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Abstract

In this paper we prove certain bifurcation results for the following degenerate quasilinear system

−�(ν1(x)| � u|p−2 � u) = λa(x)|u|p−2u + λb(x)|u|α |v|βv + f (x, λ, u, v),

−�(ν2(x)| � u|p−2 � u) = λd(x)|v|q−2v + λb(x)|u|α |v|β u + g(x, λ, u, v),

x ∈ Ω , u|∂Ω = v|∂Ω = 0,

where Ω is a bounded and connected subset of RN , with N ≥ 2. This is achieved by applying topological
degree and global bifurcation theory (in the sense of Rabinowitz).
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we prove the global bifurcation of a continuum of positive solutions for the
following quasilinear elliptic system, defined on Ω ,

−�(ν1(x)| � u|p−2 � u) = λa(x)|u|p−2u + λb(x)|u|α|v|βv + f (x, λ, u, v),

−�(ν2(x)| � u|p−2 � u) = λd(x)|v|q−2v + λb(x)|u|α|v|β u + g(x, λ, u, v),
(1.1)
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x ∈ Ω , u|∂Ω = v|∂Ω = 0. (1.2)

where Ω is bounded and connected, N ≥ 2. This continuum of solutions is bifurcating from the
positive principal eigenvalue of the following unperturbed system,

−�(ν1(x)| � u|p−2 � u) = λa(x)|u|p−2u + λb(x)|u|α|v|βv,
−�(ν2(x)| � u|p−2 � u) = λd(x)|v|q−2v + λb(x)|u|α|v|βu, (1.3)

x ∈ Ω , u|∂Ω = v|∂Ω = 0. (1.4)

where λ ∈ R. The degeneracy of this system is considered in the sense that the measurable,
non-negative diffusion coefficients ν1, ν2 are allowed to vanish in Ω (as well as at the boundary
∂Ω ) and/or to blow up in Ω̄ . The degenerate scalar equation of the system (1.1) was studied in
[2]. The system (1.3) and (1.4) under certain conditions on the constants α, β, p, q, N and on the
functions a, b and d , forms an eigenvalue problem which has been studied in [9]. Nondegenerate
systems of this type where studied for first time in all R

N using the homogeneous Sobolev space
D1,p(RN ) in the work [4]. Throughout this paper we assume that N, p, q, α, β, a, b, d, f, g
satisfy the following conditions:

(H) p > 1, q > 1, α ≥ 0, β ≤ 0 and

α + 1

p
+ β + 1

q
= 1.

Let ν(x), μ(x) be some nonnegative weighted functions in Ω satisfying the conditions:

(Np)

ν, μ ∈ L1
loc(Ω), ν

− 1
p−1 , μ

− 1
q−1 ∈ L1

loc(Ω) and ν−sp , μ−sq ∈ L1(Ω),

for some p > 1, q > 1, sp > max{ N
p ,

1
p−1 }, sq > max{ N

q ,
1

q−1 } satisfying ps ≤
N(s + 1), qs ≤ N(s + 1).

(N ) Let us suppose that ν,μ satisfies condition (Np). Let ν1(x), ν2(x) be measurable functions
satisfying

ν(x)

c1
≤ ν1(x) ≤ c1ν(x) and

μ(x)

c2
≤ ν2(x) ≤ c2μ(x), (1.5)

for a.e. x ∈ Ω , with some constants c1 > 1 and c2 > 1.

We also suppose that the coefficient functions satisfy the following conditions:

(A) a ∈ L
p∗

p∗−p (Ω) ∩ C0,ζ
loc (Ω) for some ζ ∈ (0, 1) and either there exists Ω+

a ⊂ Ω of positive
Lebesgue measure, i.e., |Ω+

a | > 0, such that a(x) > 0, for all x ∈ Ω+
a , or a(x) ≡ 0, in Ω .

With p < p∗ < p∗
s , where

p∗
s = N ps

N(s + 1)− ps

(D) d ∈ L
q∗

q∗−q (Ω) ∩ C0,ζ
loc (Ω) for some ζ ∈ (0, 1) and either there exists Ω+

d ⊂ Ω of positive
Lebesgue measure, i.e., |Ω+

d | > 0, such that d(x) > 0, for all x ∈ Ω+
d , or d(x) ≡ 0, in Ω .

With q < q∗ < q∗
s , where

q∗
s = Nqs

N(s + 1)− qs
.
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(B) b(x) ≥ 0, a.e. in Ω , b �= 0 and b ∈ Lω(Ω) ∩ L∞(Ω), where ω = [1 − a+1
p∗ − β+1

q∗ ]−1.

