
Differential and Integral Equations Volume 16, Number 12, December 2003, Pages 1519–1531

MULTIPLE NONSEMITRIVIAL SOLUTIONS FOR
QUASILINEAR ELLIPTIC SYSTEMS

P. Drábek
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Abstract. We prove the existence of multiple nonnegative nonsemitriv-
ial solutions for a quasilinear elliptic system, defined on an arbitrary
domain (bounded or unbounded).

1. Introduction

In this paper we prove the multiplicity of solutions for the system

− ∆pu = λa(x)|u|p−2u + λb(x)|u|α−1|v|β+1u +
µ(x)

(α + 1)(δ + 1)
|u|γ−1|v|δ+1u,

− ∆qv = λd(x)|v|q−2v + λb(x)|u|α+1|v|β−1 v +
µ(x)

(β + 1)(γ + 1)
|u|γ+1|v|δ−1v,

(1.1)λ

where x ∈ Ω and Ω ⊆ RN is an arbitrary domain (bounded or unbounded).
Throughout this work the following hypotheses are assumed:

(H) N > p > 1, N > q > 1, α ≥ 0, and β ≥ 0 satisfying α+1
p + β+1

q = 1,

γ ≥ 0, δ ≥ 0, and p < γ + 1 or q < δ + 1 satisfying γ+1
p∗ + δ+1

q∗ < 1, where p∗

and q∗ denote the critical Sobolev exponents: p∗ = Np
N−p and q∗ = Nq

N−q .
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(H1) The exponents α, β, γ, and δ satisfy also the general condition
1

(α + 1)(δ + 1)
+

1
(β + 1)(γ + 1)

< 1.

Let us point out that a necessary condition for (H) to hold true is that
p + q > N . E.g., N = 3, p = q = 2, α = β = 0, and γ = δ = 3

2 are
admissible values satisfying both (H) and (H1). Furthermore, we suppose
that the coefficient functions a(x), d(x), b(x), and µ(x) satisfy the following
conditions:

(Υ1) a is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such

that a ∈ LN/p(Ω) ∩ L∞(Ω) and there exists Ω+ ⊂ Ω of positive Lebesgue
measure, i.e., |Ω+| > 0, such that a(x) > 0, for all x ∈ Ω+.

(Υ2) d is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such

that d ∈ LN/q(Ω) ∩ L∞(Ω) and there exists Ω+ ⊂ Ω of positive Lebesgue
measure, i.e., |Ω+| > 0, such that d(x) > 0, for all x ∈ Ω+.

(Υ3) the functions a and d satisfy one of the following hypotheses:
(G+) a(x) ≥ 0 and d(x) ≥ 0, in Ω, or
(G−) a(x) < 0 and d(x) < 0, for all x ∈ Ω−, on some subset Ω− ⊂ Ω with

|Ω−| > 0.
(Υ4) b is a smooth function, at least C0,ζ

loc (Ω), for some ζ ∈ (0, 1), b(x) ≥ 0
in Ω, b(x) �≡ 0, and b ∈ Lω1(Ω)∩L∞(Ω), where ω1 = p∗q∗/[p∗q∗−(α+1)q∗−
(β + 1)p∗].

(Υ5) µ is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), changing

sign (i.e., µ+ �≡ 0, µ− �≡ 0) and µ ∈ L∞(Ω)∩Lω2(Ω), where ω2 = p∗q∗/[p∗q∗−
(γ + 1)q∗ − (δ + 1)p∗].

In addition the function µ(x) satisfies the following key condition:

(Υ6)
∫

Ω
µ(x) |u1|γ+1 |v1|δ+1 dx < 0

where (u1, v1) is the positive normalized eigenfunction of the unperturbed
system

−∆pu = λ a(x)|u|p−2u + λ b(x) |u|α−1 |v|β+1 u, x ∈ Ω,
−∆qv = λ d(x) |v|q−2v + λ b(x) |u|α+1 |v|β−1 v, x ∈ Ω,

(1.2)λ

corresponding to the positive principal eigenvalue λ1 (see Section 2, Theorem
2.3).

