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Abstract

We prove the existence of a simple, isolated, positive principal eigenvalue
for the quasilinear elliptic equation

~Apu=Ag(z) [ulf2u, € RN, lim wu(z) =0,

|| —+o0

where Ayu = div(| 7 u[P™2 7 u) is the p-Laplacian operator and the weight
function g(x) been bounded changes sign and is negative and away from zero
at infinity.

1 Introduction

In this paper we prove the existence of a positive principal eigenvalue of the following
quasilinear elliptic problem,

~Aju(z) = Ag()|uff~u, xeR", (1.1)
lim w(z) = 0,
oo

where A € IR. Next, we state the general hypotheses which will be assumed
throughout the paper:
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(E) Assume that N, p satisfy the following relation N > p > 1.

(G) g is a smooth function, at least CY*(RY) for some a € (0,1), such that
g€ L®(RY) and g(x) >0, on QF, with measure of Q*, |QF| > 0. Also there
exist Ry sufficiently large and k > 0 such that g(z) < —k, for all |x| > Ry.

Generally, problems were the operator —A, is present arise both from pure
mathematics (e.g., the theory of quasiregular and quasiconformal mappings), as
well as from a variety of applications (e.g., non-Newtonian fluids, reaction-diffusion
problems, flow through porous media, nonlinear elasticity, glaseology, astronomy,
ete).

On various types of bounded domains there is an extensive literature on eigen-
value problems and the picture for “the principal eigenpair” seems to be fairly com-
plete.

Papers on unbounded domains have appeared quite recently. These problems are
of a more complex nature, as the equation may give rise to a noncompact operator.
Such a problem is the one presented in [6].

The main aim of this paper is to study the quasilinear elliptic problem (1.1)
- (1.2), by generalizing ideas introduced in the paper [8], for the case p = 2.
In Section 2, we study the space setting of the problem (1.1) - (1.2), and give
some equivalent norm results to be used later. A generalised version of Poincaré’s
inequality plays a crucial role. Some of the ideas developed in this section appear
also in a different context in [8]. In Section 3, we define the basic operators for the
construction of the first positive eigenvalue the proof which is based on Ljusternik-
Schnirelmann’s theory. Also here, we derive some regularity results. Finally, in
Section 4, we establish the simplicity and isolation of the principal eigenvalue.
Notation: We denote by Bpr the open ball of RY with center 0 and radius

R and B} =: R\ Bg. For simplicity reasons sometimes we use the symbols
oo LP, WP respectively for the spaces Cge(RY), LP(IRY), W'?(IRY) and ||.||,
for the norm  [[.|| »g~). Also, sometimes when the domain of integration is not

stated, it is assumed to be all of IRY. Equalities introducing definitions are denoted
by “=:". Denote by g+ =: max{4g,0}. The end of the proofs is marked by “<”.

2 Space Setting

In this section we are going to characterize the space V, (introduced below) in
terms of classical Sobolev spaces. Let B be a ball centered at the origin of IRY,
such that /g(x)dx <0 and g¢(z) < —k, forall x € B*. First, we prove the

B
following type of Poicaré’s inequality:



FEigenvalue Problems for Quasilinear Elliptic Equations 3

Theorem 2.1 Suppose fIRN g(x)dx < 0. Then there exists « > 0, such that
Sy |V u|pdx > o [on 9(@)|ulPdz, for all w e WHP(IRY).

Proof If [~ g(x)|ulPdz < 0 then obviously the inequality holds. (i) Let
Sy 9(x ]u|pdx > (0 then we can rewrite the above inequality as follows

/IRN |7 ulPde > a(/Bg(-T)|U|pd93+/B* g(as)|u|pdm>.