(F) The perturbations f and g are of the form:

| f (x, λ, u, v)| ≤ σ1(λ)m(x)|u|γ1−1|v|δ1+1u + σ2(λ)μ(x)|u|η−1u,

|g(x, λ, u, v)| ≤ σ3(λ)m(x)|u|γ2+1|v|δ2−1v + σ4(λ)μ(x)|u|θ−1v,

where the exponents γi , δi , i = 1, 2, η and θ satisfy the following conditions: γi + 1 > p
or δi + 1 > q, γi+1

p∗ + δi+1
q∗ < 1, i = 1, 2, p < η + 1 < p∗ and q < θ + 1 < q∗

while σi (λ), i = 1, 2, 3, 4, are bounded, m(x), n(x),∈ Lω1,i ∩ L∞, where ω1,i = [1 −
γi+1

p∗ − δi+1
q∗ ]−1, i = 1, 2, respectively, μ(x) ∈ Lω2 ∩ L∞ where ω2 = [1 − (η+ 1)]−1 and

ν(x) ∈ Lω3 ∩ L∞ where ω3 = [1 − (θ + 1)]−1.

The mathematical modelling of various physical processes, ranging from physics to biology,
where spatial heterogeneity has a primary role, is reduced to modelling nonlinear evolution
equations with variable diffusion or dispersion. Note also that our problem is closely related
(see [2]) to the following system

−∇(ν1(x, u, v)|∇u|p−2∇u) = f (λ, x, u, v,∇u,∇v),
−∇(ν2(x, u, v)|∇v|q−2∇v) = g(λ, x, u, v,∇u,∇v),
x ∈ Ω , u|∂Ω = v|∂Ω = 0.

Problems of such a type have been successfully applied to the heat propagation in heterogeneous
materials, to the study of transport of the electron temperature in a confined plasma, to the
propagation of varying amplitude waves in a nonlinear medium, to the study of electromagnetic
phenomena in nonhomogeneous superconductors and the dynamics of Josephson junctions,
to electrochemistry, to nuclear reaction kinetics, to image segmentation, to the spread of
microorganisms, to the growth and control of brain tumors and to population dynamics (see
[9] and the references therein).

An example of the physical motivation of the assumptions (N ), (N )p may be found in
[1, p. 79]. These assumptions are related to the modelling of reaction–diffusion processes in
composite materials occupying a bounded domain Ω , which at some points behave as perfect
insulators. When at some points the medium is perfectly insulating, it is natural to assume that
ν1(x), ν2(x) vanish in Ω̄ . For more information we refer the reader to [5,6].

The rest of the paper is organized in six sections. In Section 2, we introduce the necessary
operators and establish their basic characteristics. In Section 3, we prove that the operators
generated by the system (1.1) satisfy a condition under which it is possible to define their degree
(condition (S)+). In Section 4, the existence of a continuum of nontrivial solutions bifurcating
out from the first eigenvalue of the problem (1.3) and (1.4) is achieved. In Section 5, considering
the regularity of the solutions we describe the behavior of the continuum of nontrivial solutions
for the perturbed problem (1.1) in the product space D1,p(Ω)× D1,q(Ω).

Notation. We denote by BR, BR(c) the open ball in Ω with center 0 and radius R, c respectively.
For simplicity reasons sometimes we use the symbols C∞

0 , L p, D1,p respectively for the spaces
C∞

0 (Ω), L p(Ω), D1,p(Ω) and ‖·‖1,p for the norm ‖·‖D1,p(Ω). Also, sometimes when the domain
of integration is not stated, it is assumed to be all of R

N . Equalities introducing definitions are
denoted by “=:”. The ends of the proofs are marked by “�”.
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2. Space and operator setting

Let ν̄(x) be a nonnegative weight function in Ω which satisfies condition (Np). We consider

the weighted Sobolev space D1,p
0 (Ω , ν̄) to be defined as the closure of C∞

0 (Ω) with respect to
the norm

‖u‖
D1,p

0 (Ω ,ν̄)
:=
(∫

Ω
ν̄(x)| � u|p

)1/p

.

Assuming that ν̄(x) satisfies (Np) then the weighted Sobolev space D1,p
0 (Ω , ν̄) is a reflexive

Banach space. For a discussion about the space setting we refer the reader to [2] and the
references therein. The following Lemma holds:

Lemma 2.1. Assume that Ω is a bounded domain in R
N and the weight ν̄ satisfies (N )p. Then

the following embeddings hold:

(i) D1,p
0 (Ω , ν̄) ↪→ L p∗

(Ω) continuously for 1 < p∗ < N,

(ii) D1,p
0 (Ω , ν̄) ↪→ Lr (Ω) compactly for any r ∈ [1, p∗).

The space setting of our problem is Z := D1,p
0 (Ω , ν1) × D1,q

0 (Ω , ν2), equipped with the
following norm:

‖z‖Z := ‖u‖D1,p
0 (Ω ,ν1)

+ ‖v‖D1,q
0 (Ω ,ν2)

, z = (u, v) ∈ Z .

