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STRONG GLOBAL ATTRACTOR FOR A QUASILINEAR
NONLOCAL WAVE EQUATION ON RN

PERIKLES G. PAPADOPOULOS, NIKOLAOS M. STAVRAKAKIS

Abstract. We study the long time behavior of solutions to the nonlocal quasi-

linear dissipative wave equation

utt − φ(x)‖∇u(t)‖2∆u + δut + |u|au = 0,

in RN , t ≥ 0, with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x).

We consider the case N ≥ 3, δ > 0, and (φ(x))−1 a positive function in

LN/2(RN ) ∩ L∞(RN ). The existence of a global attractor is proved in the

strong topology of the space D1,2(RN )× L2
g(RN ).

1. Introduction

Our aim in this work is to study the quasilinear hyperbolic initial-value problem

utt − φ(x)‖∇u(t)‖2∆u + δut + |u|au = 0, x ∈ RN , t ≥ 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, and δ > 0.
Throughout the paper we assume that the functions φ, g : RN → R satisfy the
condition

(G1) φ(x) > 0, for all x ∈ RN and (φ(x))−1 := g(x) ∈ LN/2(RN ) ∩ L∞(RN ).
For the modelling process we refer the reader to some of our earlier papers [11, 13]
or to the original paper by Kirchhoff in 1883 [8]. There he proposed the so called
Kirchhoff string model in the study of oscillations of stretched strings and plates.

In bounded domains there is a vast literature concerning the attractors of semi-
linear waves equations. We refer the reader to the monographs [3, 14]. Also in
the paper [4], the existence of global attractor in a weak topology is discussed for
a general dissipative wave equation. Ono [9], for δ ≥ 0, has proved global exis-
tence, decay estimates, asymptotic stability and blow up results for a degenerate
non-linear wave equation of Kirchhoff type with a strong dissipation. On the other
hand, it seems that very few results are achieved for the unbounded domain case.
In our previous work [11], we proved global existence and blow-up results for an
equation of Kirchhoff type in all of RN . Also, in [13] we proved the existence of
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compact invariant sets for the same equation. Recently, in [12] we studied the sta-
bility of the origin for the generalized equation of Kirchhoff strings on RN , using
central manifold theory. Also, Karahalios and Stavrakakis [5], [7] proved existence
of global attractors and estimated their dimension for a semilinear dissipative wave
equation on RN .

The presentation of this paper is follows: In Section 2, we discuss the space
setting of the problem and the necessary embeddings for constructing the evolution
triple. In Section 3, we prove existence of an absorbing set for our problem in the
energy space X0. Finally in Section 4, we prove that there exists a global attractorA
in the strong topology of the energy space X1 := D1,2(RN )×L2

g(RN ), so extending
some earlier results of us on the asymptotic behavior of the problem (see [13]).

Notation. We denote by BR the open ball of RN with center 0 and radius R.
Sometimes for simplicity we use the symbols C∞0 , D1,2, Lp, 1 ≤ p ≤ ∞, for the
spaces C∞0 (RN ), D1,2(RN ), Lp(RN ), respectively; ‖ · ‖p for the norm ‖ · ‖Lp(RN ),
where in case of p = 2 we may omit the index. The symbol := is used for definitions.

2. Space Setting. Formulation of the Problem

As it is already shown in the paper [11], the space setting for the initial conditions
and the solutions of problem (1.1)-(1.2) is the product space

X0 := D(A)×D1,2(RN ), N ≥ 3.

Also the space X1 := D1,2(RN ) × L2
g(RN ), with the associated norm e1(u(t)) :=

‖u‖2D1,2 +‖ut‖2L2
g

is introduced, where the space L2
g(RN ) is defined to be the closure

of C∞0 (RN ) functions with respect to the inner product

(u, v)L2
g(RN ) :=

∫
RN

guvdx. (2.1)

It is clear that L2
g(RN ) is a separable Hilbert space and the embedding X0 ⊂ X1

is compact. The homogeneous Sobolev space D1,2(RN ) is defined, as the clo-
sure of C∞0 (RN ) functions with respect to the following energy norm ‖u‖2D1,2 :=∫