Recently, many works have appeared about semilinear and quasilinear
elliptic systems. There is a great variety of applications where such systems
are involved; see [2, 6]–[9] and the references therein.
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Some of the main difficulties in the study of these systems arise from the
lack of homogeneity of the unperturbed problem (1.2)λ, and the interest
is not only in proving the existence of a solution, but also in investigating
whether this solution is semitrivial (i.e., of the form (u, 0) or (0, v)) or not.

The paper is organized in four sections. In Section 2, the notion of the
weak solution is defined and we recall some known results from [8] about
problems (1.1)λ and (1.2)λ. In Section 3, we state the main multiplicity
results for the system (1.1)λ. In Section 4, the existence of at least one
nonsemitrivial solution for the problem (1.1)λ1 is proved.

This work improves the study of the quasilinear elliptic systems done in
[7, 8]. It also generalizes the results for the scalar equation from [5] to the
case of the systems. In fact the procedure here is based on the arguments
developed in [5]. Let us note that some of the results in the present work
may be considered new even for the bounded domain case. To be precise,
as far as we know, the result concerning the multiplicity of nonsemitrivial
solutions is new even for bounded domains.

2. Space settings—The eigenvalue problem (1.2)λ

Consider the product space Z := D1,p(Ω) × D1,q(Ω) equipped with the
norm ||z||Z := ||u||1,p + ||v||1,q, z = (u, v) ∈ Z, where

||u||1,p :=
( ∫

Ω
|∇u|p dx

)1/p
.

Let us note that, if Ω is a bounded domain, then ||u||1,p is a norm equiv-
alent to the standard Sobolev norm in the space W 1,p

0 (Ω); i.e., W 1,p
0 (Ω) =

D1,p(Ω). However, in the case when Ω is an unbounded domain, ||u||1,p is
the norm of the space D1,p(Ω) and W 1,p

0 (Ω) � D1,p(Ω). For more details we
refer to the classical book [1].

We introduce the functionals J, D, B, M : Z → R in the following way:

J(u, v) :=
α + 1

p

∫
Ω
|∇u|p dx +

β + 1
q

∫
Ω
|∇v|q dx,

D(u, v) :=
α + 1

p

∫
Ω

a(x)|u|p dx +
β + 1

q

∫
Ω

d(x)|v|q dx,

B(u, v) :=
∫

Ω
b(x)|u|α+1|v|β+1 dx,

M(u, v) :=
∫

Ω
µ(x)|u|γ+1|v|δ+1 dx.
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Lemma 2.1. The functionals J, D, B, and M are well defined. Moreover,
J is continuous and D, B, and M are compact.

Proof. The fact that the functionals J, D, B, and M are well defined
may be proved by applying Hölder’s inequality. The continuity of J and
the compactness of D and B is proved in the works [4, Lemma 2.3] and [6,
Lemma 5.1]. We prove the compactness of the operator M , with Ω = RN .
The other cases are similar.

Let (un, vn) be a bounded sequence in Z. Hence (un, vn) converges weakly
(up to a subsequence) to (u0, v0) in Z; i.e., un ⇀ u0 in D1,p and vn ⇀ v0 in
D1,q, as n → ∞. It follows that

|M(un, vn) − M(u0, v0)| ≤ L + K,

where

L :=
∫

RN

|µ(x)|
∣∣∣|un|γ+1 − |u0|γ+1

∣∣∣ |vn|δ+1 dx,

K :=
∫

RN

|µ(x)| |u0|γ+1
∣∣∣|vn|δ+1 − |v0|δ+1

∣∣∣ dx.

For some R > 0 we write L = L1 + L2, where

L1 :=
∫

BR

|µ(x)|
∣∣∣|un|γ+1 − |u0|γ+1

∣∣∣ |vn|δ+1 dx

L2 :=
∫

RN\BR

|µ(x)|
∣∣∣|un|γ+1 − |u0|γ+1

∣∣∣ |vn|δ+1 dx,

where BR is the ball in RN centered at the origin with radius R > 0. Ap-
plying Hölder’s inequality to I1 we obtain

L1 ≤ ||µ(x)||L∞(BR)|||un|γ+1 − |u0|γ+1||
L

p′
γ+1 (BR)

||vn||δ+1
Lq∗ (BR)

,

where 1 < p′ < p∗, such that γ+1
p′ + δ+1

q∗ = 1.
Since {(un, vn)} is a bounded sequence in Z it is also bounded in D1,p(BR)

