Available online at www.sciencedirect.com

sanNCE@D'RECT“ Nonlinear
Analysis

ELSEVIER Nonlinear Analysis 61 (2005) 1343—-1362 _
www.elsevier.com/locate/na

Central manifold theory for the generalized
equation of Kirchhoff strings oi"

Perikles G. Papadopoulos, Nikos M. Stavrakakis
Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece

Received 14 November 2003; accepted 31 January 2005

Abstract

We consider the generalized quasilinear dissipative Kirchhoff’s String problem
ure = —|AY?u)% Au — 5Aur + fuw), xeRN, 1>0

with the initial conditions: (x, 0) = ug(x) andu, (x, 0) =u1(x), inthe case wher& >3, 6> 0.The
purpose of our work is to study the stability of the initial solutios O for this equation using central
manifold theory.

© 2005 Elsevier Ltd. All rights reserved.

MSC:35B30; 35B40; 35B45; 35L15; 35L70; 35L80

Keywords:Quasilinear wave equations; Unbounded domains; Local and global solutions; Central manifold
theory; Strong and weak dissipation; Kirchhoff’s equations

1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyperbolic initial
value problem:

un = —|AY2u )% Au — SAu, + f(u), xeRY, 1>0, (1.1)
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u(x,0) =uo(x), u;(x,0 =ui(x), xeRN (1.2)

with initial conditionsug, 11 in appropriate function spaces,> 3, andd > 0.
Kirchhoff in 1883 proposed the so-call&drchhoff string model in the study of oscilla-
tions of stretched strings and plates

0%u Ou Eh L fou\? 0%u
h—s+0—= — — ) dx}; — .0 L, t>0,
Phaz t0% {p0+2L A (ax> Vg2 T O=x=Lod

whereu = u(x, t) is the lateral displacement at the space coordinadad the time, E

the Young modulesp the mass density;, the cross-section areh the length pg the initial
axial tensiong the resistance modules ayidhe external force (sg€6]). Whenpg = 0 the
equation is considered to be @égenerate type and the equation models an unstretched
string or its higher dimensional generalization. Otherwise it isopfdegenerate type and
the equation models a stretched string or its higher dimensional generalization.

The global existence and the uniqueness of solutions have been established in the energy
class (se¢27]). Once global existence is known, it is not difficult to show that all solutions
decay ag — oo. Furthermore, in the nondegenerate case a simple calculation of the energy
shows that solutions decay at least exponentially.

In the degenerate case, however, estimates of the rate of decay requires far more delicate
analysis. Much of the efforts have been focused on estimates from above 2sEg)).

But it is difficult to obtain the estimates from below. In fact, except for some special cases
(see[16,17)), a few things are known about the lower estimates. Also Orjd8h proved
global existence, asymptotic stability and blowing up results of solutions for some degen-
erate nonlinear wave equation with a strong dissipation (sed®st9,20). Mizumachi

[13] studied the asymptotic behavior of solutions to the Kirchhoff equation with a viscous
damping term with no external force.

In our previous work (sef21,24)), we prove global existence blow-up results and exis-
tence of global attractor for some equations of Kirchhoff’s type in @t ®f Also, in[23] we
prove the existence of compact invariant sets for the same equation. Recently Karachalios
and Stavrakakis (sg@&—11]) studied global existence, blow-up results and asymptotic be-
h%)/ior of solutions for some semilinear wave equations with weak dissipation in all of
R™Y.

It should be noted that, unlike most earlier works, our method makes use of the dynamical
systems point of view involving the theory of central manifolds. The advantage of such an
approach is that we may obtain exact decay estimates by relatively simple computations.

The presentation of this paper is as follows: in Section 2, we discuss the space setting
of the problem and the necessary embeddings for constructing the evolution triple. We
also give some examples in which our results hold. In Section 3, we make a review of the
local invariant manifold theory. In Section 4, we prove the existence and uniqueness of the
solution for our problem. In Section 5, we study the stability of the initial solutier0. In
order to study the stability, in fact we study the spectrum of the opesatlor our problem
we have an external forcg(x) and the stability of the solution depends on the sign of
f(0) £ 0. In Section 6, we examine the stability of the solutioa 0, in the case where
f/(0) = 0. For this purpose we use the central manifold theory. Finally, in Section 7, we
study the stability of the solution = 0, for the equation with weak dissipation. In this
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case, using Pego’s transformation the problem becomes a system of ordinary differential
equations.