RN |∇u|2dx. It is known that

D1,2(RN ) =
{
u ∈ L

2N
N−2 (RN ) : ∇u ∈ (L2(RN ))N

}
and D1,2(RN ) is embedded continuously in L

2N
N−2 (RN ), that is, there exists k > 0

such that
‖u‖ 2N

N−2
≤ k‖u‖D1,2 . (2.2)

The space D(A) is going to be introduced and studied later in this section. The
following generalized version of Poincaré’s inequality is going to be frequently used∫

RN

|∇u|2dx ≥ α

∫
RN

gu2dx, (2.3)

for all u ∈ C∞0 and g ∈ LN/2, where α := k−2‖g‖−1
N/2 (see [1, Lemma 2.1]). It is

shown that D1,2(RN ) is a separable Hilbert space. Moreover, the following compact
embedding is useful.
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Lemma 2.1. Let g ∈ LN/2(RN ) ∩ L∞(RN ). Then the embedding D1,2 ⊂ L2
g is

compact. Also, let g ∈ L
2N

2N−pN+2p (RN ). Then the following continuous embedding
D1,2(RN ) ⊂ Lp

g(RN ) is valid, for all 1 ≤ p ≤ 2N/(N − 2).

For the proof of the above lemma, we refer to [6, Lemma 2.1]. To study the
properties of the operator −φ∆, we consider the equation

−φ(x)∆u(x) = η(x), x ∈ RN , (2.4)

without boundary conditions. Since for every u, v ∈ C∞0 (RN ) we have

(−φ∆u, v)L2
g

=
∫

RN

∇u∇v dx, (2.5)

we may consider (2.4) as an operator equation of the form

A0u = η, A0 : D(A0) ⊆ L2
g(RN ) → L2

g(RN ), η ∈ L2
g(RN ). (2.6)

The operator A0 = −φ∆ is a symmetric, strongly monotone operator on L2
g(RN ).

Hence, the theorem of Friedrichs is applicable. The energy scalar product given by
(2.5) is

(u, v)E =
∫

RN

∇u∇vdx

and the energy space XE is the completion of D(A0) with respect to (u, v)E . It is
obvious that the energy space is the homogeneous Sobolev space D1,2(RN ). The
energy extension AE = −φ∆ of A0,

−φ∆ : D1,2(RN ) → D−1,2(RN ), (2.7)

is defined to be the duality mapping of D1,2(RN ). We define D(A) to be the set
of all solutions of equation (2.4), for arbitrary η ∈ L2

g(RN ). Using the theorem
of Friedrichs we have that the extension A of A0 is the restriction of the energy
extension AE to the set D(A). The operator A = −φ∆ is self-adjoint and therefore
graph-closed. Its domain D(A), is a Hilbert space with respect to the graph scalar
product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A).

The norm induced by the scalar product is

‖u‖D(A) =
{∫

RN

g|u|2 dx +
∫

RN

φ|∆u|2 dx
}1/2

,

which is equivalent to the norm

‖Au‖L2
g

=
{ ∫

RN

φ|∆u|2 dx
}1/2

.

So we have established the evolution quartet

D(A) ⊂ D1,2(RN ) ⊂ L2
g(RN ) ⊂ D−1,2(RN ), (2.8)

where all the embeddings are dense and compact. Finally, the definition of weak
solutions for the problem (1.1)–(1.2) is given.

Definition 2.2. A weak solution of (1.1)-(1.2) is a function u such that the fol-
lowing three conditions are satisfied:

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2(RN )], utt ∈ L2[0, T ;L2
g(RN )],
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(ii) for all v ∈ C∞0 ([0, T ]× (RN )), satisfies the generalized formula∫ T

0

(utt(τ), v(τ))L2
g
dτ +

∫ T

0

(
‖∇u(t)‖2

∫
RN

∇u(τ)∇v(τ)dx dτ
)

+δ

∫ T

0

(ut(τ), v(τ))L2
g
dτ +

∫ T

0

(|u(τ)|au(τ), v(τ))L2
g
dτ = 0,

(2.9)

(iii) u satisfies the initial conditions u(x, 0) = u0(x), u0 ∈ D(A), ut(x, 0) =
u1(x), u1 ∈ D1,2(RN ).