To complete the proof of the theorem, since g(x) < —k <0 for all = € B* it
is enough to prove that there exists « > 0 such that:

/ | v ulPdz > a/ glu|Pdzx,
B B

where B issuch that [, g(z)dz <0 and g(x) < —k <0, forall x € B*. Suppose
that the result is not true. This means that there exists a sequence {u,} in W'?(B),

such that [, |/ up|Pde <L [, g(x |un|pdx for all n € N. Define v, =1 —#—
B B HunHLp(B)
This implies that, [, |v,[’de =1 and [, g(z)|v,[Pdz > 0. Therefore we have that
1 K
/|vvn|”dx < —/ glonlPdz < _/ wnPdz < BE. (2.1)
B n n

where Kp =: max{|g(z)|: z € B}. Hence {v,} isabounded sequence in W1?(B).
Thus there is a subsequence - denoted again by {v,} - which will converge strongly
to some v in LP(B). We also know that

||on — Um”gvl,p(B) = |[vn — UmHip(B) + Vv — VUmHip(B)' (2.2)

Furthermore, for all p € [1,+00), we have that

1 1
1V 0 = VomllLas) < U1V 0allLos) + 11 V 0mllLns)” < Kp(— + —)".

ne me

Therefore {v,} isa Cauchy sequence in WP(B). So {v,} converges strongly
to some v € W'?(B). From (2.1), we also have that

/|vv|pd:c: lim/\vvn]pdx:O,
B e JB

which means that \yv =0 and v =c. However,

]c]p/ z)dr = hm / z)|v,[Pdx > 0.
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Since [, g(x) <0, we have that ¢ =0, ie, v =0. But on the other hand,
we have that

/ vPdr = lim [ vPdx =1,
B

n—oo B

which is a contradiction and the proof is completed. <

By the above result we may introduce the following norm

(0%
llly = ([ 17 urar=5 [ glaupdn, (23)
RN RN

We define the space V, to be the completion of C§° with respect to the norm
[|./lg- Let Vs be the dual space of V, with the pairing (.,.)y. Note that V, is
a uniformly convex Banach space. Although the space V, would seem to depend on
g, we shall prove that the space is independent of g. To achieve this result we need
the following three lemmas.

Corollary 2.2 Under the assumptions of Theorem 2.1, for all u € C(IRY), we
have:

i [ 1P <2l (24
. 2
i) | aluldal < 2l (25)

Lemma 2.3 Assume that the hypotheses of Theorem 2.1 are valid. Let {u,} C
Co(RY) be a bounded sequence in V. Then {[,glun|Pdx} is bounded in V.

Proof Suppose that { [, glu,|Pdz} becomes unbounded, as n — co. Since g < 0,
for all x € B*, we have that

[ slwpds < [ glupis
RN B

ie., [pglupPdz is bounded below. This implies that [, glu,|Pde — +oo. Let
U, = c,v,, where ¢, € IR, such that fBg|vn]pdac =1 and ¢, — 00, as n — 0.
Then

1
lim [ | v,[Pde = lim —/ | V un|Pdz. (2.6)
n—oo Jp n—oo ch B

But [, | u,|Pdz is bounded by relation (2.5) therefore lim [, |7 v,|Pde =0,

that is {v,} is a bounded sequence in W'?(B). Thus there exists a subsequence
denoted again by {v,}, such that {v,} converges in (L?(B))". Since {vv,}
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converges in (LP(B))™, {v,} is a Cauchy sequence in W'?(B) and hence there
exists a v € WP(B) such that v, — v ie., v, — v =0 or v =c. However,

1= lim / glvg|Pdx = ]c]p/ gdzr <0,
n—=xJB B
which is a contradiction and thereby the proof is complete. <

To prove the next results we need to introduce the following notation: Dy =:
{reB:g(x)>0}, Dy=:{z € B:g(x) <0} and

o) gi(2), z € Dy,

g(w) = { —g_(z), x € Ds,.
Lemma 2.4 Assume that the hypotheses of Theorem 2.1 are valid. Then there exist
constants Ko >0 and K; >0 such that

(i) / @) uPdr < Kollull, (2.7)
(if) — / o @uPde < Killull, (2.8)

for all u € C(RM).