2. Formulation of the problem
The spaceD(.<7) is going to be introduced and studied later in this section. We shall
frequently use the followin§obolev—Poincaré inequality:
vl <call A2 2.1)

forve D(A™/?), 1<p<2N/[N —2m]t, (1<p <oo if N =2m).
We also need to make the following remarks: et H two Hilbert spaces where

V CH, and V isdenseinH. (2.2)
We also have that
V cc H (compactly). (2.3)

The scalar product and the norm#hare, respectively, denotéd .) , ||.|| z . We identify
H with its dual H', and H’ with a dense subspace of the dudlof V; thus we get the
evolution triple

VcCHCcCV, (2.4)

where the injections are continuous and dense.
Leta(u, v) be a bilinear continuous form dn which is symmetric and coercive

Jag>0, a(u,u)>aolul?>, YuecV. (2.5)
With this form we associate the linear operatdrfrom V into V' defined by
(u,v)=a(u,v), Vu,velV.

Operator.eZ is an isomorphism fron¥ onto V' and it can also be considered as a
selfadjoint unbounded operator kh with domainD(<7) C V

D(/)={veV, o/veH}

Due to (2.2) there exists an orthonormal basigfof{w;} ;cy Which consists of eigen-
vectors of.</,

{JZ/U)/Z),jw./, j=12, ..., w; € H,

O<A1<i2<..., Aj—> 00 asj — oo. (2.6)

Our results cover the following problems:

Example 1. Leto/=-A, V=H}(Q), H=L%(Q), V*=H 1(Q), Q c R (2bounded
or unbounded), for the equation
e — |Vul?,Au — du; =0, x€Q, 1>0

with initial conditionsu(x, 0) = ug, u,(x,0) =u1, ulsgo = 0 (se€g13]).
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Example 2. Let V = 2*2RY), H = L2(RY), v* =2 12RY), o/ = —¢A, for the
Kirchhoff’s equation in all ofRY

i — G)Au|Vul|?; — 5p(x)Au; = f(u), xRN, 1>0,
8
whereu(x, 0) = ug, u;(x,0) =u3 and¢(x) — oo as|x| — oo (see[18,21).

Example 3. LetV=HZ(Q), H=L3(Q), D(«/)=HZ(@QNH*Q), /=A% Q=[0, L],
for the equation

azu 2

@ + Oltyxxxt + ||uxx||2“xxxx =f), xeQ t>0

with u(x, 0) = ug, u;(x,0) = u1, ulpg = uxxlpg = 0. In higher dimension the equation
may be written in the form

wy + OA%u; + |Au|3A%u = f(u), x e Q, whereQC R, >0, N>2.

For more information about the problem we refef26, p. 223] Also, our results hold
for equations with strong dissipation (426, p. 221).

Finally, we give the notion of theveak solutiorfor problem (1.1)—(1.2).
Definition 2.1. A weak solution of problem (1.1)—(1.2) is a functiow(x, ¢) such that

() u e L0, T; D(/)], u, € L0, T; V], uy € L2[0, T; H],
(ii) forall v e C3°([0, T x (RM)), satisfies the generalized formula

T T
/ (us (1), v(0) y At + / <||,;z/1/2u(r)||§, / Ngszil/zu(r)gszil/zv(r) dx dr)
0 0 R

T T
+5/0 (u (1), v() df—/o (f (u(m), v(1)ydr=0

and
(i) satisfies the initial conditions

u(x,0 =uogx), wuoe€ D), u;(x,0)=ur(x), ugeV.

3. Invariant manifolds

In this section we make a brief review of the local invariant manifold theory.
Let X be a Banach space and consider the semilinear evolution equation on

7+ A7 =g2). (3.1)
We assume that/ andg satisfy the following hypotheses:

(A1) ./ is a sectorial operator, 6f.«Z generates an analytic semigroup.
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(A2) The spectrum of/, o(.<7), can be written ag(.«/) = oo U 6, wheresg ando . are
spectral sets such that

o0 ={/ € a(</)|Red =0},
oL ={A € a()Rel>0}.

(A3) There exists a real number 0<a <1, and an integek >1 such thafg is ack-
mapping fromX“ to X. Furthermoreg(0) = 0 andDg(0) = 0.
(Ag) X hasC*-norm, thatis,F(z) = ||zllx (z # 0) is aC*-function.

Here we define the spac&’ as follows: Lety > 0 be a sufficiently large constant such
that inf,c(7+y1) Rén > 0. Then the fractional powers ¢t/ + yI) can be defined for all
a € R. We denote by“ the domain of the operatgrs + yI)“, which is a Banach space
equipped with the normw || x« =: |(«Z + yI)*w]|x.

