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GLOBAL EXISTENCE FOR A WAVE EQUATION ON R”.
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Abstract. We study on the initial-bountary value problem for some degenerate
non-linear dissipative wave equations of Kirchhoff type:

ure — $@) || 7 w®)[P Au+ Sup = f(u), € RN, £30,
with initial conditions wu(z,0) = ug(xz) and wu¢(z,0) = ui(x), in the case where
N>3,6>0,v>1, f(u)=|u/u with a >0 and (¢(z))~! = g(x) is a positive
function lying in LN/2(RY) N L (RYN). If the initial data {ug,u1} are small

and || 57 uo|| > 0, then the unique solution exists globally and has certain decay
properties.

1. Introduction-Preliminary Results. In this work we study the following de-
generate nonlocal quasilinear wave equation of Kirchhoff type with a weak dissipa-
tive term

uy — ¢(@)|| Vut)| P Au+du, = f(u), zeRY, t>0, (1)
u(z,0) =uo(x), w(z,0) = wuy(x), reRY, (2)

with initial conditions wug, u; in appropriate function spaces, N >3, § >0, vy > 1

and f(u) = |u|*u, a > 0. Throughout the paper we assume that the function

¢:RY — R satisfy the following condition

(G) ¢(z) >0, forall z € RY and ($(z))" ! :=g(z) € LN2(RY) N L>°(RY).
The space DV2(RY) is defined as the closure of C§°(IR”Y) functions with

respect to the energy norm ||ul|pi2 =: [~ |V ul?dz. Tt is known that

DRV = {u e L3 (RY): vue (L2(1RN))N}

and DY?(R") is embedded continuously in Lfgiyz(]RN)7 that is, there exists
k >0 such that

ull g, < Kllullpr . (3)
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It is known that D'2?(IR") is a separable Hilbert space. The space LZ(R") is
defined to be the closure of C§°(IR”Y) functions with respect to the inner product

(u,v)Lg(]RN) =: /IRN guvdx. (4)

It is clear that L;(IRN ) is a separable Hilbert space, too. We shall frequently
use the following version of the generalized Poincaré’s inequality

/ N | 7 ul?dx > a/ N guide, (5)
R R

for all w € C§® and g € LN/2, where a =: k‘2|\g||;\]}2.
To study the properties of the operator —¢A, we consider the equation

—p(z)Au(x) = n(x), v € RY, (6)
without boundary conditions. Since for every u, v e C3°(RY) we have
(=pAu, v)r2 = /}RN vu v dz, (7)
we may consider equation (6) as an operator equation of the form
Agu =1, Ag:D(Ag) C LZ(RY) — LYRY), ne LZ(RY). (8)

Relation (7) implies that the operator Ag = —¢A with domain of definition
D(Ap) = C°(RY), is symmetric. From inequality (5) and equation (7) we have
that

(Aou, u)rz2 > a||u\|%§, for all u € D(Ayp). (9)

So the operator Ay = —@A is a symmetric, strongly monotone operator on
L?](]RN ). Hence, Friedrich’s extension theorem is applicable. The energy scalar
product given by (7) is

(u, v)E :/ Vu v vdx
]RN
and the energy space is the completion of D(Ap) with respect to (u, v)g. It is

obvious that the energetic space Xpg is the homogeneous Sobolev space D1’2(]RN ).
The energy extension Ap = —@A of Ay,

—¢A : DV2(RY) — D7L2(RY), (10)

is defined to be the duality mapping of DV2(R™). We define D(A) to be the set
of all solutions of equations (6), for arbitrary 7 € Lg(]RN). Friedrich's extension
A of A is the restriction of the energetic extension Ap to the set D(A). The
operator A = —¢A is self-adjoint and therefore graph-closed. Its domain D(A),
is a Hilbert space with respect to the graph scalar product

(u; v)p(ay = (u, v)r2 + (Au, Av)pz, forall u, v e D(A).

The norm induced by the scalar product is

1
2
l[ullpay = {/ glul? dz+/ o|Aul? dﬂﬂ} ,
RN RN

which is equivalent to the norm

iy = { [ olaupas}”.
=1L
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So we have established the evolution quartet
D(A) c D"*(RY) c LZ(RY) c D~V*(RY), (11)

where all the embeddings are dense and compact. Finally, for later use, it is neces-
sary to remind that the eigenvalue problem
—p(x)Au = pu, x€ RY, (12)
has a complete system of eigensolutions {wy,, p,} satisfying the following proper-
ties
—pAw; = pjw;,  j=1,2,.., w; € DH?(RY), (13)
0<,U/1S,U/2S-"a My — 00, asj—>oo.