Proof (i) Suppose that the inequality (2.7) is not true. Then there exists a sequence
{u,} € CP(RY), such that [ gy|u,|Pde =1 and |Ju,||, — 0, as n — oo. By
Corollary (2.2), we have that [, |7 u,|[’dz — 0, as n — oo. Hence there exists a
subsequence - again denoted by {u,} - converging to some constant function ¢ in
Wh?(B). But then

i [ ge(@ulide = |7 [ g (e)do =1,
Therefore, ¢ # 0. Since g <0 on IR"/B, we obtain
lim sup/g(a:)|un|pdx < lim / g(x)|un,|Pdr = |c|p/ g(x)dx < 0.

On the other hand, from relation (2.6) we have that | [ g|u,|Pdz| < 2||u,[|? — 0,
as n — +oo which is a contradiction.

(ii) Using relation (2.8) and [ g_|u,[Pdz = [ glu,|[Pdz — [ g4|u,|Pdx we complete
the proof of the Lemma. <

Next, we give the following uniform Sobolev characterization of the space V.
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Proposition 2.5 Suppose that g satisfies (G). Then V, = W'P(IRY).

Proof Because of density we only compare the V,— and W'P— norms on the space
C3(IRY).
(i) For all u € Cg°(IRY), we have

«
lull < [ 19 wPds+ Slgll [ TuPde < Clanlgllollalfens

where C(a, ||g||eo) = max{1, %} Hence we have that W'? C V,.
(ii) Let {u,} C C&(IRY) be a Cauchy sequence in V, converging in some u € V.
Then, relations (2.5) and (2.8) imply that

/|V(un—u)|pdx—>0 and /g(m)|un—u|pdm—>0, as n — 00.
B B

Suppose that / (up—u)Pdx 4 0. Then if v, =: —2=%—we have that limn_,oo/ v
B

i  Tun—ull5”
v, [Pdr = nll_{go g(x)|v,|Pde = 0. Since {yv,} converges (strongly to zero) in
L*(B), {v,} is a bounded sequence in WP(B). Hence there is a subsequence, de-
noted again by {v,}, such that {v,} strongly converges in L?(B). But lim,, / |/
B

vpPdr = 0, so {v,} is a Cauchy sequence in W'?(B), i.e., there exists some
v € WIP(B), such that v, — v in W'?(B). On the other hand, since /v, — v in

(LP(B))™, it implies that s7v = 0 or v = ¢, where ¢ # 0 since / vPdz = 1. However,
B

0= tlim [ g(x)vnPde — |cyp/ g(z)dz # 0,

n—oo B

which is a contradiction. Hence we have
/(un —u)’dr — 0, as n — oo. (2.9)
B
By adding the two inequalities (2.7) and (2.8) we get

[ 3@lun = upde+ [ (=g )@ — e < (Kot K)lu, ~ul;,
B *

forallu € C§°. But, asn — oo, we have/ g(x)|up—ulPdr = Mn/ |up—ulPde — 0,

B B
where the quantity M,,, given by the intermediate value theorem for integrals, is
finite positive, for all n € IN (g € L*). Also we have that

[ o= uPds < [ (g — aPde < (Ko + K0l = alf
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which implies that, as n — oo,
/ (up — u)Pdx — 0. (2.10)

Therefore by relations (2.9) and (2.10) we get / (up, —u)Pdxr — 0, as n — oo.
RN

Summarizing we have that w, — u, in W'Y that is V, C W, for every g
satisfying hypothesis (G), and the proof is completed. <

3 Principal Eigenvalue and Regularity Results

In this section we are going to define the basic operators and some of their charac-
teristics, which will help to prove the existence of a positive principal eigenvalue of
the problem (1.1) - (1.2). Finally, we close this section by proving some regularity
results.

For any ry large enough (rg > Ry), there exists op > 0, such that g(x) <
—k for all || > ro. For later needs we introduce the following smooth splitting of
the weight function g

k and  gi(z) =: g() — g2(x).

