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Abstract

We consider the generalized quasilinear dissipative Kirchhoff’s String problem

utt =−‖A1/2u‖2HAu− �Aut + f (u), x ∈ RN, t�0

with the initial conditionsu(x,0)=u0(x) andut (x,0)=u1(x), in the case whereN �3, �>0. The
purpose of our work is to study the stability of the initial solutionu=0 for this equation using central
manifold theory.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyperbolic initial
value problem:

utt =−‖A1/2u‖2HAu− �Aut + f (u), x ∈ RN, t�0, (1.1)
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u(x,0)= u0(x), ut (x,0)= u1(x), x ∈ RN (1.2)

with initial conditionsu0, u1 in appropriate function spaces,N�3, and�>0.
Kirchhoff in 1883 proposed the so-calledKirchhoff stringmodel in the study of oscilla-

tions of stretched strings and plates

ph
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=
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ϑx2

+ f, 0<x <L, t�0,

whereu = u(x, t) is the lateral displacement at the space coordinatex and the timet , E
theYoung modules,p the mass density,h the cross-section area,L the length,p0 the initial
axial tension,� the resistance modules andf the external force (see[6]). Whenp0= 0 the
equation is considered to be ofdegenerate type and the equation models an unstretched
string or its higher dimensional generalization. Otherwise it is ofnondegenerate type and
the equation models a stretched string or its higher dimensional generalization.
The global existence and the uniqueness of solutions have been established in the energy

class (see[27]). Once global existence is known, it is not difficult to show that all solutions
decay ast →∞. Furthermore, in the nondegenerate case a simple calculation of the energy
shows that solutions decay at least exponentially.
In the degenerate case, however, estimates of the rate of decay requires far more delicate

analysis. Much of the efforts have been focused on estimates from above (see[12,15]).
But it is difficult to obtain the estimates from below. In fact, except for some special cases
(see[16,17]), a few things are known about the lower estimates. Also Ono in[18], proved
global existence, asymptotic stability and blowing up results of solutions for some degen-
erate nonlinear wave equation with a strong dissipation (see also[14,19,20]). Mizumachi
[13] studied the asymptotic behavior of solutions to the Kirchhoff equation with a viscous
damping term with no external force.
In our previous work (see[21,24]), we prove global existence blow-up results and exis-

tence of global attractor for someequations of Kirchhoff’s type in all ofRN .Also, in[23] we
prove the existence of compact invariant sets for the same equation. Recently Karachalios
and Stavrakakis (see[7–11]) studied global existence, blow-up results and asymptotic be-
havior of solutions for some semilinear wave equations with weak dissipation in all of
RN .
It should be noted that, unlikemost earlier works, ourmethodmakes use of the dynamical

systems point of view involving the theory of central manifolds. The advantage of such an
approach is that we may obtain exact decay estimates by relatively simple computations.
The presentation of this paper is as follows: in Section 2, we discuss the space setting

of the problem and the necessary embeddings for constructing the evolution triple. We
also give some examples in which our results hold. In Section 3, we make a review of the
local invariant manifold theory. In Section 4, we prove the existence and uniqueness of the
solution for our problem. In Section 5, we study the stability of the initial solutionu=0. In
order to study the stability, in fact we study the spectrum of the operatorÂ. In our problem
we have an external forcef (u) and the stability of the solution depends on the sign of
f ′(0) 
= 0. In Section 6, we examine the stability of the solutionu = 0, in the case where
f ′(0) = 0. For this purpose we use the central manifold theory. Finally, in Section 7, we
study the stability of the solutionu = 0, for the equation with weak dissipation. In this
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case, using Pego’s transformation the problem becomes a system of ordinary differential
equations.

2. Formulation of the problem

The spaceD(A) is going to be introduced and studied later in this section. We shall
frequently use the followingSobolev–Poincaré inequality:

‖v‖p�c∗‖Am/2v‖ (2.1)

for v ∈ D(Am/2), 1�p�2N/[N − 2m]+, (1�p<∞ if N = 2m).
We also need to make the following remarks: LetV, H two Hilbert spaces where

V ⊂ H, and V is dense inH . (2.2)

We also have that

V ⊂⊂ H (compactly). (2.3)

The scalar product and the norm inH are, respectively, denoted(., .) , ‖.‖H . We identify
H with its dualH ′, andH ′ with a dense subspace of the dualV ′ of V ; thus we get the
evolution triple

V ⊂ H ⊂ V ′, (2.4)

where the injections are continuous and dense.
Let a(u, v) be a bilinear continuous form onV which is symmetric and coercive

∃ a0>0, a(u, u)�a0‖u‖2, ∀u ∈ V . (2.5)

With this form we associate the linear operatorA from V into V ′ defined by

(Au, v)= a(u, v), ∀u, v ∈ V .

