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Compact invariant sets for some quasilinear
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We consider the quasilinear nonlocal dissipative Kirchhoff String problem utt � �ðxÞk�
juðtÞk2�uþ �ut þ fðuÞ ¼ 0, x 2 R

N, t � 0, with the initial conditions u(x, 0)¼ u0(x) and
ut(x, 0)¼ u1(x), in the case where N� 3, �� 0, f(u)¼ jujau for example, and
(�(x))�12LN/2(RN)\L1(RN) is a positive function. The purpose of our work is to study the
long-time behaviour of the solution of this equation. The compactness of the embeddings
DðAÞ � D1,2ðR

N
Þ � L2

gðR
N
Þ, is widely applied.

Keywords: Quasilinear hyperbolic equations; Kirchhoff strings; Global attractor; Unbounded
domains; Generalised sobolev spaces; Weighted Lp spaces

AMS Subject Classifications: 35A07; 35B30; 35B40; 35B45; 35L15; 35L70; 35L80; 47F05;
47H20

1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyperbolic initial

value problem

utt � �ðxÞkjuðtÞk2�uþ �ut þ fðuÞ ¼ 0, x 2 R
N, t � 0, ð1:1Þ

uðx, 0Þ ¼ u0ðxÞ; utðx, 0Þ ¼ u1ðxÞ, x 2 R
N, ð1:2Þ

with initial conditions u0, u1 in appropriate function spaces, N� 3, and �� 0.

Throughout this article, we assume that the functions �, g : R
N
�!R satisfy the

following condition:

(G) �(x)4 0, for all x2R
N and (�(x))�1¼: g(x)2LN/2(RN)\L1(RN).
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G. Kirchhoff in 1883 [1] proposed the so-called Kirchhoff string model in the study of

oscillations of stretched strings and plates

ph
#2u

#t2
þ �

#u

#t
¼ p0 þ

Eh

2L

Z L

0

#u

#x

� �2

dx

( )
#2u

#x2
þ f, 0 < x < L, t � 0, ð1:3Þ

where u¼ u(x, t) is the lateral displacement at the space coordinate x and the time t, E

the Young modules, p the mass density, h the cross-section area, L the length, p0 the

initial axial tension, � the resistance modules and f the external force [1]. When p0¼ 0

the equation is considered to be of degenerate type, otherwise it is of nondegenerate
type.

In bounded domains, there is a vast literature concerning the attractors of the

semilinear wave equation

utt þ dut ��uþ fðx; uÞ ¼ 0, x 2 �, t � 0, d � 0,

uðx, 0Þ ¼ u0ðxÞ, utðx, 0Þ ¼ u1ðxÞ, x 2 �;

provided that the spatial variable x belongs to a bounded domain ��R
N and u satisfies

certain boundary conditions. We refer to the works [2,3] and the monographs [4–7].

K. Ono [8–10], for �� 0, has proved global existence, decay estimates, asymptotic

stability and blow up results for a (mildly) degenerate nonlinear wave equation of

Kirchhoff type with a strong dissipation.
On the other hand, it seems that very few results are achieved for the unbounded

domain case. Using weighed Sobolev spaces, A.V. Babin and M.I. Vishik in the

pioneering work [11] considered the problem of the existence of attractors for

equations of parabolic type on R
N. P. Brenner [12] studied the existence of strong

global solutions for nonlinear hyperbolic equations. E. Feiresl [13,14] studied the

asymptotic behaviour and compact attractors for semilinear damped wave equations

on R
N. Recently, N.I. Karahalios and N.M. Stavrakakis [15–17] proved existence of

global attractors and estimated their dimension for a semilinear dissipative wave

equation on R
N.

The presentation of this article is as follows: In section 2, we discuss the space

setting of the problem and the necessary embeddings for constructing the

evolution triple. In section 3, we discuss the existence of a local weak solution of

the problem (1.1) and (1.2) with (u0, u1)2D(A)�D1,2(RN). In section 4, we prove the

existence of an absorbing set in the space D(A)�D1,2(RN). We achieved global

results for N¼ 3, a2 [0, 2/(N� 2)] and for the initial energy we have that E(0)� 0.

Then we prove that the semigroup generated by the problem possesses an invariant
compact set A. We do not call it an attractor because it is not clear if it attracts all

the initial solutions.

Notation: We denote by BR the open ball of R
N with center 0 and radius R. Sometimes

for simplicity we use the symbols C10 ,D1,2,Lp, 1 � p � 1, for the spaces

C10 ðR
N
Þ,D1,2ðR

N
Þ,LpðR

N
Þ, respectively; k � kp for the norm k:kLpðRNÞ, where in case of

p¼ 2 we may omit the index. The symbol ¼: is used for definitions.
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2. Space setting: formulation of the problem

As we have already seen in [18] the space setting for the initial conditions and the

solutions of our problem is the product space

X 0 ¼: DðAÞ � D1,2ðR
N
Þ; N � 3:

