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Compact invariant sets for some quasilinear
nonlocal Kirchhoff strings on R”

PERIKLES G. PAPADOPOULOS* and NIKOS M. STAVRAKAKIS

Department of Mathematics, National Technical University,
Zografou Campus, 157 80 Athens, Greece

Communicated by R. P. Gilbert
(Received 8 March 2004; in final form 14 December 2007)

We consider the quasilinear nonlocal dissipative Kirchhoff String problem u, — ¢(x)||x
S u(0)]>Au+ 8u, + flu) =0, x e R, >0, with the initial conditions u(x,0)=uy(x) and
u(x,0)=uy(x), in the case where N>3, §>0, fluy=|u|/u for example, and
(p(x) "' e LY2(RYM) N L>(RY) is a positive function. The purpose of our work is to study the
long-time behaviour of the solution of this equation. The compactness of the embeddings
D(4) c DA(RY) € LARY), is widely applied.

Keywords: Quasilinear hyperbolic equations; Kirchhoff strings; Global attractor; Unbounded
domains; Generalised sobolev spaces; Weighted L spaces

AMS Subject Classifications: 35A07; 35B30; 35B40; 35B45; 35L15; 35L70; 35L80; 47F05;
47H20

1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyperbolic initial
value problem

uy — )| Vu)|I*Au+ du, +flu) =0, xeRY, 1>0, (1.1)

u(x,0) = up(x), u(x,0) = u(x), xeRY, (1.2)

with initial conditions wu,, u; in appropriate function spaces, N>3, and §>0.
Throughout this article, we assume that the functions ¢,g : RY — R satisfy the
following condition:

(G) ¢(x) >0, for all xeRY and (p(x)) "' =: g(x) € LN*(RY) N L=(R™).
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134 P. G. Papadopoulos and N. M. Stavrakakis

G. Kirchhoff in 1883 [1] proposed the so-called Kirchhoff string model in the study of
oscillations of stretched strings and plates

u du Eh (L (ou\> u
h— + 66— = — — ) dxt—+7f 0 L, t>0 1.3
Py 9% !p0+2L A (m) Yo T O<x<Lot20 (13

where u=u(x, t) is the lateral displacement at the space coordinate x and the time ¢, E
the Young modules, p the mass density, & the cross-section area, L the length, p, the
initial axial tension, § the resistance modules and f the external force [1]. When py=0
the equation is considered to be of degenerate type, otherwise it is of nondegenerate
type.

In bounded domains, there is a vast literature concerning the attractors of the
semilinear wave equation

uy +du, — Au+fix,u) =0, xeQ, t>0,d=>0,

u(x,0) = up(x), u(x,0)=u(x), xe€1,

provided that the spatial variable x belongs to a bounded domain € ¢ R" and u satisfies
certain boundary conditions. We refer to the works [2,3] and the monographs [4-7].
K. Ono [8-10], for §>0, has proved global existence, decay estimates, asymptotic
stability and blow up results for a (mildly) degenerate nonlinear wave equation of
Kirchhoff type with a strong dissipation.

On the other hand, it seems that very few results are achieved for the unbounded
domain case. Using weighed Sobolev spaces, A.V. Babin and M.I. Vishik in the
pioneering work [11] considered the problem of the existence of attractors for
equations of parabolic type on RY. P. Brenner [12] studied the existence of strong
global solutions for nonlinear hyperbolic equations. E. Feiresl [13,14] studied the
asymptotic behaviour and compact attractors for semilinear damped wave equations
on R”Y. Recently, N.I. Karahalios and N.M. Stavrakakis [15-17] proved existence of
global attractors and estimated their dimension for a semilinear dissipative wave
equation on R”.

The presentation of this article is as follows: In section 2, we discuss the space
setting of the problem and the necessary embeddings for constructing the
evolution triple. In section 3, we discuss the existence of a local weak solution of
the problem (1.1) and (1.2) with (uo, u;) € D(A) x D"*(R"). In section 4, we prove the
existence of an absorbing set in the space D(A) x D'*(RY). We achieved global
results for N=3, a€[0, 2/(N —2)] and for the initial energy we have that E(0)> 0.
Then we prove that the semigroup generated by the problem possesses an invariant
compact set A. We do not call it an attractor because it is not clear if it attracts all
the initial solutions.

