Compact invariant sets for some quasilinear nonlocal Kirchhoff strings on \mathbb{R}^N

PERIKLES G. PAPADOPOULOS* and NIKOS M. STAVRAKAKIS

Department of Mathematics, National Technical University, Zografou Campus, 157 80 Athens, Greece

Communicated by R. P. Gilbert

(Received 8 March 2004; in final form 14 December 2007)

We consider the quasilinear nonlocal dissipative Kirchhoff String problem

$$u_{tt} - \phi(x) \| \nabla u(t) \|^2 \Delta u + \delta u_t + f(u) = 0, \quad x \in \mathbb{R}^N, \quad t \geq 0,$$

with the initial conditions $u(x, 0) = u_0(x)$ and $u_t(x, 0) = u_1(x)$, in the case where $N \geq 3$, $\delta \geq 0$, $f(u) = |u|^s u$ for example, and $(\phi(x))^{-1} \in L^{N/2}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$ is a positive function. The purpose of our work is to study the long-time behaviour of the solution of this equation. The compactness of the embeddings

$D(A) \subset D^{1,2}(\mathbb{R}^N) \subset L^2(\mathbb{R}^N)$, is widely applied.

Keywords: Quasilinear hyperbolic equations; Kirchhoff strings; Global attractor; Unbounded domains; Generalised sobolev spaces; Weighted L^p spaces

AMS Subject Classifications: 35A07; 35B30; 35B40; 35B45; 35L15; 35L70; 35L80; 47F05; 47H20

1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyperbolic initial value problem

$$u_{tt} - \phi(x) \| \nabla u(t) \|^2 \Delta u + \delta u_t + f(u) = 0, \quad x \in \mathbb{R}^N, \quad t \geq 0,$$

$$u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \mathbb{R}^N,$$

with initial conditions u_0, u_1 in appropriate function spaces, $N \geq 3$, and $\delta \geq 0$. Throughout this article, we assume that the functions $\phi, g : \mathbb{R}^N \rightarrow \mathbb{R}$ satisfy the following condition:

$$(\mathcal{G}) \phi(x) > 0, \quad \text{for all } x \in \mathbb{R}^N \text{ and } (\phi(x))^{-1} =: g(x) \in L^{N/2}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N).$$

*Corresponding author. Email: perispap@math.ntua.gr
G. Kirchhoff in 1883 [1] proposed the so-called Kirchhoff string model in the study of oscillations of stretched strings and plates

\[ph\frac{\partial^2 u}{\partial t^2} + \delta \frac{\partial u}{\partial t} = \left\{ p_0 + \frac{Eh}{2L} \int_0^L \left(\frac{\partial u}{\partial x} \right)^2 \, dx \right\} \frac{\partial^2 u}{\partial x^2} + f, \quad 0 < x < L, \quad t \geq 0, \quad (1.3) \]

where \(u = u(x, t) \) is the lateral displacement at the space coordinate \(x \) and the time \(t \), \(E \) the Young modules, \(p \) the mass density, \(h \) the cross-section area, \(L \) the length, \(p_0 \) the initial axial tension, \(\delta \) the resistance modules and \(f \) the external force [1]. When \(p_0 = 0 \) the equation is considered to be of degenerate type, otherwise it is of nondegenerate type.

In bounded domains, there is a vast literature concerning the attractors of the semilinear wave equation

\[u_{tt} + d u_t - \Delta u + f(x, u) = 0, \quad x \in \Omega, \quad t \geq 0, \quad d \geq 0, \]
\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega, \]

provided that the spatial variable \(x \) belongs to a bounded domain \(\Omega \subset \mathbb{R}^N \) and \(u \) satisfies certain boundary conditions. We refer to the works [2,3] and the monographs [4–7]. K. Ono [8–10], for \(\delta \geq 0 \), has proved global existence, decay estimates, asymptotic stability and blow up results for a (mildly) degenerate nonlinear wave equation of Kirchhoff type with a strong dissipation.

On the other hand, it seems that very few results are achieved for the unbounded domain case. Using weighed Sobolev spaces, A.V. Babin and M.I. Vishik in the pioneering work [11] considered the problem of the existence of attractors for equations of parabolic type on \(\mathbb{R}^N \). P. Brenner [12] studied the existence of strong global solutions for nonlinear hyperbolic equations. E. Feireisl [13,14] studied the asymptotic behaviour and compact attractors for semilinear damped wave equations on \(\mathbb{R}^N \). Recently, N.I. Karahalios and N.M. Stavrakakis [15–17] proved existence of global attractors and estimated their dimension for a semilinear dissipative wave equation on \(\mathbb{R}^N \).

The presentation of this article is as follows: In section 2, we discuss the space setting of the problem and the necessary embeddings for constructing the evolution triple. In section 3, we discuss the existence of a local weak solution of the problem (1.1) and (1.2) with \((u_0, u_1) \in D(A) \times D^{1,2}(\mathbb{R}^N) \). In section 4, we prove the existence of an absorbing set in the space \(D(A) \times D^{1,2}(\mathbb{R}^N) \). We achieved global results for \(N = 3, \ a \in [0, \ 2/(N-2)] \) and for the initial energy we have that \(E(0) \geq 0 \). Then we prove that the semigroup generated by the problem possesses an invariant compact set \(A \). We do not call it an attractor because it is not clear if it attracts all the initial solutions.

Notation: We denote by \(B_R \) the open ball of \(\mathbb{R}^N \) with center 0 and radius \(R \). Sometimes for simplicity we use the symbols \(C_0^\infty, D^{1,2}, L^p, 1 \leq p \leq \infty, \) for the spaces \(C_0^\infty(\mathbb{R}^N), D^{1,2}(\mathbb{R}^N), L^p(\mathbb{R}^N), \) respectively; \(\| \cdot \| \), for the norm \(\| \cdot \|_L^p(\mathbb{R}^N) \), where in case of \(p = 2 \) we may omit the index. The symbol \(=: \) is used for definitions.
2. Space setting: formulation of the problem