×D1,q(BR). So, passing to a subsequence if necessary, we have un → u0 in
Lp′(BR), as n → ∞, for any 1 < p′ < p∗. Then, we have that |un|γ+1 →
|u0|γ+1 in L

p′
γ+1 (BR), for any 1 < p′ < p∗. This means that that, for n large

enough, we obtain L1 < ε. Applying Hölder’s inequality to L2 we obtain

L2 ≤ ||µ(x)||Lω2 (RN\BR)|||un|γ+1 − |u0|γ+1||
L

p∗
γ+1 (RN\BR)

||vn||δ+1
Lq∗ (RN\BR)

< ε,

for R sufficiently large. Therefore we get that L < 2ε. Similarly we may
prove that K < 2ε; hence, the lemma is proved. �
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Next, we introduce the functionals Aλ, Iλ : Z → R in the following way.

Aλ(u, v) := J(u, v) − λD(u, v) − λB(u, v),

Iλ(u, v) := Aλ(u, v) − 1
(γ + 1)(δ + 1)

M(u, v).

Lemma 2.2. The functionals Aλ and Iλ are well defined, and they are
weakly lower semicontinuous.

Proof. The proof follows from Lemma 2.1 and the convexity of J . �
We say that (u, v) is a weak solution of the system (1.1)λ if and only if

(u, v) is a critical point of the functional Iλ.

Theorem 2.3. (see [2, 6, 10]) The system (1.2)λ admits a positive principal
eigenvalue λ1, given by

λ1 = inf
D(u,v)+B(u,v)=1

J(u, v). (2.1)

The associated normalized eigenfunction (u1, v1) belongs to Z; each compo-
nent is positive and of class C1,ζ(Br), for any r > 0, where ζ = ζ(r) ∈ (0, 1).
In addition,

(i) the set of all eigenfunctions corresponding to the principal eigenvalue
λ1 forms a one-dimensional manifold, E1 ⊂ Z, which is defined by E1 =
{(c1 u1, c

p/q
1 v1) ; c1 ∈ R}.

(ii) λ1 is the only eigenvalue of (1.2)λ to which there corresponds a com-
ponentwise positive eigenfunction.

(iii) λ1 is isolated in the following sense: there exists η > 0, such that the
interval (0, λ1 + η) does not contain any other eigenvalue than λ1.

The following assertion follows from a more general result proved in [8].

Theorem 2.4. The principal eigenvalue λ1 > 0 of the problem (1.2)λ is a
bifurcation point (in the sense of Rabinowitz) of (1.1)λ; i.e., there exists a
continuum C of nontrivial solutions of (1.1)λ such that (λ0, 0, 0) ∈ C̄ and C
is either unbounded in E = R × Z, with

||(λ, u, v)||E = (|λ|2 + ||(u, v)||2Z)1/2, (λ, u, v) ∈ E,

or there is an eigenvalue λ̂ �= λ0, such that (λ̂, 0) ∈ C̄.
Moreover, there exists η > 0 small enough, such that for each (λ, u, v) ∈

C ∩ Bη(λ1, 0), we have u(x) ≥ 0 and v(x) ≥ 0, almost everywhere in Ω.

As will be clear later, it is convenient to recall the following eigenvalue
problem:

−∆pu = λ g(x)|u|p−2u, x ∈ Ω, (2.2)λ
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where g(x) satisfies condition (Υ1). It is known that the problem (2.2)λ has
a positive principal eigenvalue λp,g, which can be characterized variationally.
This eigenvalue is simple and isolated and it is the only one having a positive
eigenfunction φp,g. For the details we refer to the works [2, 6].

Lemma 2.5. Let λ be close enough to λ1. Every nontrivial solution (u, v)
of (1.1)λ is nonsemitrivial.

Proof. Observe that the nonzero component of any semitrivial solution
of the system (1.1)λ corresponds to an eigenfunction of (2.2)λ, either with
g(x) = a(x) or with g(x) = d(x). So it suffices to prove that λ1 < min{λp,a,
λq,d}. Assume the opposite. Then the system (1.2)λp,a((1.2)λq,d

, respec-
tively) would have a solution (φp,g, 0) ((0, φq,d), respectively). From the
variational characterization (2.1) of the eigenvalue λ1 this is a contradiction,
and the proof is completed. �

3. Multiplicity results

In this section we prove the multiplicity of solutions of the system (1.1)λ.
Before this we introduce some notation and prove some lemmas describing
certain properties of the continuum C from Theorem 2.4. Let Λλ be the
Nehari manifold associated with (1.1)λ; i.e.,

Λλ =
{
(u, v) ∈ Z : 〈I ′λ(u, v), (u, v)〉 = 0

}
.