OperatorA is an isomorphism fromV onto V ′ and it can also be considered as a
selfadjoint unbounded operator inH with domainD(A) ⊂ V

D(A)= {v ∈ V, Av ∈ H }.
Due to (2.2) there exists an orthonormal basis ofH , {wj }j∈N which consists of eigen-

vectors ofA,{
Awj = �jwj , j = 1,2, . . . , wj ∈ H,

0< �1��2� . . . , �j →∞ asj →∞.
(2.6)

Our results cover the following problems:

Example 1. LetA=−�, V=H 1
0 (�), H=L2(�), V ∗=H−1(�), � ⊆ RN (�bounded

or unbounded), for the equation

utt − ‖∇u‖2
L2�u− �ut = 0, x ∈ �, t >0

with initial conditionsu(x,0)= u0, ut (x,0)= u1, u|�� = 0 (see[13]).
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Example 2. Let V =D1,2(RN), H = L2
g(R

N), V ∗ =D−1,2(RN), A = −��, for the

Kirchhoff’s equation in all ofRN

utt − �(x)�u‖∇u‖2
L2
g
− ��(x)�ut = f (u), x ∈ RN, t >0,

whereu(x,0)= u0, ut (x,0)= u1 and�(x) →∞ as|x| → ∞ (see[18,21]).

Example 3. LetV=H 2
0 (�), H=L2(�), D(A)=H 2

0 (�)∩H 4(�), A=�2, �=[0, L],
for the equation

�2u
�t2

+ �uxxxxt + ‖uxx‖22uxxxx = f (u), x ∈ �, t >0

with u(x,0) = u0, ut (x,0) = u1, u|�� = uxx |�� = 0. In higher dimension the equation
may be written in the form

utt + ��2ut + ‖�u‖22�2u= f (u), x ∈ �, where� ⊂ RN, t >0, N�2.

For more information about the problem we refer to[26, p. 223]. Also, our results hold
for equations with strong dissipation (see[26, p. 221]).

Finally, we give the notion of theweak solutionfor problem (1.1)–(1.2).

Definition 2.1. A weak solution of problem (1.1)–(1.2) is a functionu(x, t) such that

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;V ], utt ∈ L2[0, T ;H ],
(ii) for all v ∈ C∞

0 ([0, T ] × (RN)), satisfies the generalized formula∫ T

0
(utt (�), v(�))H d�+

∫ T

0

(
‖A1/2u(t)‖2H

∫
RN

A1/2u(�)A1/2v(�)dx d�
)

+ �
∫ T

0
(Aut (�), v(�))H d�−

∫ T

0
(f (u(�)), v(�))H d�= 0

and
(iii) satisfies the initial conditions

u(x,0)= u0(x), u0 ∈ D(A), ut (x,0)= u1(x), u1 ∈ V .

3. Invariant manifolds

In this section we make a brief review of the local invariant manifold theory.
LetX be a Banach space and consider the semilinear evolution equation onX:

zt +Az= g(z). (3.1)

We assume thatA andg satisfy the following hypotheses:

(A1) A is a sectorial operator, or−A generates an analytic semigroup.
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(A2) The spectrum ofA, �(A), can be written as�(A)= �0 ∪ �+, where�0 and�+ are
spectral sets such that

�0 = {� ∈ �(A)|Re�= 0},
�+ = {� ∈ �(A)|Re�>0}.

(A3) There exists a real numbera, 0�a <1, and an integerk�1 such thatg is aCk-
mapping fromXa toX. Furthermore,g(0)= 0 andDg(0)= 0.

(A4) X hasCk-norm, that is,F(z)= ‖z‖X (z 
= 0) is aCk-function.

Here we define the spaceXa as follows: Let�>0 be a sufficiently large constant such
that infn∈�(A+�I )Ren>0. Then the fractional powers of(A+ �I ) can be defined for all
a ∈ R. We denote byXa the domain of the operator(A+ �I )a , which is a Banach space
equipped with the norm‖w‖Xa =: ‖(A+ �I )aw‖X.
Under hypothesis(A2), there exist projectionsP0 andP+ associated with�0 and�+

such that the setsX0 =: P0X andX+ =: P+X are invariant subspaces,X = X0 ⊕ X+,
�(A|X0)= �0 and�(A|X+)= �+, (for the proof see[4]).
LetXa

0 =Xa ∩X0 andXa+ =Xa ∩X+. Since�0 is a bounded spectral set, we easily see
thatXa

0 =X0.
Let {T (t)}t �0 be a semiflow defined by (3.1). In other words, byT (t)z0, we mean the

solution to (3.1) that equalsz0 at t = 0.

Definition 3.1. The set of all� ∈ �(A), for which the operator�I −A is one to one and
(�I −A)X is dense inX, but such that(�I −A)X 
= X, whereX is a Banach space, is
called thecontinuous spectrum ofA and denoted by�c(A) (see[4, p. 580]).

Definition 3.2. For a given neighborhoodU of 0 inXa , a local center manifold Wc
loc(0)

is aC1-submanifold inU satisfying the following:

(1) Wc
loc(0) = {� + 	 | � = hc(	), � ∈ Xa+ ∩ U, 	 ∈ X0 ∩ U}, where we have thathc :

X0 ∩ U → Xa+ is aC1-mapping withhc(0)= 0 andDhc(0)= 0.
(2) For eachz ∈ Wc

loc(0), {T (t)z | t1� t� t2} ⊂ U implies that{T (t)z | t1� t� t2} ⊂
Wc

loc(0), for anyt1, t2 with t1<0< t2.