- for |x| < r,

op’

go(x) =: { g(z), for |z| >,

Let us define the operator Ay : D(A,) C W' — W4 as follows
(Ax(u),v) = /(| VulP? 7 u sy v — Ago|ulP2uv)dz, for all u,v € WP,

We can then define the mapping
ay: WH x W — R, by ax(u,v) =: (Ax(u),v).

It is easy to see that ay is bounded, for all u,v € D(A)) and A > \g. Indeed,
we have:

Mﬂww\:!/UVUP2vuvv—MmM2wwﬂ

< /|vmpwvm+—mM1m>

/|vu|p p l/p /|Vv|p l/p U_O(/|u|p)(p—1)/p(/|v|p)1/p

el 1|l w1 < 00

IN

IN
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Also ay(u,v) is coercive, i.e.,

ax(u, u) = / (17 ul? — Agalul?)de > / (vl + ﬁuﬁ)dwﬁnuu
o))

Next, we introduce the following form b(u,v)
b(u,v) = /g1|u]p2uvd:c, for all u,v € WH(IRY).

We see that b(u,v) is bounded, i.e., with the help of the Holder inequality and
the definition of g, for all u,v € WP, we have

o)l = [ alul ] < lgllo=( [ ol
< ([ 1y f oy <l ol

where ¢* = ||g1]|z~. Therefore by the Riesz Representation Theory we can define a
nonlinear operator B : D(B) C LP — L%, such that (B(u),v) = b(u,v), for all
u,v € D(B) and X > 0. It is easy to see that D(B) C WP. Moreover it is easy
to see that the operators Ay, B are well defined and A, is continuous.

Lemma 3.2 (i) if {u,} is a sequence in WP, with wu, — u, then there is a
subsequence, denoted again by {u,}, such that B(u,) — B(u),
(ii) if B'(u) =0, then B(u)=0.

Proof (i) Now suppose that wu, — u in W', We have:

1B(w) = B)llwra = sup  [(Blun) — Bu),v)wis]
[lvlly1,p<1
- swp | / 91 (2) (P2t — [P
vlly1,p <1
< sup | 91(2) (|un P~ — |u[P?u)o]

llollwip<t Jz|<K

+ sup | 91(@) (w1 = [P u)v].
lolly1p<t Jlz[>K
Note that from the definition of ¢i(x) and for any € > 0, we can choose a
K >0 sothat | [, 91(2)(JunlP"?uy — [u[P"?u)v| = 0, while for this fixed K and
by the strong convergence of wu, — u in LY on any bounded region, the integral
over (|z] < K) issmaller than €, for n large enough. Hence we have proved that

B(u,) — B(u) strongly in W14 which means that B is a compact operator.
(ii) See [10, Theorem 1]. <
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Theorem 3.3 Let 1 <p < N. Assume that g satisfies (G). Then

(i) the problem (1.1) - (1.2) has a sequence of solutions (A, ug) with [ g(x)|ul? =
LOo< A< <...<)A\ —o00, ask — o0,

(ii) the eigenfunction uy corresponding to the first eigenvalue can be taken positive
in RY.

Proof (i) We will just sketch the proof. Denote by

1 1
G = uEWl’p:\I/u::—/ ulP = -1,
{ (u) p glul p}

and

M= [ 15

The functional I is even and bounded below on . Since the critical points
of I(u) on G are solutions of the problem (1.1)-(1.2) for certain value of A, to
continue the procedure it is necessary to prove that [(u) satisfies the Palais-Smale
condition on G, i.e., for any sequence {u,} C G, if the sequence {I(u,)} is
bounded and

, ) - (I'(un), tn)
I (uy) — ap,¥ (u,) — 0, where a, := m,

then {u,} has a convergent subsequence in WP, This proof follows the same
lines as in ([1], Lemma 1). Then we apply the Ljusternik-Schnirelmann theory.
(ii) This follows standard maximum principle argument arguments (e.g., see [6]). <

The next theorem examines the regularity as well as the LP* character and
asymptotic behavior of the W1'? solutions of the problem (1.1) - (1.2).

