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Abstract. We study on the initial-bountary value problem for some degenerate

non-linear dissipative wave equations of Kirchhoff type:

utt − φ(x)|| 5 u(t)||2γ∆u + δut = f(u), x ∈ IRN , t ≥ 0,

with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where

N ≥ 3, δ > 0, γ ≥ 1, f(u) = |u|au with a > 0 and (φ(x))−1 = g(x) is a positive

function lying in LN/2(IRN ) ∩ L∞(IRN ). If the initial data {u0, u1} are small
and || 5 u0|| > 0, then the unique solution exists globally and has certain decay

properties.

1. Introduction-Preliminary Results. In this work we study the following de-
generate nonlocal quasilinear wave equation of Kirchhoff type with a weak dissipa-
tive term

utt − φ(x)|| 5 u(t)||2γ∆u + δut = f(u), x ∈ IRN , t ≥ 0, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ IRN , (2)

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, δ > 0, γ ≥ 1
and f(u) = |u|au, a > 0. Throughout the paper we assume that the function
φ : IRN → IR satisfy the following condition
(G) φ(x) > 0, for all x ∈ IRN and (φ(x))−1 := g(x) ∈ LN/2(IRN ) ∩ L∞(IRN ).

The space D1,2(IRN ) is defined as the closure of C∞
0 (IRN ) functions with

respect to the energy norm ||u||D1,2 =:
∫
IRN | 5 u|2dx. It is known that

D1,2(IRN ) =
{

u ∈ L
2N

N−2 (IRN ) : 5u ∈ (L2(IRN ))N
}

and D1,2(IRN ) is embedded continuously in L
2N

N−2 (IRN ), that is, there exists
k > 0 such that

||u|| 2N
N−2

≤ k||u||D1,2 . (3)
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It is known that D1,2(IRN ) is a separable Hilbert space. The space L2
g(IR

N ) is
defined to be the closure of C∞

0 (IRN ) functions with respect to the inner product

(u, v)L2
g(IRN ) =:

∫
IRN

guvdx. (4)

It is clear that L2
g(IR

N ) is a separable Hilbert space, too. We shall frequently
use the following version of the generalized Poincaré’s inequality∫

IRN
| 5 u|2dx ≥ α

∫
IRN

gu2dx, (5)

for all u ∈ C∞
0 and g ∈ LN/2, where α =: k−2||g||−1

N/2.
To study the properties of the operator −φ∆, we consider the equation

−φ(x)∆u(x) = η(x), x ∈ IRN , (6)

without boundary conditions. Since for every u, v ∈ C∞
0 (IRN ) we have

(−φ∆u, v)L2
g

=
∫

IRN
5u5 v dx, (7)

we may consider equation (6) as an operator equation of the form

A0u = η, A0 : D(A0) ⊆ L2
g(IR

N ) → L2
g(IR

N ), η ∈ L2
g(IR

N ). (8)

Relation (7) implies that the operator A0 = −φ∆ with domain of definition
D(A0) = C∞

0 (IRN ), is symmetric. From inequality (5) and equation (7) we have
that

(A0u, u)L2
g
≥ α||u||2L2

g
, for all u ∈ D(A0). (9)

So the operator A0 = −φ∆ is a symmetric, strongly monotone operator on
L2

g(IR
N ). Hence, Friedrich’s extension theorem is applicable. The energy scalar

product given by (7) is

(u, v)E =
∫

IRN
5u5 vdx

and the energy space is the completion of D(A0) with respect to (u, v)E . It is
obvious that the energetic space XE is the homogeneous Sobolev space D1,2(IRN ).
The energy extension AE = −φ∆ of A0,

−φ∆ : D1,2(IRN ) → D−1,2(IRN ), (10)

is defined to be the duality mapping of D1,2(IRN ). We define D(A) to be the set
of all solutions of equations (6), for arbitrary η ∈ L2

g(IR
N ). Friedrich’s extension

A of A0 is the restriction of the energetic extension AE to the set D(A). The
operator A = −φ∆ is self-adjoint and therefore graph-closed. Its domain D(A),
is a Hilbert space with respect to the graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A).