The homogeneous Sobolev space D1,2(RN) is defined as the closure of C10 ðR
N
Þ functions

with respect to the energy norm kukD1,2 ¼:
R
R

N jjuj2 dx. It is known that

D1,2ðR
N
Þ ¼ u 2 Lð2N=N�2ÞðRN

Þ : ju 2 ðL2ðR
N
ÞÞ
N

� �
and D1,2(RN) is embedded continuously in Lð2N=N�2ÞðRN

Þ, that is, there exists k4 0

such that

kukð2N=N�2Þ � kkukD1,2 : ð2:1Þ

The space D(A) is going to be introduced and studied later in this section. We shall

frequently use the following generalised version of Poincaré’s inequalityZ
R

N
jjuj2 dx � �

Z
R

N
gu2 dx, ð2:2Þ

for all u 2 C10 and g2LN/2, where � ¼: k�2kgk�1N=2 [19, Lemma 2.1]. It is shown

that D1,2(RN) is a separable Hilbert space. The space L2
gðR

N
Þ is defined to be the closure

of C10 ðR
N
Þ functions with respect to the inner product

ðu; vÞL2
gðR

NÞ ¼:

Z
R

N
guv dx: ð2:3Þ

It is clear that L2
gðR

N
Þ is also a separable Hilbert space. Moreover, we have the

following compact embedding.

Lemma 2.1 Let g2LN/2(RN)\L1(RN). Then the embedding D1,2 � L2
g is compact.

Proof For the proof we refer to [16, Lemma 2.1]. g

The following lemmas will be proved to be useful in the sequel. For the proofs we

refer to [16].

Lemma 2.2 Let g 2 Lð2N=2N�pNþ2pÞðRN
Þ. Then the following continuous embedding

D1,2ðR
N
Þ � Lp

gðR
N
Þ is valid, for all 1� p� 2N/(N� 2).

Remark 2.3 The assumption of Lemma 2.2 is satisfied under the hypothesis (G),

if p� 2.

Lemma 2.4 Let g satisfy condition (G). If 1� q< p< p*¼ 2N/(N� 2), then the

following weighted inequality

kukLp
g
� C0kuk

1��
Lq
g
kuk�
D1,2 ð2:4Þ

is valid, for all �2 (0, 1), such that 1/p¼ (1� �)/qþ �/p* and C0 ¼ k�.
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To study the properties of the operator ���, we consider the equation

��ðxÞ�uðxÞ ¼ �ðxÞ, x 2 R
N, ð2:5Þ

without boundary conditions. Since for every u, v 2 C10 ðR
N
Þ we have

ð���u, vÞL2
g
¼

Z
R

N
jujv dx, ð2:6Þ

we may consider equation (2.5) as an operator equation of the form

A0u ¼ �, A0 : DðA0Þ � L2
gðR

N
Þ ! L2

gðR
N
Þ, � 2 L2

gðR
N
Þ: ð2:7Þ

Relation (2.6) implies that the operator A0¼���, with domain of definition

DðA0Þ ¼ C10 ðR
N
Þ, is symmetric. From (2.2) and equation (2.6) we have that

ðA0u, uÞL2
g
� �kuk2L2

g
, for all u 2 DðA0Þ: ð2:8Þ

So the operator A0¼��� is a symmetric, strongly monotone operator on L2
gðR

N
Þ:

Hence, Friedrich’s extension theorem [20, Theorem 19.C] is applicable. The energy
scalar product given by (2.6) is

ðu, vÞE ¼

Z
R

N
jujv dx

and the energy space XE is the completion of D(A0) with respect to (u, v)E. It is obvious

that the energy space is the homogeneous Sobolev space D1,2(RN). The energy
extension AE¼��� of A0,

���: D1,2ðR
N
Þ ! D�1,2ðR

N
Þ, ð2:9Þ

is defined to be the duality mapping of D1,2(RN). We define D(A) to be the set of

all solutions of equations (2.5), for arbitrary � 2 L2
gðR

N
Þ. Friedrich’s extension A of A0

is the restriction of the energy extension AE to the set D(A). The operator A¼��� is

self-adjoint and therefore graph-closed. Its domain D(A), is a Hilbert space with respect

to the graph scalar product

ðu, vÞDðAÞ ¼ ðu, vÞL2
g
þ ðAu,AvÞL2

g
, for all u, v 2 DðAÞ:

The norm induced by the scalar product is

kukDðAÞ ¼

Z
R

N
gjuj2 dxþ

Z
R

N
�j�uj2 dx

� �1=2

,

which is equivalent to the norm

kAukL2
g
¼

Z
R

N
�j�uj2 dx

� �1=2

:

So we have established the evolution quartet

DðAÞ � D1,2ðR
N
Þ � L2

gðR
N
Þ � D�1,2ðR

N
Þ, ð2:10Þ
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where all the embeddings are dense and compact. Finally, for later use, it is necessary to

remind that the eigenvalue problem

��ðxÞ�u ¼ �u, x 2 R
N, ð2:11Þ

has a complete system of eigensolutions {wn, �n} satisfying the following properties

���wj ¼ �jwj, j ¼ 1, 2, . . . , wj 2 D
1,2ðR

N
Þ,

0 < �1 � �2 � � � � , �j !1, as j!1:

(
ð2:12Þ

For the positive self-adjoint operator A¼�’�, we may define the fractional powers

in the following way. For every s4 0, As is an unbounded self-adjoint operator in