Theorem 3.5 Suppose that uw € W' s a solution of the problem (1.1) - (1.2).
Then w € LPx for all py € [pe,+o0] and the solutions u(x) decay uniformly to
zero, as |x| — +oo.

Proof Let ¢ > 1, pp = pc® and my = (¢* — 1)p. Assume that u € LP*(IR"); then
we shall prove by induction that v € LP*(IR"), for all k > 1. Let u € LP*(IRY), for
some fixed k. Consider the following Sobolev type inequality

[lullze < Kollullwr», forall g € [p,p*]. (3.1)

Rewriting the above inequality and multiplying problem (1.1) by w = u!*™™ we
have

k k
lu e, < EPI[7 (w15
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< Kol / 7 a2 u- | de
< Krw-D / gl fuP ™ m d
< Koc D julpn,

where Ky = K?|\| ||g||so- Letting k — +00, by the dominated convergence theorem,
we obtain

i k(p—1)
ullpesy < Ko™ P77 |[ul|PE.

Therefore, u € LPt+1(IR™). Hence we may deduce from the above inequality that
u € L®(IRY). But, we already know that u € LP*(IR™) () L>®°(IR"). Thereby, we
have that v € LP¥(IRY), for all p; € [py, +00]. By Theorem 1 of Serrin [7], for any
ball B,(x) of radius r centered at any x € IR" and some constant C'(N, py), the
solution u € WP of the equation

—Apu = f,
satisfies the estimate

sup |u(y)| < C{|ul|LrBaw)) + I f1|Lr2 (Bae)) }-
yEB1(x)

For ¢ = % > py, we obtain for the solution of the problem (1.1) - (1.2)

1
u(z)] < sup fu(y)] < Crlllell et (g0 + AL Ngllool] 1l 117a(m, 00 )
yEBl(a:)

for any x € IRY. Hence |ul[P~! belongs to LI(IRY), and the uniform decay of u(x)
to zero, as |x| — 400, is proved. <

As a consequence of the above theorem we have the following regularity charac-
terization of the solutions of the problem (1.1) - (1.2).

Corollary 3.7 For any r > 0, the solutions of the problem (1.1) - (1.2) belong to
Cl%(B,), where a=«a(r) e (0,1).

4 Simplicity and Isolation of the Principal Eigen-
value

In this section, first we are going to prove the simplicity of the principal eigenvalue
of the problem (1.1) - (1.2) by generalizing Picone’s identity
2

u? u u
|vu|2+§|vv|2—2;vuvv=!vu!z—v(ngzo,



Eigenvalue Problems for Quasilinear Elliptic Equations 11

which holds for any differentiable functions v > 0 and u > 0, to the p- Laplacian
operator A,u with p > 1. The idea to use Picone’s identity for the proof of the
simplicity was firstly introduced in [2].

Theorem 4.1 (Generalized Picone’s Identity) Letv >0, u >0 be differentiable
functions in Q, where Q is a bounded or unbounded domain in IRY. Denote by

uP upP™! L
Llu,v) = [vul+ -1l —p =z vul v~ v,
uP _
R(u,v) = |vuf V(=) Vol ve.

Then L(u,v) = R(u,v) > 0. Moreover, L(u,v) =0, a.e. in Q, if and only if

V(u/v) =0, a.e. in Q, i.e., u= kv, for some constant k in each component of .

Proof For the proof we refer to W. Alegretto and Y. X. Huang ([2], Thm. 1.1).

Theorem 4.2 Suppose v € C* satisfies —Ayv > AgvP™! and v >0 in RY,
for some X\ > 0. Then, for u>0 in WY we have

/|vu|pdx > )\/g(x)\u|pdx, (4.1)

and X < \. The equality in (4.1) holds if and only if X=X, u=kv and v =
cuy, for some constants k,c. In particular, the principal eigenvalue N is simple.

