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Abstract

We prove the existence of a simple, isolated, positive principal eigenvalue
for the quasilinear elliptic equation

−∆pu = λ g(x) |u|p−2u, x ∈ IRN , lim
|x|→+∞

u(x) = 0,

where ∆pu = div(| 5 u|p−2 5 u) is the p-Laplacian operator and the weight
function g(x) been bounded changes sign and is negative and away from zero
at infinity.

1 Introduction

In this paper we prove the existence of a positive principal eigenvalue of the following
quasilinear elliptic problem,

−∆pu(x) = λg(x)|u|p−2u, x ∈ IRN , (1.1)

lim
|x|→+∞

u(x) = 0, (1.2)

where λ ∈ IR. Next, we state the general hypotheses which will be assumed
throughout the paper:
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(E) Assume that N, p satisfy the following relation N > p > 1.

(G) g is a smooth function, at least C1,α(IRN) for some α ∈ (0, 1), such that
g ∈ L∞(IRN) and g(x) > 0, on Ω+, with measure of Ω+, |Ω+| > 0. Also there
exist R0 sufficiently large and k > 0 such that g(x) < −k, for all |x| > R0.

Generally, problems were the operator −∆p is present arise both from pure
mathematics (e.g., the theory of quasiregular and quasiconformal mappings), as
well as from a variety of applications (e.g., non-Newtonian fluids, reaction-diffusion
problems, flow through porous media, nonlinear elasticity, glaseology, astronomy,
etc).

On various types of bounded domains there is an extensive literature on eigen-
value problems and the picture for “the principal eigenpair” seems to be fairly com-
plete.

Papers on unbounded domains have appeared quite recently. These problems are
of a more complex nature, as the equation may give rise to a noncompact operator.
Such a problem is the one presented in [6].

The main aim of this paper is to study the quasilinear elliptic problem (1.1)
- (1.2), by generalizing ideas introduced in the paper [8], for the case p = 2.
In Section 2, we study the space setting of the problem (1.1) - (1.2), and give
some equivalent norm results to be used later. A generalised version of Poincaré’s
inequality plays a crucial role. Some of the ideas developed in this section appear
also in a different context in [8]. In Section 3, we define the basic operators for the
construction of the first positive eigenvalue the proof which is based on Ljusternik-
Schnirelmann’s theory. Also here, we derive some regularity results. Finally, in
Section 4, we establish the simplicity and isolation of the principal eigenvalue.
Notation : We denote by BR the open ball of IRN with center 0 and radius
R and B∗

R =: IRN \ BR. For simplicity reasons sometimes we use the symbols
C∞

0 , Lp, W 1,p respectively for the spaces C∞
0 (IRN), Lp(IRN), W 1,p(IRN) and ||.||p

for the norm ||.||Lp(IRN ). Also, sometimes when the domain of integration is not

stated, it is assumed to be all of IRN . Equalities introducing definitions are denoted
by “=:”. Denote by g± =: max{±g, 0}. The end of the proofs is marked by “C”.

2 Space Setting

In this section we are going to characterize the space Vg (introduced below) in
terms of classical Sobolev spaces. Let B be a ball centered at the origin of IRN ,

such that

∫
B

g(x)dx < 0 and g(x) ≤ −k, for all x ∈ B∗. First, we prove the

following type of Poicaré’s inequality:
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Theorem 2.1 Suppose
∫

IRN g(x)dx < 0. Then there exists α > 0, such that∫
IRN | 5 u|pdx > α

∫
IRN g(x)|u|pdx, for all u ∈ W 1,p(IRN).

Proof (i) If
∫

IRN g(x)|u|pdx ≤ 0 then obviously the inequality holds. (ii) Let∫
IRN g(x)|u|pdx > 0 then we can rewrite the above inequality as follows∫

IRN

| 5 u|pdx > α
(∫

B

g(x)|u|pdx +

∫
B∗

g(x)|u|pdx
)
.