In order to clarify the kind of solutions we are going to obtain for the problem
(1)-(2), we give the definition of the weak solution for this problem.

Definition 5. A weak solution of the problem (1)-(2) is a function u such that
(i) we L?0,T;D(A)], u, € L*0,T; DV2(RY)], uy € L2[0,T; L2(RY)],
(ii) for all v e Cg°([0,T] x (RY)), satisfies the generalized formula

[ v+ [ (1@ [ vun s o)

oT ;

48 [l g dr = [ (), o), dr =0, (14)
0 0

where f(s) =|s|*s, and

(iii) satisfies the initial conditions

u(z,0) =uo(x) € D(A), wu(z,0) =uy(x) € Dl’Q(]RN).
2. Local-Global Existence Results. First we state the result concerning the
local solution of our problem

Theorem 1. Let f(u) = |u|% nonlinear C'-function and also let 0 < a <
4/(N—2), N >3, 8 >0, v>1. If (ug, u1) € D(A) x D2 and satisfy the
nondegenerate condition

| 7 wol| >0,
then there exists T = T(|luo||pcay,|| V u1][*) > 0 such that problem (1.1)-(1.2)
admits a unique local weak solution w satisfying

u € C(0,T; D(A)), u; € C(0,T; D*?).

Moreover, at least one of the following statements holds true, either

(i) T =400, or

(i1) Tim e(u(t)) = Tim((ur(8) Py + [[u(t) By a)) = 00, a5 ¢ — T
Proof For T >0 and R > 0, we define the two parameter space of solutions

Xrr = {veC(0,T;D(A)): v € C(0,T;D"?), v(0) = ug,
vy(0) = u1, e(v(t)) < R?, forallt € [0,T]}.

It is easy to see that X7 r can be organized as a complete metric space with the
distance

d(u,v) =: OiltlET e1(u(t) —v(t)), where ej(v) =: ||Ut\|2L§ +|v)H1.2- (15)
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We define the non-linear mapping S in the following way. For every v €
X7 Rr, w= Sv is the unique solution of the linear wave equation (??). Using the
fact that ||/ uol| = Mo > 0, we prove that there exist 7' > 0, R > 0 such that S
maps Xt g into itself and S is a contraction mapping with respect to the metric
d(.,.). By applying the Banach contraction mapping theorem, we obtain a unique
solution u belonging to X7 g. Therefore it follows from the continuity argument
for wave equations that this solution u belongs to our space. For more details of
the proof we refer to [3] and [4]. ¢

Next, we shall consider the global existence and decay properties of the nontrivial
solutions for the degenerate nonlinear wave equations (1)-(2), where v > 1 and
0 = 1 for simplicity. We note that the problem (1)-(2) has the trivial solution
u = 0. We define energy and potential functionals associated with the equation

(1)-(2) by

B(uu) = Juellfz + J(u), (16)
2

2(y+1) _ a+2
I = gl - 2. a7)

respectively, where we denote E(t) = E(u(t),us(t)) for simplicity. Then it is easy
to see that E(t) < E(0), and hence, we see that

17 Ol < G+ HDEOY T < {(y + DB/ s
Also the K-positive set associated with problem (1)- (2) is

W, ={ue D) K(u) = | v ulP0 — |ullst?, > 0f u{oy.  (19)
Then we observe the following |

Proposition 2. (i) Let 2y < a < 5=, then W, is a neighborhood of 0 in D12,
(ii) If we W, and a> 2, then

2 1
0 < dMul| X7 < J(u) < E(u,w), where d, = a2 +1) (20)
(a —27)
Proof (i) Indeed, using the generalized Poincare’s inequality, we have that
a (1-6)(a+2) a+2) 1-6)(a+2 0(a+2)— 1 2 1
lall3i2 < Collullgs ™2 lul 502 < Collully ™2 llullpia® >0 lull 572
Co 2(y+1
< D ||Du ull 573" (21)
Hence, by (21) we get
C
+1) a 0. 1ja—2 +1
= 303 = Nl 552, = (1= ZHfullg )l 775,

Therefore, if [[u]|%.% < (k‘9_2||g|\;,}2)1/(a_27), then K(u) >0 and 0 € W,.