Notation: We denote by By the open ball of R" with center 0 and radius R. Sometimes
for simplicity we use the symbols C8°,D1’2, I7,1 <p<oo, for the spaces
C8°([R{N),D1’2([RN), LP(RY), respectively; || - |, for the norm -1l 2oy where in case of
p =2 we may omit the index. The symbol =: is used for definitions.
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2. Space setting: formulation of the problem

As we have already seen in [18] the space setting for the initial conditions and the
solutions of our problem is the product space

Xy =: D(4) x D"*RY), N=>3.

The homogeneous Sobolev space D"*(R") is defined as the closure of CSO(IRN ) functions
with respect to the energy norm [Ju||pi2 =: ]RN |V ul*> dx. It is known that

D(RY) = {u e LAYV IRY): vu e (L(RY)"}

and D'*(R") is embedded continuously in L@¥/¥-D(RY), that is, there exists k > 0
such that

el anyn—2y < Kllutllpra. (2.1)

The space D(A) is going to be introduced and studied later in this section. We shall
frequently use the following generalised version of Poincaré’s inequality

/l;e” | Vul>dx > a/RN gu’ dx, (2.2)

for all ue CJ and ge LV?, where o =: k~ 2||g||N , [19, Lemma 2.1]. It is shown
that D'*(R") is a separable Hilbert space. The space L2([R§ ) is defined to be the closure
of C*(R") functions with respect to the inner product

(u, v)Lg(RN) =: ,/[RN guvdx. 2.3)

It is clear that Lf,([RN) is also a separable Hilbert space. Moreover, we have the
following compact embedding.

LEMMA 2.1 Let g€ LN*R™) N L¥(RY). Then the embedding D' C Lé is compact.
Proof For the proof we refer to [16, Lemma 2.1]. |

The following lemmas will be proved to be useful in the sequel. For the proofs we
refer to [16].

LEMMA 2.2 Let ge LONPN-PN+2(RNY Then the following continuous embedding
DY RY) C LYRY) is valid, for all 1 <p <2NJ(N —2).

Remark 2.3 The assumption of Lemma 2.2 is satisfied under the hypothesis (G),
if p>2.

LEMMA 2.4 Let g satisfy condition (G). If 1<q <p <p*=2N/(N-2), then the
following weighted inequality

6
llullpr < Collully 2l 2 (2.4)

is valid, for all 6 € (0, 1), such that 1Jp=(1—6)/q+6/p" and Cy = k°.
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To study the properties of the operator —¢pA, we consider the equation
—p()Aux) = n(x).  xeRY, 2.5)

without boundary conditions. Since for every u, v € CSO(RN ) we have

(—pAu,v);2 =/ VuVvdx, (2.6)
g RY
we may consider equation (2.5) as an operator equation of the form
Agu=n, Ay:D(4g) € Ly(RY) > LYRY), ne LY(R"). (2.7

Relation (2.6) implies that the operator Ay=—¢A, with domain of definition
D(Ay) = Cgo([R{N ), is symmetric. From (2.2) and equation (2.6) we have that

(dou, )2 = a||u||i§, for all u € D(Ay). (2.8)

So the operator 4o=—¢@A is a symmetric, strongly monotone operator on Léz,(IRN ).
Hence, Friedrich’s extension theorem [20, Theorem 19.C] is applicable. The energy
scalar product given by (2.6) is

(u,v)p = / YVuVvdx
[RN

and the energy space X is the completion of D(A) with respect to (u, v)g. It is obvious
that the energy space is the homogeneous Sobolev space D'*(R™). The energy
extension Ap=—¢A of A,

—¢A: D (RY) - D LHRY), (2.9)

is defined to be the duality mapping of D'*(R"). We define D(A) to be the set of
all solutions of equations (2.5), for arbitrary n € Lé([RN). Friedrich’s extension A of 4,
is the restriction of the energy extension Ag to the set D(A4). The operator 4 = —¢A is
self-adjoint and therefore graph-closed. Its domain D(A4), is a Hilbert space with respect
to the graph scalar product

(u, V) pay = (u, V)Lfr ~+ (Au, Av)Lg, for all u,v € D(A).