The norm induced by the scalar product is

||u||D(A) =
{∫

IRN
g|u|2 dx +

∫
IRN

φ|∆u|2 dx

} 1
2

,

which is equivalent to the norm

||Au||L2
g

=
{∫

IRN
φ|∆u|2 dx

} 1
2

.
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So we have established the evolution quartet

D(A) ⊂ D1,2(IRN ) ⊂ L2
g(IR

N ) ⊂ D−1,2(IRN ), (11)

where all the embeddings are dense and compact. Finally, for later use, it is neces-
sary to remind that the eigenvalue problem

−φ(x)∆u = µu, x ∈ IRN , (12)

has a complete system of eigensolutions {wn, µn} satisfying the following proper-
ties {

−φ∆wj = µjwj , j = 1, 2, ..., wj ∈ D1,2(IRN ),
0 < µ1 ≤ µ2 ≤ ..., µj →∞, as j →∞.

(13)

In order to clarify the kind of solutions we are going to obtain for the problem
(1)-(2), we give the definition of the weak solution for this problem.

Definition 5. A weak solution of the problem (1)-(2) is a function u such that
(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2(IRN )], utt ∈ L2[0, T ;L2

g(IR
N )],

(ii) for all v ∈ C∞
0 ([0, T ]× (IRN )), satisfies the generalized formula∫ T

0

(utt(τ), v(τ))L2
g
dτ +

∫ T

0

(
|| 5 u(t)||2γ

∫
IRN

5 u(τ)5 v(τ)dxdτ

)
+δ

∫ T

0

(ut(τ), v(τ))L2
g
dτ −

∫ T

0

(f(u(τ)), v(τ))L2
g
dτ = 0, (14)

where f(s) = |s|as, and

(iii) satisfies the initial conditions

u(x, 0) = u0(x) ∈ D(A), ut(x, 0) = u1(x) ∈ D1,2(IRN ).

2. Local-Global Existence Results. First we state the result concerning the
local solution of our problem

Theorem 1. Let f(u) = |u|au nonlinear C1-function and also let 0 ≤ a ≤
4/(N − 2), N ≥ 3, δ > 0, γ ≥ 1. If (u0, u1) ∈ D(A) × D1,2 and satisfy the
nondegenerate condition

|| 5 u0|| > 0,

then there exists T = T (||u0||D(A), || 5 u1||2) > 0 such that problem (1.1)-(1.2)
admits a unique local weak solution u satisfying

u ∈ C(0, T ;D(A)), ut ∈ C(0, T ;D1,2).

Moreover, at least one of the following statements holds true, either

(i) T = +∞, or

(ii) lim e(u(t)) ≡ lim(||ut(t)||2D1,2 + ||u(t)||2D(A)) = ∞, as t → T−.

Proof For T > 0 and R > 0, we define the two parameter space of solutions

XT,R =:
{
v ∈ C(0, T ;D(A)) : vt ∈ C(0, T ;D1,2), v(0) = u0,

vt(0) = u1, e(v(t)) ≤ R2, for all t ∈ [0, T ]
}

.

It is easy to see that XT,R can be organized as a complete metric space with the
distance

d(u, v) =: sup
0≤t≤T

e1(u(t)− v(t)), where e1(v) =: ||vt||2L2
g

+ ||v||2D1,2 . (15)
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We define the non-linear mapping S in the following way. For every v ∈
XT,R, u = Sv is the unique solution of the linear wave equation (??). Using the
fact that ||5u0|| ≡ M0 > 0, we prove that there exist T > 0, R > 0 such that S
maps XT,R into itself and S is a contraction mapping with respect to the metric
d(., .). By applying the Banach contraction mapping theorem, we obtain a unique
solution u belonging to XT,R. Therefore it follows from the continuity argument
for wave equations that this solution u belongs to our space. For more details of
the proof we refer to [3] and [4]. ♦