Note also that from condition (N ) we can deduce that D1,p
0 (Ω , ν1) × D1,q

0 (Ω , ν2) and

D1,p
0 (Ω , ν)× D1,q

0 (Ω , μ) are equivalent.
Next let us introduce the functionals Ii , Ji , Fi : Z → R with i = 1, 2 in the following way:

(I1(u, v), (φ, z))Z := α + 1

p

∫
Ω
ν1(x)| � u|p−2 � u � φdx,

(I2(u, v), (φ, z))Z := β + 1

q

∫
Ω
ν2(x)| � v|q−2 � v � zdx,

(J1(u, v), (φ, z))Z := α + 1

p

{∫
Ω

a(x)|u|p−2udx +
∫
Ω

b(x)|u|α|u|βvφdx

}
,

(J2(u, v), (φ, z))Z := β + 1

q

{∫
Ω

d(x)|v|q−2dx +
∫
Ω

b(x)|u|α|u|βuzdx

}
,

(F1(u, v), (φ, z))Z := α + 1

p

∫
Ω

f (x, λ, u, v)φdx,

(F2(u, v), (φ, z))Z := β + 1

p

∫
Ω

g(x, λ, u, v)zdx,

Lemma 2.2. The functionals Ii , Ji are well defined. Moreover, Ii continuous and Ji is compact.

Proof. The proof follows the standard procedure (see also [3]).

Lemma 2.3. The functionals Fi , i = 1, 2, are well defined, compact and satisfy the relations

lim
‖(u,v)‖Z→0

‖Fi (u, v)‖Z∗

‖u‖p−1
1,p + ‖v‖q−1

1,q

= 0. (2.1)
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Proof. From (F) we have

|〈F1(u, v), (φ, z)〉| ≤ σ1(λ)

(∫
Ω

m(x)|u|γ1|v|δ1+1φ

)
+ σ2(λ)

(∫
Ω
μ(x)|u|ηφ

)
,

≤ c1

(∫
Ω

|m(x)|ω1

)1/ω1
(∫

Ω
|u|p∗

)γ1/p∗ (∫
Ω

|v|q∗
)δ1+1/q∗

×
(∫

Ω
|φ|p∗

)1/p∗

+ c2

(
|μ(x)|Ω2

)1/Ω2
(∫

Ω
|u|p∗

)η/p∗

×
(∫

Ω
|φ|p∗

)1/p∗

< ∞.

Thus F1 is well defined. Let us prove now the compactness.
The continuity of Fi , i = 1, 2, follows from the continuity of the Nemytskij operator

associated with f and acting from Z(BR) into Z(BR). Let (un, vn) ⇀ (u0, v0) in Z . For
(φ, z) ∈ Z it follows that

‖F1(un, vn)− F1(u0, v0)‖Z∗ ≤ sup
‖φ‖Z ≤1

∣∣∣∣∫
BR

f (x, λ, un, vn)φ − f (x, λ, u0, v0)φ

∣∣∣∣
+ sup

‖φ‖Z ≤1

∣∣∣∣∫
Ω\BR

f (x, λ, un, vn)φ − f (x, λ, u0, v0)φ

∣∣∣∣ .
From the continuity of the Nemytskij operator and by Lemma 2.1 we can deduce that the integral
over (BR) tends to zero as n → ∞. Now let us estimate the integral over (Ω \ BR).

sup
‖φ‖Z ≤1

∣∣∣∣∫
Ω\BR

f (x, λ, u, v)φ

∣∣∣∣
≤ c1

(∫
Ω

|m(x)|ω1

)1/ω1
(∫

Ω
|u|p∗

)γ1/p∗ (∫
Ω

|v|q∗
)δ1+1/q∗ (∫

Ω
|φ|p∗

)1/p∗

+ c2
(|μ(x)|ω2

)1/ω2

(∫
Ω

|u|p∗
)η/p∗ (∫

Ω
|φ|p∗

)1/p∗

< ‖m(x)‖ω1,1‖u‖γ1/p∗
p∗ ‖v‖δ1+1/q∗

q∗ ‖φ‖p∗ + ‖μ(x)‖ω2‖u‖ηp∗‖φ‖p∗ .

Hence for any ε > 0 there exists an R large enough such that

sup
‖φ‖Z ≤1

∣∣∣∣∫
Ω\BR

f (x, λ, u, v)φ

∣∣∣∣ < ε

Therefore the functional F1 is compact. The analogue holds for the operator F2(u, v). Now
concerning relation (2.1) we have that

‖F1(u, v)‖Z∗

‖u‖p−1
1,p + ‖v‖q−1

1,q

≤ ‖m(x)‖ω1,1‖u‖γ−(p−1)
p∗ ‖v‖β+1

q∗ + ‖μ(x)‖ω2‖u‖η−(p−1)
p∗ → 0,

as ‖z‖ → 0, and similarly for F2. �

Let us now define Ãλ, Aλ : Z → Z∗ as:

Ãλ =: I1(u, v) − J1(u, v)+ I2(u, v) − J2(u, v), (2.2)
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and

Aλ =: Ãλ − F1(u, v)− F2(u, v). (2.3)

We say that (u, v) is a weak solution of the system (1.1) and (1.2), if and only if Aλ(u, v) = 0 ∈
Z∗ where (u, v) is a critical point of the functional Φ : Z → R, defined by

Φ(u, v) =: λα + 1

p

∫
| � u|p + λ

β + 1

q

∫
| � v|q − λ

α + 1

p

∫
a(x)|u|p

− λβ + 1

q

∫
d(x)|v|q − λ

∫
b(x)|u|α|v|βuv − λ

∫
F(u, v).