The norm induced by the scalar product is

12
lull piay = {/ glul? dX—i—/ ¢l Aul? dx} ,
RN RV

which is equivalent to the norm

1/2
I Aull> = {/ ol Aul? dx} .
8 RN

So we have established the evolution quartet

D(4) c D*RY) ¢ L;[RY) ¢ DTARY), (2.10)
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where all the embeddings are dense and compact. Finally, for later use, it is necessary to
remind that the eigenvalue problem

—¢()Au=pu, xeR", (2.11)

has a complete system of eigensolutions {w,, u,} satisfying the following properties

—pAW; = uiwj, j=1,2,..., w, e D*RY),
{ i Wi i 2.12)

O<py Spp<--+, pj— 00, as j — oo.

For the positive self-adjoint operator 4 = —¢A, we may define the fractional powers
in the following way. For every s > 0, 4° is an unbounded self-adjoint operator in
Lf,([RN ) with its domain D(A") to be a dense subset in L;([RN ). The operator A4° is strictly
positive and injective. Also D(A”), endowned with the scalar product

(4, V)peasy = (@, V)2 + (A'u, A°) 2,

becomes a Hilbert space. We write as usual V,,= D(A") and we have the following
identifications

DA™ =D RY), DA’ =L;. D) =DR").
Moreover, the mapping
AP Ve— Vs

is an isomorphism. Furthermore, as a consequence of the relation (2.10) the injection
D(A*) € D(A*%) is compact and dense, for every sy,5, € R, 51 > 5. For more on the
fractional spaces, we refer to Henry [21]. Finally, we give the definition of weak
solutions for the problems, (1.1) and (1.2).

Definition 2.5 A weak solution of the problems (1.1) and (1.2) is a function u such that

(i) ue L0, T; D(A)], u; € L0, T: D (RY)],  u, € L2[0, T; LARM)],
(i) for all v e C([0, T] x (RY)), satisfies the generalized formula

T T
[ s ar+ [ (19uon [ vunosoare)
0 0 RY

T T
48 @z dr+ [ (aton. woy; dr=o. 2.13)
0 0

where f(s) =|s|%s, and
(iii) satisfies the initial conditions

u(x,0) = up(x), up € D(A),  u(x,0)=u(x), u; € D*(RY).

Remark 2.6 Using a density argument, we may see that the generalised formula (2.13)
is satisfied for every ve L*[0, T; D"*(R")]. By the compactness and density of the
embeddings in the evolution quartet (2.10) we may see that, as in [15, Proposition 3.2],
the above Definition 2.5 of weak solutions implies that

ue 0, T; DRY)] and u, € (0. T LyRY)].
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3. Existence and uniqueness of solution

In this section, we give existence and uniqueness results for the problems (1.1) and (1.2)
using the space setting established previously. Let (w,w,); € C(0,T; D(A)x D'?)
be given. In order to obtain a local existence result for the problems (1.1) and (1.2),
we need information concerning the solvability of the corresponding nonhomogeneous
linearised (around the function w) problem restricted to the sphere Bp:

uy — SOV w(O)* Au+ u, +fiw) =0, (x,1) € Bg x (0, ),
u(x,0) = up(x), u/(x,0)=u(x), x € Bg, (3.1
u(x,t) =0, (x,1) € dBg x (0, 7).

PROPOSITION 3.1  Assume that uy€ D(A), u; € D"*(RY) and 0<a=<4/(N-2), where
N> 3. Then the linear wave equation (3.1) has a unique solution such that

ue C0,T;D(A) and u, € C(0,T; D).

Proof The proof follows the lines of [16, Proposition 3.1]. The Galerkin method is
used, based on the information taken from the eigenvalue problem (2.11). |

THEOREM 3.2 Consider that (ug,u,) € D(A) x D' and satisfy the nondegenerate
condition

IVuoll > 0. (3.2)

Then there exists T=T(|luoll pca) IVur ) > 0 such that the problems (1.1) and
(1.2) admits a unique local weak solution u satisfying

ue C0, T; D(A)) and u, € C(0, T; D'?).
Proof  For the proof we refer to [18, Theorem 3.2]. |

THEOREM 3.3 Assume that f(u) = |u|"u is a nonlinear C" function and 0 < a <4/(N — 2),
where N > 3. If (uy, u,) € D(A) x D' and satisfy the nondegenerate condition

IV uoll >0, (3.3)

then there exists T > 0 such that the problems (1.1) and (1.2) admits a unique local weak
solution u satisfying

ue CO, ;D) and u € CO,T;Ly).