Next, we shall consider the global existence and decay properties of the nontrivial
solutions for the degenerate nonlinear wave equations (1)-(2), where γ ≥ 1 and
δ = 1 for simplicity. We note that the problem (1)-(2) has the trivial solution
u ≡ 0. We define energy and potential functionals associated with the equation
(1)-(2) by

E(u, ut) ≡ ||ut||2L2
g

+ J(u), (16)

J(u) ≡ 1
γ + 1

|| 5 u||2(γ+1) − 2
a + 2

||u(t)||a+2

La+2
g

, (17)

respectively, where we denote E(t) = E(u(t), ut(t)) for simplicity. Then it is easy
to see that E(t) ≤ E(0), and hence, we see that

|| 5 (u(t)|| ≤ {(γ + 1)E(t)}1/(2(γ+1)) ≤ {(γ + 1)E(0)}1/(2(γ+1))
. (18)

Also the K-positive set associated with problem (1)- (2) is

W∗ ≡
{

u ∈ D(A) : K(u) ≡ || 5 u||2(γ+1) − ||u||a+2

La+2
g

> 0
}
∪ {0} . (19)

Then we observe the following

Proposition 2. (i) Let 2γ < a ≤ 4
N−2 , then W∗ is a neighborhood of 0 in D1,2.

(ii) If u ∈ W∗ and a > 2γ, then

0 ≤ d−1
∗ ||u||2(γ+1)

D1,2 ≤ J(u) ≤ E(u, ut), where d∗ =
(a + 2)(γ + 1)

(a− 2γ)
. (20)

Proof (i) Indeed, using the generalized Poincare’s inequality, we have that

||u||a+2

La+2
g

≤ C0||u||(1−θ)(a+2)
L2

g
||u||θ(a+2)

D1,2 ≤ C0||u||(1−θ)(a+2)
L2

g
||u||θ(a+2)−2(γ+1)

D1,2 ||u||2(γ+1)
D1,2

≤ C0

α
||u||a−2γ

D1,2 ||u||2(γ+1)
D1,2 . (21)

Hence, by (21) we get

K = ||u||2(γ+1)
D1,2 − ||u||a+2

La+2
g

≥ (1− C0

α
||u||a−2γ

D1,2 )||u||2(γ+1)
D1,2 .

Therefore, if ||u||a−2γ
D1,2 ≤ (k−θ−2||g||−1

N/2)
1/(a−2γ), then K(u) ≥ 0 and 0 ∈ W∗.

(ii) Since a > 2γ, we have for u ∈ W∗ that,

J(u) =
1

γ + 1
||u(t)||2(γ+1)

D1,2 − 2
a + 2

||u(t)||a+2

La+2
g

≥ 1
γ + 1

||u(t)||2(γ+1)
D1,2 − 2

a + 2
||u(t)||2(γ+1)

D1,2 =
a− 2γ

(γ + 1)(a + 2)
||u||2(γ+1)

D1,2 . ♦

In order to derive the decay estimate of the energy E(t), we have the following
proposition
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Proposition 3. Let u be a solution of (1)-(2) on [0, T ]. If u ∈ W ∗, a > 2γ,
and

K(u) ≥ 1
2
|| 5 u||2(γ+1), (22)

then we have

E(t) ≤
{

E(0)−γ/(γ+1) + d−1
0 [t− 1]+

}−(γ+1)/γ

, (23)

for 0 ≤ t ≤ T , where d0 is some positive constant if E(0) ≤ 1, that is,
|| 5 u||2(γ+1) ≤ C∗(1 + t)−1/γ , where C∗ = C∗

(
||u0||2(γ+1)

D1,2 , ||u1||L2
g

)
.

Proof Multiplying equation (1) by 2utg and integrating over IRN , we have

d

dt

{
||ut(t)||2L2

g
+

1
γ + 1

||u(t)||2(γ+1)
D1,2 − 2

a + 2
||u(t)||a+2

La+2
g

}
+ 2||ut(t)||2L2

g
= 0.

