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Abstract

We consider a nonlinear parabolic equation involving nonmonotone
diffusion. Existence and uniqueness of solutions are obtained, employ-
ing methods for semibounded evolution equations. Also shown is the
existence of a global attractor for the corresponding dynamical system.

1 Introduction

We consider the following nonlinear parabolic initial-boundary value prob-
lem in the open, bounded interval Ω ⊂ IR

ut − a(u)uxx − b(u)u2x − λσ(u) = f(x), x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), (1.2)

u|∂Ω = 0, t > 0. (1.3)

This problem extends the well studied porous medium diffusion, since
no certain relationship between the coefficients a(u), b(u) is assumed. Let
us mention that special cases of this system may typically arise in plasma
physics within the context of the fluid treatment of charged particles, and
in density-dependent reaction diffusion processes in mathematical biology.
Naturally enough, these systems imply only positive values for u(x, t); how-
ever, in the following treatment, we do not impose such a restriction.

∗Keywords and Phrases: Nonlinear PDE of parabolic type, asymptotic behavior of
solutions, attractors. AMS Subject Classification: 35K55, 35B40, 35B41.
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In order to demonstrate a specific case modelled by the parabolic system,
we consider the collisionless evolution equation for the electron pressure
P = nT , which, if we ignore viscosity, gets the following form in the x-
direction (see, R. Balescu [4])

3

2
Pt = −qx −

3

2
uPx −

5

2
Pux,

where u represents the electron velocity and q is the heat flux. Now,
applying Darcy’s law (see, D. Aronson [3])

u = −cPx, c > 0,

to the above equation, we get

3

2
Pt = −qx +

3

2
cP 2

x +
5

2
cPPxx.

We see that the first term on the right hand side corresponds to porous
medium diffusion (not considered here), whereas the other two terms con-
stitute a specific case of (1.1), with a(P ) = 5

3cP and b(P ) = c.
Concerning the applications in the dynamics of cell populations, with a

spatial distribution of cells, we may associate an energy density e(u), that
is an internal energy per unit volume of an evolving spatial pattern, where
u(x, t) denotes the cell density (see [6, 14]). In this case, the total energy
E(u) in a volume V is given by

E(u) =

∫
V
e(u)dx. (1.4)

The change in energy δE, that is the work done in changing states by an
amount δu, is given by the variational derivative δE/δu which defines a
potential

µ(u) =
δE

δu
= e′(u). (1.5)

The gradient of the potential µ produces a flux J, which classically is pro-
portional to this gradient, that is

J = −kµ′(u). (1.6)

By using (1.5) and (1.6), the continuity equation for the density u is

∂u

∂t
= (a(u)ux)x, a(u) = ke′′(u). (1.7)
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Writing out the diffusion term in full, we end up with the nonlinear operator
that appears in (1.1), in the special case where it holds a′(u) = b(u), i.e. the
porous medium case. Also, the nonlinearity σ(u) may stand for the possible
growth dynamics.

For completeness, let us mention some of the results, concerning the large
time behavior of bounded solutions of nonlinear diffusion equations. Most of
them are related to porous medium type equations (degenerate, monotone
diffusion). In [2], the existence of a global attractor for the one-dimensional
porous medium equation, attracting all orbits starting from L∞-initial data,
is demonstrated. Extensive studies in [1], [13] and [15] show that the ω-
limit set is contained in the set of stationary solutions. Extensions for the
unbounded domain case can be found in [9], [10]. We also mention [5], [7],
[16], on the existence of global attractors for degenerate or nondegenerate
quasilinear parabolic equations.

The principal assumption that will be used throughout this paper in the
study of the problem (1.1)-(1.3) is the following

(A) a, b, σ ∈ C2(IR), λ ∈ IR and there exists c∗ > 0 such that a(s) ≥ c∗,

i.e., we consider nondegenerate but nonmonotone diffusion. Due to the non-
monotonicity, the standard compactness methods on existence of solutions
are not sufficient. To this end, the diffusion operator is treated as a semi-
bounded operator within the functional setting of an admissible triple . This
procedure allows for the construction of unique solutions in Cw([0, T ],H

2 ∩
H1

0 (Ω)), the space of weakly continuous functions u : [0, T ] → H2 ∩H1
0 (Ω).