Under hypothesigAy), there exist projection®y and P, associated witlvg and o
such that the set¥y =: PpX and X, =: P, X are invariant subspaceXk,= Xo @ X,
o(Alx,) = oo anda(A|x.) = g, (for the proof se¢4]).

Let X = XN XpandX{ = XN X, . Sinceop is a bounded spectral set, we easily see
thatXS = Xp.

Let {T'(1)},>o be a semiflow defined by (3.1). In other words, B§t)zo, we mean the
solution to (3.1) that equalg att = 0.

Definition 3.1. The set of alll € (<), for which the operatokl — .7 is one to one and
(Al — /)X is dense i, but suchthatil — /)2 # %, whereZ is a Banach space, is
called thecontinuous spectrum of .7 and denoted by (/) (see[4, p. 580).

Definition 3.2. For a given neighborhoot of 0 in X, a local center manifold Wy;.(0)
is aCl-submanifold inU satisfying the following:

(1) Woc @ ={S+nlc=h(m), ¢ € X$NU, n e XoNU}, where we have that® :
XoNU — X4 is aCl-mapping withk¢(0) = 0 and D/ (0) = 0.

(2) For eachz € Wi (0), {T(t)z|nn<t<tz2} C U implies that{T (1)z |11 <t <12} C
Wioe(0), foranyry, 2 withry <0 <.

Finally, we have the following useful result for the existence of a local center manifold.
(For the proof we refer t§3,2,5)).

Proposition 3.3. Under hypothese@\1)—(A4), there exists a neighborhodd of 0 in X¢
satisfying the following

Wioe(0) is a local C*-submanifold ofX¢ that is tangent toX at 0, that is, there exists a
Ck-functioni® : XoNU — X4 satisfyingh¢(0) = Dh¢(0) = 0 and

W@ ={E+nE=h°), £€XiNU, neXoNU}
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4. Global existence

In this section we prove existence of a global solution for the problem (1.1)—(1.2), under
small initial data.

Theorem 4.1(Local existence Let f(x) a Cl-function such that| f (u)| <kq|u|*tL,
| f/ ()| <kglu|®, 0<a<4/(N — 2) and N > 3. Consider that(ug, u1) € D(A) x V and
satisfy thenondegenerate condition

|AY2u0)1% > 0. (4.1)

Thenthere exists, =T (|| Auo||, ||AY2u1]|) > Osuch thatthe probletfi.1)—(1.2)admits
a unique local weak solutiom satisfying

ueC@,Ty; D(A) and u; € C(O,Ty; V).
Proof. We taked = 1. Given the constantg, >0, R > 0, we introduce the two parameter
space of solutions
Xr,.r = {v e C20, T,;: D(A)) : v, € C2(0, Ty; V), v(0) = uo, v,(0) = uy,
e()<R? 1 €[0, T.]),

wheree(v(r)) =: [[Av(t)|1%, + |AY?0'(1)]1%, the norm in the spac&y =: D(A) x V.
Also ug satisfies the nondegenerate condition (4.1). It is easy to see that tki¢, sets a
complete metric space under the distaii¢e, v) =: sURy<, <7 e1(u(?) — v(1)), where

e1(v) = [V ()15 + 1AY?v]3,,

the norm in the spac&’1 =: V x H. We have thatZy C %1 compactly, that is,

e1(u(t)) <e(u(r)).
Next, we introduce the nonlinear mappifign the following way. Giverv € X7, g, we
defineu = Sv to be the unique solution of the linear wave equation with strong dissipation

W (1) + 1AY20(0) 1PAu(t) + Au' (1) = f(v), (4.2)
u(0) = ug, u'(0) =uj. (4.3)

In the sequel we shall show that there exiBts> 0 andR > 0 such that the following
two conditions are valid:

(i) S mapsXr, r into itself, (4.4)
(ii) S is a contraction with respect to the metdc., .). (4.5)
Set Mg =: [|AY2ug||%, > 0 and
To =: suplz € [0, +00); |AY2u(s) |12, > Mo, for 0<s<1}.
Then
To>0 and [|AY2v(1)|% >Mo, on|[O, Tol. (4.6)
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(i) To check property (4.4), we multiply Eq. (4.2) byA2, and integrate oveR" to get
2/ Auguy dx + 2/ IAY20(0) |12, Auy Audx + 2/ AuyAu, dx
RY RY RN

=2 f(v)Au, dx. 4.7
Rll

So, we have that
d d
— 1A 2u, (1) 115 + 1A 20115 — (1Au®)]13)
dr dr
d
= (E ||A1/2v(r)||%,> [Au(O)1? + 2(f (v), Au(1)).