Clearly, Λλ is closed in Z. Next, we define the following disjoint subsets of
Λλ:

Λ+
λ =

{
(u, v) ∈ Λλ :

∫
Ω

[
|∇u|p + |∇v|q − λ a(x)|u|p − λ d(x)|v|q

−2 λ b(x) |u|α+1 |v|β+1
]
dx >

∫
Ω

µ(x) |u|γ+1 |v|δ+1 dx
}

,

Λ0
λ =

{
(u, v) ∈ Λλ :

∫
Ω

[
|∇u|p + |∇v|q − λ a(x)|u|p − λ d(x)|v|q

−2 λ b(x) |u|α+1 |v|β+1
]
dx =

∫
Ω

µ(x) |u|γ+1 |v|δ+1 dx
}

,

Λ−
λ =

{
(u, v) ∈ Λλ :

∫
Ω

[
|∇u|p + |∇v|q − λ a(x)|u|p − λ d(x)|v|q

−2 λ b(x) |u|α+1 |v|β+1
]
dx <

∫
Ω

µ(x) |u|γ+1 |v|δ+1 dx
}

.
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Remark 3.1. (i) Condition (H1) implies that the sets Λ+
λ , Λ0

λ, and Λ−
λ may

be expressed as

Λ+
λ (Λ0

λ,Λ−
λ , resp.) =

{
(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|γ+1|v|δ+1dx < (=, >, resp.)0}.

(ii) Condition µ+ �≡ 0 implies that Λ−
λ �= ∅.

(iii) Any critical point of Iλ restricted on Λλ is a critical point of Iλ with
respect to the whole space Z.

Remark 3.2. Note that the condition (Υ6) implies that (u1, v1) /∈ Λ−
λ .

Lemma 3.3. The solution branch C bends to the right of λ1 at (λ1, 0, 0);
i.e., there exists ρ > 0, such that (λ, u, v) ∈ C and ||u||1,p + ||v||1,q < ρ,
implies λ > λ1.

Proof. Assume the opposite. Then, there exists a sequence (λn, un, vn) ∈ C,
such that (un, vn) → 0 in Z, λn ≤ λ1, λn → λ1, and∫

Ω

(
|∇un|p − λna(x)|un|p − λnb(x)|un|α+1|vn|β+1

)
dx

=
∫

Ω
µ(x)|un|γ+1|vn|δ+1dx, (3.1)

∫
Ω

(
|∇vn|q − λnd(x)|vn|q − λnb(x)|un|α+1|vn|β+1

)
dx

=
∫

Ω
µ(x)|un|γ+1|vn|δ+1dx. (3.2)

We introduce the sequences ũn and ṽn in the following way:

ũn :=
un

(||un||p1,p + ||vn||q1,q)1/p
and ṽn :=

vn

(||un||p1,p + ||vn||q1,q)1/q
. (3.3)

The sequences ũn and ṽn are bounded. Indeed, we have that

||ũn||p1,p + ||ṽn||q1,q = 1, for every n ∈ N.

Thus, we may consider that there exists some point (ũ0, ṽ0) ∈ Z, such that
(ũn, ṽn) ⇀ (ũ0, ṽ0) (weakly) in Z. Condition (H) implies, also, that

|un|α+1 |vn|β+1

||un||p1,p + ||vn||q1,q

= |ũn|α+1 |ṽn|β+1, (3.4)

for every n ∈ N. Moreover, the range of the exponents implies that∫
Ω µ(x)|un|γ+1|vn|δ+1 dx

||un||p1,p + ||vn||q1,q

≤
||µ||ω2 ||un||γ+1

p∗ ||vn||δ+1
q∗

||un||p1,p + ||vn||q1,q

→ 0, (3.5)
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as (un, vn) → 0 in Z. Using now relations (3.4) and (3.5), equations (3.1)
and (3.2) imply that∫