By the definition of the energy E(t), we get that

d

dt
E(t) + 2||ut(t)||2L2

g
= 0, (24)

and hence, E(t) is a non-increasing function. Moreover, from Proposition 4.1 (ii),
E(t) is non-negative. Integrating (24) over [0, T ], we have that

E(t) + 2
∫ t

0

||ut(s)||2L2
g
ds = E(0). (25)

For a moment, we assume that T > 1. Integrating (24) over [t, t + 1], 0 < t <
T − 1, we have

2
∫ t+1

t

||ut(s)||2L2
g
ds = E(t)− E(t− 1) (≡ D(t)2). (26)

Then there exist two numbers t1 ∈ [t, t + 1/4] and t2 ∈ [t + 3/4, t + 1] such
that

||ut(ti)||2L2
g
≤ 2D(t), for i = 1, 2. (27)

Multiplying (1)-(2) by ug and integrating over IRN , we have

K(u(t)) = ||ut(t)||2L2
g
− d

dt
(u(t), ut(t))L2

g
− (u(t), ut(t))L2

g
. (28)

Integrating (28) over [t1, t2], we observe from (22) that

1/2
∫ t2

t1

|| 5 u(s)||2(γ+1)ds ≤
∫ t2

t1

K(u(s))ds

≤
∫ t+1

t

||ut(s)||2L2
g
ds +

{(∫ t+1

t

||ut(s)||2L2
g
ds

)1/2

+
2∑

i=1

||ut(ti)||L2
g

}
×

× sup
t≤s≤t+1

||u(s)||L2
g
≤ D(t)2 + 5D(t)α−1(d∗E(t))1/(2(γ+1)), (29)
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where we used (5), (26), (27) at the last inequality. Integrating (24) over [t, t2], we
have from (26) and (29) the following estimation for the energy

E(t) = E(t2) + 2
∫ t2

t

||ut(s)||2L2
g
ds

≤ 2
∫ t2

t1

E(s)ds + 2
∫ t+1

t

||ut(s)||2L2
g
ds

≤ 4
∫ t+1

t

||ut(s)||2L2
g
ds +

∫ t2

t1

|| 5 u(s)||2(γ+1)ds

≤ 6D(t)2 + 10α−1D(t)(d∗E(t))1/(2(γ+1))

≤ 6D(t)2 + d2
∗(10α−1D(t))2(γ+1)/(2γ+1) +

1
2
E(t).

Noting the fact that 2D(t)2 ≤ E(t) ≤ E(0) (see (25), (26)), we have

E(t) ≤ C∗D(t)
2(γ+1)
(2γ+1) ,

with

C∗ = 2

{
6

(
E(0)

2

)γ/(2γ+1)

+ d2
∗(10α−1)2(γ+1)/(2γ+1)

}
.

Hence from relation (26) we see that

E(t)1+γ/(γ+1) ≤ 2−1C
2(γ+1)/(2γ+1)
∗ {E(t)− E(t + 1)} .

Noting (25) and applying [2, Lemma 2.2], we obtain estimate (23). ♦

For later use, we introduce a function H(t) as follows

H(t) =:
|| 5 ut(t)||2

|| 5 u(t)||2γ
+ ||u(t)||2D(A), t ≥ 0. (30)

We have the following theorem

Theorem 4. Let N = 3, a > max {4γ − 2, 2γ + [a− 4]+/2}, and {u0, u1} ∈
W∗ ×D1,2, with

|| 5 u0|| > 0.

Also, we have that the initial conditions are suitably small, that is, we have the
following inequality:

0 <

{(
d1E(0)(γ−1)(2(γ+1))

)a−2

+ d2E(0)
(a+2−4γ)
(2(γ+1))

} 2
a−2

H(0) < 1, (31)

where d1, d2 are certain positive constants and H(0) =: ||5u1||2
||5u0||2γ + ||u0||D(A).