The existence of a global attractor in the phase space H = H2∩H1
0 (Ω) is

proved in Section 3. The result is shown assuming monotonicity for the non-
linearity b(·), considered to be nonincreasing. Nevertheless, this assumption
does not imply monotonicity for the diffusion operator itself. An important
feature is that this assumption is sufficient to prove further regularity with
respect to time for the solutions of (1.1)-(1.3) constructed in Section 2. Fur-
ther, using this result, we may define the semigroup S(t) : u0 ∈ H 7→ u(t) ∈
H, corresponding to our problem.

We conclude by recalling some well known results, which will be fre-
quently used (see, [17], [18]).

Lemma 1.1 (Gagliardo-Nirenberg inequality) Let 1 ≤ p, q, r ≤ ∞, j an
integer, 0 ≤ j ≤ m and j/m ≤ θ ≤ 1. Then

||Dju||p ≤ const||u||1−θ
q ||Dmu||θr, u ∈ Lq ∩Wm,r(Ω), Ω ⊆ IRn
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where
1

p
=

j

n
+ θ

(
1

r
− m

n

)
+

1− θ

q
.

If m − j − n/r is not a nonnegative integer, then the inequality holds for
j/m ≤ θ < 1.

Lemma 1.2 (Uniform Gronwall) Let g, h, y be three positive locally inte-
grable functions for t0 ≤ t < ∞ which satisfy

dy

dt
≤ gy + h, for all t ≥ t0

and ∫ t+r

t
g(s)ds ≤ α1,

∫ t+r

t
h(s)ds ≤ α2,

∫ t+r

t
y(s)ds ≤ α3,

for all t ≥ t0, where α1, α2, α3 are positive constants. Then

y(t+ r) ≤ (
α3

r
+ α2) exp(α1), for all t ≥ t0.

We also use the short (equivalent) norms ||ux||2, ||uxx||2, ||uxxx||2 in
H1

0 (Ω), H
2 ∩ H1

0 (Ω) and H3 ∩ H1
0 (Ω), respectively (see Section 3). From

the embedding Hk ∩ H1
0 (Ω) ↪→ Ck−1

b (Ω), k = 1, 2 . . . , and the Poincaré
inequality (see [8], pg. 242) we have

||u(k−1)||∞ ≤ const||u||Hk∩H1
0
≤ const||u(k)||2. (1.8)

2 Local Existence

To obtain results on local existence of solutions we intend to write problem
(1.1)-(1.3) as a nonlinear evolution equation in an appropriate functional set-
ting. More precisely, we shall consider an admissible triple of Banach spaces,
which is defined as follows (See [18, pg. 784]):

Definition 2.1 An admissible triple V ↪→ H ↪→ W has the following prop-
erties: (i) H is a real separable Hilbert space with scalar product (·|·)H, (ii)
{V,W} is a dual pair of real separable Banach spaces with the corresponding
bilinear form < ·, · > (i.e., < ·, · > is continuous, < w, v >= 0, for every
w ∈ W, implies v = 0 and < w, v >= 0, for every v ∈ V, implies w = 0),
(iii) the embeddings V ↪→ H ↪→ W are continuous and dense, (iv) it holds
< h, v >= (h|v)H, for all h ∈ H, v ∈ V.
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Clearly, an admissible triple generalizes the notion of the evolution triple,
in the sense that for an admissible triple it may hold W ̸= V∗. This gener-
alization is necessary in order to tackle the extended version of diffusion in
hand. For the problem (1.1)-(1.3), we select the spaces

V = H4 ∩H1
0 (Ω), H = H2 ∩H1

0 (Ω), W = L2(Ω). (2.1)

Lemma 2.2 The embedding V ↪→ H ↪→ W for the spaces (2.1) defines an
admissible triple.

Sketch of Proof Consider the bilinear form < ·, · > : W ×V 7→ IR, defined
by the integral

< w, v >=

∫
Ω
vw + wvxxxxdx, for all v ∈ V, w ∈ W.