As we have already seen in [18] the space setting for the initial conditions and the solutions of our problem is the product space

$$X_0 =: D(A) \times D^{1,2}(\mathbb{R}^N), \quad N \geq 3.$$

The homogeneous Sobolev space $D^{1,2}(\mathbb{R}^N)$ is defined as the closure of $C_0^\infty(\mathbb{R}^N)$ functions with respect to the energy norm $\|u\|_{D^{1,2}} : = \int_{\mathbb{R}^N} |\nabla u|^2 \, dx$. It is known that

$$D^{1,2}(\mathbb{R}^N) = \{ u \in L_r(\mathbb{R}^N) : \nabla u \in (L^2(\mathbb{R}^N))^N \}$$

and $D^{1,2}(\mathbb{R}^N)$ is embedded continuously in $L_r(\mathbb{R}^N)$, that is, there exists $k > 0$ such that

$$\|u\|_{2N/N-2} \leq k \|u\|_{D^{1,2}}. \quad (2.1)$$

The space $D(A)$ is going to be introduced and studied later in this section. We shall frequently use the following generalised version of Poincaré’s inequality

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \geq \alpha \int_{\mathbb{R}^N} gu^2 \, dx, \quad (2.2)$$

for all $u \in C_0^\infty$ and $g \in L^{N/2}$, where $\alpha = k^{-2} \|g\|_{L^{N/2}}^{-1}$ [19, Lemma 2.1]. It is shown that $D^{1,2}(\mathbb{R}^N)$ is a separable Hilbert space. The space $L^2_g(\mathbb{R}^N)$ is defined to be the closure of $C_0^\infty(\mathbb{R}^N)$ functions with respect to the inner product

$$(u, v)_{L^2_g(\mathbb{R}^N)} : = \int_{\mathbb{R}^N} guv \, dx. \quad (2.3)$$

It is clear that $L^2_g(\mathbb{R}^N)$ is also a separable Hilbert space. Moreover, we have the following compact embedding.

Lemma 2.1 Let $g \in L^{N/2}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. Then the embedding $D^{1,2} \subset L^2_g$ is compact.

Proof For the proof we refer to [16, Lemma 2.1].

The following lemmas will be proved to be useful in the sequel. For the proofs we refer to [16].

Lemma 2.2 Let $g \in L^{2N/N_0}(\mathbb{R}^N)$. Then the following continuous embedding $D^{1,2}(\mathbb{R}^N) \subset L^p_g(\mathbb{R}^N)$ is valid, for all $1 \leq p \leq 2N/(N-2)$.

Remark 2.3 The assumption of Lemma 2.2 is satisfied under the hypothesis (G), if $p \geq 2$.

Lemma 2.4 Let g satisfy condition (G). If $1 \leq q < p < p^* = 2N/(N-2)$, then the following weighted inequality

$$\|u\|_{L^q_g} \leq C_0 \|u\|_{L^2_g}^{1-\theta} \|u\|_{D^{1,2}}^\theta \quad (2.4)$$

is valid, for all $\theta \in (0, 1)$, such that $1/p = (1-\theta)/q + \theta/p^*$ and $C_0 = k^\theta$.

Asymptotic behaviour of Kirchhoff strings on \mathbb{R}^N
To study the properties of the operator $-\phi\Delta$, we consider the equation

$$-\phi(x)\Delta u(x) = \eta(x), \quad x \in \mathbb{R}^N,$$

(2.5)

without boundary conditions. Since for every $u, v \in C_0^\infty(\mathbb{R}^N)$ we have

$$\langle -\phi\Delta u, v \rangle_{L_g^2} = \int_{\mathbb{R}^N} \nabla u \nabla v \, dx,$$

we may consider equation (2.5) as an operator equation of the form

$$A_0 u = \eta, \quad A_0 : D(A_0) \subseteq L_g^2(\mathbb{R}^N) \to L_g^2(\mathbb{R}^N), \quad \eta \in L_g^2(\mathbb{R}^N).$$

(2.7)

Relation (2.6) implies that the operator $A_0 = -\phi\Delta$, with domain of definition $D(A_0) = C_0^\infty(\mathbb{R}^N)$, is symmetric. From (2.2) and equation (2.6) we have that

$$\langle A_0 u, u \rangle_{L_g^2} \geq \alpha \|u\|^2_{L_g^2}, \quad \text{for all } u \in D(A_0).$$

(2.8)

So the operator $A_0 = -\phi\Delta$ is a symmetric, strongly monotone operator on $L_g^2(\mathbb{R}^N)$. Hence, Friedrich's extension theorem [20, Theorem 19.C] is applicable. The energy scalar product given by (2.6) is

$$(u, v)_E = \int_{\mathbb{R}^N} \nabla u \nabla v \, dx$$

and the energy space X_E is the completion of $D(A_0)$ with respect to $(u, v)_E$. It is obvious that the energy space is the homogeneous Sobolev space $D^{1,2}(\mathbb{R}^N)$. The energy extension $A_E = -\phi\Delta$ of A_0,

$$-\phi\Delta : D^{1,2}(\mathbb{R}^N) \to D^{-1,2}(\mathbb{R}^N),$$

(2.9)

is defined to be the duality mapping of $D^{1,2}(\mathbb{R}^N)$. We define $D(A)$ to be the set of all solutions of equations (2.5), for arbitrary $\eta \in L_g^2(\mathbb{R}^N)$. Friedrich's extension A of A_0 is the restriction of the energy extension A_E to the set $D(A)$. The operator $A = -\phi\Delta$ is self-adjoint and therefore graph-closed. Its domain $D(A)$, is a Hilbert space with respect to the graph scalar product

$$\langle u, v \rangle_{D(A)} = (u, v)_{L_g^2} + \langle Au, Av \rangle_{L_g^2}, \quad \text{for all } u, v \in D(A).$$

The norm induced by the scalar product is

$$\|u\|_{D(A)} = \left\{ \int_{\mathbb{R}^N} g|u|^2 \, dx + \int_{\mathbb{R}^N} \phi|\Delta u|^2 \, dx \right\}^{1/2},$$

which is equivalent to the norm

$$\|Au\|_{L_g^2} = \left\{ \int_{\mathbb{R}^N} \phi|\Delta u|^2 \, dx \right\}^{1/2}.$$
where all the embeddings are dense and compact. Finally, for later use, it is necessary to remind that the eigenvalue problem
\[-\phi(x)\Delta u = \mu u, \quad x \in \mathbb{R}^N,
\]
has a complete system of eigensolutions \(\{w_n, \mu_n\}\) satisfying the following properties
\[
\begin{cases}
-\phi \Delta w_j = \mu_j w_j, & j = 1, 2, \ldots, \quad w_j \in D^{1,2}(\mathbb{R}^N), \\
0 < \mu_1 \leq \mu_2 \leq \cdots, \quad \mu_j \to \infty, & \text{as } j \to \infty.
\end{cases}
\]