Finally, we have the following useful result for the existence of a local center manifold.
(For the proof we refer to[3,2,5]).

Proposition 3.3. Under hypotheses(A1)–(A4), there exists a neighborhoodU of 0 in Xa

satisfying the following:
Wc

loc(0) is a localC
k-submanifold ofXa that is tangent toX0 at 0, that is, there exists a

Ck-functionhc : X0 ∩ U → Xa+ satisfyinghc(0)=Dhc(0)= 0 and

Wc
loc(0)= {�+ 	 | �= hc(	), � ∈ Xa+ ∩ U, 	 ∈ X0 ∩ U}.
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4. Global existence

In this section we prove existence of a global solution for the problem (1.1)–(1.2), under
small initial data.

Theorem 4.1(Local existence). Let f (u) a C1-function such that|f (u)|�k1|u|a+1,
|f ′(u)|�k2|u|a , 0�a�4/(N − 2) andN�3.Consider that(u0, u1) ∈ D(A) × V and
satisfy thenondegenerate condition

‖A1/2u0‖2>0. (4.1)

Then there existsT∗=T (‖Au0‖, ‖A1/2u1‖)>0such that the problem(1.1)–(1.2)admits
a unique local weak solutionu satisfying

u ∈ C(0, T∗;D(A)) and ut ∈ C(0, T∗;V ).

Proof. We take�= 1. Given the constantsT∗>0, R >0, we introduce the two parameter
space of solutions

XT∗,R =: {v ∈ C0
w(0, T∗;D(A)) : vt ∈ C0

w(0, T∗;V ), v(0)= u0, vt (0)= u1,

e(v)�R2, t ∈ [0, T∗]},
wheree(v(t)) =: ‖Av(t)‖2H + ‖A1/2v′(t)‖2H , the norm in the spaceX0 =: D(A) × V .
Also u0 satisfies the nondegenerate condition (4.1). It is easy to see that the setXT∗,R is a
complete metric space under the distanced(u, v) =: sup0� t �T e1(u(t)− v(t)), where

e1(v)= ‖v′(t)‖2H + ‖A1/2v‖2H ,
the norm in the spaceX1 =: V × H . We have thatX0 ⊂ X1 compactly, that is,
e1(u(t))�e(u(t)).
Next, we introduce the nonlinear mappingS in the following way. Givenv ∈ XT∗,R, we

defineu= Sv to be the unique solution of the linear wave equation with strong dissipation

u′′(t)+ ‖A1/2v(t)‖2Au(t)+ Au′(t)= f (v), (4.2)

u(0)= u0, u′(0)= u1. (4.3)

In the sequel we shall show that there existsT∗>0 andR>0 such that the following
two conditions are valid:

(i) S mapsXT∗,R into itself, (4.4)

(ii) S is a contraction with respect to the metricd(., .). (4.5)

Set 2M0 =: ‖A1/2u0‖2H >0 and

T0 =: sup{t ∈ [0,+∞); ‖A1/2v(s)‖2H >M0, for 0�s� t}.
Then

T0>0 and ‖A1/2v(t)‖2H �M0, on [0, T0]. (4.6)
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(i) To check property (4.4), we multiply Eq. (4.2) by 2Aut and integrate overR
N to get

2
∫

RN
Aututt dx + 2

∫
RN

‖A1/2v(t)‖2HAutAudx + 2
∫

RN
AutAut dx

= 2
∫
Rn

f (v)Aut dx. (4.7)

So, we have that

d

dt
‖A1/2ut (t)‖2H + ‖A1/2v(t)‖2H

d

dt
(‖Au(t)‖2H )

=
(
d

dt
‖A1/2v(t)‖2H

)
‖Au(t)‖2+ 2(f (v), Aut (t)).

Finally, we obtain

d

dt
e∗2(u(t))+ 2‖Aut(t)‖2H =

(
d

dt
‖A1/2v(t)‖2H

)
‖Au(t)‖2H

+ 2(f (v), Aut (t)), (4.8)

where we set

e∗2(u(t)) =: ‖A1/2ut (t)‖2H + ‖A1/2v(t)‖2H‖Au(t)‖2H .
Note that

e∗2(u)�‖A1/2ut‖2+M0‖Au(t)‖2H �c−21 e(u(t))�c−21 e1(u(t)) (4.9)

with c1= (max{1,M−1
0 })1/2. To proceed further, we observe that(

d

dt
‖A1/2v‖2H

)
‖Au(t)‖2H =

(
2

∫
RN

Avvt dx

)
‖Au(t)‖2H

�2(‖Av‖2H )1/2(‖vt‖2H )1/2 ‖Au(t)‖2H
�2Rk(‖vt‖2H )1/2 e(u(t))

�2RkRc21e
∗
2(u(t))�c2R

2e∗2(u(t))) (4.10)

with c2= 2kc21, wherek is the constant of the embeddingV ⊂ H . We also have that

2(f (v), Aut )= 2
∫

RN
f ′(v)A1/2vA1/2ut dx

�2k2‖v‖aNa‖A1/2v‖2N/N−2‖A1/2ut‖,
where we used Hölder inequality withp−1= 1/N, q−1=N − 2/2N, r−1= 1

2. From the
embeddingsD(A) ⊂ V ⊂ H and using Sobolev–Poincaré inequality we get

‖v‖aNa �ca∗‖Av‖aH �ca∗Ra, ‖A1/2v‖2N/N−2�c∗‖Av‖H �c∗R.