3. Existence of an Absorbing Set.

In this section we prove existence of an absorbing set for our problem (1.1)-(1.2)
in the energy space X0. First, we give existence and uniqueness results for the
problem (1.1)-(1.2) using the space setting established previously.

Theorem 3.1 (Local Existence). Consider that (u0, u1) ∈ D(A)×D1,2 and satisfy
the nondegeneracy condition

‖∇u0‖ > 0. (3.1)
Then there exists T = T (‖u0‖D(A), ‖∇u1‖) > 0 such that the problem (1.1)-(1.2)
admits a unique local weak solution u satisfying

u ∈ C(0, T ;D(A)) and ut ∈ C(0, T ;D1,2).

Moreover, at least one of the following two statements holds:
(i) T = +∞,
(ii) e(u(t)) := ‖u(t)‖2D(A) + ‖ut(t)‖2D1,2 →∞, as t → T−.

For the proof of the above theorem, we refer to [11, Theorem 3.2].

Remark 3.2. The nondegeneracy condition (3.1) is imposed by the method which
is used even for the proof of existence of local solutions of the problem (1.1)-(1.2).
For more details we refer to the proof of Theorem 3.2 in [11]. Also we must notice
that this condition is necessary even in the case of bounded domains (e.g., see [9]
and [10]).

Lemma 3.3. Assume that a ≥ 0, N ≥ 3. If the initial data (u0, u1) ∈ D(A)×D1,2

and satisfy the condition
‖∇u0‖ > 0, (3.2)

then
‖∇u(t)‖ > 0, for all t ≥ 0. (3.3)

Proof. Let u(t) be a unique solution of the problem (1.1)-(1.2) in the sense of
Theorem 3.1 on [0, T ). Multiplying (1.1) by −2∆ut (in the sense of the inner
product in the space L2) and integrating it over RN , we have

d

dt
‖∇ut(t)‖2 + ‖∇u(t)‖2 d

dt
‖u(t)‖2D(A)

+2‖∇ut(t)‖2 + 2(|u|au, ∆ut(t)) = 0
(3.4)

Since ‖∇u0‖ > 0, we see that ‖∇u(t)‖ > 0 near t = 0. Let

T := sup{t ∈ [0,+∞) : ‖∇u(s)‖ > 0 for 0 ≤ s < t},
then T > 0 and ‖∇u(t)‖ > 0 for 0 ≤ t < T . By contradiction we may prove that
T = +∞. �
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Theorem 3.4 (Absorbing Set). Assume that 0 ≤ a < 2/(N − 2), N ≥ 3, M0 :=
1
2‖∇u0‖2 > 0, (u0, u1) ∈ D(A)×D1,2 and

δ

4
> 4α−1/2R2c2

3, (3.5)

where c3 := (max{1,M−1
0 })1/2 and R a given positive constant. Then the ball

B0 := BX0(0, R̄∗), for any R̄∗ > R∗, is an absorbing set in the energy space X0,
where

R2
∗ :=

2k2R
2(a+1)

δ

(δ

4
− 4R2c2

3√
α

)−1
.

Proof. Given the constants T > 0, R > 0, we introduce the two parameter space
of solutions

XT,R := {u ∈ C(0, T ;D(A)) : ut ∈ C(0, T ;D1,2), e(u) ≤ R2, t ∈ [0, T ]},
where e(u) := ‖ut‖2D1,2 + ‖u‖2D(A). The set XT,R is a complete metric space under
the distance d(u, v) := sup0≤t≤T e(u(t) − v(t)). Following [9] we introduce the
notation

T0 := sup{t ∈ [0,∞) : ‖∇u(s)‖2 > M0, 0 ≤ s ≤ t}.
Condition 1

2‖∇u0‖2 = M0 > 0 implies T0 > 0 and ‖∇u(t)‖2 > M0 > 0, for all
t ∈ [0, T0]. Next, we set v = ut + εu for sufficiently small ε. Then, for calculation
needs, equation (1.1) is rewritten as

vt + (δ − ε)v + (−φ(x)‖∇u‖2∆− ε(δ − ε))u + f(u) = 0. (3.6)

Multiplying equation (3.6) by

gAv = g(−ϕ∆)v = −∆v = −∆(ut + εu),

and integrating over RN , we obtain (using Hölder inequality with p−1 = 1
N , q−1 =

N−2
2N , r−1 = 1

2 )

1
2

d

dt

{
‖u‖2D1,2‖u‖2D(A) + ‖v‖2D1,2 +

ε(δ − ε)
2

‖u‖2D1,2

}
+ (δ − ε)‖v‖2D1,2 + ε‖u‖2D1,2‖u‖2D(A) + ε2(δ − ε)‖u‖2D1,2

≤
∣∣( d

dt
‖u‖2D1,2

)
‖u‖2D(A)

∣∣ + ‖u‖a
LNa‖∇u‖

L
2N

N−2
‖∇v‖.