Now, it is easy to check that the inner product stemming from the bi-
linear form < ·, · >

(w|v)H =

∫
Ω
vw + wxxvxxdx, for every w ∈ H, v ∈ H

induces an equivalent norm in H. We also have that

| < w, v > | =
∣∣∣∣∫

Ω
vw + wvxxxxdx

∣∣∣∣ ≤ ||w||2||v||2 + ||w||2||vxxxx||2

≤ c||w||W||v||V,

hence the bilinear form < ·, · > is continuous. Now assume that, for some
w ∈ W, it holds < w, v >= 0, for every v ∈ V. Classical arguments on
existence and regularity of solutions for linear elliptic equations (see [12,
Chapter II]) imply the existence of solutions for the problem

v − vxxxx = w, v ∈ V.

For this solution v we have that

0 =< w, v >=

∫
Ω
w2dx,

which implies that w = 0 and the proof is complete. ♢
We introduce the nonlinear operators A,B : V 7→ W defined by

Au = −a(u)uxx, Bu = −b(u)u2x.

The following results outline the basic properties of the operators A,B.
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Proposition 2.3 The operator A+B : H 7→ W is bounded on bounded sets
of H.

Proof Let B = BH(R) a closed ball in H. We shall show that there exist
constants K1(R),K2(R) such that

||Au||2 ≤ K1(R)||u||H, ||Bu||2 ≤ K2(R)||u||H, for all u ∈ B.

Since a, b, σ ∈ C2(IR) and the embedding H ↪→ C1
b (Ω) is continuous,

it follows that there exist constants C1,m(R), C2,m(R), m = 0, 1, 2, such
that

sup
x∈Ω

|a(m)(u(x))| ≤ C1,m(R), m = 0, 1, 2, (2.2)

sup
x∈Ω

|b(m)(u(x))| ≤ C2,m(R), m = 0, 1, 2. (2.3)

Using (2.2), (2.3) and the fact that H1
0 (Ω) is a generalized Banach

algebra, we may obtain the inequalities

||Au||2 ≤ sup
x∈Ω

|a(u(x))| ||uxx||2 ≤ K1(R)||u||H,

||Bu||2 ≤ sup
x∈Ω

|b(u(x))| ||u2x||2 ≤ const sup
x∈Ω

|b(u(x))| ||u||2H

≤ K2(R)||u||H.

Finally, we conclude that

||(A+B)u||2 ≤ K(R)||u||H, (2.4)

where K(R) = max{K1(R),K2(R)}. ♢

Proposition 2.4 The operator A+B : H 7→ W is locally Lipschitz contin-
uous.

Proof Let u, v ∈ B = BH(R) a closed ball in H. We have that

||Au−Av||2 ≤ ||(a(u)− a(v))vxx||2 + ||a(u)(uxx − vxx)||2.

From the Mean Value Theorem and (2.2), we get

|a(u(x))− a(v(x))| ≤ C1,1(R)|u(x)− v(x)|, (2.5)

|a′(u(x))− a′(v(x))| ≤ C1,2(R)|u(x)− v(x)|. (2.6)
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Therefore,

||(a(u)− a(v))vxx||22 ≤ C1,1(R)2||u− v||2∞||vxx||22 ≤ C(R)||u− v||2H,
||a(u)(uxx − vxx)||22 ≤ C2

1,0(R)||uxx − vxx||22 ≤ C(R)||u− v||2H,

where C(R) is a common symbol for the constants. Similar inequalities hold
for the operator B. So finally it holds that

||(A+B)u− (A+B)v||2 ≤ C(R)||u− v||H. ♢

Proposition 2.5 The operator A+B : H 7→ W is semibounded.

Proof By definition, it must be proved that there exists a monotone in-
creasing function d1 ∈ C1(IR) such that

< (A+B)u, u > ≥ −d1(||u||2H), for every u ∈ V. (2.7)

Let u ∈ C∞
0 (Ω) ∩ C(Ω). For the operator A, it holds

< Au, u >=

∫
Ω
Auu dx+

∫
Ω
Auuxxxxdx. (2.8)

Integration by parts in the second integral on the right-hand-side of (2.8)
gives

−
∫
Ω
a(u)uxxuxxxxdx = −1

2

∫
Ω
a′′(u)u2xu

2
xxdx− 1

2

∫
Ω
a′(u)u3xxdx

+

∫
Ω
a(u)u2xxxdx. (2.9)

Using Lemma 1.1 we obtain the inequality

||uxx||4 ≤ const||u||1/42 ||uxxx||3/42 ,

which, with the aid of (2.2) and Young’s inequality, gives the following esti-
mate