Thus, we obtain

2(f (v), Aut (t))�2k2c
a∗Rac∗Re(u(t))1/2. (4.11)
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Using estimates (4.10)–(4.11), we get from (4.8) that

d

dt
e∗2(u(t))�c2R

2e∗2(u(t))+ c3R
a+1e∗2(u(t))1/2,

wherec3= 2k2ca+1∗ c1. Hence, from Gronwall’s inequality we get

e∗2(u(t))�{e∗2(u(0))1/2+ c3R
a+1T∗}2ec2R2T∗ .

Thus from estimation (4.9) we obtain

e1(u)�e(u(t))�c21((‖A1/2u1‖2H + ‖A1/2u0‖2H ‖Au0‖2H )1/2+ c3R
a+1T∗)2ec2R

2T∗

=: C1(T∗, R) (4.12)

for any t ∈ [0, T∗], with T∗�T0. Since we have that functionu ∈ L∞(0, T∗; D(A)) ∩
W1,∞(0, T∗; V ) andu(t) satisfies Eq. (4.2), it follows thatu′′ ∈ L∞(0, T∗; H) and hence,
u ∈ C0

w([0, T∗]; D(A))∩C1
w([0, T∗]; V ). Thus, for the mapS to verify condition (4.4) it

will be enough that the parametersT∗, R satisfy

C1(T∗, R)<R2 (4.13)

which is true forT∗ and the norms small enough.
(ii) We takev1, v2 ∈ XT∗,R and denote byu1 = Sv1, u2 = Sv2. Hereafter, we suppose

that (4.13) is valid, i.e.u1, u2 ∈ XT∗,R. We setw = u1 − u2. The functionw satisfies the
following problem:

wtt + ‖A1/2v1‖2HAw + Awt = − {‖A1/2v1‖2H − ‖A1/2v2‖2H }Au2

+ f (v1)− f (v2), (4.14)

w(0)= 0, wt (0)= 0. (4.15)

Multiplying Eq. (4.14) by 2wt and integrating overR
N we have the equation

2
∫

RN
wtwtt dx + 2

∫
RN

‖A1/2v1‖2HAwwt dx + 2
∫

RN
Aw2

t dx

=−2{‖A1/2v1‖2H − ‖A1/2v2‖2H }
∫

RN
Au2wt dx + 2

∫
RN

(f (v1)− f (v2))wt dx

(4.16)

which may also be written as

d

dt
e∗v1(w)+ 2‖A1/2wt‖2H = + d

dt
‖A1/2v1‖2H‖A1/2w‖2H

− 2{‖A1/2v1‖2H − ‖A1/2v2‖2H }(Au2, wt )

+ 2(f (v1)− f (v2), wt )

≡ + I1(t)+ I2(t)+ I3(t), (4.17)

where we sete∗v1(w(t)) =: ‖wt(t)‖2+‖A1/2v1(t)‖2H‖A1/2w(t)‖2H . Note that the following
estimations are valid:

e∗v1(w)�‖wt‖2+M0‖A1/2w‖2H �c−21 e1(w). (4.18)
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As in (4.10), we observe that

I1(t)�c2R
2e∗v1(w) (4.19)

and

I2(t)�2(‖A1/2v1‖H + ‖A1/2v2‖H )‖A1/2(v1− v2)‖H‖Au2‖‖wt(t)‖
�2(R + R)e1(v1− v2)

1/2Re1(w(t))1/2

�4R2e1(v1− v2)
1/2c1e

∗
v1
(w)= c4R

2e1(v1− v2)
1/2e∗v1(w), (4.20)

wherec4= 4c1. Next, applying the Sobolev–Poincaré inequality (2.1) and the embeddings
D(A) ⊂ V ⊂ H , we obtain

I3(t)�2k1
−1(‖A1/2v1‖aH + ‖A1/2v2‖aH )‖A1/2(v1− v2)‖H‖wt‖
�c6R

ae1(v1− v2)
1/2e∗v1(w(t))1/2, (4.21)

wherec6 = 4k1
−1c1. From estimates (4.19)–(4.21), we obtain the following estimate for
the relation (4.17):

d

dt
e∗v1(w)�c2R

2e∗v1(w)+ (c4R
2+ c6R

a)e1(v1− v2)
1/2e∗v1(w)1/2.