Finally, we obtain

%ez(um) + 20| Aus ()11 = (% ||A1/2v(r>||i,> lAu()|1%
+2(f (v), Aus (1)), (4.8)
where we set
e3u(t)) =: |AY2u, (0|15 + |AY20 )15 1 Au®) 1%
Note that
e3(u) = [|AY2u,||? + Mol Au(t) |5, = i %e(u(t)) > ey *er(u(r)) (4.9)

with c1 = (max(1, My *HY/2. To proceed further, we observe that

d
— [|AY20)1%, ) 1 Aun) 1% = (2 / Avv, dx ) [ Au(t) |5
dr RN

L2011 Av 12D Y2 (o 12 Y2 | Au () 13,
S2Rk(ve12)Y? e(u(r))
<2RkRc2e5(u(t) <caR%es5(u(1))) (4.10)

with co = 2kc§, wherek is the constant of the embeddifgc H. We also have that

2(f(v), Auy) =2/N () AY20AY?y, dx
R
L2k l|% 1AY 20 ll2n v —2 | AY2uy |,

where we used Holder inequality wigt = 1/N, ¢~1=N —2/2N, r~t=1.Fromthe
embeddingD(A) C V C H and using Sobolev—Poincaré inequality we get

1/2
Ivll%, <callAv]% <R, |AY?v]lon/v—2 <cxllAvllg <cxR.
Thus, we obtain

2(f (v), Aus(t)) <2koc® Ry Re(u(r))Y/?. (4.11)
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Using estimates (4.10)—(4.11), we get from (4.8) that

d

3 @) <R ) + caR ez ()2,
wherecz = 2k2c:+1c1. Hence, from Gronwall’s inequality we get

e3(u(t) < {esu(0)Y? + cSRa-i—lT*}ZecszT,,_
Thus from estimation (4.9) we obtain
e1(u) <e(u(t) <A A1l + 1AY2u0ll% | Auoll3)Y? + caROF1T,) 22T
= Gl B (4.12)

for anyt € [0, 7], with T, <Tp. Since we have that functian € L*°(0, T,; D(A)) N
WwL(0, T,; V)andu(r) satisfies Eq. (4.2), it follows that’ € L>(0, T,; H) and hence,
u € CO([0, T,]; D(A))NCL (0, T.]; V). Thus, for the mags to verify condition (4.4) it
will be enough that the parametefs, R satisfy

C1(Ty, R) < R? (4.13)

which is true forT, and the norms small enough.

(i) We takewvq, v2 € X7, g and denote byi; = Sv1, up = Svo. Hereafter, we suppose
that (4.13) is valid, i.eu1, u2 € Xr, g. We setw = u1 — uz. The functionw satisfies the
following problem:

wye + [AY201)1 Aw + Aw, = — (| AY 0115, — | AY 20215} Auz
+ f(vy) — f(v2), (4.14)
w(0) =0, w,(0)=0. (4.15)
Multiplying Eq. (4.14) by 2v, and integrating oveR" we have the equation

2/ wtwt,dx+2/ ||A1/2v1||§,Aww,dx+2f Aw? dx
RY RN RrRY

= —2(1AY 21l — 1A 202]15) /R | Auzw; dx +2 /R L (F 1) = f(v2)w, dx
(4.16)
which may also be written as
d d
g G w) + 2042w 1y = + AV 2ol AT 2w
— 2{|AY 21|13, — [IAY ?v2)1F, }(Auz, wy)
+2(f(v1) — f(v2), wy)
= + I1(t) + I(t) + I3(1), (4.17)
where we set;, (w(1)) =: [w; ()[1>+ | AY?v1(1) ]|, | AY2w(1)]|%,. Note that the following
estimations are valid:

e (w) = [lwy || + Mol AY?wl|3; > ey e (w). (4.18)
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As in (4.10), we observe that
I(t) < c2R%e}, (w) (4.19)
and
L) <2(1AY2v1 )l g + 1AY 202 i) | AY? (1 — v2) L | Auz |l | wy (1) |
<2(R + R)er(v1 — v2)Y/?Req(w(1))Y/?
§4R2€1(v1 — vz)l/zcletl(w) = C4R261(v1 — vz)l/ze:l(w), (4.20)
wherecs = 4c1. Next, applying the Sobolev—Poincaré inequality (2.1) and the embeddings
D(A) C V C H, we obtain
I3(t) < 2k (| AY 2011 + 1A 20209 1AY2 (01 — v2) |1 |w |

<ceRe1(v1 — v2) el (w(t)Y/?, (4.21)

wherecg = 4k10~1c1. From estimates (4.19)—(4.21), we obtain the following estimate for
the relation (4.17):

d
g S <c2R%e;, (w) + (caR? + cgRer(v1 — v2) 2l (w)V/2.