For the positive self-adjoint operator \(A = -\varphi \Delta\), we may define the fractional powers in the following way. For every \(s > 0\), \(A^s\) is an unbounded self-adjoint operator in \(L^2_g(\mathbb{R}^N)\) with its domain \(D(A^s)\) to be a dense subset in \(L^2_g(\mathbb{R}^N)\). The operator \(A^s\) is strictly positive and injective. Also \(D(A^s)\), endowed with the scalar product
\[(u, v)_{D(A^s)} = (u, v)_{L^2_g} + (A^s u, A^s v)_{L^2_g},\]
becomes a Hilbert space. We write as usual \(V_{2s} = D(A^s)\) and we have the following identifications
\[D(A^{-1/2}) = D^{-1,2}(\mathbb{R}^N), \quad D(A^0) = L^2_g, \quad D(A^{1/2}) = D^{1,2}(\mathbb{R}^N).\]
Moreover, the mapping
\[A^{s/2} : V_s \longrightarrow V_{s-\delta}\]
is an isomorphism. Furthermore, as a consequence of the relation (2.10) the injection \(D(A^{s_1}) \subset D(A^{s_2})\) is compact and dense, for every \(s_1, s_2 \in \mathbb{R}, \ s_1 > s_2\). For more on the fractional spaces, we refer to Henry [21]. Finally, we give the definition of weak solutions for the problems, (1.1) and (1.2).

Definition 2.5 A weak solution of the problems (1.1) and (1.2) is a function \(u\) such that

(i) \(u \in L^2[0, T; D(A)], \quad u_t \in L^2[0, T; D^{1,2}(\mathbb{R}^N)], \quad u_{tt} \in L^2[0, T; L^2_g(\mathbb{R}^N)]\),

(ii) for all \(v \in C^\infty_0([0, T] \times (\mathbb{R}^N))\), satisfies the generalized formula
\[
\begin{align*}
\int_0^T (u_{tt}(\tau), v(\tau))_{L^2_g} \, d\tau + \int_0^T \left(\| \nabla u(\tau) \|^2 \int_{\mathbb{R}^N} \nabla u(\tau) \nabla v(\tau) \, dx \, d\tau \right) \\
+ \delta \int_0^T (u_t(\tau), v(\tau))_{L^2_g} \, d\tau + \int_0^T (f(u(\tau)), v(\tau))_{L^2_g} \, d\tau = 0,
\end{align*}
\]
where \(f(s) = |s|^\alpha s\), and

(iii) satisfies the initial conditions
\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad u_t \in D^{1,2}(\mathbb{R}^N).
\]

Remark 2.6 Using a density argument, we may see that the generalised formula (2.13) is satisfied for every \(v \in L^2[0, T; D^{1,2}(\mathbb{R}^N)]\). By the compactness and density of the embeddings in the evolution quartet (2.10) we may see that, as in [15, Proposition 3.2], the above Definition 2.5 of weak solutions implies that
\[u \in C[0, T; D^{1,2}(\mathbb{R}^N)] \quad \text{and} \quad u_t \in C[0, T; L^2_g(\mathbb{R}^N)].\]
3. Existence and uniqueness of solution

In this section, we give existence and uniqueness results for the problems (1.1) and (1.2) using the space setting established previously. Let \((w, w_t) \in C(0, T; D(A) \times D^{1,2})\) be given. In order to obtain a local existence result for the problems (1.1) and (1.2), we need information concerning the solvability of the corresponding nonhomogeneous linearised (around the function \(w\)) problem restricted to the sphere \(B_R\):

\[
\begin{align*}
&u_{tt} - \phi(x)\|\nabla w(t)\|^2 \Delta u + \delta u_t + f(w) = 0, \quad (x, t) \in B_R \times (0, T), \\
&u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in B_R, \\
&u(x, t) = 0, \quad (x, t) \in \partial B_R \times (0, T).
\end{align*}
\]

(3.1)

Proposition 3.1 Assume that \(u_0 \in D(A), u_1 \in D^{1,2}(\mathbb{R}^N)\) and \(0 \leq a \leq 4/(N - 2)\), where \(N \geq 3\). Then the linear wave equation (3.1) has a unique solution such that

\[
u \in C(0, T; D(A)) \quad \text{and} \quad u_t \in C(0, T; D^{1,2}).
\]

Proof The proof follows the lines of [16, Proposition 3.1]. The Galerkin method is used, based on the information taken from the eigenvalue problem (2.11).

Theorem 3.2 Consider that \((u_0, u_1) \in D(A) \times D^{1,2}\) and satisfy the nondegenerate condition

\[\|\nabla u_0\| > 0.\]

Then there exists \(T = T(\|u_0\|_{D(A)}, \|\nabla u_1\|^2) > 0\) such that the problems (1.1) and (1.2) admits a unique local weak solution \(u\) satisfying

\[
u \in C(0, T; D(A)) \quad \text{and} \quad u_t \in C(0, T; D^{1,2}).
\]

Proof For the proof we refer to [18, Theorem 3.2].

Theorem 3.3 Assume that \(f(u) = |u|^a u\) is a nonlinear \(C^1\) function and \(0 \leq a \leq 4/(N - 2)\), where \(N \geq 3\). If \((u_0, u_1) \in D(A) \times D^{1,2}\) and satisfy the nondegenerate condition

\[\|\nabla u_0\| > 0,\]

then there exists \(T > 0\) such that the problems (1.1) and (1.2) admits a unique local weak solution \(u\) satisfying

\[
u \in C(0, T; D^{1,2}) \quad \text{and} \quad u_t \in C(0, T; L^2_g),
\]

Proof The proof follows the lines of [18, Theorem 3.2]. In this case, because of the compact embedding \(X_0 \subset X_1 =: D^{1,2} \times L^2_g\), we obtain for the associated norms that

\[
e_1(u(t)) \leq e(u(t)),
\]

where \(e_1(u(t)) =: \|u\|^2_{D^{1,2}} + \|u_t\|^2_{L^2} \quad \text{and} \quad e(u(t)) =: \|u\|^2_{D(A)} + \|u_t\|^2_{D^{1,2}}.\) Following the same steps as in Theorem 3.2 we take the inequality

\[
e_1(u(t)) \leq e(u(t)) \leq R^2,
\]

where \(R\) is a positive parameter. So, \(u\) is a solution such that

\[
u \in L^\infty(0, T; V), \quad u_t \in L^\infty(0, T; H).
\]
The continuity properties, are also proved with the methods indicated in [7, sections II.3 and II.4]. Finally, the uniqueness of the solution can also be taken from [7, Proposition 4.1, p. 215].