(3.7)

We observe that

θ(t) := ‖u‖2D1,2‖u‖2D(A) + ‖v‖2D1,2 +
ε(δ − ε)

2
‖u‖2D1,2

≥ M0‖u‖2D(A) + ‖ut‖2D1,2 ≥ c−2
3 e(u).

(3.8)

Also ∣∣( d

dt
‖u‖2D1,2

)
‖u‖2D(A)

∣∣ =
∣∣(2 ∫

RN

∆uutϕg dx
)
‖u‖2D(A)

∣∣
≤ 2

(
‖u‖2D(A)

)1/2(‖ut‖2L2
g

)1/2‖u‖2D(A)

≤ 2α−1/2R2e(u) ≤ 2α−1/2R2c2
3θ(t).

(3.9)

Applying Young’s inequality in the last term of (3.7) and using relations (3.8), (3.9)
and the estimates

‖u‖a
LNa ≤ Ra and ‖∇u‖

L
2N

N−2
≤ ‖u‖D(A) ≤ R, (3.10)
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inequality (3.7) becomes (for suitably small ε)

d

dt
θ(t) + C∗θ(t) ≤

C(R)
δ

, (3.11)

where C∗ = 1
2

(
δ/4− 4α−1/2R2c2

3

)
> 0 and C(R) = R2(a+1). An application of

Gronwall’s inequality in the relation (3.11) gives

θ(t) ≤ θ(0)e−C∗t +
1− e−C∗t

C∗

C(R)
δ

. (3.12)

Following the reasoning developed by K. Ono (see [9]), the nondegeneracy condition
‖∇u0‖ > 0 and the relation (3.3), imply that ‖∇u(s)‖ > M0 > 0, 0 ≤ s ≤ t,
t ∈ [0,+∞). Now, letting t →∞, in the relation (3.12) conclude that

lim
t→∞

sup θ(t) ≤ R2(a+1)

δC∗
:= R2

∗. (3.13)

So, the ball B0 := BX0(0, R̄∗), for any R̄∗ > R∗, is an absorbing set for the associ-
ated semigroup S(t) in the energy space of solutions X0. �

Corollary 3.5 (Global Existence). The unique local solution the problem (1.1)-
(1.2) defined by Theorem 3.1 exists globally in time.

Proof. Combining inequality (3.13) and the arguments developed in the proof of
[11, Theorem 3.2], we conclude that the solution of the problem (1.1)-(1.2) exists
globally in time. �

4. Strong Global Attractor in the space X1

In this section we study the problem (1.1)-(1.2) from a dynamical system point
of view. We need the following results.

Theorem 4.1. Assume that 0 ≤ a ≤ 4/(N − 2), where N ≥ 3. If (u0, u1) ∈
D(A)×D1,2 and satisfy the nondegeneracy condition

‖∇u0‖ > 0, (4.1)

then there exists T > 0 such that the problem (1.1)-(1.2) admits local weak solutions
u satisfying

u ∈ C(0, T ;D1,2) and ut ∈ C(0, T ;L2
g). (4.2)

Proof. The proof follows the lines of [11, Theorem 3.2], so we just sketch the proof.
The compactness of the embedding X0 ⊂ X1 implies e1(u(t)) ≤ e(u(t)), where the
associated norms are

e1(u(t)) := ‖u‖2D1,2 + ‖ut‖2L2
g

and e(u(t)) := ‖u‖2D(A) + ‖ut‖2D1,2 .

Then, for some positive constant R an a priori bound can be found of the form

e1(u(t)) ≤ e(u(t)) ≤ R2.