Ω

(
|∇ũn|p − λn a(x) |ũn|p − λn b(x) |ũn|α+1|ṽn|β+1

)
dx → 0,

∫
Ω

(
|∇ṽn|q − λn d(x) |ṽn|q − λn b(x) |ũn|α+1|ṽn|β+1

)
dx → 0,

as n → ∞. Moreover, the compactness of the operators D and B (see Lemma
2.1) implies that

λn

∫
Ω

a(x) |ũn|p dx → λ1

∫
Ω

a(x) |ũ0|p dx,

λn

∫
Ω

d(x) |ṽn|q dx → λ1

∫
Ω

d(x) |ṽ0|q dx,

λn

∫
Ω

b(x) |ũn|α+1 |ṽn|β+1 dx → λ1

∫
Ω

b(x) |ũ0|α+1 |ṽ0|β+1 dx,

as n → ∞. Hence, (ũn, ṽn) → (ũ0, ṽ0) �≡ (0, 0) (strongly) in Z and (ũ0, ṽ0) is
a solution of (1.2)λ1 . Then, the simplicity of λ1, see Theorem 2.3(i), implies
that ũ0 = kpu1 and ṽ0 = kqv1, for some positive constant k. Multiplying
equations (3.1) and (3.2) by (α + 1)/p and (β + 1)/q, respectively, adding
the resulting equations, and using condition (H), we deduce that

Aλn(un, vn) = c1

∫
Ω

µ(x) |un|γ+1 |vn|δ+1 dx, for any n ∈ N, (3.6)

where c1 = 1
p(δ+1) + 1

q(γ+1) . From the variational characterization (2.1) of
the eigenvalue λ1 and from equation (3.6) we conclude that

0 ≤ lim
n→∞

c1

∫
Ω

µ(x) |ũn|γ+1 |ṽn|δ+1 dx = c2

∫
Ω

µ(x) |u1|γ+1 |v1|δ+1 dx < 0,

for some c2 = c2(c1, k) > 0, which is a contradiction, and the proof is
completed. �
Corollary 3.4. Suppose that (λ, u, v) ∈ C, such that (λ, u, v) is close enough
to (λ1, 0, 0); then (u, v) ∈ Λ+

λ .

Proof. Let (λn, un, vn) ∈ C, such that (un, vn) → 0 in Z and λn → λ1.
Then, using the same arguments as in Lemma 3.3 we may prove that∫

Ω
µ(x) |un|γ+1 |vn|δ+1 dx < 0, for n large enough;

i.e., (un, vn) ∈ Λ+
λ , when n is large enough. �
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To apply variational methods the next two lemmas are useful.

Lemma 3.5. There exists λ0 > λ1, such that for every λ ∈ (λ1, λ
0) the set

Λ−
λ is closed in Z.

Proof. We have to prove that for any (un, vn) ∈ Λ−
λ such that (un, vn) →

(u, v) in Z we have (u, v) ∈ Λ−
λ , when λ ∈ (λ1, λ

0). Due to the characteriza-
tion of Λ−

λ in Remark 3.1(i) this will be the case if∫
Ω

µ(x) |ũn|γ+1 |ṽn|δ+1 dx →
∫

Ω
µ(x) |u|γ+1 |v|δ+1 dx < 0.

Assume that such a λ0 does not exist. Then, there exists a sequence (λn, un,
vn), with (un, vn) ∈ Λ−

λ , such that λn → λ1 and
∫
Ω µ(x) |un|γ+1 |vn|δ+1 dx →

0. Since (un, vn) is a solution for the system (1.1)λn we have that∫
Ω
|∇un|p dx − λn

∫
Ω

a(x)|un|p dx − λn

∫
Ω

b(x)|un|α+1|vn|β+1 dx → 0,

∫
Ω
|∇vn|q dx − λn

∫
Ω

d(x)|vn|q dx − λn

∫
Ω

b(x)|un|α+1|vn|β+1 dx → 0.

