψ(t), φ(t), θ(t)) is the solution of the problem (5)-(9) with initial conditions
(ψ0, φ0, θ0). Taking into consideration Lemma 6, the arguments above imply that

S(t)(ψn, φn, θn) ⇀ S(t)(ψ, φ, θ) weakly in H1
0 ×H1

0 × L2. (24)

To prove the strong convergence for the above sequence the energy equation (12) is
used. Every solution of the system (5)-(9) verifies the energy equation, hence

F1(S(t)(ψ0, φ0, θ0)) = e−δtF1(ψ0, φ0, θ0)+
∫ t

0

e−δ(t−τ)G1(S(t)(ψ0, φ0, θ0))dτ, (25)

where (ψ(t), φ(t), θ(t)) = S(t)(ψ0, φ0, θ0). The same will also hold for the solution
S(t)(ψ0,n, φ0,n, θ0,n), i.e.,

F1(S(t)(ψ0,n, φ0,n, θ0,n)) =e−δtF1(ψ0,n, φ0,n, θ0,n)

+
∫ t

0

e−δ(t−τ)G1(S(t)(ψ0,n, φ0,n, θ0,n))dτ.
(26)

From our assumption that (ψ0,n, φ0,n, θ0,n) → (ψ0, φ0, θ0) strongly inH1
0×H1

0×L2,
and the definition of F1 we can deduce that F1(ψ0,n, φ0,n, θ0,n) → F1(ψ0, φ0, θ0),
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as n→∞. Now rewriting the last term of (26) as∫ t

0

e−δ(t−τ)G1(S(t)(ψ0,n, φ0,n, θ0,n))dτ

=
∫ t

0

e−δ(t−τ)

(
(δ − 2kα)||S(t)ψ0x,n||2 − 2α

∫
S(t)φ0,n|S(t)ψ0,n|2

)
+

∫ t

0

e−δ(t−τ)

(
(3δ − 2λ)||S(t)θ0,n||2 − δ(1− δ(λ− δ))||S(t)φ0,n||2 − δ||S(t)φ0x,n||2

)
+

∫ t

0

e−δ(t−τ)

( ∫
S(t)θ0,n|S(t)ψ0,n|2 − 2Re

∫
S(t)θ0,nS(t)ψ0x,n

)
+

∫ t

0

e−δ(t−τ)

(
2(δ − α)Re

∫
fS(t)ψ0,n + 2

∫
gS(t)θ0,n

)
. (27)

By the weak convergence of relation (22) we have that

lim inf
n→∞

||e−δ(t−τ)S(τ)ψ0,n||L2(0,t;H1
0 ) ≥ ||e−δ(t−τ)S(t)ψ0||L2(0,t;H1

0 ), (28)

lim inf
n→∞

||e−δ(t−τ)S(τ)φ0,n||L2(0,t;H1
0 ) ≥ ||e−δ(t−τ)S(t)φ0||L2(0,t;H1

0 ), (29)

lim inf
n→∞

||e−δ(t−τ)S(τ)θ0,n||L2(0,t;L2) ≥ ||e−δ(t−τ)S(t)θ0||L2(0,t;L2). (30)

Then by choosing δ small enough so that (2kα− δ) > 0, (2λ− 3δ) > 0, δ(1− δ(λ−
δ)) > 0, the first terms of relation (27) may be rewritten as

lim sup
n→∞

−
∫ t

0

e−δ(t−τ)

(
(2kα− δ)||S(t)ψ0x,n||2 + (2λ− 3δ)||S(t)θ0,n||2

+δ(1− δ(λ− δ))||S(t)φ0,n||2 − δ||S(t)φ0x,n||2
)

≤ −
∫ t

0

e−δ(t−τ)

(
(2kα− δ)||S(t)ψ0x||2 + (2λ− 3δ)||S(t)θ0||2

+δ(1− δ(λ− δ))||S(t)φ0||2 − δ||S(t)φ0x||2
)
. (31)

Next,∣∣∣∣∫ t

0

e−δ(t−τ)

∫
S(t)φ0,n|S(t)ψ0,n|2 −

∫ t

0

e−δ(t−τ)

∫
S(t)φ0|S(t)ψ0|2

∣∣∣∣
≤

∫ t

0

e−δ(t−τ)||S(t)φ0,n − S(t)φ0|| ||S(t)ψn||24

+
∫ t

0

e−δ(t−τ)||S(t)φ0||3 ||S(t)ψ0,n − S(t)ψ0|| (||S(t)ψ0,n||6 + ||S(t)ψ0||6).