L2
gðR

N
Þ with its domain D(As) to be a dense subset in L2

gðR
N
Þ: The operator As is strictly

positive and injective. Also D(As), endowned with the scalar product

ðu; vÞDðAsÞ ¼ ðu; vÞL2
g
þ ðAsu;AsvÞL2

g
,

becomes a Hilbert space. We write as usual V2s¼D(As) and we have the following

identifications

DðA�1=2Þ ¼ D�1,2ðRN
Þ; DðA0Þ ¼ L2

g; DðA1=2Þ ¼ D1,2ðR
N
Þ:

Moreover, the mapping

As=2 : Vx�!Vx�s

is an isomorphism. Furthermore, as a consequence of the relation (2.10) the injection

DðAs1 Þ � DðAs2 Þ is compact and dense, for every s1, s22R, s14 s2. For more on the

fractional spaces, we refer to Henry [21]. Finally, we give the definition of weak
solutions for the problems, (1.1) and (1.2).

Definition 2.5 A weak solution of the problems (1.1) and (1.2) is a function u such that

(i) u 2 L2½0;T;DðAÞ�, ut 2 L2½0;T;D1,2ðR
N
Þ�, utt 2 L2½0;T;L2

gðR
N
Þ�,

(ii) for all v 2 C10 ð½0;T� � ðR
N
ÞÞ, satisfies the generalized formulaZ T

0

uttð�Þ, vð�Þð ÞL2
g
d� þ

Z T

0

kjuðtÞk2
Z

R
N
juð�Þjvð�Þdxd�

� �
þ �

Z T

0

utð�Þ, vð�Þð ÞL2
g
d� þ

Z T

0

fðuð�ÞÞ, vð�Þð ÞL2
g
d� ¼ 0, ð2:13Þ

where f(s)¼ jsjas, and
(iii) satisfies the initial conditions

uðx, 0Þ ¼ u0ðxÞ, u0 2 DðAÞ; utðx, 0Þ ¼ u1ðxÞ; u1 2 D
1,2ðR

N
Þ:

Remark 2.6 Using a density argument, we may see that the generalised formula (2.13)

is satisfied for every v2L2[0,T; D1,2(RN)]. By the compactness and density of the

embeddings in the evolution quartet (2.10) we may see that, as in [15, Proposition 3.2],

the above Definition 2.5 of weak solutions implies that

u 2 C½0;T; D1,2ðR
N
Þ� and ut 2 C½0;T; L2

gðR
N
Þ�:
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3. Existence and uniqueness of solution

In this section, we give existence and uniqueness results for the problems (1.1) and (1.2)

using the space setting established previously. Let (w,wt); 2C(0,T; D(A)�D1,2)
be given. In order to obtain a local existence result for the problems (1.1) and (1.2),

we need information concerning the solvability of the corresponding nonhomogeneous

linearised (around the function w) problem restricted to the sphere BR:

utt � �ðxÞkjwðtÞk2�uþ �ut þ fðwÞ ¼ 0, ðx, tÞ 2 BR � ð0;TÞ,

uðx, 0Þ ¼ u0ðxÞ, utðx, 0Þ ¼ u1ðxÞ, x 2 BR,

uðx, tÞ ¼ 0, ðx, tÞ 2 @BR � ð0,TÞ:

ð3:1Þ

Proposition 3.1 Assume that u02D(A), u12D
1,2(RN) and 0� a� 4/(N�2), where

N� 3. Then the linear wave equation (3.1) has a unique solution such that

u 2 C 0;T;DðAÞð Þ and ut 2 C 0,T; D1,2
� �

:

Proof The proof follows the lines of [16, Proposition 3.1]. The Galerkin method is

used, based on the information taken from the eigenvalue problem (2.11). g

Theorem 3.2 Consider that (u0, u1)2D(A)�D1,2 and satisfy the nondegenerate

condition

kju0k > 0: ð3:2Þ

Then there exists T¼T(ku0kD(A), kru1k
2)4 0 such that the problems (1.1) and

(1.2) admits a unique local weak solution u satisfying

u 2 Cð0;T;DðAÞÞ and ut 2 Cð0;T;D1,2Þ:

Proof For the proof we refer to [18, Theorem 3.2]. g

Theorem 3.3 Assume that f(u)¼ jujau is a nonlinear C1 function and 0� a� 4/(N� 2),

where N� 3. If (u0, u1)2D(A)�D1,2 and satisfy the nondegenerate condition

kju0k > 0, ð3:3Þ

then there exists T4 0 such that the problems (1.1) and (1.2) admits a unique local weak
solution u satisfying

u 2 Cð0;T;D1,2Þ and ut 2 Cð0;T;L2
gÞ:

Proof The proof follows the lines of [18, Theorem 3.2]. In this case, because of the

compact embedding X 0 � X 1 ¼: D1,2 � L2
g, we obtain for the associated norms that

e1ðuðtÞÞ � eðuðtÞÞ;

where e1ðuðtÞÞ ¼: kuk2
D1,2 þ ku0k

2
L2
g
and eðuðtÞÞ ¼: kuk2DðAÞ þ ku

0k2
D1,2 . Following the same

steps as in Theorem 3.2 we take the inequality

e1ðuðtÞÞ � eðuðtÞÞ � R2;

where R is a positive parameter. So, u is a solution such that

u2L1ð0;T; VÞ, u0 2L1ð0;T; HÞ:
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The continuity properties, are also proved with the methods indicated in [7, sections

II.3 and II.4]. Finally, the uniqueness of the solution can also be taken from

[7, Proposition 4.1, p. 215]. g

4. Global existence of the solution

In this section, we shall prove that solution of (3.1) exists globally in time.