We may prove, as in Lemma 3.3, that the sequences {ũn} and {ṽn} converge
strongly to some (ũ0, ṽ0), and the following relations are valid: ũ0 = kpu1 and
ṽ0 = kqv1, for some positive constant k. The compactness of the operator
M (see Lemma 2.1) implies that

0 ≤ lim
n→∞

c3

∫
Ω

µ(x) |ũn|γ+1 |ṽn|δ+1 dx = c4

∫
Ω

µ(x) |u1|γ+1 |v1|δ+1 dx < 0,

for some positive constants c3 and c4, which leads to a contradiction, and so
Λ−

λ is closed in Z. �
Using condition (H), we observe that

Aλ(u, v) =
α + 1

p

∫
Ω

(
|∇u|p − λ a(x)|u|p − λ b(x) |u|α+1 |v|β+1

)
dx

+
β + 1

q

∫
Ω

(
|∇v|q − λ d(x)|v|q − λ b(x) |u|α+1 |v|β+1

)
dx.

Then

Iλ(u, v) =
[ 1
p(δ + 1)

+
1

q(γ + 1)
− 1

(γ + 1)(δ + 1)

] ∫
Ω

µ(x) |u|γ+1 |v|δ+1 dx,

(3.7)
for every (u, v) ∈ Λ−

λ . Since p < γ + 1 or q < δ + 1, we deduce that

Iλ(u, v) > 0, for every (u, v) ∈ Λ−
λ . (3.8)
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Lemma 3.6. The functional Iλ satisfies the (PS) condition on Λ−
λ , whenever

λ is close enough to λ1.

Proof. Let the sequence (un, vn) ∈ Λ−
λ be such that Iλ(un, vn) ≤ c and

I ′λ(un, vn) → 0, as n → ∞. We first prove that (un, vn) is a bounded
sequence. From the following equality,

Iλ(un, vn) − 〈I ′λ(un, vn), (
un

p
,
vn

q
)〉

=
[ 1
p(δ + 1)

+
1

q(γ + 1)
− 1

(γ + 1)(δ + 1)

]
M(un, vn),

we deduce that the quantity M(un, vn) is bounded, for all n ∈ N. The
boundedness of Iλ(un, vn) and M(un, vn) imply that Aλ(un, vn) must be
bounded, too. Next, we claim that there exists a positive constant σ, such
that

Aλ(un, vn)
||un||p1,p + ||vn||q1,q

≥ σ > 0, for every n ∈ N,

which would imply the boundedness of (un, vn) in Z. Suppose the opposite.
Then, there exists a sequence (λn, un, vn), with (un, vn) ∈ Λ−

λ , such that
λn → λ1 and

Aλn(un, vn)
||un||p1,p + ||vn||q1,q

= Aλn(ũn, ṽn) → 0,

where (ũn, ṽn) are the sequences introduced by (3.3). The boundedness of
(ũn, ṽn) implies that (ũn, ṽn) ⇀ (ũ0, ṽ0) (weakly) in Z, for some (ũ0, ṽ0) ∈ Z.
From the variational characterization (2.1) of λ1 and Lemma 2.2 we derive
that

0 ≤ Aλ1(ũ0, ṽ0) ≤ lim inf
n→∞

Aλn(ũn, ṽn) = 0. (3.9)

We claim that (ũ0, ṽ0) �≡ 0. Assume the opposite. Then, from the com-
pactness of the functionals D and B we obtain that

lim
n→∞

D(ũn, ṽn) = lim
n→∞

B(ũn, ṽn) = 0.

Hence, from (3.9) we deduce that (ũn, ṽn) → 0 (strongly) in Z, which con-
tradicts the fact that ||(ũn, ṽn)||Z = 1, for every n ∈ N.

In this case, from (3.9) we must have that ũ0 = kpu1 and ṽ0 = kqv1, for
some positive constant k. Then from hypothesis (Υ6) we get the following
contradiction:

0 <

∫
Ω

µ(x) |ũn|γ+1 |ṽn|δ+1 dx → c5

∫
Ω

µ(x) |u1|γ+1 |u1|γ+1 dx < 0.
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Hence (un, vn) is a bounded sequence. Using the compactness of the func-
tionals D, B, and M and following the procedure from [7, Lemma 2.3] we
obtain that (ũn, ṽn) has a convergent subsequence, and the proof is com-
pleted. �

The main result of this work is the following theorem.