−1

2

∫
Ω
a′′(u)u2xu

2
xxdx − 1

2

∫
Ω
a′(u)u3xxdx

≥ −C1,2||ux||2∞||uxx||22 − C1,1||uxx||2||uxx||24
≥ −Ĉ1||u||4H − Ĉ2||u||H||u||

1
2
2 ||uxxx||

3
2
2

≥ −Ĉ1||u||4H − Ĉ3||u||
3
2
H||uxxx||

3
2
2

≥ −Ĉ1||u||4H − Ĉ4||u||6H − c∗
2
||uxxx||22. (2.10)
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For the first integral of the right-hand side of (2.8), we have

−
∫
Ω
a(u)uxxu dx ≥ −C1,0||u||∞||uxx||1 ≥ −Ĉ0||u||2H. (2.11)

Using assumption (A), (2.8)-(2.11) and density arguments, we obtain that

< Au, u >≥ −Ĉ0||u||2H − Ĉ1||u||4H − Ĉ4||u||6H := −d1,1(||u||2H). (2.12)

A similar procedure may be followed for the operator B, to derive the rela-
tion

< Bu, u >≥ −d1,2(||u||2H). (2.13)

Finally, from the estimates (2.12) and (2.13) we get that there exists a
monotone increasing C1- function d1 : IR → IR satisfying relation (2.7). ♢

The previous propositions enable us to show local existence of solutions.
The result is stated as follows:

Theorem 2.6 Let u0, f ∈ H. Assume that condition (A) is satisfied. Then
there exists T > 0 such that the problem (1.1)-(1.3) has a unique solution

u ∈ Cw([0, T ],H) and ut ∈ Cw([0, T ],W).

Moreover, the solution u : [0, T ] → W is Lipschitz continuous.

Proof A. Existence: The first step is to show existence of at least one
solution in a finite dimensional subspace Vn = span{e1, ..., en} of V, where
{ei}i≥1 is an orthonormal basis of Vn with respect to (·|·)H. It holds that∪

nVn = V ↪→ H.
We define the linear and continuous operator P̃n : W 7→ V as P̃nw =

∑n
i <

w, ei > ei, w ∈ W. Now, the Galerkin equation for the problem (1.1)-(1.3)
on Vn ↪→ V ↪→ H reads

u′n(t) + P̃n(A+B)un(t) = P̃nCun(t), t ∈ [0, T ], un(0) = P̃nu0, (2.14)

where
Cun(t) = λσ(un(t)) + f.

Using Propositions 2.3 and 2.4, Peano’s Theorem justifies the existence
of a C1 solution for (2.14), un : [0, T0] → Vn, for some T0 > 0 which depends
on n.
The next step is to obtain an a priori estimate for un in H. Note that
P̃n : H 7→ Vn is an orthogonal projection onto the space Vn, since it holds
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P̃nu =
∑n

i (u|ei)Hei, u ∈ H. Since un is continuous on [0, T0], equation
(2.14) implies that

(u′n|un)H = −(P̃n(A+B)un|un)H + (P̃nCun|un)H
= − < (A+B)un, un > + < Cun, un > . (2.15)

Now, it is not hard to verify that there exists a monotone increasing function
d2 ∈ C1(IR) such that

| < Cu, u) > | ≤ d2(||u||2H), for all u ∈ V. (2.16)

Hence, from (2.7), (2.15) and (2.16) we obtain the differential inequality

d

dt
||un(t)||2H ≤ 2d

(
||un(t)||2H

)
, t ∈ [0, T0], (2.17)

where ||un(0)||H = ||Pnu0||H ≤ ||u0||H. Since the function d(·) is Lipschitz
continuous as a C1 function, we may apply the Theorem of Picard-Lindelöf
to conclude that there exists a T > 0, this time independent of n, such that

||un(t)||2H ≤ max
t∈[0,T ]

g(t) ≤ R, t ∈ [0, T ]. (2.18)

Finally, using standard arguments, we can extend the solution un to the
interval [0, T ].
Now, from (2.18) we have that there exists a subsequence, denoted again by
{un}, such that

un(t) ⇀ u(t), in H, as n → ∞, (2.19)

at least in a dense countable subset of [0, T ]. Let v ∈ Vk ↪→ H, k ≤ n. Since
P̃nv = v, for every k ≤ n, it follows that