Since Φ(|u|, |v|) = Φ(u, v), we may assume that there exists an eigenfunction (u1, v1)

corresponding to λ1, such that u1 ≥ 0 and v1 ≥ 0, a.e., in Ω .
Hence from [9] we have the following theorem.

Theorem 2.4. Let Ω be a bounded domain of R
N , N ≥ 2. Assume that hypotheses

(H), (N ), (A), (B), (D) are satisfied. Then, the system (1.1) and (1.2) admits a positive principal
eigenvalue λ1, satisfying

λ1 = inf∫
Ω b(x)|u|α+1|u|β+1dx

+ α
p
∫
Ω a(x)|u|pdx

+ β+1
q

∫
Ω d(x)|v|q dx=1,
(u,v)∈Z .

[
α + 1

p

∫
Ω
ν1(x)|∇u|pdx + β + 1

q

∫
Ω
ν2(x)|∇v|qdx

]
.

The associated normalized eigenfunction (u1, v1) belongs to Z and each component is
nonnegative. In addition,

(i) the set of all eigenfunctions corresponding to the principal eigenvalue λ1 forms a one
dimensional manifold, E1 ⊂ Z, which is defined by

E1 = {(c1u1, c p/q
1 v1); c1 ∈ R}.

(ii) λ1 is the only eigenvalue of (1.2) to which there corresponds a componentwise nonnegative
eigenfunction.

(iii) λ1 is isolated in the following sense: there exists η > 0, such that the interval (0, λ1 + η)

does not contain any other eigenvalue that λ1.
(iv) (nondegenerate case) If in addition hypothesis (Ti ), for i = 1, 2, is satisfied and ν1, ν2 are

positive and smooth and the coefficient functions α, d and b are smooth functions, at least
C0,ζ

loc (Ω), for some ζ ∈ (0, 1), then u1 and v1 belong to C1,ζ
loc (Ω), for some ζ ∈ (0, 1) and

they are both positive in Ω .

Finally, taking into consideration certain properties, such as the simplicity and isolation of
the positive principal eigenvalue of (1.1) and (1.2), we can proceed to the topological degree
theorem, Section 3.

3. Topological degree

For the completeness of the presentation in this section we recall some basic facts on the
topological degree theory as well as some necessary conditions for the system. The procedure is
analogous to the one presented in [8]. First, we define the topological degree for the operators.
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Definition 3.1. Let X be a reflexive Banach space, X∗ its dual. Then the operator A: X → X∗
satisfies condition (S+) if for any sequence un ∈ X satisfying un ⇀ u0 in X and

lim
n→∞ sup(A(un), un − u0)X ≤ 0,

we have that un → u0 (strongly) in X .

If the operator A satisfies the above condition then it is possible to define the degree
Deg[A, D, 0], where D ⊂ X is a bounded open set such that A(u) �= 0, for any u ∈ ∂D. Note
also that if A satisfies (S+) then A+K also satisfies (S+) for any compact operator K : X → X∗.

Lemma 3.2. Let A be a potential operator with Φ′(u) = A(u), u ∈ X, for some continuously
differentiable functional Φ : X → R. Let u0 be a local minimum of Φ and an isolated point for
which A(u0) = 0. Then

Ind(A, u0) = 1.

Lemma 3.3. Assume that 〈A(u), u〉X > 0, for all u ∈ X with ‖u‖X = r . Then

Deg[A, Br (0), 0] = 1.

Now in order to define the topological degree for our system we need to prove the following
lemma.

Lemma 3.4. The functionals Ãλ, Aλ satisfy the (S+) condition, where Ãλ, Aλ are given by (2.1)
and (2.2) respectively.

Proof. We already know that Ji , Fi are compact. Therefore it suffices to show that the functional
I (u, v) =: I1 + I2 : Z → Z∗ satisfies condition (S+). Let us suppose that the sequence (un, vn)

converges to (u0, v0) weakly in the space Z and

lim sup
n→∞

〈I (un, vn), (un − u0, vn − v0)〉Z ≤ 0.

From the weak convergence we have that

lim
n→∞〈I (u0, v0), (un − u0, vn − v0)〉Z = 0.