Theorem 3.7. Let hypotheses (H) and (H1) and (Υ1)–(Υ6) be satisfied.
Then there exists λ∗ > λ1, such that the system (1.1)λ has two nonnegative
nonsemitrivial solutions, for every λ ∈ (λ1, λ

∗).

Proof. The existence of a nonsemitrivial solution, which belongs in Λ+
λ ,

follows directly from Theorem 2.4 and Corollary 3.4. We prove the existence
of a solution for the system (1.1)λ, which belongs in Λ−

λ . Consider the set
Λ−

λ equipped with the metric d(z̃1, z̃2) = ||z̃1 − z̃2||Z , for every z̃1 and z̃2 in
Λ−

λ . Then, it is clear from Lemma 3.5, that for λ∗ close to λ1, Λ−
λ becomes

a complete metric space. On the other hand, from (3.8) we have that the
functional Iλ is bounded below in Λ−

λ . Since Iλ satisfies the (PS) condition
in Λ−

λ (see Lemma 3.6), Ekeland’s variational principle implies the existence
of a solution for the system (1.1)λ. This solution is nonnegative due to
the fact that Iλ(|u|, |v|) = Iλ(u, v), and Lemma 2.5 implies that it is also
nonsemitrivial. �

4. The system (1.1)λ1

In this section we prove the existence of a nonnegative solution for the
system (1.1)λ1 . Recall that the solution set Λλ1 ⊂ Z is characterized as

Λλ1 =
{
(u, v) ∈ Z : 〈I ′λ1

(u, v), (u, v)〉 = 0
}
.

Lemma 4.1. The value of Iλ1(u, v) is nonnegative, for every (u, v) ∈ Λλ1.

Proof. Since (u, v) ∈ Λλ1 , we have that

〈1
p
(Iλ1)

′
u(u, v), (u, v)〉 + 〈1

q
(Iλ1)

′
v(u, v), (u, v)〉 = 0,

which implies that

Aλ1(u, v) −
[ 1
p(δ + 1)

+
1

q(γ + 1)

]
M(u, v) = 0.

From the variational characterization of λ1 we deduce that Aλ1(u, v) ≥ 0.
Hence

M(u, v) ≥ 0, (4.1)
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for every (u, v) ∈ Λλ1 . On the other hand, as in (3.7), we obtain that

Iλ1(u, v) =
[ 1
p(δ + 1)

+
1

q(γ + 1)
− 1

(γ + 1)(δ + 1)

]
M(u, v). (4.2)

So, from (4.1) and (4.2) we get the conclusion. �
Theorem 4.2. Let the hypotheses (H) and (H1) and (Υ1)–(Υ6) be satisfied.
Then the system (1.1)λ1 has a nonnegative nonsemitrivial solution.

Proof. It follows from the definition of Λλ1 that it is a closed set in Z. We
prove that 0 is an isolated point of Λλ1 . Indeed, assume that (un, vn) ∈ Λλ1 ,
(un, vn) �≡ 0, and (un, vn) → 0 in Z. Then, (un, vn) satisfies (3.1) and (3.2)
with λn ≡ λ1. Exactly as in the proof of Lemma 3.3 (but writing λ1 instead
of λn) we arrive at a contradiction. Now, repeating the same arguments as
those from the proof of Lemma 3.6, it is possible to prove that Iλ1 satisfies
the (PS) condition on Λλ1\{0}.

Due to Lemma 4.1 and Ekeland’s variational principle there exists a crit-
ical point of Iλ1 on Λλ1\{0} and hence a nontrivial nonnegative solution of
(1.1)λ1 . This solution is nonsemitrivial due to Lemma 2.5. �
Remark 4.3. In particular, the results obtained in this work are valid in the
case where a(x) ≡ 0 and d(x) ≡ 0, i.e., in the case of the following system:

− ∆pu = λ b(x) |u|α−1 |v|β+1 u +
1

(α + 1)(δ + 1)
µ(x) |u|γ−1|v|δ+1u, x ∈ Ω,

− ∆qv = λ b(x) |u|α+1 |v|β−1 v +
1

(β + 1)(γ + 1)
µ(x) |u|γ+1|v|δ−1v, x ∈ Ω.

For more details about such systems we refer to the works [7, 8, 9].

Note added in Proofs. After this work was submitted for publication,
similar results to Theorem 4.2 were reported in [3].
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