Then (1)-(2) has a unique global solution u ∈ W∗ such that

u ∈ C0 ([0,∞);D(A)) ∩ C1
(
[0,∞);D1,2

)
∩ C2

(
[0,∞);L2

g

)
.

Moreover, we obtain the following estimates

||ut(t)||2L2
g

+ ||utt(t)||2L2
g

≤ C(1 + t)−1−1/γ , (32)

|| 5 ut(t)||2 ≤ C(1 + t)−1, (33)

where C is a positive constant.
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Proof Since u0 ∈ W∗ and W∗ is an open set, putting

T1 = sup {t ∈ [0,∞);u(s) ∈ W∗ for 0 ≤ s < t} ,

we see that T1 > 0 and u(t) ∈ W∗ for 0 ≤ t < T1. If T1 < ∞, then one of the
following two cases happens:

K(u(T1)) = 0, and u(T1) 6= 0, (34)

or
K(u(t)) →∞, as t → T−1 . (35)

Using relation (11) if (a− 2γ)− (a + 2)θ > 0 and θ = (3a− 4)+/(2(a + 2)), we
obtain the following estimate

||u(t)||a+2

La+2
g

≤ Ca+2
0 || 5 u(t)||(a−2γ)−(a+2)θ||u(t)||(a+2)θ

D(A) || 5 u(t)||2(γ+1). (36)

Now, we see from (20), (25), (30) and (36) that

||u(t)||a+2

La+2
g

≤ 1
2
G(t)|| 5 u(t)||2(γ+1), (37)

for 0 ≤ t < T1, where we have

G(t) ≡ d1E(0)((a−2γ)−(a+2)θ)/(2(γ+1))H(t)(a+2)θ/2, (38)

with d1 = 2Ca+2
0 d

((a−2γ)−(a+2)θ)/(2(γ+1))
∗ . Since we have that G(0) < 1 for small

initial data, putting

T2 ≡ sup {t ∈ [0,∞) : G(s) < 1 for 0 ≤ s < t} ,

we see that T2 > 0 and G(t) < 1, for 0 ≤ t < T2. If T2 < T1 (< ∞), then we
get that

G(T2) = 1. (39)

Relations (19) and (37) imply that

K(u(t)) ≥ || 5 u(t)||2(γ+1) − (1/2)G(t)|| 5 u(t)||2(γ+1)

≥ (1/2)|| 5 u(t)||2(γ+1), (40)

for 0 ≤ t ≤ T2. Since we have that || 5 u0|| > 0, setting

T3 ≡ sup {t ∈ [0,∞) : || 5 u(s)|| > 0, for 0 ≤ s < t} , (41)

we get that T3 > 0 and || 5 u(t)|| > 0 for 0 ≤ t < T3. If we have that T3 < T2,
then we obtain

|| 5 u(T3)|| = 0. (42)

Multiplying equation (1) by −2∆ut and integrating it over IRN , we have

d

dt
|| 5 ut(t)||2 + || 5 u(t)||2γ d

dt
||u(t)||2D(A) + 2|| 5 ut(t)||2

= 2(5f(u(t)), 5ut(t)).

Moreover, multiplying the previous equality by || 5 u(t)||−2γ , for 0 ≤ t < T3,
we have

H ′(t) + 2
|| 5 u′(t)||2

|| 5 u(t)||2γ
= 2γ

(5u(t),5ut(t)) || 5 ut(t)||2

|| 5 u(t)||2(γ+1)
+ 2

(5f(u(t)),5ut(t))
|| 5 u(t)||2γ

≡ I1(t) + I2(t), (43)
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where, H(t) is given by (30). To estimate I1(t) we observe from (20) and (25)
that

I1(t) ≤ 2γ|| 5 u(t)||γ−1 || 5 ut(t)||3

|| 5 u(t)||3γ

≤ 2γ(d∗E(0))(γ−1)/(2(γ+1))H(t)1/2 || 5 ut(t)||2

|| 5 u(t)||2γ
.