4. Global existence of the solution

In this section, we shall prove that solution of (3.1) exists globally in time. We set \(v = u + \varepsilon u \) for sufficiently small \(\varepsilon \). Then following [7, page 207], for calculation needs we rewrite (3.1) as follows

\[
v_t + (\delta - \varepsilon)v + (\phi(x)\|\nabla w\|^2 \Delta - \varepsilon(\delta - \varepsilon))u + f(w) = 0.
\]

To obtain the estimates needed, we shall implement the Faedo–Galerkin approximation based on the eigenfunctions \(w_j \) of the eigenvalue problem (2.11). For each \(n \), we look for an approximating solution of the form \(u^n(t, x) = \sum_{i=1}^{n} b_{i0}(t)w_i \). We also define the quantity \(v^n = u^n + \varepsilon u^n \). The Galerkin system for the linear problem of (4.1) is

\[
(v^n_t, w_i)_{L^2_\Omega} + (\delta - \varepsilon)(v^n, w_i)_{L^2_\Omega} + \int_{B_R} \|\nabla w\|^2 \nabla u^n \nabla w_i \, dx - \varepsilon(\delta - \varepsilon)(u^n, w_i)_{L^2_\Omega} = 0,
\]

where \(w \in C(0, T; D(A)) \), with \(w_i \in C(0, T; D^{1,2}) \), where \(P_n \) is the continuous orthogonal projector operator of the spaces \(D(A)(B_R) \) and \(D^{1,2}(B_R) \) into the span \(\{w_i ; i = 1, 2, \ldots, n\} \). For every eigenvalue \(\mu_j \) and eigenfunctions \(w_j \) we have that

\[
\mu_j(v, w_j)_{L^2_\Omega} = \int_{\mathbb{R}^N} g(\varphi \Delta w_j) = \int_{\mathbb{R}^N} g(\varphi \Delta w_j) - ((v, w_j))_{D^{1,2}},
\]

where \(v \in D^{1,2} \) and \(v \in D(A) \), respectively.

We set \(w_j = \mu_j(b_{i0}(t) + \varepsilon b_{i0}(t)) \) in relation (4.2), summarise for \(i \) from 1 to \(n \), integrate over the ball \(B_R \) and use relations (4.4), (4.5) to obtain the inequality

\[
\frac{1}{2} \frac{d}{dt} \left(\frac{d}{d\tau} \|w\|^2_{D^{1,2}} + \|u^n\|^2_{D(A)} + \|v^n\|^2_{D^{1,2}} + \frac{\varepsilon(\delta - \varepsilon)}{2} \|u^n\|^2_{D^{1,2}} + \varepsilon \|u^n\|^2_{D^{1,2}} \right) + (\delta - \varepsilon) \|v^n\|^2_{D^{1,2}} + \varepsilon \|w\|^2_{D^{1,2}} \|u^n\|^2_{D(A)}
\]

\[
+ \varepsilon^2(\delta - \varepsilon) \|u^n\|^2_{D^{1,2}} = \left(\frac{d}{dt} \|w\|^2_{D^{1,2}} \right) \|u^n\|^2_{D(A)} - \int_{B_R} \nabla (f(w)) \nabla v^n \, dx
\]

\[
\leq \left(\frac{d}{dt} \|w\|^2_{D^{1,2}} \right) \|u^n\|^2_{D(A)} + \int_{B_R} \nabla (f(w)) \nabla v^n \, dx.
\]

We observe that

\[
\int_{B_R} \nabla (f(w)) \nabla v^n \, dx = \int_{B_R} (f(w))' \nabla w \nabla v^n \, dx \leq k_2 \|w\|^2_{L^2_\Omega} \|w\|_{L^2_\Omega} \|v^n\|_{L^2_\Omega} \|v^n\|_{L^2_\Omega}.
\]
where we used Hölder inequality with $p^{-1} = 1/N$, $q^{-1} = (N - 2/2N)$, $r^{-1} = 1/2$. Then applying relation (4.7), inequality (4.6) becomes

$$
\frac{1}{2} \frac{d}{dt} \left(\|w\|^2_{D^1} + \|v\|^2_{D^1} + \frac{\varepsilon(\delta - \varepsilon)}{2} \|u\|^2_{D^1} \right) + (\delta - \varepsilon) \|v\|^2_{D^1} + \varepsilon \|w\|^2_{D^1} + \varepsilon^2 (\delta - \varepsilon) \|u\|^2_{D^1} \\
\leq \left(\frac{d}{dt} \|w\|^2_{D^1} \right) \|u\|^2_{D(A)} \left| k_2 \|w\|_{L^2} \|\nabla w\|_{L^{2(N-2)/3}} \|\nabla \varphi\| \right|.
$$

(4.8)

Next, to define the energy associated with the equation (1.1), we multiply equation (1.1) by $2gu_t$ and integrate over \mathbb{R}^N to get the following relation (for simplicity we set $\delta = 1$)

$$
\frac{d}{dt} \left(\|u(t)\|^2_{L^2} + \frac{1}{2} \|u(t)\|_{D^1}^4 + \frac{2}{a + 2} \|u(t)\|_{L^2}^{a+2} \right) + 2\delta \|u_t(t)\|^2_{L^2} = 0.
$$

(4.9)

Then, we define as the energy functional of the problems (1.1) and (1.2) the quantity

$$
E(t) := E(u(t), u_t(t)) := \|u(t)\|_{L^2}^2 + \frac{1}{2} \|u(t)\|_{D^1}^4 + \frac{2}{a + 2} \|u(t)\|_{L^2}^{a+2}.
$$

(4.10)

Then, equation (4.9) becomes

$$
\frac{d}{dt} E(t) + 2 \|u_t(t)\|^2_{L^2} = 0.
$$

(4.11)

Concerning the time behaviour of the energy, we have the following remarks. Integrate equation (4.11) over $[0, t]$, to get

$$
E(t) + 2 \int_0^t \|u_t(t)\|^2_{L^2} \, dt = E(0).
$$

(4.12)

From equation (4.11) and definition (4.10), we obtain that

$$
\frac{d}{dt} E(u, u_t) = -2 \|u_t(t)\|^2_{L^2} \leq 0.
$$

(4.13)

Therefore, the energy $E(t)$ is a nonincreasing function of t. Hence, we get that

$$
E(t) \leq E(0), \quad \text{for all} \quad t \in [0, T).
$$

(4.14)

For the energy $E(t)$ we have the following estimate (for the proof we refer to [18, Theorem 4.3, p. 102]

$$
\frac{\|u_t\|^2_{L^2}}{\|\nabla u(t)\|^2} + d_*^{-1} \|\nabla u\|^2 \leq \left\{ E(u_0, u_1)^{-1/2} + d_0^{-1} |t - 1|^+ \right\}^{-2},
$$

(4.15)

where d_* is a positive constant $d_0 \geq 1$, and $[t - 1]^+ = \max \{0, t - 1\}$, for $0 \leq t < T$.