We set v¼ utþ "u for sufficiently small ". Then following [7, page 207], for calculation

needs we rewrite (3.1) as follows

vt þ ð�� "Þvþ ��ðxÞkrwk
2�� "ð�� "Þ

� �
uþ fðwÞ ¼ 0: ð4:1Þ

To obtain the estimates needed, we shall implement the Faedo–Galerkin approximation

based on the eigenfunctions wj of the eigenvalue problem (2.11). For each n, we look for

an approximating solution of the form unðt; xÞ ¼
Pn

i¼1 binðtÞwi: We also define the

quantity vn ¼ unt þ "u
n: The Galerkin system for the linear problem of (4.1) is

ðvnt ;wiÞL2
g
þ ð�� "Þðvn;wiÞL2

g
þ

Z
BR

kjwk2junjwi dx� "ð�� "Þðu
n;wiÞL2

g

þ ðfðwÞ,wiÞL2
g
¼ 0, ð4:2Þ

unðx, 0Þ ¼ Pnu0ðxÞ, unt ðx, 0Þ ¼ Pnu1ðxÞ, ð4:3Þ

around the function w2C(0,T;D(A)), with wt2C(0,T;D
1,2), where Pn is the

continuous orthogonal projector operator of the spaces D(A)(BR) and D1,2(BR)

into the span {wi: i¼ 1, 2, . . . , n}. For every eigenvalue �j and eigenfunctions wj we

have that

�jðv;wjÞL2
g
¼

Z
R

N
gv�jwj ¼

Z
R

N
gvð�’�wjÞ ¼ ððv;wjÞÞD1,2 , ð4:4Þ

�j

Z
R

N
jvjwj ¼

Z
R

N
gð�’�vÞ�jwj ¼

Z
R

N
gð�’�vÞð�’�wjÞ ¼

Z
R

N
’�v�wj, ð4:5Þ

where v2D1,2 and v2D(A), respectively.
We set wj ¼ �iðb

0
inðtÞ þ "binðtÞÞ in relation (4.2), summarise for i from 1 to n, integrate

over the ball BR and use relations (4.4), (4.5) to obtain the inequality

1

2

d

dt
kwk2

D1,2ku
nk2DðAÞ þ kv

nk2
D1,2 þ

"ð�� "Þ

2
kunk2

D1,2

� �
þ ð�� "Þkvnk2

D1,2 þ "kwk
2
D1,2ku

nk2DðAÞ

þ "2ð�� "Þkunk2
D1,2 ¼

d

dt
kwk2

D1,2

� �
kunk2DðAÞ �

Z
BR

jðfðwÞÞjvndx

�
d

dt
kwk2

D1,2

� �
kunk2DðAÞ

				 				þ Z
BR

jðfðwÞÞjvn dx:

				 				 ð4:6Þ

We observe thatZ
BR

jðfðwÞÞjvn dx

				 				 ¼ Z
BR

ðfðwÞÞ0jwjvn dx

				 				 � k2kwk
a
LNakjwkLð2N=N�2Þ kjvnk, ð4:7Þ
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where we used Hölder inequality with p�1 ¼ 1=N, q�1 ¼ ðN� 2=2NÞ, r�1 ¼ 1=2:
Then applying relation (4.7), inequality (4.6) becomes

1

2

d

dt
kwk2

D1,2ku
nk2DðAÞ þ kv

nk2
D1,2 þ

"ð�� "Þ

2
kunk2

D1,2

� �
þ ð�� "Þkvnk2

D1,2 þ "kwk
2
D1,2ku

nk2DðAÞ þ "
2ð�� "Þkunk2

D1,2

�
d

dt
kwk2

D1,2

� �
kunk2DðAÞ

				 				k2kwkaLNakjwkLð2N=N�2Þ kjvnk: ð4:8Þ

Next, to define the energy associated with the equation (1.1), we multiply equation (1.1)

by 2gut and integrate over R
N to get the following relation (for simplicity we set �¼ 1)

d

dt
kutðtÞk

2
L2
g
þ
1

2
kuðtÞk4

D1,2 þ
2

aþ 2
kuðtÞkaþ2

Laþ2
g

� �
þ 2�kutðtÞk

2
L2
g
¼ 0: ð4:9Þ

Then, we define as the energy functional of the problems (1.1) and (1.2) the quantity

EðtÞ ¼: EðuðtÞ, utðtÞÞ ¼: kutðtÞk
2
L2
g
þ
1

2
kuðtÞk4

D1,2 þ
2

aþ 2
kuðtÞkaþ2

Laþ2
g
: ð4:10Þ

Then, equation (4.9) becomes

d

dt
EðtÞ þ 2kutðtÞk

2
L2
g
¼ 0: ð4:11Þ

Concerning the time behaviour of the energy, we have the following remarks.