Gronwall’s inequality and the fact thate∗v1(w(0))= 0 imply

e∗v1(w)�(c4R
2+ c6R

a)2T 2∗ ec2R
2T∗ sup

0� t �T∗
e1(v1(t)− v2(t)). (4.22)

Therefore, from (4.12) and (4.22) we get

d(u1, u2)�C2(T∗, R)d(v1, v2), (4.23)

where the constantC2(T∗, R) depending onT∗ andR is

C2(T∗, R) ≡ c21{c4R2+ c6R
a}2T 2∗ ec2R

2T∗ .

For small enoughT∗>0, we haveC2(T∗, R)<1. From the above argument, by applying
the Banach contraction mapping principle we know that the problem (1.1)–(1.2) admits a
unique solutionu(t) in the class

C0
w([0, T∗]; D(A)) ∩ C1

w([0, T∗]; V ).

Moreover, we see thatu ∈ L∞(0, T∗; D(A)) ∩ W1,∞(0, T∗; V ) and f (u) ∈ L∞
(0, T∗; V ). Therefore, it follows from the continuity argument for wave equations (see
[26]) that this solutionu belongs to

C0([0, T∗]; D(A)) ∩ C1([0, T∗]; V ).

The proof of theorem is now completed.�

Remark 4.2. In the above theorem if we assume thatu0 ∈ D(A), u1 ∈ V , f is a nonlinear
C1 function, then it is easy to see following the same steps, that the solutionu belongs to

C0([0, T ]; V ) ∩ C1([0, T ]; H). (4.24)
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In that case, because of the inequalities

e1(u(t))�e(u(t))�R2,

we find thatu is a solution such that

u ∈ L∞(0, T ; V ), u′ ∈ L∞(0, T ; H).

The continuity properties (4.24), are proved with the methods indicated in[26, Sections
II.3 and II.4].

Corollary 4.3 (Global existence). We assume that(u0, u1) ∈ D(A) × V . Then, there
exists a unique solution of problem(1.1)–(1.2),such that

u ∈ C([0, +∞) ; V ), ut ∈ C([0, +∞) ; H).

Proof. The proof follows the main ideas developed in the work[21, Theorem 4.3].We also
refer to[18]. �

5. The linearized system

In this section we study the stability of the initial solutionu=0 in the case off ′(0) 
= 0.
The linearized equation of the system around solutionu is

vtt =−‖A1/2u‖HAv − �Avt + f ′(u)v. (5.1)

In the case whereu= 0, Eq. (5.1) becomes

vtt + �Avt − f ′(0)v = 0. (5.2)

Settingvt = w, Eq. (5.2) gets the following form:[
w

v

]
t

+
[
�A −f ′(0)
−1 0

] [
w

v

]
=

[
0
0

]
or

ūt + Âū= 0, (5.3)

where

ūt = (w, v)T and Â=
[
�A −f ′(0)
−1 0

]
. (5.4)

So, in order to study the stability of the solution, we study the spectrum of the operator
Â. For later use we state the following theorems.

Theorem 5.1. LetA be a sectorial linear operator in a Banach spaceX, and letf : U →
X,whereU is a cylindrical neighborhood inRN ×X�, (for some�<1).Also letx0 be an
equilibrium point. Suppose

f (t, x0 + z)= f (t, x0)+ Bz+ g(t, z),
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whereB is a bounded linear map fromX� toX and‖g(t, z)‖ = O(‖z‖�) as‖z‖� → 0,
uniformly in t , and f (t, x) is locally Hölder continuous int , locally Lipschitzian inx,
onU .
If the spectrum ofL=A−B lies in{Re�>�}, for some�>0, i.e., �(L) ⊂ {Re�>�},

or equivalently if the linearization

dz

dt
+Az= Bz

is uniformly asymptotically stable, then the original equation has the solutionx0 uniformly
asymptotically stable inX�.

Proof. See[5, Theorem 5.1.1, p. 98]. �

Theorem 5.2. LetA, f be as in Theorem5.1.Assume alsoAx0 = f (t, x0) for t� t0,
where

f (t, x0 + z)= f (t, x0)+ Bz+ g(t, z), g(t,0)= 0,

‖g(t, z1)− g(t, z2)‖�k(�)‖z1− z2‖�,

‖z1‖���, ‖z2‖���, and k(�) → 0, � → 0+.

If L=A−B assume�(L)∩{Re�<0} is a nonempty spectral set. Then the equilibrium
solutionx0 is unstable.

Proof. See[5, Theorem 5.1.3, p. 102]. �

Next, we will compute the eigenvalues ofÂ. Let x̄j = [�j , 
j ] ∈ D(A). Eigenvalues

of Â satisfy the following relation:

Âx̄j = �j x̄j

or [
�A −f ′(0)
−1 0

] [
�j


j

]
= �j

[
�j


j

]
.

Therefore, we have the following system:{
�A�j − f ′(0)
j = �j�j ,

−�j = �j
j .
(5.5)

But, we have that{�j }j∈N are eigenfunctions ofA, i.e.{
A�j = �j�j , j = 1,2, . . . , �j ∈ D(A),

0< �1��2� . . . , �j →∞, asj →∞.
(5.6)

So, system (5.5) becomes{
��j�j − f ′(0)
j = �j�j ,

−�j = �j
j ,



1354 P.G. Papadopoulos, N.M. Stavrakakis / Nonlinear Analysis 61 (2005) 1343–1362

or [
��j −f ′(0)
−1 0

] [
�j


j

]
= �j

[
�j


j

]
. (5.7)

Therefore, in order to find the eigenvalues ofÂ, we compute the characteristic polynomial
of Â, i.e.∣∣∣∣−��j + �j f ′(0)

1 �j

∣∣∣∣= 0

or equivalently

�2j − ��j�j − f ′(0)= 0.