Next, we prove the following lemma.

Lemma 4.1 Assume that $f(u)$ is a C^1-function, $a \geq 0$, $N \geq 3$. If the initial data $(u_0, u_1) \in D(A) \times D^{1,2}$ and satisfy the condition

$$
\|\nabla u_0\| > 0,
$$

(4.16)
then we have that

\[\| \nabla u(t) \| > 0, \quad \text{for all } t \geq 0. \]

(4.17)

Proof Let \(u(t) \) be a unique solution of the problems (1.1) and (1.2) in the sense of Theorem 3.2 on \([0, T]\). Multiplying (1.1) by \(-2\Delta u_t\) and integrating it over \(\mathbb{R}^N\), we have

\[\frac{d}{dt} \| \nabla u(t) \|^2 + \| \nabla u(t) \|^2 \frac{d}{dt} \| u(t) \|^2_{D(A)} + 2 \| \nabla u_t(t) \|^2 + 2(f(u(t)), \Delta u_t(t)) = 0 \]

(4.18)

Since \(\| \nabla u_0 \| > 0 \) by (4.16), we see that \(\| \nabla u(t) \| > 0 \) near \(t = 0 \). Let

\[T =: \sup \{ t \in [0, +\infty): \| \nabla u(s) \| > 0 \quad \text{for } 0 \leq s < t \}, \]

then \(T > 0 \) and \(\| \nabla u(t) \| > 0 \) for \(0 \leq t < T \). If \(T < +\infty \), we have

\[\lim_{t \to T^-} \| \nabla u(t) \| = 0. \]

(4.19)

So, using (4.19) we see from (4.15) that \(\lim_{t \to T^-} \| u_t(t) \|_{L^2} \) must be zero. We perform the change of variable \(t/T - t \). Then \(\tilde{u}(t) = u(T - t) \) satisfies

\[\tilde{u}''(t) - \phi(x) \| \nabla \tilde{u}(t) \|^2 \Delta \tilde{u}(t) - \tilde{u}_t(t) + f(\tilde{u}(t)) = 0, \quad x \in \mathbb{R}^N, \quad t \geq 0, \]

\[\tilde{u}(0) = 0, \quad \tilde{u}_t(0) = 0, \quad x \in \mathbb{R}^N. \]

(4.20)

We note that \(\tilde{u} \in C^0([0, T]; D(A)) \cap C^1([0, T]; D^{1, 2}) \). Multiplying (4.20) by \(2g \tilde{u} \) and integrating it over \(\mathbb{R}^N \), we have an equation similar to (4.11), that is,

\[\frac{d}{dt} E(\tilde{u}(t), \tilde{u}_t(t)) = 2 \| \tilde{u}(t) \|_{L^2}^2 \leq 2E(\tilde{u}(0), \tilde{u}(0)). \]

Integrating it over \([0, t]\), we have

\[E(\tilde{u}(t), \tilde{u}_t(t)) \leq 2 \int_0^t E(\tilde{u}(s), \tilde{u}_t(s))ds, \]

for \(0 \leq t \leq T \). Noting \(E(\tilde{u}(0), \tilde{u}_t(0)) = 0 \) and applying the Gronwall inequality we see that

\[E(\tilde{u}(t), \tilde{u}_t(t)) = 0, \quad \text{on } [0, T], \]

that is, \(\| \nabla u(T - t) \| = 0 \) on \([0, T]\) which contradicts \(\| \nabla u_0 \| > 0 \), and hence, we obtain \(T = +\infty \) and

\[\| \nabla u(t) \| > 0, \quad \text{for all } t \geq 0. \]

(4.21)

\[\text{■} \]

Now, we need the following result.

Lemma 4.2 Assume that \(0 \leq a < 2/(N-2) \), \(N \geq 3 \), \(\| \nabla u_0 \| > 0 \) and

\[\rho_1 > 4a^{-1/2} R^2 c_3^2. \]

(4.22)

Then the unique local solution defined by Theorem 3.2 exists globally in time.
Given the constants $T > 0$, $R > 0$, we introduce the two parameter space of solutions

$$X_{T,R} = \{ w \in C(0, T; D(A)) : w_t \in C\{0, T; D^{1,2}\}, w(0) = u_0, \}
$$

$$w_t(0) = u_1, \ e(w) \leq R^2, \ t \in [0, T],$$

where $e(w) := \|w_t\|_{D^{1,2}}^2 + \|w\|_{D(A)}^2$. Also u_0 satisfies the nondegenerate condition (3.2). It is easy to see that the set $X_{T,R}$ is a complete metric space under the distance $d(u, v) = \sup_{0 \leq t \leq T} e(u(t) - v(t))$. We may introduce the notation

$$M_0 := \frac{1}{2} \|\nabla u_0\|^2, \ T_0 := \sup\{t \in [0, \infty) : \|\nabla w(s)\|^2 > M_0, 0 \leq s \leq t\}.$$

By condition (3.2) and the relation (4.21), we may see that $M_0 > 0$, $T_0 > 0$ and \(\|\nabla w(t)\|^2 > M_0 > 0\), for all $t \in [0, T_0]$. Multiplying equation (3.1) by $gAv = g(-\varphi \Delta) = -\Delta v = -\Delta(u_t + \varepsilon u)$,

where $v = u_t + \varepsilon u$ and integrating over \mathbb{R}^N, we obtain an inequality analogous to (4.26) on all of \mathbb{R}^N

$$\frac{1}{2} \frac{d}{dt} \left(\|w\|_{D^{1,2}}^2 \|u\|_{D(A)}^2 + \|v\|_{D^{1,2}}^2 + \frac{\varepsilon(\delta - \varepsilon)}{2} \|u\|_{D^{1,2}}^2 \right) + (\delta - \varepsilon) \|v\|_{D^{1,2}}^2 + \varepsilon \|w\|_{D^{2,2}}^2 \|u\|_{D(A)}^2
$$

$$+ \varepsilon^2 (\delta - \varepsilon) \|u\|_{D^{1,2}}^2 \leq \left(\frac{\|d\|_{D^{2,2}}}{\|D\|} \|u\|_{D(A)}^2 \right) \|u\|_{D(A)}^2 + k_2 \|w\|_{L^\infty} \|\nabla w\|_{L^{2N/(N-2)}} \|\nabla v\|. \quad (4.23)$$