So

0 ≥ lim sup
n→∞

〈I (un , vn)− I (u0, v0), (un − u0, vn − v0)〉Z

= lim sup
n→∞

{
α + 1

p

∫
(ν1(x)| � un|p−2 � un − ν1(x)| � u0|p−2 � u0)(�un − �u0)

+ β + 1

q

∫
(ν2(x)| � vn |q−2 � vn − ν2(x)| � v0|q−2 � v0)(�vn − �v0)

}
. (3.1)

Rewriting (3.1) we have∫
(ν1(x)| � un|p + ν1(x)| � u0|p − ν1(x)| � un| � un � u0 − ν1(x)| � u0| � u0 � un)

≥
∫
(ν1(x)| � un |p + ν1(x)| � u0|p)−

(∫
ν1(x)| � un|p

)1/p′ (
ν1(x)

∫
| � v|p

)1/p
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−
(∫

ν1(x)| � un |p
)1/p (

ν1(x)
∫

| � v|p
)1/p′

=
[(∫

ν1(x)| � un |p
)(p−1)/p

−
(∫

ν1(x)| � u0|p
)(p−1)/p

]

×
[(∫

ν1(x)| � un |p
)1/p

−
(∫

ν1(x)| � u0|p
)1/p

]
≥ 0.

Following the same procedure for (3.1) we obtain∫
ν1(x)| � un|p →

∫
ν1(x)| � u0|p and

∫
ν2(x)| � vn |q →

∫
ν2| � v0|q .

Therefore the proof of the lemma is completed. �

4. Bifurcation from λ1

In this section we shall prove the existence of a bifurcation from the principal eigenvalue λ1.

Definition 4.1. Let E = R × Z be equipped with the norm

‖(λ, u, v)‖E = (|λ|2 + ‖(u, v)‖2
Z )

1/2, (λ, u, v) ∈ E . (4.1)

We say that the set

C = {(λ, u, v) ∈ E : (λ, u, v) solves (1.1), (u, v) �= (0, 0)}
is a continuum of nontrivial solutions of (1.1), if it is a connected set in E with respect to the
topology induced by the norm (4.1). We say λ0 ∈ R is a bifurcation point of the system (1.1)
(in the sense of Rabinowitz), if there is a continuum of nontrivial solutions C of (1.1) such that
(λ0, 0, 0) ∈ C̄ and C is either unbounded in E or there is an eigenvalue λ̂ �= λ0, such that
(λ̂, 0, 0) ∈ C̄ .

Let us consider now a real nonnegative C1-function ψ : R → R defined by

ψ(t) =:
⎧⎨⎩0, t ≤ K ,

2δ

λ1
(t − 2K ), t ≥ 3K ,

for K > 0 and δ such that the interval (λ1, λ1 + δ) contains no eigenvalue of (1.3). The function
ψ(t) can be chosen positive and strictly convex in (K , 3K ). We define the functional

Ψλ(u, v) =: 〈I (u, v), (u, v)〉 − λ〈J (u, v), (u, v)〉 + ψ(〈I (u, v), (u, v)〉).
where

I (u, v) =: I1(u, v)+ I2(u, v) and J (u, v) =: J1(u, v)+ J2(u, v)

Then Ψλ is continuously Fréchet differentiable with derivative

〈(Ψλ)′(u, v), (w, z)〉 = 〈Ψλ
u (u, v), (w, z)〉 + 〈Ψλ

v (u, v), (w, z)〉,
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where

〈Ψλ
u (u, v), (w, z)〉 = (α + 1)

{(
1 + ψ ′(〈I (u, v), (u, v)〉)) 〈I1(u, v), (w, z)〉

− λ〈J1(u, v), (w, z)〉} , (4.2)

〈Ψλ
v (u, v), (w, z)〉 = (β + 1)

{(
1 + ψ ′(〈I (u, v), (u, v)〉)) 〈I2(u, v), (w, z)〉

− λ〈J2(u, v), (w, z)〉} . (4.3)

In addition, the critical points (u0, v0) of Ψλ occur, if Ψλ
u = Ψλ

v = 0, and

ψ ′((I (u0, v0), (u0, v0))) = λ

λ1
− 1. (4.4)

Hence, we must have (I (u0, v0), (u0, v0)) ∈ (K , 3K ). In this case either (u0, v0) = (u1, v1)

or (u0, v0) = (−u1,−v1). So for λ ∈ (λ1, λ1 + δ) we have precisely three isolated critical points
0, (u1, v1), (−u1,−v1).

Lemma 4.2. The functional Ψλ is (a) weakly lower semicontinuous and (b) weakly coercive,
with λ ∈ (λ1, λ1 + δ).