Using Hölder inequality with p−1 = 1
3 , q−1 = 1

6 , r−1 = 1
2 , relation (11) we get

that

|(5f(u), 5ut(t))| ≤ (a + 1)||u||aL3a || 5 u||L6 || 5 ut||

≤ Ca+1
0 (a + 1)|| 5 u||a/2+1||u||a/2

D(A)|| 5 ut||,

and hence

I2(t) ≤
{

Ca+1
0 (a + 1)|| 5 u(t)||a/2+1−γ

}2

H(t)a/2 +
|| 5 ut(t)||2

|| 5 u(t)||2γ
.

So we get from (43) that

H ′(t) + [1− F (t)]
|| 5 ut(t)||2

|| 5 u(t)||2γ

≤
{

Ca+1
0 (a + 1)|| 5 u(t)||a/2+1−γ

}2

H(t)a/2, (44)

where we set

F (t) ≡ d2E(0)(γ−1)/(2(γ+1))H(t)1/2, with d2 = 2γd∗. (45)

Since we have that F (0) < 1 for small initial data, putting

T4 ≡ sup {t ∈ [0,∞) : F (s) < 1, for 0 ≤ s < t} ,

we observe that T4 > 0 and F (t) < 1 for 0 ≤ t < T4. If T4 < T3, then we see
that

F (T4) = 1. (46)
Moreover, we get from (44) that

H(t) ≤
{

H(0)−(a−2)/2 − c2

∫ t

0

|| 5 u(s)||a+2−2γds

}−2/(a−2)

, (47)

with c2 = C
2(a+1)
0 (a/2− 1)(a + 1)2. We have from (23) and (36) that∫ t

0

|| 5 u(s)||ω ds

≤
∫ t

0

(d∗E(s))ω/(2(γ+1))ds

≤
∫ t

0

[d∗
{

E(0)−γ/(γ+1) + d−1
0 [s− 1]+

}−(γ+1)/γ

]ω/(2(γ+1))ds

≤ 2d
ω/(2(γ+1))
∗ d0E(0)(ω−2γ)/(2(γ+1)), (48)

under ω > 2γ and E(0) ≥ 1. Denoting by d4 = 2c2d
(a+2−2γ)/(2(γ+1))
∗ d0 if

a > 4γ − 2 then condition (31) implies

d2E(0)(γ−1)/(2(γ+1))
{

H(0)−(a−2)/2 − d4E(0)(a+2−4γ)/(2(γ+1))
}−1/(a−2)

< 1.
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Thus, we easily see that
F (t) < 1,

for all 0 ≤ t ≤ T4, which contradicts relation (46). Hence, we have T4 ≥ T3.
Relations (31), (47) and (48), imply that

H(t) ≡ || 5 ut(t)||2

|| 5 u(t)||2γ
+ ||u(t)||2D(A) ≤ (d2E(0)(γ−1)/(2(γ+1)))−2 ≤ 1, (49)

for 0 ≤ t < T3. Next, we shall show that || 5 u(t)|| > 0, for t ≥ 0. Since we
have that || 5 u(T3)|| = 0, by relation (42), we see from (49) and the continuity
that || 5 ut(T3)|| = 0. We perform the change of variable t → T3 − t, then we
have that ũ(t) = u(T3 − t) satisfies the following

ũtt(t) − φ(x)|| 5 ũ(t)||2γ∆ũ(t) = ũt(t) + f(ũ(t)), x ∈ IRN , t ≥ 0,

ũ(0) = ũt(0) = 0, x ∈ IRN .

Multiplying the above equation by 2gũt as in (24) and integrating it over IRN ,
we have from (16) and (20) that

d

dt
E(ũ(t), ũt(t)) = 2||ũt(t)||2L2

g
≤ 2

{
||ũt(t)||2L2

g
+ J(ũ(t))

}
= 2E(ũ(t), ũt),

i.e.,

E(ũ(t), ũt(t)) ≤ 2
∫ t

0

E(ũ(s), ũt(s))ds, for all 0 ≤ t ≤ T3.