Integrate equation (4.11) over [0, t], to get

EðtÞ þ 2

Z t

0

kutðtÞk
2
L2
g
dx ¼ Eð0Þ: ð4:12Þ

From equation (4.11) and definition (4.10), we obtain that

d

dt
Eðu, utÞ ¼ �2kutðtÞk

2
L2
g
� 0: ð4:13Þ

Therefore, the energy E(t) is a nonincreasing function of t. Hence, we get that

EðtÞ � Eð0Þ, for all t 2 ½0,TÞ: ð4:14Þ

For the energy E(t) we have the following estimate (for the proof we refer to

[18, Theorem 4.3, p. 102]

kutk
2
L2
g

kjuðtÞk2
þ d�1	 kjuk2 � Eðu0; u1Þ

�1=2
þ d�10 ½t� 1�þ

� ��2
, ð4:15Þ

where d*, is a positive constant d0� 1, and [t� 1]þ¼max {0, t� 1}, for 0� t<T.

Next, we prove the following lemma.

Lemma 4.1 Assume that f(u) is a C1-function, a� 0, N� 3. If the initial data

(u0, u1)2D(A)�D1,2 and satisfy the condition

kju0k > 0, ð4:16Þ
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then we have that

kjuðtÞk > 0, for all t � 0: ð4:17Þ

Proof Let u(t) be a unique solution of the problems (1.1) and (1.2) in the sense

of Theorem 3.2 on [0,T). Multiplying (1.1) by �2�ut and integrating it over R
N,

we have

d

dt
kjutðtÞk

2 þ kjuðtÞk2
d

dt
kuðtÞk2DðAÞ þ 2kjutðtÞk

2 þ 2ðfðuðtÞÞ,�utðtÞÞ ¼ 0 ð4:18Þ

Since kru0k4 0 by (4.16), we see that kru(t)k4 0 near t¼ 0. Let

T ¼: supft 2 ½0, þ1Þ : kjuðsÞk > 0 for 0 � s < tg;

then T4 0 and kru(t)k4 0 for 0� t<T. If T<þ1, we have

lim
t!T�
kjuðtÞk ¼ 0: ð4:19Þ

So, using (4.19) we see from (4.15) that limt!T� kutðtÞkL2
g
must be zero. We perform

the change of variable t/T� t. Then euðtÞ ¼ uðT� tÞ satisfies

eu00ðtÞ � �ðxÞkjeuðtÞk2�euðtÞ �eutðtÞ þ fðeuðtÞÞ ¼ 0, x 2 R
N, t � 0;euð0Þ ¼ 0, eu0ð0Þ ¼ 0, x 2 R

N: ð4:20Þ

We note that eu 2 C0ð½0;T�;DðAÞÞ \ C1ð½0,T�;D1,2Þ. Multiplying (4.20) by 2geu0 and
integrating it over R

N, we have an equation similar to (4.11), that is,

d

dt
EðeuðtÞ,eu0ðtÞÞ ¼ 2keu0ðtÞk2L2

g
� 2EðeuðtÞ,eu0ðtÞÞ:

Integrating it over [0, t], we have

EðeuðtÞ,eu0ðtÞÞ � 2

Z t

0

EðeuðsÞ, eu0ðsÞÞds,
for 0� t�T. Noting Eðeuð0Þ,eu0ð0ÞÞ ¼ 0 and applying the Gronwall inequality we see that

EðeuðtÞ,eu0ðtÞÞ ¼ 0, on ½0,T�,

that is, kru(T� t)k¼ 0 on [0,T] which contradicts kru0k4 0, and hence, we obtain

T¼þ1 and

kjuðtÞk > 0, for all t � 0: ð4:21Þ

g
Now, we need the following result.

Lemma 4.2 Assume that 0� a<2/(N�2), N� 3, kru0k4 0 and

�1 > 4��1=2R2c23: ð4:22Þ

Then the unique local solution defined by Theorem 3.2 exists globally in time.
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Proof Given the constants T4 0, R4 0, we introduce the two parameter space

of solutions

XT,R ¼: w 2 C 0,T;DðAÞð Þ : wt 2 C 0,T;D1,2
� �

,wð0Þ ¼ u0,
�

wtð0Þ ¼ u1, eðwÞ � R2, t 2 ½0,T�
�
,

where eðwÞ ¼: kwtk
2
D1,2 þ kwk

2
DðAÞ: Also u0 satisfies the nondegenerate condition (3.2).

It is easy to see that the set XT,R is a complete metric space under the distance

dðu, vÞ ¼: sup0�t�T eðuðtÞ � vðtÞÞ. We may introduce the notation

M0 ¼:
1

2
kju0k

2,T0 ¼: sup t 2 ½0,1Þ : kjwðsÞk2 >M0, 0 � s � t
� �

:

By condition (3.2) and the relation (4.21), we may see that M04 0, T04 0 and

krw(t)k24M04 0, for all t2 [0,T0]. Multiplying equation (3.1) by

gAv ¼ gð�’�Þv ¼ ��v ¼ ��ðut þ "uÞ,

where v¼ utþ "u and integrating over R
N, we obtain an inequality analog to (4.26)

on all of R
N

1

2

d

dt
kwk2

D1,2kuk
2
DðAÞ þ kvk

2
D1,2 þ

"ð�� "Þ

2
kuk2
D1,2

� �
þ ð�� "Þkvk2

D1,2 þ "kwk
2
D1,2kuk

2
DðAÞ

þ "2ð�� "Þkuk2
D1,2

�
d

dt
kwk2

D1,2

� �
kuk2DðAÞ

				 				þ k2kwk
a
LNakjwkLð2N=N�2Þ kjvk: ð4:23Þ

We observe that

�ðtÞ ¼: kwk2
D1,2kuk

2
DðAÞ þ kvk

2
D1,2 þ

"ð�� "Þ

2
kuk2
D1,2

� kwk2
D1,2kuk

2
DðAÞ þ kvk

2
D1,2

�M0kuk
2
DðAÞ þ kutk

2
D1,2 � c�23 eðuÞ, ð4:24Þ

with c3 ¼: max 1,M�10

� �� �1=2
: We also have that

d

dt
kwk2

D1,2

� �
kuk2DðAÞ

				 				 ¼ 2

Z
R

N
�wwt’g dx

� �
kuk2DðAÞ

				 				
� 2 kwk2DðAÞ


 �1=2
kwtk

2
L2
g


 �1=2
kuk2DðAÞ

� 2��1=2RkwtkD1,2kuk2DðAÞ

� 2��1=2R2eðuÞ � 2��1=2R2c23 �ðtÞ: ð4:25Þ

By relations (4.24) and (4.25) the inequality (4.23) becomes

d

dt
�ðtÞ þ ð�� "Þkvk2

D1,2 þ "kwk
2
D1,2kuk

2
DðAÞ þ

2""ð�� "Þ

2
kuk2DðAÞ

� 2��1=2R2c23 �ðtÞ þ k2kwk
a
LNakjwkLð2N=N�2Þ kjvk: ð4:26Þ
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We also have that

kwkaLNa � Ra and kjwkLð2N=N�2Þ � kwkDðAÞ � R: ð4:27Þ

Applying Young’s inequality for "¼ �/2, in the last term of (4.26) we obtain

d

dt
�ðtÞ þ

�1
2
�ðtÞ � 2��1=2R2c23 �ðtÞ �

CðRÞ

�
, ð4:28Þ

where �1 ¼ minðð�=2Þ � ", ", 2"Þ and C(R)¼ k2R
2(aþ1). So

d

dt
�ðtÞ þ C	�ðtÞ �

CðRÞ

�
, ð4:29Þ

where C	 ¼ ð1=2Þ �1 � 4��1=2R2c23
� �

> 0: Applying Gronwall’s Lemma in (4.29) we get

�ðtÞ � �ð0Þ e�C	t þ
1� e�C	t

C	

CðRÞ

�
: ð4:30Þ

By using the nondegenerate condition kru0k4 0 and relation (4.21), we may

assume that krw(s)k4M04 0, 0� s� t, t2 [0,þ1). Letting t!1, in relation (4.30)

we conclude that

lim
t!1

sup �ðtÞ �
CðRÞ

�C	
¼: R2

	: ð4:31Þ

From inequality (4.31) and following the arguments of Theorem 3.2 [18], we conclude

that the solution of (3.1) exists globally in time. g

Remark 4.3 (Global solutions) From the last Lemma 4.2 we may observe

that solutions of the problems (1.1) and (1.2), (given by Theorem 3.2), belong to the

space Cb(Rþ, 	0), the space of bounded continuous functions from Rþ to 	0, i.e., we
have achieved global solutions for the given problem. We achieved global results for

�2 [0, 2/(N�2)), for N¼ 3 and for the initial energy E(0)� 0.

Finally Lemma 4.1 has an immediate consequence:

Remark 4.4 A nonlinear semigroup S(t) : 	0!	0, t� 0, may be associate to the

problems (1.1) and (1.1) such that for  ¼ {u0, u1}2	0, S(t) ¼ {u(t), ut(t)} is the weak

solution of the problems (1.1) and (1.2). Moreover the ball B0 ¼: BX0
ð0; �R	Þ for any

�R	 > R	, where R* defined by (4.31), is an absorbing set for the semigroup S(t) in the

energy space 	0�	1, compactly.

In the rest of this article we show that the !-limit set of the absorbing set is a compact

invariant set. To this end, we need to decompose the semigroup S(t), in the form

S(t)¼S1(t)þS2(t), where for a suitable bounded set B�	0 the semigroups S1(t), S2(t)

satisfy the following properties

(S1) S1(t) is uniformly compact for t large, i.e., [t�t0S1(t)B is relatively compact in 	1.
(S2) supk2BkS2(t)kk	1! 0, as t!1.