Let,�=�2�2j +4f ′(0). Then according to the sign off ′(0), we have the following cases:
CaseI: Let f ′(0)>0. Then the operator̂A admits the following two real eigenvalues of

different sign:

�±j = ��j ± (�2�2j + 4f ′(0))1/2

2
. (5.8)

Also, sincef ′(0)>0 we may easily see that the continuous spectrum ofÂ, �c(Â)= ∅.
So, by Theorem 5.2 we have that min Re

n∈�(Â)
n<0, which implies that 0 is unstable for

the initial Kirchhoff’s system.
CaseII: Let f ′(0)<0. Then we have the following cases:
Case a: Let�= �2�21+ 4f ′(0)�0. Then we have

�2�21
4

� − f ′(0). (5.9)

Then the operator̂A admits two real eigenvalues which are both positive. Indeed, we
have for the smallest eigenvalue�−1

�−1 = ��1− (�2�21+ 4f ′(0))1/2

2
>0, that is 0>4f ′(0)

which holds. In order to find the continuous spectrum ofÂ, we examine when�= 0. This
is the case when

�1= 2
√−f ′(0)

�
. (5.10)

From (5.8) and (5.10) we obtain that

�1=
��1
2

=√−f ′(0)>0. (5.11)

So, using the fact thatf ′(0)<0, we have an isolated eigenvalue
√−f ′(0), being an

accumulation point of the sequence of eigenvalues{�±j }∞j=1. Thus, we have that
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�c(Â)= {√−f ′(0)} 
= ∅. We assume that

0<�−1 = ��1− (�2�21+ 4f ′(0))1/2

2
<

√−f ′(0) or

8(−f ′(0))<4��1
√−f ′(0).

Finally, we get√−f ′(0)< ��1
2

which holds because of (5.9). Thus, applying Theorem 5.1, we have that the solutionu= 0
is asymptotically stable for the initial Kirchhoff’s system.
Case b: Let�<0. In that case we have that the eigenvalues�±1 are complex and

min Re�1∈�(Â)
�±1 = ��1

2
>0.

Therefore, using Theorem 5.1, we have that the solutionu = 0 is asymptotically stable
for the initial Kirchhoff’s system.

6. Central manifold

In this section we study the stability of the initial solutionu = 0, in the case where
f ′(0)=0 by means of central manifold theory. Making use of a change of variables similar
to what is introduced by Pego (see[25]), namely{

p(x, t)= A−1/2ut ,
q(x, t)=−�A1/2u− p,

(6.1)

we can rewrite (1.1)–(1.2) in the form of areaction–diffusion system
pt (x, t)=−�Ap +

(
1

�3
‖p + q‖2H

)
(p + q)+ A−1/2f (u),

qt (x, t)=−
(
1

�3
‖p + q‖2H

)
(p + q)− A−1/2f (u),

p(x, t)= 0, t >0,
p(x,0)= p0(x), q(x,0)= q0(x),

(6.2)

wherep + q =−�A1/2u. Indeed, we have

pt = − �Ap +
(
1

�3
‖p + q‖2H

)
(p + q)+ A−1/2f (u)

= − �AA−1/2ut +
(
1

�3
‖ − �A1/2u‖2H

)
(−�A1/2u)+ A−1/2f (u)

= − �A1/2ut − ‖A1/2u‖2HA1/2u+ A−1/2f (u).

But we have thatpt = A−1/2utt . Thus, we get

A−1/2utt =−�A1/2ut − ‖A1/2u‖2HA1/2u+ A−1/2f (u). (6.3)
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Using operatorA1/2 in (6.3) we have

utt =−�Aut − ‖A1/2u‖2HAu+ f (u) (Generalized Kirchhoff’s Equation).

For another example we can examine how Pego’s transformation can be used in
Example 2. The associated transformation is{

p = (−��)−1/2ut ,
q =−�(−��)1/2u− p and p + q =−�(−��)1/2u.

The reaction–diffusion system is
pt =−�(−��)p +

(
1

�3
‖p + q‖2

L2
g

)
(p + q)+ (−��)−1/2f (u),

qt =−
(
1

�3
‖p + q‖2

L2
g

)
(p + q)− (−��)−1/2f (u).

Indeed,

pt = − �(−��)p +
(
1

�3
‖p + q‖2

L2
g

)
(p + q)+ (−��)−1/2f (u)

= − �(−��)(−��)−1/2ut +
(
1

�3
‖ − �(−��)1/2u‖2

L2
g

)
{−�(−��)1/2u}

+ (−��)−1/2f (u)

= − �(−��)1/2ut − ‖∇u‖2(−��)1/2u+ (−��)−1/2f (u).