(#4) Since a > 2v, we have for u € W, that,

_ 2(y+1) 2 at2
J(u) = 7Jrll\ u(t)]|pis 77a+QIIU(t)I L+
2(v+1) 2 2(v+1) a— 2(v+1)
> — -
> 7Jrll\ (t)lp12 [[u(®)]| 512 <7+1)(a+2)ll 1512

In order to derive the decay estimate of the energy E(t), we have the following
proposition
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Proposition 3. Let u be a solution of (1)-(2) on [0,T]. If u € W, a > 2y,
and

1
K(w) 2 5| v ulP0FY, (22)

th€n we have
! E A 1 _(,. ])/

for 0 <t < T, where dy 1is some positive constant if E(0) < 1, that is,

I vu||2('y—&-1) < C'*(l—i—t)_l/'y, where C, = C, (|| 0||D“/+1) |u1|| )

Proof Multiplying equation (1) by 2u;g and integrating over R”Y, we have

d 1) 2 a
G { Oy + IO - 25l b+ 2ol o
By the definition of the energy FE(t), we get that

d
7 E0+ 2||ue(B)]I72 =0, (24)

and hence, E(t) is a non-increasing function. Moreover, from Proposition 4.1 (ii),
E(t) is non-negative. Integrating (24) over [0,7], we have that

B0 +2 [ lul)iiyds = BO), (25)

For a moment, we assume that 7 > 1. Integrating (24) over [t,t+ 1], 0 <t <
T —1, we have

t+1
2/t llue(s)l72ds = E(t) — E(t — 1) (= D(t)?). (26)

Then there exist two numbers ¢; € [¢t,t + 1/4] and 3 € [t +3/4,¢t + 1] such
that

||ut(ti)||%2 <2D(t), for i=1,2. (27)

Multiplying (1)-(2) by ug and integrating over RY, we have

K(u(t)) = [[ue(®)l[72 — %(U(t)»Ut(t))Lg = (u(®), ue(t)) L3 (28)

Integrating (28) over [t1,t3], we observe from (22) that

1/2 /2|IVU(8)|I2”“)d8§ K (u(s))ds

t1 t1
t+1 t41 1/2
</ ||ut<s>||%gds+{(/t (51 ) +Z||ut m}
x sup |lu(s)||Lz < D(t)* +5D(t)a (d. E(t ))1/<2<7+1>>, (29)

t<s<t+1
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where we used (5), (26), (27) at the last inequality. Integrating (24) over [t,t2], we
have from (26) and (29) the following estimation for the energy

ta
B®) = Blt)+2 [ |lui;ds
t
ta t+1
< 2 B@dsr2 [ s
t + g
1t+l to
< 4/ Hut(s)||%2ds+/ 1 u(s) [0+ ds
t 9 t1
< 6D(t)% 4 100"t D(t)(d, E(t))Y 20+1)

1
< 6D(t)? + d?(10a~ 1 D(t))20 1/ S E().
Noting the fact that 2D(t)? < E(t) < E(0) (see (25), (26)), we have

2(y+1)

E(t) < C.D(t) &0,

v/ (2v+1)
Cy=2 {6 (E;O)> + dz(10a1)2(7+1)/(27+1)} )

Hence from relation (26) we see that
E(t)1+'y/(~/+1) < 9120+ 1)/(r+1) {E(t)— E(t+1)}.

Noting (25) and applying [2, Lemma 2.2], we obtain estimate (23). <

with

For later use, we introduce a function H(t) as follows

_ vl
I u]>

We have the following theorem

H{(t) +lu®)llbay, t=0. (30)

Theorem 4. Let N = 3, a > max {4y —2,2y+ [a —4]7/2}, and {uo,u1} €
W, x DY2, with

|7 wol[ > 0.

Also, we have that the initial conditions are suitably small, that is, we have the
following inequality:
2
=)

a—2 at2—
0< {(dlE(O)Wl)(?(W“))) + @E(@Qzﬁﬁ?ﬁ} HO) <1,  (31)

where dy,ds are certain positive constants and H(0) =: Il‘lvvﬂ"‘l; + [|uol| peay-
Then (1)-(2) has a unique global solution w € W, such that
u € C?([0,00); D(A)) N Ct ([O,OO);DLz) N C? ([O,oo);Lg) )
Moreover, we obtain the following estimates
[lue(@)I122 + luee (£)]172
| 7w ()]

where C' is a positive constant.