To complete the proof of the theorem, since g(x) ≤ −k < 0 for all x ∈ B∗, it
is enough to prove that there exists α > 0 such that:∫

B

| 5 u|pdx > α

∫
B

g|u|pdx,

where B is such that
∫

B
g(x)dx < 0 and g(x) ≤ −k < 0, for all x ∈ B∗. Suppose

that the result is not true. This means that there exists a sequence {un} in W 1,p(B),
such that

∫
B
| 5 un|pdx ≤ 1

n

∫
B

g(x)|un|pdx, for all n ∈ N. Define vn =: un

||un||pLp(B)
.

This implies that,
∫

B
|vn|pdx = 1 and

∫
B

g(x)|vn|pdx > 0. Therefore we have that∫
B

| 5 vn|pdx ≤ 1

n

∫
B

g|vn|pdx ≤ KB

n

∫
B

|vn|pdx ≤ KB

n
, (2.1)

where KB =: max{|g(x)| : x ∈ B}. Hence {vn} is a bounded sequence in W 1,p(B).
Thus there is a subsequence - denoted again by {vn} - which will converge strongly
to some v in Lp(B). We also know that

||vn − vm||pW 1,p(B) = ||vn − vm||pLp(B) + || 5 vn −5vm||pLp(B). (2.2)

Furthermore, for all p ∈ [1, +∞), we have that

|| 5 vn −5vm||pLp(B) ≤ (|| 5 vn||pLp(B) + || 5 vm||pLp(B))
p ≤ KB(

1

n
1
p

+
1

m
1
p

)p.

Therefore {vn} is a Cauchy sequence in W 1,p(B). So {vn} converges strongly
to some v ∈ W 1,p(B). From (2.1), we also have that∫

B

| 5 v|pdx = lim
n→∞

∫
B

| 5 vn|pdx = 0,

which means that 5v = 0 and v ≡ c. However,

|c|p
∫

B

g(x)dx = lim
n→∞

∫
B

g(x)|vn|pdx ≥ 0.
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Since
∫

B
g(x) < 0, we have that c = 0, i.e., v ≡ 0. But on the other hand,

we have that ∫
B

vpdx = lim
n→∞

∫
B

vp
ndx = 1,

which is a contradiction and the proof is completed. C

By the above result we may introduce the following norm

||u||g =: (

∫
IRN

| 5 u|pdx− α

2

∫
IRN

g(x)|u|pdx)1/p. (2.3)

We define the space Vg to be the completion of C∞
0 with respect to the norm

||.||g. Let V∗g be the dual space of Vg with the pairing (., .)V . Note that Vg is
a uniformly convex Banach space. Although the space Vg would seem to depend on
g, we shall prove that the space is independent of g. To achieve this result we need
the following three lemmas.

Corollary 2.2 Under the assumptions of Theorem 2.1, for all u ∈ C∞
0 (IRN), we

have:

(i)

∫
IRN

| 5 u|p ≤ 2||u||pg, (2.4)

(ii) |
∫

IRN

g|u|pdx| ≤ 2

α
||u||pg. (2.5)

Lemma 2.3 Assume that the hypotheses of Theorem 2.1 are valid. Let {un} ⊂
C∞

0 (IRN) be a bounded sequence in Vg. Then {
∫

B
g|un|pdx} is bounded in Vg.

Proof Suppose that {
∫

B
g|un|pdx} becomes unbounded, as n →∞. Since g < 0,

for all x ∈ B∗, we have that∫
IRN

g|un|pdx <

∫
B

g|un|pdx,

i.e.,
∫

B
g|un|pdx is bounded below. This implies that

∫
B

g|un|pdx → +∞. Let
un = cnvn, where cn ∈ IR, such that

∫
B

g|vn|pdx = 1 and cn → ∞, as n → ∞.
Then

lim
n→∞

∫
B

| 5 vn|pdx = lim
n→∞

1

cp
n

∫
B

| 5 un|pdx. (2.6)

But
∫

B
|5un|pdx is bounded by relation (2.5) therefore lim

n→∞

∫
B
|5vn|pdx = 0,

that is {vn} is a bounded sequence in W 1,p(B). Thus there exists a subsequence
denoted again by {vn}, such that {vn} converges in (Lp(B))N . Since {5vn}
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converges in (Lp(B))N , {vn} is a Cauchy sequence in W 1,p(B) and hence there
exists a v ∈ W 1,p(B) such that vn → v i.e., 5vn →5v = 0 or v = c. However,