We observe that

$$\theta(t) := \|w\|_{D^{1,2}}^2 \|u\|_{D(A)}^2 + \|v\|_{D^{1,2}}^2 + \frac{\varepsilon(\delta - \varepsilon)}{2} \|u\|_{D^{1,2}}^2
$$

$$\geq \|w\|_{D^{2,2}}^2 \|u\|_{D(A)}^2 + \|v\|_{D^{1,2}}^2
$$

$$\geq M_0 \|u\|_{D(A)}^2 + \|u_t\|_{D^{2,2}}^2 \geq c_3 \varepsilon e(u), \quad (4.24)$$

with $c_3 := \left(\max\{1, M_0^{-1}\} \right)^{1/2}$. We also have that

$$\left(\frac{d}{dt} \|w\|_{D^{2,2}}^2 \|u\|_{D(A)}^2 \right) \|u\|_{D(A)}^2 \leq 2 \left(\|w\|_{D(A)}^2 \right)^{1/2} \left(\|w\|_{L^\infty} \|\nabla v\|_{D^{2,2}} \right) \|u\|_{D(A)}^2
$$

$$\leq 2 \alpha^{-1/2} R \|w_t\|_{D^{1,2}} \|u\|_{D(A)}^2
$$

$$\leq 2 \alpha^{-1/2} R^2 e(u) \leq 2 \alpha^{-1/2} R^2 c_3^2 \theta(t). \quad (4.25)$$

By relations (4.24) and (4.25) the inequality (4.23) becomes

$$\frac{d}{dt} \theta(t) + (\delta - \varepsilon) \|v\|_{D^{2,2}}^2 + \varepsilon \|w\|_{D^{2,2}}^2 \|u\|_{D(A)}^2 + \frac{\varepsilon(\delta - \varepsilon)}{2} \|u\|_{D(A)}^2
$$

$$\leq 2 \alpha^{-1/2} R^2 c_3^2 \theta(t) + k_2 \|w\|_{L^\infty} \|\nabla w\|_{L^{2N/(N-2)}} \|\nabla v\|. \quad (4.26)$$
We also have that
\[\|w\|_{L^2}^2 \leq R^a \quad \text{and} \quad \|\nabla w\|_{L^{2(N-2)}} \leq \|w\|_{D(A)} \leq R. \]
(4.27)

Applying Young’s inequality for \(\epsilon = \delta/2 \), in the last term of (4.26) we obtain
\[\frac{d}{dt}\theta(t) + \frac{\rho_1}{2}\theta(t) - 2\alpha^{-1/2}R^2 c_3^2 \theta(t) \leq \frac{C(R)}{\delta}, \]
(4.28)

where \(\rho_1 = \min(\delta/2 - \epsilon, \epsilon, 2\epsilon) \) and \(C(R) = k_2 R^{2(\alpha+1)} \). So
\[\frac{d}{dt}\theta(t) + C_s \theta(t) \leq \frac{C(R)}{\delta}, \]
(4.29)

where \(C_s = (1/2)(\rho_1 - 4\alpha^{-1/2}R^2 c_3^2) > 0 \). Applying Gronwall’s Lemma in (4.29) we get
\[\theta(t) \leq \theta(0) e^{-C_s t} + \frac{1 - e^{-C_s t}}{C_s} \frac{C(R)}{\delta}. \]
(4.30)

By using the nondegenerate condition \(\|\nabla w_0\| > 0 \) and relation (4.21), we may assume that \(\|\nabla w(s)\| > M_0 > 0, 0 \leq s \leq t, t \in [0, +\infty) \). Letting \(t \to \infty \), in relation (4.30) we conclude that
\[\lim_{t \to \infty} \sup_{t \in \mathbb{R}_+} \theta(t) \leq \frac{C(R)}{\delta C_s} =: R_s^2. \]
(4.31)

From inequality (4.31) and following the arguments of Theorem 3.2 [18], we conclude that the solution of (3.1) exists globally in time.

Remark 4.3 (Global solutions) From the last Lemma 4.2 we may observe that solutions of the problems (1.1) and (1.2), (given by Theorem 3.2), belong to the space \(C_b(\mathbb{R}_+, \chi_0) \), the space of bounded continuous functions from \(\mathbb{R}_+ \) to \(\chi_0 \), i.e., we have achieved global solutions for the given problem. We achieved global results for \(\alpha \in [0, 2/(N-2)] \), for \(N = 3 \) and for the initial energy \(E(0) \geq 0 \).

Finally Lemma 4.1 has an immediate consequence:

Remark 4.4 A nonlinear semigroup \(S(t) : \chi_0 \to \chi_0, t \geq 0 \), may be associate to the problems (1.1) and (1.1) such that for \(\psi = \{u_0, u_1\} \in \chi_0 \), \(S(t)\psi = \{u(t), u_1(t)\} \) is the weak solution of the problems (1.1) and (1.2). Moreover the ball \(B_0 =: B_{\chi_0}(0, R_s) \) for any \(\tilde{R}_s > R_s \), where \(R_s \) defined by (4.31), is an absorbing set for the semigroup \(S(t) \) in the energy space \(\chi_0 \subset \chi_1 \), compactly.

In the rest of this article we show that the \(\omega \)-limit set of the absorbing set is a compact invariant set. To this end, we need to decompose the semigroup \(S(t) \), in the form \(S(t) = S_1(t) + S_2(t) \), where for a suitable bounded set \(B \subset \chi_0 \) the semigroups \(S_1(t), S_2(t) \) satisfy the following properties

\((S_1) \) \(S_1(t) \) is uniformly compact for \(t \) large, i.e., \(\cup_{t \geq t_0} S_1(t)B \) is relatively compact in \(\chi_1 \).

\((S_2) \) \(\sup_{k \in B} S_2(t)k \|_{\chi_1} \to 0 \), as \(t \to \infty \).