Proof. (a) Let (un, vn) ⇀ (u0, v0) weakly in Z . Then, we have

lim inf
n→∞ {〈I (un, vn), (un, vn)〉 + ψ(〈I (un , vn), (un, vn)〉)} ≥

〈I (u0, v0), (u0, v0)〉 + ψ(〈I.(u0, v0), (u0, v0)〉), (4.5)

since J is compact, lim infn→∞ ‖ � un‖p ≥ ‖ � u0‖p , lim infn→∞ ‖ � vn‖q ≥ ‖ � v0‖q and ψ
is nondecreasing. Therefore we obtain

lim inf
n→∞ Ψλ(un, vn) ≥ Ψλ(u0, v0).

(b) The proof follows steps like those for Lemma (5.2) in [8]. Hence the proof of the lemma is
completed. �

Lemma 4.3. The critical points (u1, v1), (−u1,−v1) of Ψλ are of minimum type, with λ ∈
(λ1, λ1 + δ).

Proof. Lemma 4.2 implies that Ψλ attains a minimum on Z ; in addition with (4.4) and the strict
convexity of ψ on (K , 3K ) we have that

Ψλ(u1, v1) = λ− λ1

λ1
〈I (u1, v1), (u1, v1)〉 + ψ(〈I (u1, v1), (u1, v1)〉)

< 0 = Ψλ(0, 0).

Since Ψλ(u1, v1) = Ψλ(−u1,−v1) we obtain the conclusion. �

Lemma 4.4. The quantity 〈(Ψλ)′(u, v), (u, v)〉 is strictly positive for any (u, v) ∈ Z with
‖(u, v)‖Z > k, for some large enough positive constant k and λ ∈ (λ1, λ1 + δ).

Proof. From (4.2) we have〈
1

p
Ψλ

u (u, v), (u, v)

〉
= α + 1

p
〈I1(u, v)− λJ1(u, v)〉

+ α + 1

p
ψ ′(〈I (u, v), (u, v)〉)

∫
ν1(x)| � u|p. (4.6)
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Adding Ψλ
u (u, v) and Ψλ

v (u, v) we obtain〈
1

p
Ψλ

u (u, v)+ 1

q
Ψλ
v (u, v), (u, v)

〉
= 〈I (u, v), (u, v)〉 − λ〈J (u, v), (u, v)〉

+ψ ′(〈I (u, v), (u, v)〉)〈I (u, v), (u, v)〉. (4.7)

Let ‖(un, vn)‖Z → ∞. Then 〈J (un, vn), (un, vn)〉 → ∞. Therefore (4.7) becomes

〈I (u, v) − λJ (u, v), (u, v)〉 + ψ ′(〈I (u, v), (u, v)〉)〈I (u, v), (u, v)〉
= 〈I (u, v), (u, v)〉 − λ1(J (u, v), (u, v)) + ψ ′(〈I (u, v), (u, v)〉)

×
[
〈I (u, v), (u, v)〉 − λ− λ1

ψ ′(〈I (u, v), (u, v)〉) 〈J (u, v), (u, v)〉
]

≥ 2δ

λ1
[〈I (u, v), (u, v)〉 − 2K ]

[
〈I (u, v), (u, v)〉 − λ1

2
〈J (u, v), (u, v)〉

]
.

Hence〈
1

p
Ψλ

u (un, vn)+ 1

q
Ψλ
v (un, vn), (un, vn)

〉
→ ∞,

which means that〈
(Ψλ)′(un, vn), (un, vn)〉 = 〈Ψλ

u (un, vn)+ Ψλ
v (un, vn), (un, vn)

〉 → ∞
and the proof of the lemma is completed. �

Lemma 4.5. For the operator Aλ(u, v) the following are true

Ind(Aλ, 0) = 1, λ ∈ (0, λ1) and Ind(Aλ, 0) = −1, λ ∈ (λ1, λ1 + δ).

Proof. The proof follows steps like those for Lemma 5.5 of [8]. �
According to Definition 4.1 we have the following characterization.

Theorem 4.6. The principal eigenvalue λ1 > 0 of the unperturbed problem (1.3) and (1.4) is a
bifurcation point (in the sense of Rabinowitz) of the perturbed system (1.1).

Proof. The index jump result of Lemma 4.5 and the homotopy invariance of the degree imply
that (λ1, 0, 0) is a bifurcation point of (1.1). The rest of the proof is similar to that of the
Rabinowitz Theorem, see [7]. �

Finally, we discuss the sign of the solution branch close to the bifurcation point.

Proposition 4.7. There exists an η > 0 small enough, such that for each (λ, u, v) ∈ C ∩
Bη(λ1, 0), we have u(x) ≥ 0 and v(x) ≥ 0, almost everywhere in Ω .

Proof. Let (λn, un, vn) ∈ C be a sequence such that (λn, un, vn) → (λ1, 0, 0). We introduce the
sequences ũn and ṽn in the following way.

ũn =: un

(‖un‖p
1,p + ‖vn‖q

1,q)
1/p

and ṽn =: vn

(‖un‖p
1,p + ‖vn‖q

1,q)
1/q
.