Using the Sobolev Embedding Theorem and Lemma 4, produces

||S(t)ψ0,n||2L∞(0,t;H1
0 )

∫ t

0

||S(t)φ0,n − S(t)φ0||+ ||S(t)φ0||L∞(0,t;H1
0 )×

×
∫ t

0

||S(t)ψ0,n − S(t)ψ0|| (||S(t)ψ0,n||H1
0

+ ||S(t)ψ0||H1
0
) → 0.

(32)

Following the same procedure for the proceeding integral implies∫ t

0

e−δ(t−τ)

∫
S(t)θ0,n|S(t)ψ0,n|2 →

∫ t

0

e−δ(t−τ)

∫
S(t)θ0|S(t)ψ0|2.
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Furthermore,∣∣∣∣∫ t

0

e−δ(t−τ)

∫
S(t)θ0,nS(t)ψ0x,n −

∫ t

0

e−δ(t−τ)

∫
S(t)θ0S(t)ψ0x

∣∣∣∣
≤ ||S(t)ψ0x,n||L∞(0,t;L2)

∫ t

0

||S(t)θ0,n − S(t)θ0||

+ ||S(t)θ0||L∞(0,t;L2)

∫ t

0

||S(t)ψ0x − S(t)ψ0x,n|| → 0.

(33)

Therefore by relations (25) and (28)-(33) we obtain

lim sup
n→∞

F1(S(t)(ψ0,n, φ0,n, θ0,n)) ≤ F1(S(t)(ψ0, φ0, θ0)). (34)

But by relation (24) and the compact embedding H1 ↪→ L2 we find that the
following is true S(t)(ψ0,n, φ0,n) → S(t)(ψ0, φ0), strongly in L2; therefore due to
the above relation we have∫

φ0,n|ψ0,n|2 →
∫
φ0|ψ0|2, and

∫
fS(t)ψ0,n →

∫
fS(t)ψ0.

Hence from the definition of F1

lim sup
n→∞

(κ||S(t)ψ0,n||H1
0

+ ||S(t)θ0,n||2 + ||S(t)φ0,n||2H1
0

+ (1− δ(λ− δ))||S(t)φ0,n||2)
≤(κ||S(t)ψ0||H1

0
+ ||S(t)θ0||2 + ||S(t)φ0||2H1

0
+ (1− δ(λ− δ))||S(t)φ0,n||2).

But we may consider the right hand side of the relation above as the norm of
H1

0 ×H1
0 × L2 and therefore without loss of generality

lim sup
n→∞

||S(t)(ψ0,n, ψ0,n, θ0,n)||H1
0×H1

0×L2 ≤ ||S(t)(ψ0, ψ0, θ0)||H1
0×H1

0×L2 .

Finally due to the weak convergence, we have completed the proof.

Theorem 3. Let f, g ∈ H1
0 (Ω). The solutions (ψ, φ, θ) ∈ C(IR+, (H1

0 ∩H2)2×H1
0 )

of the problem (5)-(9) depend continuously on initial data in (H1
0 ∩H2)2 ×H1

0 .

Proof. The proof is analogue to the proof of Theorem 3.3 in [8].

4. Existence of a Global Attractor. The aim of this section is to prove the
existence of a global attractor for the dynamical system S(t) in the space (H1

0 ∩
H2)2 ×H1

0 . Some of the ideas found here where earlier developed in the work by
Karachalios and Stavrakakis [7]. To apply Proposision 1 below, it is necessary to
prove the asymptotic compactness of the solutions in (H1

0 ∩H2)2 ×H1
0 .

Theorem 4. Let f, g ∈ L2(Ω). Then the dynamical system S(t) is asymptotically
compact in H1

0 ×H1
0 ×L2, that is if {(ψn, φn, θn)} is bounded in H1

0 ×H1
0 ×L2 and

tn →∞, then {S(t)(ψn, φn, θn)} is precompact.