The next lemma implies that the semigroup associated with the problem (4.38), satisfy the property \((S_2) \).
Lemma 4.5 For the initial value problem
\[u_{tt} - \phi(x)|\nabla u(t)|^2 \Delta u + \delta u_t = 0, \quad x \in \mathbb{R}^N, \quad t \in [0, T], \]
\[u(., 0) = u_0 \in D(A), \quad u_t(., 0) = u_1 \in D^{1,2}(\mathbb{R}^N), \tag{4.32} \]

there exists a unique solution such that
\[u \in C_b(\mathbb{R}^+, D^{1,2}), \quad u_t \in C_b\left(\mathbb{R}^+, L^2_x\right). \]

Moreover, this solution decays exponentially, as \(t \to \infty \).

Proof We proceed as in [15, Proposition 3.2] and the Lemma 4.2 to obtain the estimate
\[\frac{1}{2} \frac{d}{dt} \left\{ \|w\|_{D^{1,2}}^2 \|\tilde{u}\|_{D(A)}^2 + \|\tilde{u} - w\|_{D^{1,2}}^2 + \rho_2 \|\tilde{u}\|_{D^{1,2}}^2 \right\}
 + (\delta - \varepsilon) \|\tilde{u}\|_{D^{1,2}}^2 + \varepsilon \|w\|_{D^{1,2}}^2 \|\tilde{u}\|_{D(A)}^2 + \varepsilon^2 (\delta - \varepsilon) \|\tilde{u}\|_{D^{1,2}}^2
 \leq \left(\frac{d}{dt} \|w\|_{D^{1,2}}^2 \right) \|\tilde{u}\|_{D(A)}^2
 + \int_{\mathbb{R}^N} \nabla (f(w)) \nabla \tilde{v} \ dx. \]

Standard procedure gives the estimate
\[\frac{d}{dt} \left\{ \|w\|_{D^{1,2}}^2 \|\tilde{u}\|_{D(A)}^2 + \|\tilde{u} - w\|_{D^{1,2}}^2 + \rho_2 \|\tilde{u}\|_{D^{1,2}}^2 \right\} + C \left\{ \|w\|_{D^{1,2}}^2 \|\tilde{u}\|_{D(A)}^2 + \|\tilde{u} - w\|_{D^{1,2}}^2 + \rho_2 \|\tilde{u}\|_{D^{1,2}}^2 \right\} \leq \tilde{C}, \]
where \(C = C(R)/\delta \) and \(C(R), C_* \), are defined in Lemma 4.2. Using Gronwall’s lemma we have

\[
\|w\|_{D^{1,2}_0}^2 + \|\tilde{u}\|_{D(A)}^2 + \|\tilde{u}_t\|_{D^{1,2}}^2 + \rho_2 \|\tilde{u}\|_{D^{1,2}}^2 \\
\leq \left\{ \|w_0\|_{D^{1,2}_0}^2 \|\tilde{u}_0\|_{D(A)}^2 + \|\tilde{u}_1\|_{D^{1,2}}^2 + \rho_2 \|\tilde{u}_0\|_{D^{1,2}}^2 \right\} e^{-C_* t} + \tilde{C}(1 - e^{-C_* t}).
\]

Finally, letting \(t \to \infty \), we obtain the result.

Remark 4.8 Let \(f(s) = \|s\|^a \), where \(0 \leq a \leq N/(2(N-2)) \). Then there exists \(\delta \in (0, 1) \), such that for every \(\varphi \in D(A) \) the functional \(f(\varphi) \in L(D^{1,2}, V_{-\delta}) \) and for every \(R > 0 \)

\[
\sup_{\|u\|_{D^{1,2}} \leq R} |f'(\varphi)|_{L(D^{1,2}, V_{-\delta})} < \infty.
\]

Proof For every \(\delta \in (0, 1) \) we have the following compact embedding \(V_\delta \subset V_0 \equiv L^2_\delta(\mathbb{R}^N) \). Let \(\psi \in V_\delta \) and \(z \in D^{1,2}(\mathbb{R}^N) \). We apply the Holder inequality with exponents \(p = 2, q = 4, r = 4 \) and we get the next estimation

\[
\langle f'(\varphi)z, \psi \rangle_{(V_\delta, V_{-\delta})} = \left| \int_{\mathbb{R}^N} g f'(\varphi) \psi z \ dx \right| \\
\leq c_1 \left| \int_{\mathbb{R}^N} |\varphi|^2 g^{1/2} g^{1/4} g^{1/4} \psi z \ dx \right|, (c_1 = 1 + a) \\
\leq c_1 \|\varphi\|_{L^\infty_\delta} \|z\|_{L^2_\delta} \|\psi\|_{L^2_\delta} \\
\leq c_1 c_2 \|\varphi\|_{D^{1,2}_\delta} \|z\|_{D^{1,2}_\delta} \|\psi\|_{L^2_\delta} \\
\leq c^* c(R) \|z\|_{D^{1,2}_\delta} \|\psi\|_{V_\delta},
\]

where we have applied the embedding \(L^a_\delta(\mathbb{R}^N) \subset D^{1,2}(\mathbb{R}^N) \), which is valid for \(0 \leq a \leq N/2(N-2) \) (Lemma 2.2). Relation (4.34) shows that \(f'(\varphi)z \), is in the dual \(V_{-\delta} \) of \(V_\delta \) and that its norm in \(V_{-\delta} \) is bounded by \(c^* c(R) \|z\|_{D^{1,2}_\delta} \). So the proof is completed.

Remark 4.8 Let \(f \in L^\infty(R) \). Then we have that \(f'(u) \in L^\infty(\mathbb{R}^N) \), for every \(u \in D(A) \). Since for any \(\delta \in (0, 1) \) the embedding \(L^2_\delta \equiv V_0 \subset V_{-\delta} \), is compact we get that

\[
\|f'(\varphi)z\|_{V_{-\delta}} \leq \|f'(\varphi)z\|_{L^2_\delta} \\
\leq \|f'(\varphi)\|_{L^\infty} \|z\|_{L^2_\delta} \\
\leq \|f'(\varphi)\|_{L^\infty} \|z\|_{D^{1,2}_\delta}
\]

and we get the same result as in Lemma 4.7.

Lemma 4.9 The semigroup \(S_1(t) \) satisfies the property \((S_1) \).