1 = lim
n→∞

∫
B

g|vn|pdx = |c|p
∫

B

gdx < 0,

which is a contradiction and thereby the proof is complete. C

To prove the next results we need to introduce the following notation: D1 =:
{x ∈ B : g(x) > 0}, D2 =: {x ∈ B : g(x) ≤ 0} and

ḡ(x) =:

{
g+(x), x ∈ D1,
−g−(x), x ∈ D2.

Lemma 2.4 Assume that the hypotheses of Theorem 2.1 are valid. Then there exist
constants K0 > 0 and K1 > 0 such that

(i)

∫
g+(x)|u|pdx ≤ K0||u||pg, (2.7)

(ii) −
∫

g−(x)|u|pdx ≤ K1||u||pg, (2.8)

for all u ∈ C∞
0 (IRN).

Proof (i) Suppose that the inequality (2.7) is not true. Then there exists a sequence
{un} ⊂ C∞

0 (IRN), such that
∫

g+|un|pdx = 1 and ||un||g → 0, as n → ∞. By
Corollary (2.2), we have that

∫
B
| 5 un|pdx → 0, as n →∞. Hence there exists a

subsequence - again denoted by {un} - converging to some constant function c in
W 1,p(B). But then

lim
n→∞

∫
B

g+(x)|u|pndx = |c|p
∫

B

g+(x)dx = 1.

Therefore, c 6= 0. Since g < 0 on IRN/B, we obtain

lim
n→∞

sup

∫
g(x)|un|pdx < lim

n→∞

∫
B

g(x)|un|pdx = |c|p
∫

B

g(x)dx < 0.

On the other hand, from relation (2.6) we have that |
∫

g|un|pdx| ≤ 2
α
||un||pg → 0,

as n → +∞ which is a contradiction.

(ii) Using relation (2.8) and
∫

g−|un|pdx =
∫

g|un|pdx−
∫

g+|un|pdx we complete
the proof of the Lemma. C

Next, we give the following uniform Sobolev characterization of the space Vg.
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Proposition 2.5 Suppose that g satisfies (G). Then Vg = W 1,p(IRN).

Proof Because of density we only compare the Vg− and W 1,p− norms on the space
C∞

0 (IRN).
(i) For all u ∈ C∞

0 (IRN), we have

||u||pg ≤
∫
| 5 u|pdx +

α

2
||g||∞

∫
|u|pdx ≤ C(α, ||g||∞)||u||pW 1,p ,

where C(α, ||g||∞) = max{1, α||g||∞
2

}. Hence we have that W 1,p ⊂ Vg.

(ii) Let {un} ⊂ C∞
0 (IRN) be a Cauchy sequence in Vg converging in some u ∈ Vg.

Then, relations (2.5) and (2.8) imply that∫
B

| 5 (un − u)|pdx → 0 and

∫
B

g(x)|un − u|pdx → 0, as n →∞.

Suppose that

∫
B

(un−u)pdx 6→ 0. Then if vn =: un−u
||un−u||B

, we have that limn→∞

∫
B

|5

vn|pdx = lim
n→∞

∫
B

g(x)|vn|pdx = 0. Since {5vn} converges (strongly to zero) in

Lp(B), {vn} is a bounded sequence in W 1,p(B). Hence there is a subsequence, de-

noted again by {vn}, such that {vn} strongly converges in Lp(B). But limn→∞

∫
B

|5

vn|pdx = 0, so {vn} is a Cauchy sequence in W 1,p(B), i.e., there exists some
v ∈ W 1,p(B), such that vn → v in W 1,p(B). On the other hand, since 5vn →5v in

(Lp(B))N , it implies that 5v = 0 or v = c, where c 6= 0 since

∫
B

vpdx = 1. However,

0 = lim
n→∞

∫
B

g(x)|vn|pdx = |c|p
∫

B

g(x)dx 6= 0,

which is a contradiction. Hence we have∫
B

(un − u)pdx → 0, as n →∞. (2.9)