(u′n(t)|v)H = −(P̃n(A+B−C)un(t)|v)H
= − < (A+B−C)un(t), v > . (2.20)

Using Proposition 2.3 and estimate (2.18), we conclude that {un} is
equicontinuous on [0, T ], which implies that (2.19) holds in the whole interval
[0, T ]. Finally, from (2.20) and density in H, we obtain that u ∈ Cw([0, T ],H),
ut ∈ Cw([0, T ],W) and, as a consequence, that u : [0, T ] → W is Lipschitz
continuous.
B. Uniqueness: The difference of solutions w = u − v of the problem
(1.1)-(1.3) satisfies the following initial value problem

wt − a(u)wxx −A(u, v)vxx − B(u, v)− λΣ(u, v) = 0, w(0) = 0, (2.21)
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where A(u, v) = a(u)− a(v), B(u, v) = (b(u) − b(v))v2x + b(u)(u2x − v2x) and
Σ(u, v) = σ(u) − σ(v). Multiplying (2.21) by u and integrating over Ω, we
obtain the equation

1

2

d

dt
||w||22 +

∫
Ω
a′(u)vxwwx dx+

∫
Ω
(a(u)− a(v))wxvx dx

+

∫
Ω
a′(u)uxwwxdx+

∫
Ω
(a′(u)− a′(v))v2xw dx

−
∫
Ω
(b(u)− b(v))v2xwdx−

∫
Ω
b(u)(u2x − v2x)wdx

+

∫
Ω
a(u)w2

xdx− λ

∫
Ω
(σ(u)− σ(v))wdx = 0. (2.22)

Using the estimate (2.18) and the relations (2.2), (2.3), (2.6) the following
estimates are derived∣∣∣∣∫

Ω
(a′(u)− a′(v))v2xw dx

∣∣∣∣ ≤ C1,2||vx||2∞||w||22 ≤ C(R)||w||22,∣∣∣∣∫
Ω
a′(u)vxwwx dx

∣∣∣∣ ≤ C1,1||vx||∞||w||2||wx||2

≤ ϵ0||wx||22 + C(R)||w||22.

The rest of the integrals in the equation (2.22) can be estimated in a
similar way. Hence, for sufficiently small ϵ0, we get the inequality

1

2

d

dt
||w(t)||2W +

c∗
2
||wx||22 ≤ C||w(t)||2W.

Application of the standard Gronwall’s Lemma implies uniqueness. ♢

3 Existence of a Global Attractor in H

In this section we discuss the asymptotic behavior of solutions of the nonlin-
ear parabolic problem (1.1)-(1.3). To this end, in addition to the principal
hypothesis (A), we assume that the nonlinear functions b, σ satisfy the fol-
lowing hypotheses

(B) b′(s) ≤ 0 and there exist cm > 0, such that |σ(m)(s)| ≤ cm|s|, for all
m = 0, 1, 2.

First, we prove that under the extra hypothesis (B), the unique local
solution u(x, t) of the problem (1.1)-(1.3), obtained in Theorem 2.6, ex-
ists globally in time. We denote by λ∗, the positive constant induced by
Poincaré’s inequality.
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Lemma 3.1 Let hypotheses (A), (B) be fulfilled and u0, f ∈ H. Assume
also that

λ <
c∗λ∗
2c0

. (3.1)

Then there exists a constant ρ2 independent of t, such that,

lim sup
t→∞

||ux(t)||2 ≤ ρ2. (3.2)

Proof We multiply equation (1.1) by −uxx and integrate over Ω to get

1

2

d

dt
||ux||22 +

∫
Ω
a(u)u2xxdx+

∫
Ω
b(u)u2xuxxdx

+ λ

∫
Ω
σ(u)uxx dx =

∫
Ω
fuxx dx. (3.3)

Using hypothesis (A), we observe that∫
Ω
a(u)u2xxdx ≥ c∗||uxx||22, (3.4)

whereas from hypothesis (B) we have∫
Ω
b(u)u2xuxxdx = −1

3

∫
Ω
b′(u)u4xdx ≥ 0. (3.5)