IA

C(1+t)~1=1, (32)
C(1+1t)71, (33)

IA
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Proof Since uyg € W, and W, is an open set, putting
Ty =sup{t € [0,00);u(s) € W, for 0 <s<t},

we see that 77 >0 and w(t) € W, for 0<t<T;. If T} < oo, then one of the
following two cases happens:

K(u(Ty)) =0, and wu(Ty) #0, (34)

or
K(u(t)) - o0, as t—Ty. (35)
Using relation (11) if (a —2v) —(a+2)0 >0 and 6 = (3a —4)"/(2(a +2)), we

obtain the following estimate

a a a— —(a a 0
lu(@)l[5i2 < O+ 7 w72 (@) 50l 7 w@) P00 (36)

Now, we see from (20), (25), (30) and (36) that

@ 1
(@122 < 5G| 7 u() P+, (37)

for 0 <t <Ti, where we have

G(t) = dlE(O)((“*27)*(“”)0)/(2(7+1))H(t)(‘”2)9/2, (38)
with dy = 2Cg+2d£(a727)7(a+2)6)/(2w+1)). Since we have that G(0) <1 for small
initial data, putting

T, =sup{t € [0,00) : G(s) <1 for 0<s<t},

we see that To >0 and G(t) < 1,for 0 <t <Ty. If To <Tj (< 00), then we
get that

G(T) = 1. (39)
Relations (19) and (37) imply that
K(u(t) > [[vu®)|P7 = (1/2)G@)] v u®)| 20
> (/2|7 u@®)P0FY, (40)
for 0 <t <Ty. Since we have that || 57 up|| > 0, setting
T3 =sup{t €[0,00) : || v u(s)|| >0, for 0<s<t}, (41)

we get that T3 >0 and ||/ u(t)|| >0 for 0 <t < T5. If we have that T5 < Ty,
then we obtain

|7 w(T3)|| = 0. (42)
Multiplying equation (1) by —2Aw; and integrating it over RY, we have

LU w®IP + 17w @, + 201 7wl
= 2ATIl), Tul).

Moreover, multiplying the previous equality by || 7 u(t)||=27, for 0 <t < T3,
we have
v ®l? _  (vu®), vu®) [[Vue®)]? | (Vf (), vu(t)
> = 27 2(v+1 +2 2
|7 u@)]* |7 u(®)][2O+D) |7 u(@)|[>
= L(t) + L2(t), (43)

H'(t) +2
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where, H(t) is given by (30). To estimate I;(t) we observe from (20) and (25)
that

NEEROIE
L) < 2l vu@|
( N Ol
. v ur(t)]2
< 2(d. B(0) 0D/ o) g /2 LV w1
(. E(0) A O
Using Hélder inequality with p™' =4, ¢7' =1, r=! =1, relation (11) we get
that
(VF ), vu®)] < (@t Dllullgall v ull ol 7 el
< Gy a+ DIl ull* > ul iy || 7 well,
and hence
B0 < {C* s Dl w2 Y e+ T2 OE
= v u(®)]2
So we get from (43) that
)2
H'(t) + [1-F(t IRV
O PO
2
< {cs @+ Dl v a2} He, (44)

where we set
F(t) = dy E(0) 0~ D/COT ()12 with  dy = 2vd,. (45)
Since we have that F(0) <1 for small initial data, putting
Ty=sup{t €[0,00): F(s) <1, for 0<s<t},

we observe that Ty >0 and F(t) <1 for 0<t<Ty. If Ty, < T3, then we see
that

F(Ty) = 1. (46)
Moreover, we get from (44) that

t —2/(a—2)
H@<{erwm”—@/nvu®W”*w%» R
0
with ¢ = C2 ™ (a/2 — 1)(a + 1)2. We have from (23) and (36) that

/nvw@w s
0

t
< /(d*E(s))“/(2(7+1))dS

0

¢ —(v+1)/
< /0 [d*{E(O)wﬂwm +d51[571]+} T M @6) g
< 2d‘:/(2(’)’+1))d0E(0)(w—2'y)/(2(7+1))’ (48)

under w > 2y and E(0) > 1. Denoting by dy = 2c2d\ "7 2V/COF) g if
a > 4y — 2 then condition (31) implies