Proof We decompose the solution of the problems (1.1) and (1.2) as \(u = \tilde{w} + \tilde{u} \), where \(\tilde{w} \) is the solution of the problem (4.32) and \(\tilde{u} = u - \tilde{w} \) is the solution of the problem (4.33), with initial conditions \(\tilde{u}(x, 0) = 0 \) and \(\tilde{u}_t(x, 0) = 0 \). The semigroup \(S_2(t) \)
associated with solution \(\tilde{w} \) has the property (S₂). We shall show that \(S_1(t) = S(t) - S_2(t) \) is uniformly compact. Let \(\{ u_0, u_t \} \) be in a bounded set \(B \) of \(X_0 \) with \(\| \nabla u_0 \| > 0 \). We have that \(B \) is also bounded in \(X_1 \), since the embedding \(X_0 \subset X_1 \) is compact. According to Lemma 4.2, we have that for all \(t \geq t_0 \), \(\{ u, u_t \} \) is in \(B_0 \) and

\[
\| u(t) \|_{\mathcal{P}_1}^2 + \| u_t(t) \|_{\mathcal{P}_1}^2 \leq R^2,
\]

for all \(t \geq t_0 \). (4.36)

We differentiate equation (3.1) with respect to the time. Then \(V = \tilde{u}_t \) is the solution of the problem

\[
V_{tt} - \phi(x) \| \nabla w \|^2 \Delta V + \delta V_t + f'(w)w_t = -2 \left(\int_{\mathbb{R}^n} \nabla w_t \nabla w \, dx \right) (\phi \Delta \tilde{u}),
\]

\[
V(x, 0) = 0, \quad V_t(x, 0) = f(u_0(x)).
\]

(4.37)

For the rest of the proof we follow ideas developed in [2]. By Theorem 3.2 and Lemma 4.6, \(V \in C_b(R_+, V_1) \) and \(V_t \in C_b(R_+, V_0) \). Also by Lemma 4.7, \(f'(w)w_t \in C_b(R_+, V_{-\delta}) \). So applying the operator \(A^{-\delta/2} \) to the equation (4.37) and setting \(\psi := A^{-\delta/2} V, \quad \xi := A^{-\delta/2} (f'(w)w_t) \) and \(\xi^* := A^{-\delta/2} (-2 \int_{\mathbb{R}^n} \nabla w_t \nabla w \, dx (\phi \Delta \tilde{u})) \), we have that

\[
\psi_{tt} - \phi(x) \| \nabla w \|^2 \Delta \psi + \delta \psi_t = -\xi + \xi^*.
\]

(4.38)

From the properties of the operator \(A^g \) and relation

\[
A^{\delta/2} : V_x \to V_{x-\delta},
\]

(4.39)

we have that the following mappings

\[
A^{-\delta/2} : V_{-\delta} \to V_0,
\]

\[
A^{-\delta/2} : V_0 \to V_{\delta},
\]

\[
A^{-\delta/2} : V_1 \to V_{1+\delta},
\]

are isomorphisms. Therefore \(\{ \psi, \psi_t \} \in C_b(R_+, V_{1+\delta} \times V_\delta) \). Since we have that \(\xi, \xi^* \in C_b(R_+, V_0) \) by Lemma 4.6 we obtain that \(\{ \psi, \psi_t \} \in C_b(R_+, V_1 \times V_0) \) [7, p. 182] and [2]). Furthermore, the isomorphisms

\[
A^{\delta/2} : V_1 \to V_{-\delta+1},
\]

\[
A^{\delta/2} : V_0 \to V_{-\delta},
\]

imply that the following relation is true

\[
\{ \tilde{u}_t, \tilde{u}_{tt} \} = \{ V, V_t \} = A^{\delta/2} \{ \psi, \psi_t \} \in C_b(R_+, V_{-\delta+1} \times V_{-\delta}).
\]

(4.40)

But \(f(w) \in C_b(R_+, V_{-\delta}) \). So by (4.40) we obtain that \(-\phi(x) \| \nabla w \|^2 \Delta \tilde{u} = -\tilde{u}_{tt} - \delta \tilde{u}_t - f(w) \in V_{-\delta} \). Using again (4.39) we have the isomorphism

\[
(-\phi \Delta)^{-1} = A^{-\delta/2} : V_{-\delta} \to V_{-\delta+2}.
\]

Therefore

\[
\{ \tilde{u}, \tilde{u}_t \} = \{ A^{-1} \tilde{u}, \tilde{u}_t \} \in C_b(R_+, V_{-\delta+2} \times V_{-\delta+1}).
\]
that is, $\cup_{t \geq t_0} S_1(t)B$ is in a bounded set of $V_{-\delta+2} \times V_{-\delta+1}$. Hence, the compact embeddings $V_{-\delta+2} \subset V_1$ and $V_{-\delta+1} \subset V_0$ imply that the set $\cup_{t \geq t_0} S_1(t)B$ is relatively compact in X_1.

As a consequence of the above lemmas we have the following result

Theorem 4.10 Let ϕ satisfying (G). Then the semigroup $S(t)$ associated with problems (1.1) and (1.2) possesses a functional invariant set $A=\omega(B_0)$, which is compact in the weak topology of X_1.

Remark 4.11 The set $\cup_{t \geq t_0} S_1(t)B$ is compact with respect to the strong topology in X_1.

Remark 4.12 The above set $A=\omega(B_0)$, is a positively invariant set in the space X_0, because we have that $S(t)A \subset A$, from the definition of the absorbing set. This set is not invariant in the space X_0 because the semigroup $S(t)$ is weakly continuous in X_0, see Lemma 4.13, but it is not continuous in X_0.

Finally, we prove the following lemma.

Lemma 4.13 For every $t \in \mathbb{R}$, the mapping $S(t)$ is weakly continuous from X_0 into X_0.

Proof Let $\{u^n\}$ be a weakly convergent sequence in X_0 and u its (weak) limit. We fix $t \in \mathbb{R}$; we have that the sequence $\{S(t)u^n\}$ is bounded in X_0. We extract a subsequence $\{S(t)u^{n_k}\}$ that converges weakly to v in X_0. On the other hand, the compactness of the injection of X_0 into X_1 insures that $\{u^n\}$ converges strongly to u in X_1. Hence, $\{S(t)u^n\}$ converges strongly to $S(t)u$ in X_1 and then $v=S(t)u$. Therefore, the whole sequence $\{S(t)u^n\}$ weakly converges to $S(t)u$ in X_0 and the lemma is proved.

Acknowledgements

We would like to thank Professor Hiroshi Matano, for his valuable comments. This work was partially financially supported by a grant from Papakyriakopoulos Legacy in the Department of Mathematics at NTU, Athens and by the Thalis project No. 65/1211 from the Committee of Fundamental Research at NTUA, Athens, Greece.

References