By adding the two inequalities (2.7) and (2.8) we get∫
B

ḡ(x)|un − u|pdx +

∫
B∗

(−g−)(x)|un − u|pdx ≤ (K0 + K1)||un − u||pg,

for all u ∈ C∞
0 . But, as n →∞, we have

∫
B

ḡ(x)|un−u|pdx = Mn

∫
B

|un−u|pdx → 0,

where the quantity Mn, given by the intermediate value theorem for integrals, is
finite positive, for all n ∈ IN (g ∈ L∞). Also we have that

k

∫
B∗
|un − u|pdx ≤

∫
B∗

(−g−)(x)|un − u|pdx ≤ (K0 + K1)||un − u||pg,
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which implies that, as n →∞,∫
B∗

(un − u)pdx → 0. (2.10)

Therefore by relations (2.9) and (2.10) we get

∫
IRN

(un−u)pdx → 0, as n →∞.

Summarizing we have that un → u, in W 1,p, that is Vg ⊂ W 1,p, for every g
satisfying hypothesis (G), and the proof is completed. C

3 Principal Eigenvalue and Regularity Results

In this section we are going to define the basic operators and some of their charac-
teristics, which will help to prove the existence of a positive principal eigenvalue of
the problem (1.1) - (1.2). Finally, we close this section by proving some regularity
results.

For any r0 large enough (r0 ≥ R0), there exists σ0 > 0, such that g(x) ≤
− k

σ0
, for all |x| ≥ r0. For later needs we introduce the following smooth splitting of

the weight function g

g2(x) =:

{
g(x), for |x| ≥ r0,
− k

σ0
, for |x| < r0,

and g1(x) =: g(x)− g2(x).

Let us define the operator Aλ : D(Aλ) ⊂ W 1,p → W 1,q as follows

(Aλ(u), v) =

∫
(| 5 u|p−2 5 u5 v − λg2|u|p−2uv)dx, for all u, v ∈ W 1,p.

We can then define the mapping

aλ : W 1,p ×W 1,p → IR, by aλ(u, v) =: (Aλ(u), v).

It is easy to see that aλ is bounded, for all u, v ∈ D(Aλ) and λ > λ0. Indeed,
we have:

|aλ(u, v)| = |
∫

(| 5 u|p−2 5 u5 v − λg2|u|p−2uv)dx|

≤
∫

(| 5 u|p−1| 5 v|+ λk

σ0

|u|p−1|v|)dx

≤ (

∫
| 5 u|p)(p−1)/p(

∫
| 5 v|p)1/p +

λk

σ0

(

∫
|u|p)(p−1)/p(

∫
|v|p)1/p

≤ c||u||p−1
W 1,p||u||W 1,p < ∞.
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Also aλ(u, v) is coercive, i.e.,

aλ(u, u) =

∫
(| 5 u|p − λg2|u|p)dx ≥

∫
(| 5 u|p +

λk

σ0

up)dx ≥ λk

σ0

||u||pLp .

Next, we introduce the following form b(u, v)

b(u, v) =

∫
g1|u|p−2uvdx, for all u, v ∈ W 1,p(IRN).

We see that b(u, v) is bounded, i.e., with the help of the Hölder inequality and
the definition of g1, for all u, v ∈ W 1,p, we have

|b(u, v)| =
∫

g1|u|p−2uv| ≤ ||g1||L∞(

∫
|u|p−1|v|)

≤ c∗(

∫
|u|p)(p−1)/p(

∫
|v|p)1/p ≤ c∗||u||p−1

W 1,p||v||W 1,p .

where c∗ = ||g1||L∞ . Therefore by the Riesz Representation Theory we can define a
nonlinear operator B : D(B) ⊂ Lp 7−→ Lq, such that (B(u), v) = b(u, v), for all
u, v ∈ D(B) and λ > 0. It is easy to see that D(B) ⊂ W 1,p. Moreover it is easy
to see that the operators Aλ, B are well defined and Aλ is continuous.