Hence the solutions u of the problem (1.1)-(1.2) satisfy

u ∈ L∞(0, T ; D1,2), ut ∈ L∞(0, T ;L2
g).

Finally, the continuity properties (4.2), are proved following ideas from [14, Sections
II.3 and II.4]. �

Next, the strong continuity of the semigroup S(t) is proved in the space X1.
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Lemma 4.2. The mapping S(t) : X1 → X1 is continuous, for all t ∈ R.

Proof. Let u, v two solutions of the problem (1.1)-(1.2) such that

utt − φ(x)‖∇u‖2∆u + δut = −|u|au,

vtt − φ(x)‖∇v‖2∆v + δvt = −|v|av.

Let w = u− v. So, we have

wtt − φ‖∇u‖2∆w + δwt = φ{‖∇u‖2 − ‖∇v‖2}∆v − (|u|au− |v|av)

w(0) = 0, wt(0) = 0.

Multiplying the previous equation by 2gwt and integrating over RN , we get∫
RN

gwtwttdx− 2
∫

RN

‖∇u‖2∆wwtdx + 2δ

∫
RN

gw2
t dx

= {‖∇u‖2 − ‖∇v‖2}
∫

RN

∆vwtdx− 2
∫

RN

g(|u|au− |v|av))wtdx.

(4.3)

Hence
d

dt
e∗(w) + 2δ‖wt‖2L2

g

= (
d

dt
‖∇u‖2)‖∇w‖2 + 2{‖∇u‖2 − ‖∇v‖2}(∆v , wt)− 2(|u|au− |v|av, wt)L2

g

≡ I1(t) + I2(t) + I3(t).
(4.4)

So
d

dt
e∗(w) ≤ I1(t) + I2(t) + I3(t), (4.5)

where e∗(w) = ‖wt‖2L2
g

+ Cu‖w‖2D1,2 and Cu = ‖u‖2D1,2 . To estimate the above
integrals, more smoothness of the solutions u, v is needed. Theorem 3.1 guarantees
the uniqueness of local solutions in the space X0, if the initial conditions (u0, u1) ∈
X0. To improve these results, it is assumed that (u0, u1) ∈ X1. Then, applying
again Theorem 3.1, it could be proved the existence of a local solution (u, ut) in
X1. Furthermore, we may obtain

I1(t) = (2
∫

RN

∆uutφ(x)g(x)dx)‖∇w‖2

≤ 2(‖u‖2D(A))
1/2(‖ut‖2L2

g
)1/2‖∇w‖2

≤ 2R∗k(‖ut‖2D1,2)1/2‖∇w‖2

≤ 2R2
∗k‖∇w‖2 ≤ C2e

∗(w),

(4.6)

where C2 = 2R2
∗k. Also, the following estimation is valid

I3(t) ≤ |I3(t)| ≤ α−1(‖∇u‖2 − ‖∇v‖2)‖∇(u− v)‖ ‖wt‖L2
g

≤ α−12R2
∗‖w‖D1,2‖wt‖L2

g

≤ CA(
Cu

2Cu
‖w‖2D1,2 +

1
2
‖wt‖2L2

g
)

≤ CACBe∗(w),

(4.7)
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where we have used Young’s inequality and CA = 2α−1R2
∗, CB = max( 1

2 , 1
2Cu

).
Hence,

I2(t) ≤ (‖∇u‖+ ‖∇v‖)(‖∇(u− v)‖)
( ∫

RN

∆vwtdx
)

≤ 2R∗‖w‖D1,2(‖v‖2D(A))
1/2(‖wt‖2L2

g
)1/2

≤ 2R2
∗‖w‖D1,2(‖wt‖2L2

g
)1/2

≤ 2R2
∗(

Cu

2Cu
‖w‖2D1,2 +

1
2
‖wt‖2L2

g
) ≤ CΓCBe∗(w),

(4.8)

where CΓ = 2R2
∗. Finally, using relations (4.6)-(4.8), estimation (4.5) becomes
d

dt
e∗(w) ≤ (C2 + CACB + CΓCB)e∗(w) ≤ C∗∗e

∗(w), (4.9)

where C∗∗ = C2 + CACB + CΓCB and the proof is completed. �

Remark 4.3 (Continuity in X1). It is important to state that the operator S(t) :
X0 → X0 associated to the problem (1.1)-(1.2) is weakly continuous in the space
X0, but it is strongly continuous in the space X1. Therefore, we will study problem
(1.1)-(1.2) as a dynamical system in the space X1 := D1,2(RN )× L2

g(RN ).