Proof The proof follows the lines of [18, Theorem 3.2]. In this case, because of the
compact embedding Xy C X} =: D' x Lﬁ, we obtain for the associated norms that

e1(u(n) = e(u(?)),

where e (u(t)) =: ||u||%1_2 + ||”/||i§ and e(u(1)) =: ||u||%)(A> + ||u’||2D1‘2. Following the same
steps as in Theorem 3.2 we take the inequality

ei(u(n) < e(u(r)) < R,
where R is a positive parameter. So, u is a solution such that

uel®0,T: V), ueL™0,T; H).



08:32 14 August 2008

Downl oaded By: [HEAL-Link Consortiun] At:

Asymptotic behaviour of Kirchhoff strings on RY 139

The continuity properties, are also proved with the methods indicated in [7, sections
II.3 and II1.4]. Finally, the uniqueness of the solution can also be taken from
[7, Proposition 4.1, p. 215]. |

4. Global existence of the solution

In this section, we shall prove that solution of (3.1) exists globally in time.
We set v=u,+ eu for sufficiently small . Then following [7, page 207], for calculation
needs we rewrite (3.1) as follows

v+ —e)v+ (—¢(x)||Vw||2A —e(8— 8))u + flw) = 0. 4.1

To obtain the estimates needed, we shall implement the Faedo—Galerkin approximation
based on the eigenfunctions w; of the eigenvalue problem (2.11). For each n, we look for
an approximating solution of the form u"(¢,x) = Y% | byu(9)w;. We also define the
quantity v" = u/ + eu". The Galerkin system for the linear problem of (4.1) is

o, Wi)Lg + (8 —&)(v", Wi)Lg + / IV wl> V"V w; dx — (8 — &)(u”, w,—)L§
Br
+ (f(VV), w’l‘)Lézl = 0’ (42)

u'(x,0) = Pyug(x), u}(x,0) = Pyui(x), (4.3)

around the function we C(0, T;D(A)), with w,e C(0, T;Dl’z), where P, is the
continuous orthogonal projector operator of the spaces D(A)(Bg) and D'*(Bg)
into the span {w;: i=1,2,...,n}. For every eigenvalue u; and eigenfunctions w; we
have that

oz = [ e = [ er=ptm) = (o (44)

M,f , Vva;:/ 'g(—(pAv)M,\y;:/ 'g(—(pAv)(—(pij):f “pAvAwW;, 4.5)
R/\/ Rl\ Rl\ Rl’\

where ve D% and v € D(A), respectively.
We set w; = ui(b),(1) + b, (1)) in relation (4.2), summarise for i from 1 to n, integrate
over the ball Bz and use relations (4.4), (4.5) to obtain the inequality

ed—e¢)
2

1d
w{ 1302 10" ey + 11172 +

d . n
T (a||w||3)l.z)||u"|lém - / () v v'dx
Br

d 2 ny2
< '(auwupu)nu I3

We observe that

2 2 2 2
||H"||D1,z} + 8 — )Vl + elwlipa 14

(4.6)

+ ‘/I;R V (flw)) V" dx.

< koWl pval VWil v VL (4.7)

f v (fw)) V' dx
Br

= ‘/ (fw)y Ywv ' dx
Br




08:32 14 August 2008

Downl oaded By: [HEAL-Link Consortiun] At:

140 P. G. Papadopoulos and N. M. Stavrakakis
where we used Hoélder inequality with p~!' =1/N, ¢~' = (N —2/2N), r~' =1/2.
Then applying relation (4.7), inequality (4.6) becomes

1d n n 8(8_5) n
Ea{nwn%,l.zuu B + 17 e + =5 ||éu}

+ 8= )V 52 + ellwllpia 16 154y + €76 — )l 1712

d 2 ny2
=< ‘(&”W”Dl.z ||2 ”D(A)