It is easy to prove that the sequences ũn and ṽn are bounded. We also have

|un|α|vn|βunvn

‖un‖p
1,p + ‖vn‖q

1,q

= |ũn |α|ṽn |β ũn ṽn, (4.8)
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for every n ∈ N. Let us take any pair of eigenfunctions (ũn, ṽn), (ũm, ṽm) and substitute into the
system (1.1). Multiplying the first equation by (ũn − ũm), and integrating by parts we obtain∫

Ω
ν1(x)(| � ũn |p−2 � ũn − |ũm |p−2 � ũm)(�ũn − �ũm)dx

= λn

∫
Ω

a(x)
(
|ũn|p−2ũn − |ũm |p−2ũm

)
(ũn − ũm)dx

+ λn

∫
Ω

b(x)
(|ũn|α|ṽn |β ṽn − |ũm |α|ṽm |β ṽm

)
(ũn − ũm)dx

+ (λn − λm)

[∫
Ω

a(x)|ũm|p−2ũm(ũn − ũm)dx +
∫
Ω

b(x)|ũm|α|ṽm |β ṽm

]
.

Similarly for the second equation. Using relations (2.1) and (4.8) we have that∫
|ν1(x)� ũn|p = λn

∫
a(x)|ũn|p + λn

∫
b(x)|ũn|α|ṽn |β ũn ṽn + O(‖(un, vn)‖Z ),∫

|ν2(x)� ṽn |q = λn

∫
d(x)|ṽn|q + λn

∫
b(x)|ũn|α|ṽn |β ũn ṽn + O(‖(un, vn)‖Z ).

From the compactness of J1, J2 and the monotonicity of the degenerate p-Laplacian we
derive that for some positive constant k, ũn → k p u1 and ṽn → kq v1 (strongly) in the
spaces D1,p and D1,q , respectively. Assume that the sets U−

n = {x ∈ Ω : ũn(x) < 0} and
V−

n = {x ∈ Ω : ṽn(x) < 0} are non-empty. Using (2.1) we obtain that

1 ≤ c0

(
max

{
‖a(x)‖

L
p∗

p∗−p (Ω−
n )

, ‖d(x)‖
L

q∗
q∗−q (Ω−

n )

}
+ ‖b(x)‖Lω(Ω−

n )

)
,

where Ω−
n = U−

n ∪ V−
n . Since ‖(un, vn‖Z → 0, a ∈ L p∗/(p∗−p)(Ω), d ∈ Lq∗/(q∗−q)(Ω),

b ∈ Lω(Ω) and c0 does not depend on un or vn , we derive that for some K0 > 0 large enough

|Ω−
n ∩ BK (0)| ≥ c1,

for any K > K0, where c1 > 0 depends neither on λn nor on un or vn . Now, by Egorov’s
Theorem we deduce that ũn and ṽn (and hence un and vn) are nonnegative in Ω , for n large
enough. Then, it follows that un ≥ 0 and vn ≥ 0, for any (λ, un, vn) ∈ C ∩ Bη(λ1, 0), with
η > 0 small enough. �

5. Properties of the continuum C

In order to prove some additional properties of the system (1.1) we have to make some further
restrictive assumptions:

(T1) There exists a positive number t , such that

p

(
1 − δi + 1

q∗

)−1

< t < p∗,

μ ∈ L
t

t−p (Ω) and m ∈ Lχ3(Ω), where χ3 := max{[1 − γi+1
p∗ − δi +1

q∗ ]−1, [1 − p
t − δi +1

q∗ ]−1}.
(T2) There exists a positive number t , such that

q

(
1 − γi + 1

p∗

)−1

< t < q∗,
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ν ∈ L
t

t−q (Ω) and n ∈ Lχ4(Ω), where χ4 := max{[1 − γi+1
p∗ − δi+1

q∗ ]−1, [1 − q
t − γi+1

p∗ ]−1}.

Proposition 5.1. Let p > 1, q > 1, and assume that (H), (N ), (A), (B), (D) and (Ti ), for
i = 1, 2, hold. Then for any weak solution of (1.1) with λ ≥ 0 we have that u ∈ Lr (RN ) (or
v ∈ Lr ), with p∗ ≤ r ≤ ∞ and u(x) (or v(x) respectively) decaying uniformly as |x | → ∞.
Moreover, u ∈ C1,ζ (BK (0)) (or v(x) respectively) for any K > 0 with some ζ ∈ (0, 1).
However, if both hypotheses hold then both u and v are uniformly bounded a.e. in Ω .