But,pt = (−��)−1/2utt . Thus, we get that

(−��)−1/2utt =−�(−��)1/2ut − ‖∇u‖2(−��)1/2u+ (−��)−1/2f (u).

Using operator(−��)1/2 in the previous relation we have

utt − �(x)�u‖∇u‖2− ��(x)�ut = f (u).

As we have already seen, the linearized equation of the system around solutionu= 0 is

vtt =−�Avt + f ′(0)v. (6.4)

Now, we have thatf ′(0)= 0. So, relation (6.4) becomes

vtt + �Avt = 0

or [
w

v

]
t

=−
[
�A 0
0 0

] [
w

v

]
. (6.5)

Finally, we have that

d

dt

[
w

v

]
=−Â

[
w

v

]
, (6.6)

whereÂ= [�A0 0
0] andw = vt , wt =−�Aw.
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Lemma 6.1. Let Â be considered in the spaceX =: H × H . Then the spectrum of̂A
consists of eigenvalues{0} ∪ {��j }∞j=1.

Proof. Let x̄j = [�j , 
j ] ∈ D(A). Eigenvalues ofÂ satisfy the following relation:

Âx̄j = �j x̄j

or [
�A 0
0 0

] [
�j


j

]
= �j

[
�j


j

]
.

Therefore, we have the following system:{
�A�j + 0
j = �j�j ,

0�j + 0
j = �j
j .
(6.7)

But, we have that{�j }j∈N are eigenfunctions of̂A, i.e. relation (5.6) holds. So, (6.7)
becomes{

��j�j + 0
j = �j�j ,

0�j + 0
j = �j
j

or [
��j 0
0 0

] [
�j


j

]
= �j

[
�j


j

]
. (6.8)

Therefore, in order to find the eigenvalues ofÂ, we compute the characteristic polynomial
of Â, i.e.∣∣∣∣��j − �j 0

0 −�j

∣∣∣∣= 0 or �2j − ��j�j = 0.

So, we have that�j = 0 or��j . Thus, we get that

�(Â)= {0} ∪ {��j }∞j=1. �

Let, P0 andP1 projections associated with spectral sets{0} and{��j }∞j=1, respectively.
PutX0 = P0X andX+ = P+X. Then

X0 = span

{(
0
�j

)}∞

j=1
, X+ = span

{(
�j

0

)}∞

j=1
.

Remark 6.2. Using Pego’s transformation, the linearized system (6.5) may be written as
a reaction–diffusion system, that is,{

pt (x, t)=−�Ap,
qt (x, t)= 0.

(6.9)
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Settingz= (
p
q
), Â= (

�A
0

0
0), g(z)= (

0
0), relation (6.9) becomes

zt + Âz= g(z). (6.10)

Remark 6.3. We assume thatf (0)= f ′(0)= 0. Then system (6.2) may also be written as
Eq. (6.10), where

z=
(
p

q

)
, Â=

(
�A 0
0 0

)
and

g(z)= 1

�3
‖p + q‖2H (p + q)

(
1
−1

)
+ A−1/2f (u)

(
1
−1

)
.

Thus, using Remarks 6.2, 6.3 and Proposition 3.3, we have that systems (6.2) and (6.9)
have a local center manifold.

Proposition 6.4. For some neighborhoodU of 0 in X1/2 =: V × H , systems(6.2)–(6.9)
have a local center manifold satisfying the following

Wc
loc(0)= {�+ 	 |�= hc(	), � ∈ X

1/2
+ ∩ U, 	 ∈ X0 ∩ U},

where we have thathc(0)=Dhc(0)= 0.

In this final part, we use center manifold theory in order to extract results for the stability
of the solution(p, q)= (0,0), for systems (6.2) and (6.9). For this we have the following
cases:
CaseA: Substitutingp(t)= hc(q(t)) into (6.9) and eliminatingqt , we obtain

pt (t)=Dhc(q(t))qt (t)= 0. (6.11)

But, we have thatpt (t)=−�Ahc(q(t))qt (t). Thus, from (6.11) we get

0=−�Ahc(q(t))qt (t). (6.12)

Then,hc(q(t)) is a center manifold if it satisfies (6.12) together with conditionshc(0)=
Dhc(0)=0. From relation (6.12) we get thathc(q(t))=0. So, the solution(p, q)= (0,0)
is stable for system (6.9).
CaseB: Substituting now,p(t)= hc(q(t)) into (6.2) and eliminatingq(t), we get

pt (t)=Dhc(q)qt=Dhc(q)

(
− 1

�3
‖hc(q)+q‖2H

)
(hc(q)+q)−A−1/2f (u). (6.13)

We also have that

pt (t)=−�A(hc(q))+
(
1

�3
‖hc(q)+ q‖2H

)
(hc(q)+ q)+ A−1/2f (u). (6.14)
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Therefore, from relations (6.13) and (6.14) we obtain

1

�3
Dhc(q)‖hc(q)+ q‖2H (hc(q)+ q)− �A(hc(q))