Next, to define the energy associated with the equation (1.1), we multiply equation (1.1)
by 2gu, and integrate over R" to get the following relation (for simplicity we set §=1)

koWl vl 7 Wil s (17 V1. (4.8)

d 1 2 Y
dl{ a3 + 30z + Mnu(z)ngé} + 28w =0. (49
Then, we define as the energy functional of the problems (1.1) and (1.2) the quantity
1 2
(1) =: E@() u(0) =: IOl +51u)lipe +——5lu@lgi% (4.10)

Then, equation (4.9) becomes

d
FO +2lu(0l7; = 0. @11

Concerning the time behaviour of the energy, we have the following remarks.
Integrate equation (4.11) over [0, 7], to get

4
E0 +2 [ T 013; dx = EO) “.12)
0 i
From equation (4.11) and definition (4.10), we obtain that
d
3, Bl u) = =2lju(0)ll7; < 0. (4.13)
Therefore, the energy E(f) is a nonincreasing function of 7. Hence, we get that

E(t) < E(0), forall re][0,T7). (4.14)
For the energy E(f) we have the following estimate (for the proof we refer to
[18, Theorem 4.3, p. 102]
||“t||ig
IV u(o)]?

where d-, is a positive constant dy>1, and [r—1]f =max {0,r—1}, for 0<t < T.
Next, we prove the following lemma.

+d Ml < [, w) ™+ dy' [ — 177} (4.15)

LEMMA 4.1  Assume that f(u) is a Cl—function, a>0, N>3. If the initial data
(uo, 1) € D(A) x D" and satisfy the condition

IV uoll > 0, (4.16)
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then we have that
|Vu(?)] >0, forall r>0. (4.17)
Proof Let u(f) be a unique solution of the problems (1.1) and (1.2) in the sense
of Theorem 3.2 on [0, 7). Multiplying (1.1) by —2Au, and integrating it over R",
we have
d 2 » d 2 2
allvuz(l)ll + I Vu@)| O (D) pay + 20V uON” + 2(w(0), Au(1)) =0 (4.18)
Since ||Vug| > 0 by (4.16), we see that | Vu(?)|| > 0 near t=0. Let
T =:sup{t € [0, +00): [|[Vu(s)|] >0 for0=<s <1},
then 7> 0 and ||Vu(?)|| >0 for 0<t < T. If T < 400, we have
linTl IVu(®)| = 0. (4.19)
—1_

So, using (4.19) we see from (4.15) that lim,_, 7 ||u,(l)||L§ must be zero. We perform
the change of variable #/T — ¢. Then u(t) = u(T — ¢) satisfies

7'(1) — pO)| V(D) 1> Alr) — 11,(1) + (1) =0, x € RY, 1> 0,
W0)=0, 7W0O)=0, xeR" (4.20)
We note that 7 € C°([0, T]; D(A)) N C'([0, T]; D). Multiplying (4.20) by 2g¢% and

integrating it over R”, we have an equation similar to (4.11), that is,

d ~ ~ ~ ~ ~
q, Bn). (1) = 2|ju (l)llng < 2E(u(1), u (1)).
Integrating it over [0, ], we have

!
EG0.7(0) <2 [ B, 7o)
0
for 0 <7< T. Noting E(u(0), 2/ (0)) = 0 and applying the Gronwall inequality we see that

EGi(1),@ (1)) =0, on [0, 7],

that is, ||[Vu(T —1)||=0 on [0, 7] which contradicts ||Vug|> 0, and hence, we obtain
T =400 and

IVu()| >0, forallz>0. (4.21)

|
Now, we need the following result.

LEmMA 4.2 Assume that 0 <a < 2/(N=2), N >3, ||Vug| > 0 and
o1 > da 2R 3. (4.22)

Then the unique local solution defined by Theorem 3.2 exists globally in time.
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Proof Given the constants 77> 0, R > 0, we introduce the two parameter space
of solutions

Xrr=:{we C0,T; D(A)) : w, € C(0, T; D), w(0) = ug,
wi(0) = uy, e(w) < R, t [0, 7]},

where e(w) =: ||w,||291‘z + ||W||%(A). Also u satisfies the nondegenerate condition (3.2).
It is easy to see that the set X7z is a complete metric space under the distance
d(u,v) =: supy,e(u(t) — v(t)). We may introduce the notation