<1

~1/(a—2)
dQE(O)('Y*l)/(Q(’Y+1)) {H(O)f(a72)/2 . d4E(O)(a+2*4’Y)/(2(’Y+1))}
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Thus, we easily see that

F(t) <1,
for all 0 <t < T,, which contradicts relation (46). Hence, we have T, > Ts;.
Relations (31), (47) and (48), imply that

||Vut()|| 2 —1)/(2(v+1))y -2
H(t + ||u(t < (do E(0)—D/COHDN =2 <7 49
for 0 <t <Ts. Next, we shall show that || 7 w(¢)|| > 0, for ¢ > 0. Since we
have that || 7 u(T3)|| = 0, by relation (42), we see from (49) and the continuity
that || v ue(T5)|| = 0. We perform the change of variable t — T5 — ¢, then we
have that @(t) = u(T3 —t) satisfies the following
Un(t) — ¢(@)|| v a)|? Aut) = () + f(a(t), «eRY,t>0,
a(0) = w(0)=0, zecRM.

Multiplying the above equation by 2g@, as in (24) and integrating it over R,

we have from (16) and (20) that

© B0, 1) = 2], < 2T 03, +I@0)} = 2660, 7).

i.e.,
t
B((t), (b)) < 2 / E(i(s),iy(s))ds, forall 0<t<Ts.
0
Noting that E(w(0),u:(0)) = 0 and applying the Gronwall inequality, we obtain
that
d M| v a@)|Pory < Bla(t), w(t)) =0,
that is, || 7 u(T5 —t)|| =0, for all 0 <t <Tj, which contradicts the condition
|| 7 uol| > 0. Therefore, we get T35 > T5. Similarly, we get that T > T, for small
initial data. Then, since ||u(t)||pa) < C < oo for 0 <t < Ti, we have
K(u(t) <||vu®)|?0™) <C<oo, forall 0<t<T.

Therefore the case (35) does not happen. On the other hand, if (34) holds, the
inequalities (37) and (40) are valid for 0 < ¢t < Tj. So, from case (34) and
estimation (40) we obtain that

0= K(u(Th)) = (1/2)|| v u(T)|POFD >0,

which is a contradiction. Hence, we get that 77 = oo. Thus, we obtain ||y u(t)|| >
0, for all ¢ > 0. Moreover, (23) and (49) hold for ¢ > 0 and the local solution in
the sense of theorem 2.1 can be continued globally in time.

Finally, we shall derive decay estimates of |[7u.(¢)|| and |Jug(t)[|2. It follows
from (20), (23) and (49) that estimate (33) is valid. Indeed, we have

|7 w()]]? < (d2E(0)0 D/ COPIN =2 G u@t)[[* < O +1) 7!
Since wu is a solution of equation (1)-(2), we get that
lue 72 < (I 7 w@®IP )l peay + lue(®)]] 2z
+CEHH 7 w2 a5 )?
< C(1+1t)™,

where w=min{2,1+1/v,(a+4)/(2y)} =141/, and estimate (32) is proved.
The proof of theorem is now completed. <
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Remark 5. (More general nonlinearity). Let the non-linear function f(u) satisfies
the following relations

(w)udx > ko_l/ F(u)dx >0, F(u) = 2/" f(n)dn,
RY 0
f)] < kaful® |f (W) < kalul?,

with certain positive constants kg, k1,ke > 1 for a > 0. The conclusion of the
above theorem holds also. In that case we need to redefine J(u) and K(u) as

o
R

A

- ! 2v+1)
J(u) = mHVUH -2 ]RNF(U)d%
K(u) = [[vulf0F _k1||“‘|aL§~%2- &

Remark 6. (Blow-Up problem for both degenerate and non-degenerate cases). For
the blow-up problem for the following degenerate or non-degenerate wave equations
with the blow-up term f(u) = |u|%u,

u — (@)(e + bl 7 ull*)Au+ dup = [ulu, (50)
w(0) = wo, u(0)=wuy,

where a>0,b>0, a+b>0,v>0,§d >0, a >0, we define the associated
energy functional:

b 2 a
Buun) = lullfy + (o + — | vl vl = Z5lulsth (60
Then we see that .
B(t) + 25 / ur ()] 2 ds = E(0), (52)
0 g

for t > 0, where we assume that FE(0) < 0. To show the blow-up properties of the
solutions, we implement the so-called concavity method. For v =1 we refer to the

paper [3]. &
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