Furthermore, hypothesis (B) together with Poincaré’s inequality

||u||2 ≤ λ
−1/2
∗ ||ux||2, (3.6)

imply that

λ

∣∣∣∣∫
Ω
σ(u)uxx dx

∣∣∣∣ ≤ λc0||u||2||uxx||2 ≤ λλ−1
∗ c0||uxx||22. (3.7)

Relations (3.3), (3.4) and (3.7) imply that

d

dt
||ux(t)||22 + α||uxx(t)||22 ≤ 1

c∗
||f ||22, (3.8)

where α = c∗ − 2c0λλ
−1
∗ . Applying again Poincaré’s inequality (3.6) to the

above estimate (3.8) we get

d

dt
||ux(t)||22 + αλ∗||ux(t)||22 ≤ 1

c∗
||f ||22. (3.9)
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If the assumption (3.1) is satisfied, i.e., α > 0 Gronwall’s Lemma leads
to the following estimate

||ux(t)||22 ≤ ||ux(0)||22 exp(−αλ∗t) +
1

αc∗λ∗
||f ||22(1− exp(−αλ∗t)). (3.10)

Letting t → ∞, from estimate (3.10) we obtain that

lim sup
t→∞

||ux(t)||22 ≤ ρ22,

where ρ22 =
1

αc∗λ∗
||f ||22 and the proof is completed. ♢

Let B a bounded set of H, included in a ball BH(0,M) of H, centered
at 0 of radius M . Assuming that u0 ∈ B, we infer from Lemma 3.1 that for
ρ′2 > ρ2, there exists t0(B, ρ′2) > 0 such that for t ≥ t0(B, ρ′2),

||ux(t)||2 ≤ ρ′2, ||u(t)||2 ≤ ρ1 = λ
−1/2
∗ ρ′2. (3.11)

Integrating (3.8) with respect to t, it follows that for every r > 0

α

∫ t+r

t
||uxx(s)||22 ds ≤

r

c∗
||f ||22 + ||ux(t)||22.

Once again, letting t → ∞, we obtain from inequality (3.11) that

lim sup
t→∞

∫ t+r

t
||uxx(s)||22 ds ≤

r

αc∗
||f ||22 +

ρ22
α
, for every r > 0.

and for t ≥ t0(B, ρ′2)∫ t+r

t
||uxx(s)||22 ds ≤

r

αc∗
||f ||22 +

ρ′22
α

, for every r > 0. (3.12)

Lemma 3.2 Let hypotheses (A), (B) be fulfilled, u0 ∈ B and f ∈ H. Assume
also that (3.1) is satisfied. Then there exists a constant ρ3 independent of t,
and t1 > 0 such that

||uxx(t)||2 ≤ ρ3, for t ≥ t1. (3.13)

Proof Multiply equation (1.1) by uxxxx and integrate over Ω to get

1

2

d

dt
||uxx||22 +

∫
Ω
a′(u)uxuxxuxxxdx+

∫
Ω
a(u)u2xxxdx

+ 2

∫
Ω
b(u)uxuxxuxxxdx+ λ

∫
Ω
σ′(u)uxuxxx dx

+

∫
Ω
b′(u)u3xuxxxdx = −

∫
Ω
fxuxxx dx. (3.14)
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Using inequalities (1.8), (3.11) and hypothesis (A), we obtain that in-
equalities (2.2), (2.3) hold, for all t ≥ t0(B, ρ′2), with R replaced by ρ′2. It
follows that∣∣∣∣∫

Ω
a′(u)uxuxxuxxxdx

∣∣∣∣ ≤ C1,1||ux||∞||uxx||2||uxxx||2

≤ C1,1const||uxx||22||uxxx||2,
≤ C1||uxx||42 + ϵ1||uxxx||22. (3.15)

Applying Lemma 1.1 we obtain the inequality

||ux||6 ≤ const||u||1/32 ||uxx||2/32 ,

which can be used to get the estimate∣∣∣∣∫
Ω
b′(u)u3xuxxxdx

∣∣∣∣ ≤ C2,1||ux||36||uxxx||2

≤ C2,1const||u||2||uxx||22||uxxx||2
≤ C2||uxx||4 + ϵ1||uxxx||22. (3.16)

We also have that the estimate

λ

∣∣∣∣∫
Ω
σ′(u)uxuxxxdx

∣∣∣∣ ≤ λc1||u||∞||ux||2||uxxx||2

≤ λc1const||uxx||22||uxxx||2
≤ C3||uxx||42 + ϵ1||uxxx||22.