Proof Let € be a compact subset of RY. Let ¢ € C°(IRY), with ¢ > 0. Then,

we have
0 < LOL<¢,U>3/L<¢,U>=/R<¢,U>

= [iver+ [Eoaws [lvor-afor. @

Now letting ¢ — u in WP, we obtain (4.1). Suppose that for some 0 <
ug € W, we have [| 7w’ = X [ glupl’. Then from (4.2) we conclude that
fQo L(ug,v) =0, i.e., ug = kv on € for some constant k. Since €y is arbitrary

and ug is nontrivial , we have that uo = kv on RY, k>0 and v € W' Next, if
we replace u by u; in (4.1) then following the above reasoning, by (4.2) we obtain
that v = cu; and A\ > \. Since v € W we can repeat the above arguments
choosing v for ug and u; for v. Therefore we come to the conclusion that v = ku,
and simplicity of ] is proved. <
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Theorem 4.3 The principal eigenvalue Ay of the problem (1.1) - (1.2) is isolated
in the following sense: there exists 1 > 0, such that the interval (—oo, \; + 1)
does not contain any other eigenvalue than .

Proof Assume the contrary, i.e., there exists a sequence of eigenpairs (\,, u,), such
that A\, — A\ and w, € W' with ||u,||wi» = 1. Then from the simplicity
of A\; and the variational characterization of the principal eigenvalue we have that
A > Ai. Also from the weak convergence we have that u, — u; >0 in WP, We
know that

/ VAT SRR VAT VAR An/g(x)lun!”uncb, for any ¢ € Cg*(RY).  (4.3)

Subtracting the two equations of the form (4.3) corresponding to n and m and
taking ¢ = u, — u,,, we obtain

[ (7 unlP 27w = | Vw7 ) 7 (tn, — ) d
Y / 9(2) [ttt — ttaP 2ttt — 1)

=) [ @)l 0 = fnl? ) 0 = )

IN

. / 01(2) ([l — [t P2ttt — 1)t

+ (A=) /g(x)]um|p_2um(un — Up)dx — 0, asn,m — oo.  (4.4)

Indeed, it is clear that - due to the compact support of ¢g; and the fact that
u, — uj - there exists a subsequence of {u,} such that

/gl(m)(|un|p_2un — U [Pt ) (U — Uy )dw — 0, as n, M — 00.

Moreover, applying Holder’s inequality on the second integral of the last part of
inequality (4.4), we see that it is bounded. Hence we have that

(An — ) /g(m)|um\p2um(un — Up,)dz — 0, as n,m — oo.

On the other hand, taking into consideration the following inequality

ja =0 < e{(lal""a — [b]~?b) (a — 0)}2(Jal” + [b]")' /%, a,b € R,
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where s =p, if p€ (1,2) and s = 2, if p > 2, we have that (4.4) becomes

s/2

/|vun—vum|p < c{/<|vun|p—2wn—|vum|p-2vum>v<un—um>}
{/\Vun]pdx—l-/]Vum\pdx}l_s/Q. (4.5)

Hence by (4.4) we see that the left hand side of the inequality (4.5)above tends
to zero. Therefore, we have proved that wu, — uw; € WD, Let us define the
following set Q;, := {z € R"; u,, < 0} with |Q; | > 0. Moreover, we have that,
for any fixed number K >0

meas(§, NBg)—0, asn — oo. (4.6)
We also know that
(A/\(un)a un) < ClHunHWl,P, (B(Un), U) < CQ| |U‘ |£

On the other hand, since WP is continuously embedded in LP we have

callug [y, < (Ax(un) ) = An(B(un), uy)
< collun-lf < esllug [y (4.7)

Finally, since [Q,-| # 0, equation (4.7) implies that c3 > const > 0, for any
n € N. But this contradicts (4.6) and the proof is complete. <
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