Remark 4.4 (Uniqueness in X1). Assuming that the initial data are from the
space X1, relation (4.9) guarantees the uniqueness of the solutions for the problem
(1.1)-(1.2). Indeed, if ûa = (u0, u1), ûb = (u′0, u

′
1), from inequality (4.9) take

‖S(t)ûa − S(t)ûb‖X1 ≤ C(‖ûa‖X1 , ‖ûb‖X1)‖ûa − ûb‖X1 . (4.10)

Remark 4.5. According to Theorem 3.4 we have that the ball B0 := BX0(0, R∗)
is an absorbing set in the space X0, so and in X1 by the compact embedding.

So, we obtain the following theorem.

Theorem 4.6. The dynamical system given by the semigroup (St)t≥0, possesses
an invariant set, which attracts all bounded sets of X1, denoted by

A = ∩t≥0 ∪s≥t SsB0 ⊂ X1.

The above set is also compact, so it is global attractor for the strong topology of
X1.

Proof. First, we have that operators (St)t≥0 form a semigroup on X1 and that
St : X1 → X1 is continuous, for all t ∈ R (Lemma 4.2). Also, we have that the ball
B0, is an absorbing set in X1 (Remark 4.5). Our goal is to prove that the functional
invariant set A is compact for the strong topology of X1. So, we must show that
for a point w1 ∈ A, the sequence S(tj)u

j
0 converges strongly to w1 in X1. Here, we

have that (uj
0)j∈N and (tj)j∈N , are two sequences such that (uj

0) is bounded in X1,
tj goes to +∞, as j goes to +∞ and S(tj)u

j
0 converges weakly to w1 in the space

X1, as j goes to +∞ (for more details we refer to [2] and [3]). We fix T > 0 and
note that the sequence S(tj − T )uj

0 is bounded in X1 thanks to the existence of an
absorbing set in X1. Hence from this sequence we may extract a subsequence j1
such that, for some v1 ∈ X1,

S(tj1 − T )uj1
0 ⇀ v1, as j1 →∞. (4.11)

Introducing the notation

uj1(t) := S(tj1 + t− T )uj1
0 , (4.12)
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we deduce from (4.11) that

uj1(t) ⇀ S(t)v1, as j1 →∞, (4.13)

since S(t) is weakly continuous on X1. Using the energy type estimate (3.12) and
the fact that the sequence θ(uj1(0)) = θ(S(tj1 − T )uj1

0 ) is bounded by a constant,
let say C, we obtain

lim
j1→∞

sup θ(S(tj1)u
j1
0 ) ≤ Ce−C∗T +

1− e−C∗T

C∗

C(R)
δ

. (4.14)

Applying the invariance of the set A, for v1(t) = S(t)v1, we get

θ(w1) = θ(S(T )v1) ≤ e−C∗T θ(v1) +
1− e−C∗T

C∗

C(R)
δ

. (4.15)

Subtracting by parts relations (4.14) and (4.15) we get

lim
j1→∞

sup θ(S(tj1)u
j1
0 ) ≤ θ(w1) + e−C∗T (C − θ(v1)). (4.16)

Since T is chosen arbitrarily, for T = 0 we have

lim
j1→∞

sup θ(S(tj1)u
j1
0 ) ≤ θ(w1). (4.17)

On the other hand, since S(tj1)u
j1
0 converges weakly to w1 in X1, we have that

lim infj1→∞ θ(S(tj10 ) ≥ θ(w1). So we get

lim
j→∞

θ(S(tj)u
j
0) = θ(w1). (4.18)

Using again the fact that S(t)A = A and that θ(t) is weakly continuous, we obtain

lim
j→∞

‖S(tj)u
j
0‖2X1

= ‖w1‖2X1
. (4.19)

Therefore, S(tj)u
j
0 converges strongly to w1 in the space X1 as j → ∞. Thus, we

obtain that A is a global attractor in the strong topology of X1 (see also [14]). �
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