The rest of the integral terms in (3.14) can be bounded similarly. Thus,
for sufficiently small ϵ1, we get the inequalities

d

dt
||uxx(t)||22 + c∗||uxxx(t)||22 ≤ M1 +M2||uxx(t)||42, (3.17)

d

dt
||uxx(t)||22 ≤ M1 +M2||uxx(t)||42, (3.18)

where M1,M2 are independent of t. We set y(t) = ||uxx(t)||22, h(t) = M1 and
g(t) = M2||uxx(t)||22. For fixed r > 0, we use (3.12) to deduce that∫ t+r

t
g(s)ds ≤ α1,

∫ t+r

t
h(s)ds ≤ α2,

∫ t+r

t
y(s)ds ≤ α3,

for all t ≥ t0(B, ρ′2), where α1 = M2α3, α2 = M1r, α3 = r
αc∗

||f ||22 +
ρ′22
α .

Applying uniform Gronwall’s Lemma 1.2 to the differential inequality (3.18),
we conclude that

||uxx(t)||22 ≤
(
α3

r
+ α2

)
exp(α1) := ρ23, for all t ≥ t0(B, ρ′2) + r (3.19)

and the proof is complete. ♢
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Lemma 3.3 Let hypotheses (A), (B) be fulfilled u0 ∈ B and f ∈ H. Assume
also that (3.1) is satisfied. Then, there exists a constant ρ4 independent of t
and t2 > 0, such that

||uxxx(t)||2 ≤ ρ4, for t ≥ t2. (3.20)

Proof We multiply equation (1.1) by −u(6) and integrate over Ω to get the
equation

1

2

d

dt
||uxxx||22 +

∫
Ω
a(u)u2xxxxdx+

∫
Ω
A1(u)u

2
xuxxuxxxxdx

+ 2

∫
Ω
A2(u)uxuxxxuxxxxdx+

∫
Ω
A3(u)u

2
xxuxxxxdx

+ λ

∫
Ω

(
σ′′(u)u2x + σ′(u)uxx

)
uxxxx dx

+

∫
Ω
b′′(u)u4xuxxxxdx = −

∫
Ω
fxxuxxxx dx, (3.21)

where A1(u) = a′′(u) + 5b′(u), A2(u) = a′(u) + b(u) and A3(u) = a′(u) +
2b(u). Similarly to Lemma 3.2, we arrive at the inequality

d

dt
||uxxx(t)||22 + c∗||uxxxx(t)||22 ≤ M3 +M4||uxxx(t)||42, (3.22)

where M3(ρ1, ρ
′
2, ρ3), M4(ρ1, ρ

′
2, ρ3) are independent of t. Moreover, from

inequality (3.17) we obtain that for fixed r′ > 0∫ t+r′

t
||uxxx(s)||2ds ≤ M1r

′

c∗
+

ρ23
c∗

(M2ρ
2
3r

′ + 1). (3.23)

Setting y(t) = ||uxxx(t)||22, h(t) = M3, g(t) = M4||uxxx(t)||22 inequality
(3.23) implies the following estimates∫ t+r′

t
g(s)ds ≤ β1,

∫ t+r′

t
h(s)ds ≤ β2,

∫ t+r′

t
y(s)ds ≤ β3,

where

β1 = M4β3, β2 = M3r
′, β3 =

M1r
′

c∗
+

ρ23
c∗

(M2ρ
2
3r

′ + 1).

Applying Lemma 1.2 to the differential inequality (3.22), we conclude that

||uxxx(t)||22 ≤
(
β3
r′

+ β2

)
exp(β1) := ρ24, for t ≥ t1 + r′
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to complete the proof. ♢

Next we discuss certain regularity questions of the solution and the so-
lution operator for the problem (1.1)-(1.3).

Proposition 3.4 Let hypotheses (A), (B), be fulfilled and u0, f ∈ H. Then,
for the unique solution of (1.1)-(1.3), it holds that u ∈ C(0, T ;H), for every
T > 0. Moreover, the mapping S(t) : u0 ∈ H 7→ u(t) ∈ H is continuous.