The next lemma implies that the semigroup associated with the problem (4.38), satisfy

the property (S2).
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Lemma 4.5 For the initial value problem

utt � �ðxÞkjuðtÞk2�uþ �ut ¼ 0, x 2 R
N, t 2 ½0;T�,

uð:, 0Þ ¼ u0 2 DðAÞ, utð:, 0Þ ¼ u1 2 D
1,2ðR

N
Þ, ð4:32Þ

there exists a unique solution such that

u 2 Cb Rþ,D
1,2

� �
, ut 2 Cb Rþ,L

2
g


 �
:

Moreover, this solution decays exponentially, as t!1.

Proof We proceed as in [15, Proposition 3.2] and the Lemma 4.2 to obtain the estimate

kwk2
D1,2kuk

2
DðAÞ þ kut þ "uk

2
D1,2 þ �2kuk

2
D1,2

� kw0k
2
D1,2ku0k

2
DðAÞ þ ku1 þ "u0k

2
D1,2 þ �2ku0k

2
D1,2

n o
e�C	t,

where �2 ¼ "ð�� "Þ=2 and C*4 0. The last estimate apart of giving the existence and

uniqueness results for the problem (4.32), implies also the exponential decay of

solutions, by letting t!1. g

Concerning property (S1), we need to prove the following three lemmas. By Cb(X,Y)

we denote the set of bounded continuous functions from X to Y.

Lemma 4.6 Consider the initial value problem

�utt � �ðxÞkj �uðtÞk2� �uþ � �ut þ fðuÞ ¼ 0, x 2 R
N, t 2 ½0,T�,

�uð:, 0Þ ¼ �u0 2 DðAÞ, �utð:, 0Þ ¼ �u1 2 D
1,2ðR

N
Þ, ð4:33Þ

where u denotes the solution of the original problem given by Theorem 3.2. Then problem

(4.33) posses a unique solution such that

�u 2 Cb Rþ,D
1,2

� �
, �ut 2 Cb Rþ,L

2
g


 �
:

Proof Working as in Lemmas 4.2 and 4.5, we obtain the inequality

1

2

d

dt
kwk2

D1,2k �uk2DðAÞ þ k �vk
2
D1,2 þ �2k �uk2

D1,2

n o
þ ð�� "Þk �vk2

D1,2 þ "kwk
2
D1,2k �uk2DðAÞ þ "

2ð�� "Þk �uk2
D1,2

�
d

dt
kwk2

D1,2

� �
k �uk2DðAÞ

				 				þ Z
R

N
jðfðwÞÞj �v dx:

				 				
Standard procedure gives the estimate

d

dt
kwk2

D1,2k �uk2DðAÞ þ k �vk
2
D1,2 þ �2k �uk2

D1,2

�
þ C	 kwk

2
D1,2k �uk2DðAÞ þ k �vk

2
D1,2 þ �2k �uk2

D1,2

n o
� ~C,

n
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where ~C ¼ CðRÞ=� and C(R), C*, are defined in Lemma 4.2. Using Gronwall’s lemma

we have

kwk2
D1,2k �uk2DðAÞ þ k �ut þ " �uk2

D1,2 þ �2k �uk2
D1,2

� kw0k
2
D1,2k �u0k

2
DðAÞ þ k �u1 þ " �u0k

2
D1,2 þ �2k �u0k

2
D1,2

n o
e�C	t þ ~C 1� e�C	t

� �
:

Finally, letting t!1, we obtain the result. g

This lemma gives the existence of the semigroup S1. By L(X,Y) we denote the set of

linear continuous mappings from X to Y. To prove uniform compactness for t large,

i.e., property (S1), we need the next technical lemma.

Lemma 4.7 Let f(s)¼kskas, where 0� a�N/(2(N�2)). Then there exists �2 (0, 1),
such that for every ’2D(A) the functional f0(’)2L(D1,2, V��) and for every R4 0

sup
kukDðAÞ�R

f 0ð’Þ
		 		

L D1,2,V��ð Þ
<1:

Proof For every �2 (0,1) we have the following compact embedding

V� � V0 
 L2
gðR

N
Þ: Let  2V� and z2D1,2(RN). We apply the Holder inequality with

exponents p¼ 2, q¼ 4, r¼ 4 and we get the next estimation

hf 0ð’Þz, iðV�,V��Þ ¼

Z
R

N
gf 0ð’Þ z dx

				 				
� c1

Z
R

N
j’jag1=2g1=4g1=4 z dx

				 				, ðc1 ¼ 1þ aÞ

� c1k’k
a
L4a
g
kzkL4

g
k kL2

g

� c1c2k’k
a
D1,2kzkD1,2k kL2

g

� c	cðRÞkzkD1,2k kV� , ð4:34Þ

where we have applied the embedding L4a
g ðR

N
Þ � D1,2ðR

N
Þ, which is valid

for 0� a�N/2(N� 2) (Lemma 2.2). Relation (4.34) shows that f0(’)z, is in the

dual V�� of V� and that its norm in V�� is bounded by c	cðRÞkzkD1,2 : So the proof

is completed. g

Remark 4.8 Let f2L1(R). Then we have that f 0(u)2L1(RN), for every u2D(A).