Proof. Ideas developed in [1] will be used. Since sequence (ψn, φn, θn) is bounded,
there exists R such that ||(ψn, φn, θn)||H1

0×H1
0×L2 ≤ R. Lemma 2 implies the

existence of a constant T (R) that

S(t)(ψn, φn, θn) ∈ B1, for all t ≥ T (R), (35)
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where B1 is the absorbing set given by relation (15). Since tn →∞, there exists
N1(R) such that if n ≥ N1, then tn ≥ T (R), and thereby

S(tn)(ψn, φn, θn) ∈ B1, for all n ≥ N1. (36)

Hence there exists (ψ, φ, θ) ∈ B1 such that

S(tn)(ψn, φn, θn) ⇀ (ψ, φ, θ), weakly in H1
0 ×H1

0 × L2. (37)

Since tn →∞, for every T > 0, there exists N2(R, T ) such that when n ≥ N2

one has tn − T ≥ T (R). Therefore by relation (35)

S(tn − T )(ψn, φn, θn) ∈ B1 for all n ≥ N2, (38)

S(tn − T )(ψn, φn, θn) ⇀ (ψT , φT , θT ), weakly in H1
0 ×H1

0 × L2, (39)
where (ψT , φT , θT ) ∈ B1. By relation (17) it follows that

S(T )(S(tn−T )(ψn, φn, θn)) ⇀ S(T )(ψT , φT , θT ), weakly in H1
0 ×H1

0 ×L2, (40)

and from the uniqueness of the solution we get that

(ψ, φ, θ) = S(T )(ψT , φT , θT ). (41)

Now from relation (37)

lim inf
n→∞

||S(tn)(ψn, φn, θn)||H1
0×H1

0×L2 ≥ ||(ψ, φ, θ)||H1
0×H1

0×L2 . (42)

Let S(T )(S(tn − T )(ψn, φn, θn)) ∈ H1
0 × H1

0 × L2 be a solution of the system
(5)-(9). Every solution satisfies (12). Hence relations (37) and (40) will give

F1(S(tn)(ψn, φn, θn)) = e−δTF1(S(tn − T )(ψn, φn, θn))

+
∫ T

0

e−δ(T−τ)G1(S(τ)(S(tn − T )(ψn, φn, θn)))dτ.
(43)

Now since relation (38) holds, S(tn − T )(ψn, φn, θn) is bounded and therefore
e−δtF1(S(tn − T )(ψn, φn, θn)) ≤ CeδT . Estimating the second term of (43) as in
Theorem 2 implies that

lim sup
n→∞

∫ T

0

e−δ(T−τ)G1(S(τ)(S(tn − T )(ψn, φn, θn)))dτ

≤
∫ T

0

e−δ(T−τ)G1(S(τ)(ψT , φT , θT ))dτ.

(44)

Therefore
lim sup

n→∞
F1(S(T )(S(tn − T )(ψn, φn, θn))

≤ CeδT +
∫ T

0

eδ(T−τ)G1(S(T )(ψT , φT , θT ))dτ.
(45)

Furthermore, for the solution (ψ, φ, θ) = S(T )(ψT , φT , θT ) we have

F1(ψ, φ, θ) = e−δTF1(ψT , φT , θT ) +
∫ T

0

e−δ(T−τ)G1(S(τ)(ψτ,φτ , θτ ))dτ. (46)

Substituting relation (46) into (45) implies

lim sup
n→∞

F1(S(tn)(ψn, φn, θn)) ≤C1e
δT + F1(ψ, φ, θ), (47)

where eδTF1(ψT , φT , θT ) ≤ C1e
δT . Let T → +∞, then

lim sup
n→∞

F1(S(tn)(ψn, φn, θn)) ≤ F1(ψ, φ, θ).
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The rest of the proof follows the same steps as in Theorem 2.

Theorem 5. Assume that f, g ∈ H1
0 (Ω). Then the dynamical system S(t) is asymp-

totically compact in (H1
0 ∩H2)2 ×H1

0 .

Proof. The proof is omitted as it follows similar steps to Theorem 4.

Proposition 1. Assume that X is a metric space and {S(t)}t≥0 is a semigroup of
continuous operators in X. If {S(t)}t≥0 has a bounded absorbing set and is asymp-
totically compact, then {S(t)}t≥0 possesses a global attractor which is a compact
invariant set and attracts every bounded set in X.

Theorem 6. Assume that f, g ∈ H1
0 (Ω). Then the problem (5)-(9) possesses a

strong compact global attractor in (H1
0 ∩H2)2 ×H1

0 , which is a compact invariant
subset and attracts every bounded set in the norm topology of (H1

0 ∩H2)2 ×H1
0 .

Proof. Taking into consideration the asymptotic compactness of S(t) in H1
0 ×H1

0 ×
L2 (Theorem 4), the asymptotic compactness of S(t) in (H1

0 ∩H2)2×H1
0 (Theorem

5) and Proposition 1 the proof is straight forward.
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