+ 1

�3
‖hc(q)+ q‖2H (hc(q)+ q)+ 2A−1/2f (u)= 0, (6.15)

whereDhc
q stands for the Frechet derivative ofhc. Thus,hc(q(t)) is a center manifold if it

satisfies (6.15) together with conditionshc(0)=Dhc(0)= 0. Now, we see from (6.15) that
the center manifold is approximated in the following form:

hc(q)= 1

�4
‖q‖2HA−1q + 2A−3/2f (u)

�
+O(‖q‖4H ). (6.16)

Solutions on the center manifold satisfy

p(t)= hc(q(t)),

qt (t)=− 1

�3
‖hc(q)+ q‖2H (hc(q)+ q). (6.17)

From system (6.17) we obtain that the stability of the solutionu = 0 depends onf . Thus
we have the following cases:

(i) if f (u0)<0, then we get that(p, q)= (0,0) is unstable, sou= 0 is also unstable for
the initial Kirchhoff’s system,

(ii) if f (u0)>0, then(p, q)=(0,0) is asymptotically stable, sou=0 is alsoasymptotically
stable for the initial system,

(iii) if f (u0)=0,wehave that solutions on the centermanifold satisfy the following system:
p(t)= hc(q(t)),

qt (t)=− 1

�3
‖q‖2Hq +O(‖q‖5H ).

So, we obtain that(p, q) = (0,0) is stable, that is,u = 0 is stable for the initial
Kirchhoff’s system.

7. Kirchhoff’s equation with weak dissipation

In this section we study the stability of the solutionu=0, for the generalized Kirchhoff’s
equation with weak dissipation

utt =−�ut + ‖A1/2u‖2HAu+ f (u), f ′(0) 
= 0. (7.1)

Pego’s transformation for Eq. (7.1), is{
p(x, t)= A−1/2ut ,
q(x, t)=−�A1/2u− p.

(7.2)
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The associated reaction–diffusion system is
pt (x, t)=−�p +

(
1

�3
‖p + q‖2

)
(p + q)+ A−1/2f (u),

qt (x, t)=
(
− 1

�3
‖p + q‖2

)
(p + q)− A−1/2f (u).

(7.3)

We also have that the linearized system of Eq. (7.1), foru= 0 is

vtt + �vt = f ′(0)v. (7.4)

Now, we are able to prove the following lemma.

Lemma 7.1. Using Pego’s transformation(7.2),system(7.4)can be written as{
pt =−�p + A−1/2f ′(0)v,
qt = 0.

(7.5)

Proof. Indeed, we have thatpt = −�A−1/2vt + A−1/2f ′(0)v. But,pt = A−1/2vtt . Thus,
we get the following relation:

A−1/2vtt =−�A−1/2vt + A−1/2f ′(0)v. (7.6)

Using operatorA1/2 in (7.6), we have

vtt =−�vt + f ′(0)v. �

In order to obtain stability results for the solutionu= 0 we set

vt = w,

wt =−�w + f ′(0)v.

So we get the following system:{
vt = w,

wt = f ′(0)v − �w

or

d

dt

[
v

w

]
=

[
0 1

f ′(0) −�

] [
v

w

]
. (7.7)

We study the spectrum of operatorÂ, where

Â=
[

0 1
f ′(0) −�

]
.

We compute the characteristic polynomial ofÂ, i.e.∣∣∣∣ � −1
−f ′(0) �+ �

∣∣∣∣= 0 or �2+ ��− f ′(0)= 0.



P.G. Papadopoulos, N.M. Stavrakakis / Nonlinear Analysis 61 (2005) 1343–1362 1361

We have to study a system of ordinary differential equations with� = �2 + 4f ′(0). So,
we obtain the following cases, according to the sign off ′(0):
CaseI: Let f ′(0)<0.
Case a: �= �2+ 4f ′(0)>0. Then the eigenvalues of̂A are

�1,2= −�± (�2+ 4f ′(0))1/2

2
. (7.8)

We observe that the smallest eigenvalue is negative. Indeed, we have that

�2=−�− (�2+ 4f ′(0))1/2<0

which holds. Thus�2< �1<0, which implies thatu = 0 is asymptotically stable for the
initial Kirchhoff’s system.
Caseb: Let�=�2+4f ′(0)=0,or�2=−4f ′(0). In this case,wehave that�1,2=−�/2<0.

Therefore, we have thatu= 0 is also asymptotically stable for our system.
Case c: Let�<0, or�2<− 4f ′(0). In this case we have complex solutions

(�1, �2)=−�± i
√

� + 4f ′(0)
2

.

Since, Re�1<0, Re�2<0, we get that 0 is asymptotically stable for the initial Kirch-
hoff’s system.
CaseII: Finally, let f ′(0)>0.
Case a: If we assume that�>0, or�2>− 4f ′(0), we have for the eigenvalues that

�2= −�− (�2+ 4f ′(0))1/2

2
<0 and �1= −�+ (�2+ 4f ′(0))1/2

2
>0.

Thus we get that solutionu= 0 is unstable for the initial Kirchhoff’s system.
Case b: ��0, or�2� − 4f ′(0), which does not holds because we have thatf ′(0)>0.
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