Lemma 3.2 (i) if {un} is a sequence in W 1,p, with un ⇀ u, then there is a
subsequence, denoted again by {un}, such that B(un) → B(u),
(ii) if B

′
(u) = 0, then B(u) = 0.

Proof (i) Now suppose that un ⇀ u in W 1,p. We have:

||B(un)−B(u)||W 1,q = sup
||v||W1,p≤1

|(B(un)−B(u), v)W 1,p|

= sup
||v||W1,p≤1

|
∫

g1(x)(|un|p−2un − |u|p−2u)v|

≤ sup
||v||W1,p≤1

|
∫
|x|≤K

g1(x)(|un|p−2un − |u|p−2u)v|

+ sup
||v||W1,p≤1

|
∫
|x|>K

g1(x)(|un|p−2un − |u|p−2u)v|.

Note that from the definition of g1(x) and for any ε > 0, we can choose a
K > 0 so that |

∫
|x|>K

g1(x)(|un|p−2un−|u|p−2u)v| = 0, while for this fixed K and

by the strong convergence of un → u in Lq on any bounded region, the integral
over (|x| ≤ K) is smaller than ε, for n large enough. Hence we have proved that
B(un) → B(u) strongly in W 1,q, which means that B is a compact operator.
(ii) See [10, Theorem 1]. C
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Theorem 3.3 Let 1 < p < N. Assume that g satisfies (G). Then
(i) the problem (1.1) - (1.2) has a sequence of solutions (λk, uk) with

∫
g(x)|uk|p =

1, 0 < λ1 < λ2 ≤ ... ≤ λk →∞, as k →∞,
(ii) the eigenfunction u1 corresponding to the first eigenvalue can be taken positive
in IRN .

Proof (i) We will just sketch the proof. Denote by

G := {u ∈ W 1,p : Ψ(u) :=
1

p

∫
g|u|p =

1

p
},

and

I(u) =
1

p

∫
| 5 u|p.

The functional I is even and bounded below on G. Since the critical points
of I(u) on G are solutions of the problem (1.1)-(1.2) for certain value of λ, to
continue the procedure it is necessary to prove that I(u) satisfies the Palais-Smale
condition on G, i.e., for any sequence {un} ⊂ G, if the sequence {I(un)} is
bounded and

I
′
(un)− anΨ

′
(un) → 0, where an :=

〈
I
′
(un), un

〉
〈Ψ′(un, un)〉

,

then {un} has a convergent subsequence in W 1,p. This proof follows the same
lines as in ([1], Lemma 1). Then we apply the Ljusternik-Schnirelmann theory.
(ii) This follows standard maximum principle argument arguments (e.g., see [6]). C

The next theorem examines the regularity as well as the Lpk character and
asymptotic behavior of the W 1,p solutions of the problem (1.1) - (1.2).

Theorem 3.5 Suppose that u ∈ W 1,p is a solution of the problem (1.1) - (1.2).
Then u ∈ Lpk , for all pk ∈ [pc, +∞] and the solutions u(x) decay uniformly to
zero, as |x| → +∞.

Proof Let c > 1, pk = pck and mk = (ck − 1)p. Assume that u ∈ Lp1(IRN); then
we shall prove by induction that u ∈ Lpk(IRN), for all k ≥ 1. Let u ∈ Lpk(IRN), for
some fixed k. Consider the following Sobolev type inequality

||u||Lq ≤ K0||u||W 1,p , for all q ∈ [p, p∗]. (3.1)

Rewriting the above inequality and multiplying problem (1.1) by w = u1+mk we
have

||uck ||pcp ≤ Kp|| 5 (uck

)||pp



10 M. N. Poulou & N. M. Stavrakakis

≤ K0c
k|

∫
| | 5 u|p−2 5 u · 5u1+mk |dx

≤ Kpck(p−1)

∫
|λg| |u|p−1‖u1+mk |dx

≤ K0c
k(p−1)||u||pk

pk
,

where K0 = Kp|λ| ||g||∞. Letting k → +∞, by the dominated convergence theorem,
we obtain

||u||
pk+1

c
pk+1 ≤ K0c

k(p−1)||u||pk
pk

.