1
My =: 3 I uoll*, To =: sup{t € [0,00): | Vw(s)|I* > Mo, 0 <s < t}.

By condition (3.2) and the relation (4.21), we may see that M, >0, T, > 0 and
IV w(n)|I* > My > 0, for all ¢ €[0, T,]. Multiplying equation (3.1) by
gAv = g(—pA)yv = —Av = —A(u, + eu),

where v=u,+¢eu and integrating over R", we obtain an inequality analog to (4.26)
on all of RY

;i{||w||§y.z||u||%m + VI3 + 8(52_ ) ||u||§)l.z} + (8 = &)IVli7ne + ellwlipi el
+&°( — o)llull
< '(i||w||;,l_g)||u||é(/,) + kol | 7wl oo | 91 (4.23)
We observe that
000) = Iy + 191 + 20
> [wiip lullpog + V150
> Mollull gy + lluclge = 5 e(w), (4.24)

with ¢; =: (max{l,Mg'})l/z. We also have that

d
'<a||w||2pl.2>||“||zp(,4) = ’(2 /[RN AWWI‘Png)”U”%)(A)

X 172 SN2
<2(Iwlde)  (Iwl3;) et

-1/2 2
< 207 2 Rllwill iz lull

<2072 R%e(u) < 2072 R*c3 (). (4.25)
By relations (4.24) and (4.25) the inequality (4.23) becomes

d 2ee(8 — ¢)
SO0 + (5 = VI + ellwldua sy + =5l

< 20571/2ch§ 0(t) + ko Wl wa ll V Wl pevim-2 || V . (4.26)
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We also have that
”W”iN“ <R and IV W revv-2 < ”W”D(A) <R. (427)

Applying Young’s inequality for e =4§/2, in the last term of (4.26) we obtain

R
Lo+ Lo 207 PR3 0(1) < ) (4.28)
dr 2 S
where p; = min((8/2) — ¢, ¢,2¢) and C(R)=k,R*“*". So
d C(R
3,00+ CH0) = % (4.29)

where C, = (1/2)(p1 — 4a™'?R*c3) > 0. Applying Gronwall’s Lemma in (4.29) we get

1 — e S C(R)

—Cit
0(f) < 6(0) e ' + . ;

(4.30)

By using the nondegenerate condition [[Vug| >0 and relation (4.21), we may
assume that ||Vw(s)|| > My >0, 0<s<t, t€[0,400). Letting t — oo, in relation (4.30)
we conclude that

C(R) 5
= R:.
5C, *

lim sup 6(r) < (4.31)
—00

From inequality (4.31) and following the arguments of Theorem 3.2 [18], we conclude
that the solution of (3.1) exists globally in time. |

Remark 4.3 (Global solutions) From the last Lemma 4.2 we may observe
that solutions of the problems (1.1) and (1.2), (given by Theorem 3.2), belong to the
space Ch(R., xo), the space of bounded continuous functions from R, to xo, i.e., we
have achieved global solutions for the given problem. We achieved global results for
a€[0, 2/(N=2)), for N=3 and for the initial energy E(0)> 0.

Finally Lemma 4.1 has an immediate consequence:

Remark 4.4 A nonlinear semigroup S(7) : xo— xo, t>0, may be associate to the
problems (1.1) and (1.1) such that for ¥ = {uo, us} € xo, S() = {u(?), u (1)} is the weak
solution of the problems (1.1) and (1.2). Moreover the ball By =: Bx,(0, R,) for any

R, > R,, where R« defined by (4.31), is an absorbing set for the semigroup S(¢) in the
energy space xo C x1, compactly.

In the rest of this article we show that the w-limit set of the absorbing set is a compact
invariant set. To this end, we need to decompose the semigroup S(7), in the form
S(1) = S1(f) + S»(1), where for a suitable bounded set B C xo the semigroups Si(¢), Sx(¢)
satisfy the following properties

(S1) S1(7) is uniformly compact for 7 large, i.e., U,-, S1(1)B is relatively compact in ;.
(82) supgesll Skl 1 — 0, as t — oo.