Gronwall's inequality and the fact thaf (w(0)) = 0 imply

et () < (caR? + ceR)?T2eR T sup —e1(va(t) — va2(0)). (4.22)
0<r< Ty
Therefore, from (4.12) and (4.22) we get
d(uy, up) < Co(Ty, R)d(v1, v2), (4.23)

where the constartt2(7, R) depending off, andR is
Co(Ty, R) = c2{c4R? + cgR*}2T 22T+

For small enouglf, > 0, we haveCs (T, R) < 1. From the above argument, by applying
the Banach contraction mapping principle we know that the problem (1.1)—(1.2) admits a
unique solution«(z) in the class

co([0, T.1; D(A) NCL(0,T,]; V).

Moreover, we see that € L®(0, T,; D(A)) N Wb>(0,T,; V) and f(u) € L®
(0, Ty; V). Therefore, it follows from the continuity argument for wave equations (see
[26]) that this solution: belongs to

%[0, T,1; D(A) N CY(0, T.]; V).

The proof of theorem is now completed]

Remark 4.2. In the above theorem if we assume thgte D(A),u1 € V, f is anonlinear
¢! function, then it is easy to see following the same steps, that the solutietongs to

c®(0, T1; V)nc(o,T1; H). (4.24)
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In that case, because of the inequalities
e1(u() <e(u(n) <R?,

we find thatu is a solution such that
uel®0,T; V), ueL®0,T; H).

The continuity properties (4.24), are proved with the methods indicat@bjrSections
[1.3 and 11.4].

Corollary 4.3 (Global existence We assume that, u1) € D(A) x V. Then there
exists a unique solution of probleh.1)—(1.2),such that

ue C(0, +00); V), u; € C([0, +00) ; H).

Proof. The proof follows the main ideas developed in the wj@k, Theorem 4.3We also
refer to[18]. O

5. The linearized system

In this section we study the stability of the initial soluti@a= 0 in the case of’/(0) # 0.
The linearized equation of the system around solutids

v = —|AY?u|| g Av — Av, + f(u)v. (5.1)
In the case where = 0, Eq. (5.1) becomes

vy + 0Av; — f/(0)v =0. (5.2)
Settingv; = w, Eq. (5.2) gets the following form:

HEERIHEH

or

iy 4+ Aii =0, (5.3)
where

iy =w, v)T and A= [(E _f(;(o)] : (5.4)

So, in order to study the stability of the solution, we study the spectrum of the operator

A. For later use we state the following theorems.

Theorem 5.1. Let.</ be a sectorial linear operator in a Banach spaXeand letf : U —
X, whereU is a cylindrical neighborhood ifitY x X°, (for somed < 1). Also letxq be an
equilibrium point. Suppose

ft, xo+2) = f(@t, x0) + Bz +g(t, 2),



P.G. Papadopoulos, N.M. Stavrakakis / Nonlinear Analysis 61 (2005) 1343-1362 1353

whereB is a bounded linear map from® to X and || g(7, z)|| = O(||zlls) as|izlls — O,
uniformly in¢, and f(z, x) is locally Holder continuous ir, locally Lipschitzian inx,
onU.

If the spectrum of. = .« — B liesin{Rel > f}, for somef; > 0,i.e, a(L) C {Rel > f3},
or equivalently if the linearization

d
—Z+&iz=Bz
dr

is uniformly asymptotically stabléhen the original equation has the solutieguniformly
asymptotically stable ixx®.

Proof. See[5, Theorem 5.1.1, p. 98] O

Theorem 5.2. Let.«Z, f be as in TheorerB.1l.Assume alsaZ/xg = f (¢, xo) for t >1o,
where

ft, xo+2)=f(t, x0) +Bz+g(t,z), g 0=0,
llg(t, z1) — g, z2) I <k(p)llz1 — z2ll5,
lzalls<p, llz2ls<p, and k(p) -0, p— OF,

If L=/ — B assume (L) N{Rel < 0} is a nonempty spectral set. Then the equilibrium
solutionxg is unstable.

Proof. See[5, Theorem 5.1.3, p. 102] (I

Next, we will compute the eigenvalues Af Letx; =[¢;, ¥;] € D(A). Eigenvalues
of A satisfy the following relation:

AXj = p;Xj

2 )=l ]

Therefore, we have the following system:

or

5A¢j - f/(o)l//j = ,qubj,
5.5

—¢; =Y, 59
But, we have thaf¢ } ;v are eigenfunctions of, i.e.