Proof. Let uM (x) := min{u(x),M}. Choose φ = ukp+1
M (k ≥ 0), as a test function in the first

equation of (1.1)∫
Ω
ν1(x)| � u|p−2 � u · �(ukp+1

M )dx ≤
∫
Ω

a(x)|u|(k+1)pdx +
∫
Ω

b(x)|v|β |u|kp+αdx

+
∫
Ω

f (x, λ, u, v)ukp+1
M dx . (5.1)

Taking into consideration Proposition 5.1 of [9] we only need to estimate the last integral of
(5.1). Therefore we obtain

σ1(λ)

(∫
Ω

m(x)χ
′
3

) 1
χ ′

3

(∫
Ω

|v|q∗
) δ1+1

q∗ (∫
Ω

|u|(k+1)t
) p

t

where we have chosen χ ′
3 = [1 − p

t − δi +1
q∗ ]−1. Therefore we conclude that

‖uM‖(k+1)p∗ ≤ C
1

k+1

[
k + 1

(kp + 1)1/p

] 1
k+1 ‖u‖(k+1)t .

The rest of the proof is similar to that in [9]. Thereby the proof of the proposition is completed.
�

As a consequence of the previous proposition we obtain the following corollary.

Corollary 5.2. Assume that the hypotheses of Proposition 5.1 are satisfied and (u, v) is a
nonnegative eigenfunction corresponding to λ1. Then u and v are strictly positive in Ω .

Lemma 5.2. (i) (Local Bifurcation) The only possible points of the form (λ, 0, 0), which the
closure of the continuum C̄ may contain, are the points (λp,a, 0, 0) and (λq,d , 0, 0).

(ii) (Bifurcation from semitrivial solutions) The only possible points of the form (λ, u, 0),
u �≡ 0 (or (λ, 0, v), v �≡ 0), which C̄ may contain, are the points (λp,a, cφp,a, 0) (or
(λq,d , 0, cφq,d), respectively), for some real constant c �= 0.

(iii) if C̄ contains no point of the form (λ, 0, 0), (λ, u, 0), u �≡ 0 and (λ, 0, v), v �≡ 0, then every
solution (u, v) in C is strictly positive (componentwise).

Proof. (i) The proof follows the same steps as in Proposition 4.7.
(ii) The proof follows the same steps as for (i).

(iii) Suppose that C̄ contains no point of the form (λ, 0, 0) and for some solution (λ, u, v) ∈ C
there exists a point x0 ∈ Ω , such that u(x0) < 0. By Proposition 4.7 we may observe that
u(x) > 0, x ∈ Ω , for all solutions (λ, u, v) ∈ C close to (λ1, 0, 0). Since the continuum C
is connected, the C1,a

loc - regularity of the solutions implies that there exists (λ0, u0, v0) ∈ C ,
such that u0(x) ≥ 0, for all x ∈ Ω , except some point x0 ∈ Ω , such that u0(x0) = 0 and in
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any neighborhood of (λ0, u0, v0) we can find a point (λ̂, û, v̂) ∈ C , with û(x) < 0, for some
x ∈ Ω . Let B denote any open ball containing x0. Then it follows that u0 ≡ 0 on B . Hence
u0 ≡ 0 on Ω . Thus, we may construct a sequence {(λn, un, vn)} ⊆ C , such that un(x) > 0
and vn(x) > 0, for all n ∈ N and x ∈ Ω , un → 0 in D1,p , vn → v0 in D1,q and λn → λ0.
Then, the continuum C contains a point of the form (λ0, 0, v0), which is a contradiction.
Similar results may be obtained for v. �

Applying the previous results and the fact that the solutions of (1.1) are uniformly bounded
we can state the main result of this section in the general case.

Theorem 5.3 (Global Bifurcation). Let p > 1, q > 1, and assume that (H), (N ), (A), (B),
(D) and (Ti ), for i = 1, 2, 3, 4, hold. Then, there exists a continuum C ⊆ R × Z of uniformly
bounded solutions of the problem (1.1) bifurcating from the zero solution at (λ1, 0, 0), such that
one of the following alternatives holds.

(i) The continuum C̄ (in closure) contains one of the points (λp,a, 0, 0) and (λq,d , 0, 0), and
in particular problem (1.1) has a nontrivial positive (componentwise) solution (u, v) ∈ Z,
whenever λ is between λ1 and λp,a or λq,d .

(ii) The continuum C is unbounded and every (u, v) in C is strictly positive (componentwise).

Remark 5.1. For the following variation of the system (1.1) and (1.2)

−�(ν1(x, u, v)| � u|p−2 � u) = λa(x)|u|p−2u + λb(x)|u|α|v|βu + f (x, λ, u, v),

−�(ν2(x, u, v)| � u|p−2 � u) = λd(x)|v|q−2v + λb(x)|u|α|v|βv + g(x, λ, u, v),
(5.2)

x ∈ Ω , u|∂Ω = v|∂Ω = 0. (5.3)

where ν1(x, s, t), ν2(x, s, t) satisfy similar conditions to (N ) and (Np) (see [2]) we may apply
the same procedure as in this paper to show simplicity and isolation of the positive principal
eigenvalue as well as global bifurcation of a continuum of positive solutions from the principal
eigenvalue.
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[2] P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de
Gruyter and Co, Berlin, 1997.
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