The next lemma implies that the semigroup associated with the problem (4.38), satisfy
the property (S,).
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LeEmMA 4.5 For the initial value problem
= PO Vu@) P Au+du, =0, xeRY, 1€[0,T],

u(.,0) = ug € D(A), u,(.,0) = u; € D*RY), (4.32)

there exists a unique solution such that
ue (R D), u e Ry, L2).

Moreover, this solution decays exponentially, as t — 00.

Proof  We proceed as in [15, Proposition 3.2] and the Lemma 4.2 to obtain the estimate

2 2 2 2
e lluliBe + Nl + eullZ + pallullys

2 2 2 2 ] —Cu
< {||W0||D‘~3||u0”D(A) + [lug + cug 2 + /02||U0||Dl,2}€

>

where p» = &(§ — €)/2 and C« > 0. The last estimate apart of giving the existence and
uniqueness results for the problem (4.32), implies also the exponential decay of
solutions, by letting r— oo. |

Concerning property (S;), we need to prove the following three lemmas. By Cy(X, Y)
we denote the set of bounded continuous functions from X to Y.

LEmMMA 4.6  Consider the initial value problem

ity — )| V()| Aii + it; + fu) =0, xeRY, +e[0,7],
i(.,0) = itp € D(A), i,(.,0) =i, € DA(RY), (4.33)

where u denotes the solution of the original problem given by Theorem 3.2. Then problem
(4.33) posses a unique solution such that

i € Cy(R;,D"?), i, € C,,(uqz+,L§).
Proof Working as in Lemmas 4.2 and 4.5, we obtain the inequality

1d ] ] ]
5&{ ||w||%,14z||u||2D(A) + ||v||2D|_2 + ,02||M||2D1.z]

+ = OVl + ellwlialllp + €6 — )il
= i”“’sz il Bq | + / v (f(w)) vV vdx.
—[\ds' P D(4) RN

Standard procedure gives the estimate

d _ _ _ _ _ B -
5{ Il il sy 4 9l500 + a2z} + Ca [ Wl Nl gy 4 191502 + ,02||“||2DI,2] <C,
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where C = C(R)/$ and C(R), C+, are defined in Lemma 4.2. Using Gronwall’s lemma
we have

2 =2 - _2 _2
Wl lullp gy + e + eullzye + palluliz.
2 =2 - =2 PR RN S -,
= [||W0||Dl,2||uo||D(A) + llur + gl + )02||140||Dl<2}5’ "+ C(1—e ).

Finally, letting 1 — oo, we obtain the result. |

This lemma gives the existence of the semigroup S;. By £(X, Y) we denote the set of
linear continuous mappings from X to Y. To prove uniform compactness for ¢ large,
i.e., property (S;), we need the next technical lemma.

LeEMMA 4.7  Let f(s)=|s||, where 0<a< N/(2(N=2)). Then there exists 5¢€(0,1),
such that for every ¢ € D(A) the functional f(p) € L(D'?, V_s) and for every R > 0

sup ‘f/(tp)|5(D"27 V)< Q.

llull pey=R

Proof For every &§€(0,1) we have the following compact embedding
Vs C Vo= Lé(IRN ). Let ¥ e Vs and ze DA (RY). We apply the Holder inequality with
exponents p=2, ¢g=4, r=4 and we get the next estimation

@y =| [ e opx

<q ,(c1=1+4a)

/V |<p|“g1/2g1/4g1/41/fzdx
R

< allglps izl vl
= aollelpelizlp ¥
= FeB)zlp iy, (4.34)

where we have applied the embedding Lg“([RN )y c P(RY), which is valid
for 0 <a<N/2(N—-2) (Lemma 2.2). Relation (4.34) shows that f(¢)z, is in the
dual V_; of Vs and that its norm in V_; is bounded by c*c(R)||z||pi2. So the proof
is completed. |

Remark 4.8 Let fe L(R). Then we have that f'(u) e L™(R"), for every u e D(A).
Since for any § € (0, 1) the embedding L§ =V C V_s, 1s compact we get that

|l]ﬂ(€0)2||1/,5 = ”f/(‘/))Z”L§
< W@zl
< I @ll=lizllp (4.35)
and we get the same result as in Lemma 4.7.
LEmMMA 4.9  The semigroup Si(t) satisfies the property (Sy).