Therefore, u ∈ Lpk+1(IRN). Hence we may deduce from the above inequality that
u ∈ L∞(IRN). But, we already know that u ∈ Lp1(IRN)

⋂
L∞(IRN). Thereby, we

have that u ∈ Lpk(IRN), for all pk ∈ [p1, +∞]. By Theorem 1 of Serrin [7], for any
ball Br(x) of radius r centered at any x ∈ IRN and some constant C(N, p2), the
solution u ∈ W 1,p of the equation

−∆pu = f,

satisfies the estimate

sup
y∈B1(x)

|u(y)| ≤ C{||u||Lp(B2(x)) + ||f ||Lp2 (B2(x))}.

For q = pk

k−1
≥ p2, we obtain for the solution of the problem (1.1) - (1.2)

|u(x)| ≤ sup
y∈B1(x)

|u(y)| ≤ C1{||u||Lpc1 (B2(x)) + |λ| ||g||∞|| |u|p−1||
1

p−1

Lq(B2(x))},

for any x ∈ IRN . Hence |u|p−1 belongs to Lq(IRN), and the uniform decay of u(x)
to zero, as |x| → +∞, is proved. C

As a consequence of the above theorem we have the following regularity charac-
terization of the solutions of the problem (1.1) - (1.2).

Corollary 3.7 For any r > 0, the solutions of the problem (1.1) - (1.2) belong to
C1,α(Br), where α = α(r) ∈ (0, 1).

4 Simplicity and Isolation of the Principal Eigen-

value

In this section, first we are going to prove the simplicity of the principal eigenvalue
of the problem (1.1) - (1.2) by generalizing Picone’s identity

| 5 u|2 +
u2

v2
| 5 v|2 − 2

u

v
5 u5 v = | 5 u|2 −5(

u2

v
)5 v ≥ 0,
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which holds for any differentiable functions v > 0 and u ≥ 0, to the p- Laplacian
operator ∆pu with p > 1. The idea to use Picone’s identity for the proof of the
simplicity was firstly introduced in [2].

Theorem 4.1 (Generalized Picone’s Identity) Let v > 0, u ≥ 0 be differentiable
functions in Ω, where Ω is a bounded or unbounded domain in IRN . Denote by

L(u, v) = | 5 u|p + (p− 1)
up

vp
| 5 v|p − p

up−1

vp−1
5 u| 5 v|p−2 5 v,

R(u, v) = | 5 u|p −5(
up

vp−1
)| 5 v|p−2 5 v.

Then L(u, v) = R(u, v) ≥ 0. Moreover, L(u, v) = 0, a.e. in Ω, if and only if
5(u/v) = 0, a.e. in Ω, i.e., u = kv, for some constant k in each component of Ω.

Proof For the proof we refer to W. Alegretto and Y. X. Huang ([2], Thm. 1.1).

Theorem 4.2 Suppose v ∈ C1 satisfies −∆pv ≥ λgvp−1 and v > 0 in IRN ,
for some λ > 0. Then, for u ≥ 0 in W 1,p we have∫

| 5 u|pdx ≥ λ

∫
g(x)|u|pdx, (4.1)

and λ ≤ λ+
1 . The equality in (4.1) holds if and only if λ = λ+

1 , u = kv and v =
cu1, for some constants k, c. In particular, the principal eigenvalue λ+

1 is simple.

Proof Let Ω0 be a compact subset of IRN . Let φ ∈ C∞
0 (IRN), with φ ≥ 0. Then,

we have

0 ≤
∫

Ω0

L(φ, v) ≤
∫

L(φ, v) =

∫
R(φ, v)

=

∫
| 5 φ|p +

∫
(

φp

vp−1
)∆pv ≤

∫
| 5 φ|p − λ

∫
gφp. (4.2)

Now letting φ → u in W 1,p, we obtain (4.1). Suppose that for some 0 ≤
u0 ∈ W 1,p, we have