Proof We shall divide the proof in two parts.
A. Continuity of Solutions: Consider the dense imbeddings

V ↪→ H ↪→ V∗. (3.24)

A consequence of relation (3.22) is that u ∈ L2(0, T ; , V ), for every T > 0.
Also, it can be easily proved that ut ∈ L2(0, T ;W ). Taking into account the
continuous embedding L2(0, T ;W ) ↪→ L2(0, T ;V ∗), it follows that

u ∈ W ≡
{
u ∈ L2(0, T ;V ), ut ∈ L2(0, T ;V ∗)

}
↪→ C(0, T ;H).

B. Continuity of the Solution Mapping: Multiply equation (2.21) by wxxxx

and integrate over Ω to get the following relation

1

2

d

dt
||wxx||22 +

∫
Ω
a(u)w2

xxx dx+

∫
Ω
a′(u)uxwxxwxxx dx

+

∫
Ω
(a′(u)− a′(v))vxvxxwxxx dx+

∫
Ω
a′(u)wxvxxwxxx dx

+

∫
Ω
(a(u)− a(v))vxxxwxxx dx+

∫
Ω
(b′(u)− b′(v))v3xwxxx dx

+

∫
Ω
b′(u)v2xwxwxxx dx+

∫
Ω
b′(u)(ux + vx)uxwxwxxx dx

+

∫
Ω
b(u)(ux + vx)wxxwxxx dx+

∫
Ω
b(u)(uxx + vxx)wxwxxx dx

+ 2

∫
Ω
(b(u)− b(v))vxvxxwxxx dx+ λ

∫
Ω
(σ(u)− σ(v))wxxxx dx = 0.

The integral terms in the equation above, may be estimated as follows∣∣∣∣∫
Ω
(a(u)− a(v))vxxxwxxx dx

∣∣∣∣ ≤ C1,1||w||∞||vxxx||2||wxxx||2

≤ K1||wxx||2||vxxx||2||wxxx||2
≤ K2||vxxx||22||wxx||22 + ϵ2||wxxx||22,
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∣∣∣∣∫
Ω
b(u)(uxx + vxx)wxwxxx dx

∣∣∣∣ ≤ C2,0||wx||∞||uxx + vxx||2||wxxx||2

≤ K3||wxx||2||uxx + vxx||2||wxxx||2
≤ K4||wxx||22 + ϵ2||wxxx||22.

The inequality obtained by this procedure, for sufficiently small ϵ2, is

d

dt
||wxx(t)||22 + c∗||wxxx(t)||22 ≤ M0(t)||wxx(t)||22, (3.25)

M0(t) = C1 + C2||vxxx(t)||22.

Since the solution v ∈ L2(0, T ;H3 ∩ H1
0 (Ω)) (e.g. see Lemma 3.3), the

function M0(t) is integrable on the interval [0, T ]. Therefore, the standard
Gronwall Lemma is applicable to the inequality (3.25) to obtain

||wxx(t)||22 ≤ C3||wxx(0)||22, C3 = exp

{
max
t∈[0,T ]

M0(t)

}
. (3.26)

Inequality (3.26) implies the continuity of the mapping S(t) : u0 ∈ H 7→
u(t) ∈ H. ♢

Now, we are allowed to define a dynamical system in H as the mapping

S(t) : u0 ∈ H 7→ u(t) ∈ H

associated to the problem (1.1)-(1.3). We conclude with the following result:

Theorem 3.5 If f ∈ H, then the semigroup S(t) possesses global attractor
A in H.

Proof Restating the result of Lemma 3.2 and taking into account inequality
(3.19) for some fixed r > 0, we have that the closed ball in H,

B1 = {ϕ ∈ H : ||ϕ||H ≤ ρ3} ,

is a bounded absorbing set for the semigroup S(t), i.e., for every bounded
set B in H, there exists t1(B) > 0, such that S(t)B ⊂ B1, for every t ≥ t1(B).
On the other hand, Lemma 3.3 implies that there exists t2(B) > 0 such that
S(t)B ⊂ B2 for t ≥ t2(B), where

B2 = {ϕ ∈ X : ||ϕ||X ≤ ρ4} ,

is a closed ball in X ≡ H3 ∩H1
0 (Ω). The set B2 is bounded in X and rela-

tively compact in H and the semigroup S(t) is uniformly compact. Hence,
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the set A = ω(B) is a compact attractor for the semigroup S(t). ♢
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