Ap; =170, i=12..., ¢; € DA, (5.6)

O<A1<2< ..., )VJ'—>OO, asj — oo. '
So, system (5.5) becomes

04jp; — f'OW;=p;9;,

—ij =ﬂj'ﬁj,
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5 )]
=u;| "il. 5.7
IR 57)
Therefore, in order to find the eigenvaluesiofive compute the characteristic polynomial

of A, i.e.

‘-5&, +u; (0 ’ —0
1 K

or

or equivalently
,u? —0Aju; — f'(0)=0.

Let, A= 5223 +47(0). Then according to the sign ¢f (0), we have the following cases:

Casel: Let f/(0) > 0. Then the operatot admits the following two real eigenvalues of
different sign:

&

S4; £ (6225 + 4f'(0)Y/?

5 (5.8)

Also, sincef’(0) > 0 we may easily see that the continuous spectrumﬁl,@fc(fi) = (.
So, by Theorem 5.2 we have that minnlgoe(ﬁ) n < 0, which implies that 0 is unstable for
the initial Kirchhoff's system.

Casell: Let f/(0) < 0. Then we have the following cases:

Case aletA= 52/1% +4f'(0)>0. Then we have

6252

YR f(0). (5.9)

Then the operatoA admits two real eigenvalues which are both positive. Indeed, we
have for the smallest eigenvalpg

(524 ’ 1/2
i = 01— (0 /L12+ 410 >0, thatis 0>4f'(0)

which holds. In order to find the continuous spectrunipfve examine when = 0. This
is the case when

A= =IO (5.10)

0
From (5.8) and (5.10) we obtain that
oy
W = 21 —J/—f(0) > 0. (5.11)

So, using the fact thaf’(0) <0, we have an isolated eigenvalg@f/(O), being an
accumulation point of the sequence of eigenvalda%};?‘;l. Thus, we have that



P.G. Papadopoulos, N.M. Stavrakakis / Nonlinear Analysis 61 (2005) 1343-1362 1355
oc(A) = {\/= f'(0)} # #. We assume that

(5272 /ey 1/2
0<NI=M1 © )1;4“0)) <J/=f(0) or

8(—f'(0)) <41y~ f(0).

Finally, we get
oy
V=IO <=

which holds because of (5.9). Thus, applying Theorem 5.1, we have that the salttidn
is asymptotically stable for the initial Kirchhoff's system.
Case bLet A <0. In that case we have that the eigenvalm}éare complex and

01
+
eo(dy 1 = 5

min Reﬂ > 0.

Therefore, using Theorem 5.1, we have that the solutien0 is asymptotically stable
for the initial Kirchhoff's system.

6. Central manifold

In this section we study the stability of the initial solutian= 0, in the case where
f/(0) =0 by means of central manifold theory. Making use of a change of variables similar
to what is introduced by Pego (sgg5]), namely

plx, 1) =AY,
q(x,t)= —0AY2y — p, (6.1)

we can rewrite (1.1)—(1.2) in the form ofr@action—diffusion system
1
pi(x.1)=—8Ap + (3”17 + qll%) (P+a)+A 2 f @),

1
qr(x, 1) =— (;np + q||i,) (P+q) — A Y2 fw), (6.2)
px,t)=0, >0,
p(x,0) = po(x), q(x,0) =qo(x),

wherep + ¢ = —6AY?u. Indeed, we have

1
pr= —0Ap + (g Ip + q||%) (p+q)+A Y2 fw)

1
= —SAATY2y, 4 <§ | — 5A1/2u||§,> (—0AY2u) + A2 F(u)
= — 0AY2u, — | AY2u )3 AY 20 + ATY2 f (u).
But we have thap, = A~1/2y,,. Thus, we get

A2y, = —5AY 20, — | AY2u )% AY 20 + ATV F (u). (6.3)
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Using operatord/2 in (6.3) we have
;= —0Au; — ||AY?u||2, Au + f(u) (Generalized Kirchhoff's Equation

For another example we can examine how Pego’s transformation can be used in
Example 2. The associated transformation is

P = (_¢A)_1/2Mfa
qg=—6(—pMN?u—p and p+q=—-5(—pN"?u.

The reaction—diffusion system is

R} 1
pi=—0(—¢A)p + (;np + qnig) P+ @)+ (=N 2 fw),

1
4 =- (§np + q||§§> (P+q) — (=N 2 f ).