Noting that E(ũ(0), ũt(0)) = 0 and applying the Gronwall inequality, we obtain
that

d−1
∗ || 5 ũ(t)||2(γ+1) ≤ E(ũ(t), ũt(t)) = 0,

that is, || 5 u(T3 − t)|| = 0, for all 0 ≤ t ≤ T3, which contradicts the condition
|| 5 u0|| > 0. Therefore, we get T3 ≥ T2. Similarly, we get that T2 ≥ T1, for small
initial data. Then, since ||u(t)||D(A) ≤ C < ∞ for 0 ≤ t < T1, we have

K(u(t)) ≤ || 5 u(t)||2(γ+1) ≤ C < ∞, for all 0 ≤ t < T1.

Therefore the case (35) does not happen. On the other hand, if (34) holds, the
inequalities (37) and (40) are valid for 0 ≤ t ≤ T1. So, from case (34) and
estimation (40) we obtain that

0 = K(u(T1)) ≥ (1/2)|| 5 u(T1)||2(γ+1) > 0,

which is a contradiction. Hence, we get that T1 = ∞. Thus, we obtain ||5u(t)|| >
0, for all t ≥ 0. Moreover, (23) and (49) hold for t ≥ 0 and the local solution in
the sense of theorem 2.1 can be continued globally in time.

Finally, we shall derive decay estimates of ||5ut(t)|| and ||utt(t)||L2
g
. It follows

from (20), (23) and (49) that estimate (33) is valid. Indeed, we have

|| 5 ut(t)||2 ≤ (d2E(0)(γ−1)/(2(γ+1)))−2|| 5 u(t)||2γ ≤ C(1 + t)−1.

Since u is a solution of equation (1)-(2), we get that

||utt(t)||2L2
g

≤ (|| 5 u(t)||2γ ||u(t)||D(A) + ||ut(t)||L2
g

+Ca+1
0 || 5 u(t)||(a+4)/2||u(t)||(a−2)/2

D(A) )2

≤ C(1 + t)−ω,

where ω = min {2, 1 + 1/γ, (a + 4)/(2γ)} = 1 + 1/γ, and estimate (32) is proved.
The proof of theorem is now completed. ♦
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Remark 5. (More general nonlinearity). Let the non-linear function f(u) satisfies
the following relations∫

IRN
f(u)udx ≥ k−1

0

∫
IRN

F (u)dx ≥ 0, F (u) = 2
∫ u

0

f(η)dη,

|f(u)| ≤ k1|u|a+1, |f ′(u)| ≤ k2|u|a,

with certain positive constants k0, k1, k2 ≥ 1 for a > 0. The conclusion of the
above theorem holds also. In that case we need to redefine J(u) and K(u) as

J(u) ≡ 1
γ + 1

|| 5 u||2(γ+1) − 2
∫

IRN
F (u)dx,

K(u) ≡ || 5 u||2(γ+1) − k1||u||a+2

La+2
g

. ♦

Remark 6. (Blow-Up problem for both degenerate and non-degenerate cases). For
the blow-up problem for the following degenerate or non-degenerate wave equations
with the blow-up term f(u) = |u|au,

utt − φ(x)(α + b|| 5 u||2γ)∆u + δut = |u|au, (50)
u(0) = u0, ut(0) = u1,

where α ≥ 0, b ≥ 0, α + b > 0, γ > 0, δ > 0, a > 0, we define the associated
energy functional:

E(u, ut) ≡ ||ut||2L2
g

+ (α +
b

γ + 1
|| 5 u||2γ)|| 5 u||2 − 2

a + 2
||u||a+2

La+2
g

. (51)

Then we see that

E(t) + 2δ

∫ t

0

||ut(s)||2L2
g
ds = E(0), (52)

for t ≥ 0, where we assume that E(0) ≤ 0. To show the blow-up properties of the
solutions, we implement the so-called concavity method. For γ = 1 we refer to the
paper [3]. ♦
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