Proof We decompose the solution of the problems (1.1) and (1.2) as u =w + i,
where w is the solution of the problem (4.32) and u# = u — w is the solution of the
problem (4.33), with initial conditions u(x,0) = 0 and u,(x, 0) = 0. The semigroup S-()
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associated with solution w has the property (S,). We shall show that S;(1) = S(¢) — Sx(¢?)
is uniformly compact. Let {ug,u;} be in a bounded set B of X, with ||Vug| > 0.
We have that B is also bounded in X, since the embedding XyC X is compact.
According to Lemma 4.2, we have that for all > tq, {u,u,} is in By and

3 el by + Nl < RS, forall 1= 1. (4.36)
We differentiate equation (3.1) with respect to the time. Then V' = i, is the solution of
the problem
Vi — NV WIPAV 48V, + 1 (w)w;, = —2(/ L VWi Vw dx) (—pAQ),
R
V(x,0) =0, Vi(x,0) = flug(x)). (4.37)

For the rest of the proof we follow ideas developed in [2]. By Theorem 3.2 and
Lemma 4.6, VeCyR., V) and V,eCyR,,Vy). Also by Lemma 4.7,
S (ww, € Co(R,, V_s). So applying the operator 47%? to the equation (4.37) and
setting ¥ =: A2V, &= A72(f(w)w,) and & =: A72(=2 [or Vw, Vwdx(—¢pAw)),
we have that

Vi = IV WIPAY + 89, = —& + £ (4.38)
From the properties of the operator 4* and relation
APV = Vi, (4.39)
we have that the following mappings
A7 V_s—> Vo,

A Vy— Vs,
A_B/2 : V1—>V1+,§,

are isomorphisms. Therefore {y, ¥,} € Cp)(Ry,Vi4sx Vs). Since we have that &,
£ € Cy(R,, Vo) by Lemma 4.6 we obtain that {y, v} € Cy(R,, Vi x Vo) [7, p. 182]
and [2]). Furthermore, the isomorphisms

AP ViV g,
A Vo— Vs,
imply that the following relation is true
{ig, iy = (V. Vi) = AP {Y. i} € Co(Ry, Vissr x Vo). (4.40)

But f(w)eCy(R,V_s). So by (440) we obtain that —¢(x)|Vw|*Ad=
—it,; — 8y — f(w) € V_s. Using again (4.39) we have the isomorphism

(—pA) = AV —V s
Therefore

(i) = {47 a, i} € Co(Ry, Vs X Vosy1),
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that is, U, Si()B is in a bounded set of V_s.,x V_s. ;. Hence, the compact
embeddings V_s.» CVy and V_s.  CV, imply that the set U, Si(1)B is relatively
compact in X. [ |

As a consequence of the above lemmas we have the following result

THEOREM 4.10 Let ¢ satisfying (G). Then the semigroup S(t) associated with problems
(1.1) and (1.2) possesses a functional invariant set A= w(By), which is compact in the
weak topology of X.

Remark 4.11 The set U=, S(1)B is compact with respect to the strong topology in X;.
For the functional invariant compact set A=w(By), we observe that (ug,u;)€ A,
if ||Vug|l > 0. So, this set is attractor like.

Remark 4.12 The above set A=w(By), is a positively invariant set in the space X,
because we have that S(7).A C A, from the definition of the absorbing set. This set is not
invariant in the space X, because the semigroup S(¢) is weakly continuous in X,
see Lemma 4.13, but it is not continuous in X,.

Finally, we prove the following lemma.
LeEmMA 4.13  For every t € R, the mapping S(t) is weakly continuous from X into X,.

Proof  Let {u"} be a weakly convergent sequence in X and u its (weak) limit. We fix
t € R; we have that the sequence {S(¢)u"} is bounded in X,. We extract a subsequence
{S(Hu"} that converges weakly to v X,. On the other hand, the compactness of the
injection of X, into X insures that {#"} converges strongly to u in X';. Hence, {S(¢)u"}
converges strongly to S(f)u in X; and then v=S(¢)u. Therefore, the whole sequence
{S(1)u""} weakly converges to S(¢)u in X, and the lemma is proved. |
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