Indeed,

1
pe=—03(=¢Ap+ (; Ip+ quig) (P +9) + (pHT2 @)

= OO o+ (1= Dl ) (=3
+ (=N 2 f )
= — 0= 2ur — 1VulP (=AY 2u + (=pA) V2 f ().
But, p; = (—¢pA)~Y2u,,. Thus, we get that
(=) Y 2upy = =0(= M) 2ur — | Vul (=AY 2u + (—pA) V2 f ().
Using operatof—¢A)*/? in the previous relation we have
iy — GO Aul|Vul|® = 5p(x)Auy = f (w).
As we have already seen, the linearized equation of the system around sol&tidms
vy = —0Av, + f/(O)v. (6.4)
Now, we have thay’(0) = 0. So, relation (6.4) becomes

Vs + 5A'Ut =0

HEs kI 6

Finally, we have that

[:--4)

whered =% 1andw = v,, w, = —dAw.

or
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Lemma 6.1. Let A be considered in the spacé =: H x H. Then the spectrum of
consists of eigenvalug} U {5@}?‘;1.

Proof. Letx; =[¢;, y;] € D(A). Eigenvalues ofi satisfy the following relation:

AXj =,ujxj

o o] [6]-w10]
O Of Lvs1 VLY
Therefore, we have the following system:

5AD, + 00, = 1,9,
{O‘f’j ﬁro‘ﬁ/ ;ﬂj¢./~1 ©7

But, we have that¢;};cy are eigenfunctions ofl, i.e. relation (5.6) holds. So, (6.7)
becomes

{Mj(l"j +0y; =p;9;,
0d; +00; =¥

ool o]0 ¢

Therefore, in orderto find the eigenvalues&)f/ve compute the characteristic polynomial
of A,i.e.

or

or

‘5}7_“1 O 1_0 or ;ﬁ—az,-ujzo.

0 —p

J
So, we have that; = 0 ord/;. Thus, we get that
o(A)={0}U(64;)5%,. O

Let, Pp and P1 projections associated with spectral sgsand{/ j};?°=l, respectively.
PutXo= PoX andX, = P, X. Then

o (9)] ()],

Remark 6.2. Using Pego’s transformation, the linearized system (6.5) may be written as
a reaction—diffusion system, that is,

pl(x’ t) = _5Ap9
{qt(x, t)=0. (6.9)
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Settingz = (7), A=(C9), g = (D), relation (6.9) becomes

2w+ Az=g(2). (6.10)

Remark 6.3. We assume that (0) = f/(0) = 0. Then system (6.2) may also be written as
Eq. (6.10), where

z=(§>,§=<564 g) and
1 1 _ 1
8@ =S5 lp+ali(p+a) (_1) + A2 f ) (_1> :

Thus, using Remarks 6.2, 6.3 and Proposition 3.3, we have that systems (6.2) and (6.9)
have a local center manifold.

Proposition 6.4. For some neighborhootf of 0in X2 =: Vv x H, systemg6.2)—(6.9)
have a local center manifold satisfying the following

Wee(0) = (E+n [E=h(). EeXY2NU, neXonu),
where we have thdt“(0) = Dh¢(0) = 0.
In this final part, we use center manifold theory in order to extract results for the stability
of the solution(p, ¢) = (0, 0), for systems (6.2) and (6.9). For this we have the following

cases:
CaseA: Substitutingp () = h¢(¢(¢)) into (6.9) and eliminating,, we obtain

pi(t) = Dh(q(1))q: (1) = 0. (6.11)

But, we have thap; (t) = —0Ah(q(t))q,(¢). Thus, from (6.11) we get
0= —0Ah (g (t))q; (). (6.12)
Then,h¢(¢(¢)) is a center manifold if it satisfies (6.12) together with conditibh®) =
Dh¢(0) =0. From relation (6.12) we get that(¢(¢)) = 0. So, the solutionip, ¢)= (0, 0)

is stable for system (6.9).
CaseB: Substituting nowp (1) = h(¢(¢)) into (6.2) and eliminating (¢), we get

1
pi(t)=Dh*(q)q;=Dh*(q) (_ﬁ IIhC(q)+61|I§1> (hc(q)+61)—Afl/2f(bt)- (6.13)
We also have that

. 1
pi(t) = —0A(hE(q)) + (;nh%q) +q||%,) (h°(@) +q) + A2 fw).  (6.14)
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Therefore, from relations (6.13) and (6.14) we obtain
1 X . . :
5 DR @I (@) + qll% (h(g) + q) — SA ()
L one 2 (h* 2A7 Y2y =0 6.15
+53I| (@) +qllyh*(q) +q) + 2477 f(u) =0, (6.15)
Whereth] stands for the Frechet derivative/sf. Thus,ih¢(¢(¢)) is a center manifold if it

satisfies (6.15) together with conditioh§0) = DA€ (0) = 0. Now, we see from (6.15) that
the center manifold is approximated in the following form:

1 2A73/2
he(q) = 5 g% A~ g + # +0(lql%)- (6.16)
Solutions on the center manifold satisfy
p(t) =h(q(1)),
1 :
au(0) = =5 Ih(q) + g1, (h“ (@) + ). (6.17)

From system (6.17) we obtain that the stability of the solutiea O depends orf. Thus
we have the following cases:

(i) if f(uo) <O, then we get thatp, ¢) = (0, 0) is unstable, sa = 0 is also unstable for
the initial Kirchhoff's system,
(i) if f(ug) > 0,then(p, g)=(0, 0) isasymptotically stable, 30=0is also asymptotically
stable for the initial system,
(i) if f(ug)=0, we have that solutions on the center manifold satisfy the following system:

p(t) =h(q(1)),

_ 10 5
qr (1) = P gl g + Olgliz)-

So, we obtain thatp, ¢) = (0, 0) is stable, that isy = 0 is stable for the initial
Kirchhoff's system.

7. Kirchhoff’s equation with weak dissipation

In this section we study the stability of the solutioe: 0, for the generalized Kirchhoff’s
equation with weak dissipation

i =—0uy + | AY?u)|} Au+ f),  f(0) #0. (7.1)
Pego’s transformation for Eq. (7.1), is

{p(x, =AY,

q(x’ 1) = —5A1/2u —p. (72)
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The associated reaction—diffusion system is

1
pi(x, 1) =—8p + (§ Ip + q||2> (P+q) +A Y2 fw),

(7.3)
1 2 -1/2
qr(x, 1) = —§|Ip +ql®)(p+q)— A7 fu).
We also have that the linearized system of Eq. (7.1)ufer0O is
Vi + 57.)[ = f/(O)v (74)
Now, we are able to prove the following lemma.
Lemma 7.1. Using Pego’s transformatio(v.2), systen{7.4) can be written as
{pl = _517 + A—l/zf/(O)v’ (75)
q: =0.

Proof. Indeed, we have that, = —5A~Y2y, + A=Y2f/(0)v. But, p; = A~Y2y,,. Thus,
we get the following relation:

A2y, = —0A Y%y, + ATY2 1 O, (7.6)
Using operatord¥/2 in (7.6), we have
vy = —0v; + f/(O)v. O
In order to obtain stability results for the solution= 0 we set

Uy = w,
w, = —ow + f'(O)v.
So we get the following system:
U =w,
wy = f/(O)v — dw

%[S)]:[f/(()m _15] [;})] 7.7)

We study the spectrum of operat&rwhere

or

- [ o 1
A‘[f’(O) —5]'

We compute the characteristic polynomialAfi.e.

‘} -1

g _ 2 gt _
(0 i+5‘_0 or 2+ 10— f'(0)=0.
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We have to study a system of ordinary differential equations with 6> + 4£/(0). So,
we obtain the following cases, according to the sigrf@D):

Casel: Let f/(0) <O.

Case aA = &% + 4f/(0) > 0. Then the eigenvalues dfare

—5 £ (* +4f'(0)*?
2 .
We observe that the smallest eigenvalue is negative. Indeed, we have that

2= (7.8)

Jo=—0— (% +4f0)Y2<0

which holds. Thusl, < 11 <0, which implies thai: = 0 is asymptotically stable for the
initial Kirchhoff's system.

CasebLetA=2+4(0)=0, or6>=—4"(0). Inthis case, we have thag ,=—9/2 < 0.
Therefore, we have that= 0 is also asymptotically stable for our system.

Case clLetA <0, oré® < — 4£'(0). In this case we have complex solutions

§+i/5+4f(0)

2

Since, Rel; <0, Relz <0, we get that 0 is asymptotically stable for the initial Kirch-
hoff's system.

Casell: Finally, let f/(0) > 0.

Case alf we assume thad > 0, or 62 > — 41'(0), we have for the eigenvalues that

s (52 / 1/2 _ 2 / 1/2
o= 0— (0°+41'(0) -0 and Ji= 0+ (0°+4f'(0) -0

2 2

Thus we get that solutiom = 0 is unstable for the initial Kirchhoff’s system.
Case bA<0, or6°< — 41'(0), which does not holds because we have itiéd) > 0.
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