∫
| 5 u0|p = λ

∫
g|u0|p. Then from (4.2) we conclude that∫

Ω0
L(u0, v) = 0, i.e., u0 = kv on Ω0 for some constant k. Since Ω0 is arbitrary

and u0 is nontrivial , we have that u0 = kv on IRN , k > 0 and v ∈ W 1,p. Next, if
we replace u by u1 in (4.1) then following the above reasoning, by (4.2) we obtain
that v = cu1 and λ+

1 ≥ λ. Since v ∈ W 1,p we can repeat the above arguments
choosing v for u0 and u1 for v. Therefore we come to the conclusion that v = ku1

and simplicity of λ+
1 is proved. C
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Theorem 4.3 The principal eigenvalue λ1 of the problem (1.1) - (1.2) is isolated
in the following sense: there exists η > 0, such that the interval (−∞, λ1 + η)
does not contain any other eigenvalue than λ1.

Proof Assume the contrary, i.e., there exists a sequence of eigenpairs (λn, un), such
that λn → λ1 and un ∈ W 1,p with ||un||W 1,p = 1. Then from the simplicity
of λ1 and the variational characterization of the principal eigenvalue we have that
λn > λ1. Also from the weak convergence we have that un ⇀ u1 > 0 in W 1,p. We
know that∫

| 5 un|p−2 5 un 5 φ = λn

∫
g(x)|un|p−2unφ, for any φ ∈ C∞

0 (IRN). (4.3)

Subtracting the two equations of the form (4.3) corresponding to n and m and
taking φ = un − um, we obtain∫

(| 5 un|p−2 5 un − | 5 um|p−2 5 um)5 (un − um)dx

= λn

∫
g(x)(|un|p−2un − |um|p−2um)(un − um)dx

+ (λn − λm)

∫
g(x)(|un|p−2un − |um|p−2um)(un − um)dx

≤ λn

∫
g1(x)(|un|p−2un − |um|p−2um)(un − um)dx

+ (λn − λm)

∫
g(x)|um|p−2um(un − um)dx → 0, as n, m →∞. (4.4)

Indeed, it is clear that - due to the compact support of g1 and the fact that
un ⇀ u1 - there exists a subsequence of {un} such that∫

g1(x)(|un|p−2un − |um|p−2um)(un − um)dx → 0, as n,m →∞.

Moreover, applying Hölder’s inequality on the second integral of the last part of
inequality (4.4), we see that it is bounded. Hence we have that

(λn − λm)

∫
g(x)|um|p−2um(un − um)dx → 0, as n,m →∞.

On the other hand, taking into consideration the following inequality

|a− b|p ≤ c{(|a|p−2a− |b|p−2b)(a− b)}s/2(|a|p + |b|p)1−s/2, a, b ∈ IR,
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where s = p, if p ∈ (1, 2) and s = 2, if p ≥ 2, we have that (4.4) becomes∫
| 5 un −5um|p ≤ c{

∫
(| 5 un|p−2 5 un − | 5 um|p−2 5 um)5 (un − um)}s/2

{
∫
| 5 un|pdx +

∫
| 5 um|pdx}1−s/2. (4.5)

Hence by (4.4) we see that the left hand side of the inequality (4.5)above tends
to zero. Therefore, we have proved that un → u1 ∈ W 1,p. Let us define the
following set Ω−un

:= {x ∈ IRN ; u−n < 0} with |Ω−un
| > 0. Moreover, we have that,

for any fixed number K > 0

meas(Ω−un
∩BK) → 0, as n →∞. (4.6)

We also know that

(Aλ(un), un) ≤ c1||un||W 1,p , (B(un), v) ≤ c2||v||pp.

On the other hand, since W 1,p is continuously embedded in Lp we have

c1||u−n ||
p
W 1,p ≤ (Aλ(un), u−n ) = λn(B(un), u−n )

≤ c2||un−||pp ≤ c3||u−n ||
p
W 1,p . (4.7)

Finally, since |Ωu−n
| 6= 0, equation (4.7) implies that c3 > const > 0, for any

n ∈ N. But this contradicts (4.6) and the proof is complete. C
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