Since for any �2 (0, 1) the embedding L2
g 
 V0 � V��, is compact we get that

kf 0ð’ÞzkV�� � kf
0ð’ÞzkL2

g

� kf 0ð’ÞkL1kzkL2
g

� kf 0ð’ÞkL1kzkD1,2 ð4:35Þ

and we get the same result as in Lemma 4.7.

Lemma 4.9 The semigroup S1(t) satisfies the property (S1).

Proof We decompose the solution of the problems (1.1) and (1.2) as u ¼ �wþ �u,

where �w is the solution of the problem (4.32) and �u ¼ u� �w is the solution of the

problem (4.33), with initial conditions �uðx, 0Þ ¼ 0 and �utðx, 0Þ ¼ 0: The semigroup S2(t)
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associated with solution �w has the property (S2). We shall show that S1(t)¼S(t)�S2(t)

is uniformly compact. Let {u0, u1} be in a bounded set B of X0 with kru0k4 0.

We have that B is also bounded in X1, since the embedding X0�X1 is compact.

According to Lemma 4.2, we have that for all t� t0, {u, ut} is in B0 and

kuðtÞk2
D1,2kuk

2
DðAÞ þ kutk

2
D1,2 � R2

	, for all t � t0: ð4:36Þ

We differentiate equation (3.1) with respect to the time. Then V ¼ �ut is the solution of

the problem

Vtt � �ðxÞkjwk2�Vþ �Vt þ f 0ðwÞwt ¼ �2

Z
R

N
jwtjw dx

� �
ð��� �uÞ,

Vðx, 0Þ ¼ 0, Vtðx, 0Þ ¼ f u0ðxÞð Þ: ð4:37Þ

For the rest of the proof we follow ideas developed in [2]. By Theorem 3.2 and

Lemma 4.6, V2Cb(Rþ,V1) and Vt2Cb(Rþ,V0). Also by Lemma 4.7,

f0(w)wt2Cb(Rþ,V��). So applying the operator A��=2 to the equation (4.37) and

setting  ¼: A��=2V, 
 ¼: A��=2 f 0ðwÞwtð Þ and 
	 ¼: A��=2ð�2
R
R

N jwtjwdxð��� �uÞÞ,

we have that

 tt � �ðxÞkjwk2� þ � t ¼ �
 þ 

	: ð4:38Þ

From the properties of the operator As and relation

As=2 : Vx! Vx�s, ð4:39Þ

we have that the following mappings

A��=2 : V���!V0,

A��=2 : V0�!V�,

A��=2 : V1�!V1þ�,

are isomorphisms. Therefore { , t}2Cb(Rþ,V1þ��V�). Since we have that 
,

*2Cb(Rþ,V0) by Lemma 4.6 we obtain that { , t}2Cb(Rþ, V1�V0) [7, p. 182]

and [2]). Furthermore, the isomorphisms

A�=2 : V1�!V��þ1,

A�=2 : V0�!V��,

imply that the following relation is true

�ut; �uttf g ¼ V;Vtf g ¼ A�=2  ; t

� �
2 Cb Rþ;V��þ1 � V��ð Þ: ð4:40Þ

But f(w)2Cb(Rþ,V��). So by (4.40) we obtain that ��ðxÞkjwk2� �u ¼

� �utt � � �ut � fðwÞ 2 V��. Using again (4.39) we have the isomorphism

���ð Þ
�1
¼ A�2=2 : V���!V��þ2:

Therefore

�u; �utf g ¼ A�1 �u; �ut
� �

2 Cb Rþ;V��þ2 � V��þ1ð Þ,
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that is, [t�t0S1(t)B is in a bounded set of V��þ2�V��þ1. Hence, the compact
embeddings V��þ2�V1 and V��þ1�V0 imply that the set [t�t0S1(t)B is relatively
compact in X1. g

As a consequence of the above lemmas we have the following result

Theorem 4.10 Let � satisfying (G). Then the semigroup S(t) associated with problems
(1.1) and (1.2) possesses a functional invariant set A¼!(B0), which is compact in the
weak topology of X1.

Remark 4.11 The set [t�t0S1ðtÞB is compact with respect to the strong topology in X1.
For the functional invariant compact set A¼!(B0), we observe that (u0, u1)2A,
if kru0k4 0. So, this set is attractor like.

Remark 4.12 The above set A¼!(B0), is a positively invariant set in the space X0,
because we have that S(t)A�A, from the definition of the absorbing set. This set is not
invariant in the space X0 because the semigroup S(t) is weakly continuous in X0,
see Lemma 4.13, but it is not continuous in X0.

Finally, we prove the following lemma.

Lemma 4.13 For every t2R, the mapping S(t) is weakly continuous from X0 into X0.

Proof Let {un} be a weakly convergent sequence in X0 and u its (weak) limit. We fix
t2R; we have that the sequence {S(t)un} is bounded in X0. We extract a subsequence
{S(t)un

0

} that converges weakly to v2X0. On the other hand, the compactness of the
injection of X0 into X1 insures that {u

n} converges strongly to u in X1. Hence, {S(t)un}
converges strongly to S(t)u in X1 and then v¼S(t)u. Therefore, the whole sequence
{S(t)un} weakly converges to S(t)u in X0 and the lemma is proved. g
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