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Abstract. We prove certain bifurcation results for the quasilinear el-
liptic system

−∆pu = λa(x) |u|p−2u+ λ b(x) |u|α |v|β v + f(x, λ, u, v),

−∆qv = λ d(x) |v|q−2v + λ b(x) |u|α |v|β u+ g(x, λ, u, v),

defined on an arbitrary domain (bounded or unbounded) of RN , where
the functions a, d, f and g may change sign. To this end we establish the
isolation of the principal eigenvalue of the corresponding unperturbed
system and apply topological degree theory.

1. Introduction

In this paper we shall deal with the bifurcation of a continuum of positive
solutions for the following quasilinear elliptic system, defined on Ω ⊆ RN ,

−∆pu = λa(x)|u|p−2u+ λ b(x) |u|α |v|β v + f(x, λ, u, v),
−∆qv = λ d(x) |v|q−2v + λ b(x) |u|α |v|βu + g(x, λ, u, v),

(1.1)

u|∂Ω = v|∂Ω = 0, (1.2)

where Ω is an arbitrary domain (bounded or unbounded). This continuum
is bifurcating from the positive principal eigenvalue of the following unper-
turbed system

−∆pu = λa(x) |u|p−2u+ λ b(x) |u|α |v|β v, x ∈ Ω,
−∆qv = λ d(x) |v|q−2 v + λ b(x) |u|α |v|β u, x ∈ Ω,

(1.3)

u|∂Ω = v|∂Ω = 0. (1.4)
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System (1.3), (1.4) under certain conditions on the constants α, β, p, q,N
and on the functions a, b and d, forms an eigenvalue problem. Through-
out this work we assume that N, p, q, α, β, a, b, d, f, g satisfy the following
conditions:

(H) N > p > 1, N > q > 1, α ≥ 0, β ≥ 0 and

α+ 1
p

+
β + 1
q

= 1.

We also suppose that the coefficient functions satisfy the following condi-
tions:

(Υ1) a is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such that

a ∈ LN/p(Ω) ∩ L∞(Ω) and there exists Ω+ ⊂ Ω of positive Lebesgue
measure, i.e., |Ω+| > 0, such that a(x) > 0, for all x ∈ Ω+.

(Υ2) d is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such that

d ∈ LN/q(Ω) ∩ L∞(Ω) and there exists Ω+ ⊂ Ω of positive Lebesgue
measure, i.e., |Ω+| > 0, such that d(x) > 0, for all x ∈ Ω+.

(Υ3) the functions a and d satisfy one of the following hypothesis
(G+) a(x) ≥ 0, d(x) ≥ 0, in Ω, or
(G−) a(x) < 0 and d(x) < 0, for all x ∈ Ω−, on some subset Ω− ⊆ Ω
with |Ω−| > 0.

(Υ4) b is a smooth function, at least C0,ζ
loc (Ω), for some ζ ∈ (0, 1), such

that b(x) ≥ 0 in Ω, b(x) 6≡ 0 and b ∈ Lω1(Ω) ∩ L∞(Ω), where ω1 =
p∗q∗/[p∗q∗ − (α+ 1)q∗ − (β + 1)p∗]. With p∗ and q∗ we denote the
critical Sobolev exponents: p∗ = Np/(N − p) and q∗ = Nq/(N − q).

(F) The perturbations f and g are of the form

|f(x, λ, u, v)| ≤ σ1(λ)m(x) |u|γ1−1 |v|δ1+1 u+ σ2(λ)µ(x) |u|η−1 u,

|g(x, λ, u, v)| ≤ σ3(λ)n(x) |u|γ2+1 |v|δ2−1 v + σ4(λ) ν(x) |v|θ−1 v,

where the exponents γi, δi, i = 1, 2, η and θ satisfy the following
conditions: γi + 1 > p or δi + 1 > q, γi+1

p∗ + δi+1
q∗ < 1, i = 1, 2,

p < η + 1 < p∗ and q < θ + 1 < q∗ while, the coefficient functions
satisfy the following:

(Υ5) σi(λ), i = 1, 2, 3, 4, m(x), n(x), µ(x) and ν(x) are smooth functions,
at least C0,ζ

loc (Ω), for some ζ ∈ (0, 1), such that σi, i = 1, 2, 3, 4,
are bounded, m,n ∈ Lω2,i(Ω) ∩ L∞(Ω), where ω2,i = p∗q∗/[p∗q∗ −
(γi + 1)q∗ − (δi + 1)p∗], i = 1, 2, respectively, µ ∈ Lω3(Ω) ∩ L∞(Ω),
where ω3 = p∗/[p∗ − (η + 1)] and ν ∈ Lω4(Ω) ∩ L∞(Ω), where ω4 =
q∗/[q∗ − (θ + 1)].
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Moreover, we assume that there exists a function F such that

(P) Fu(u, v) = (α+ 1) f(x, u, v) and Fv(u, v) = (β + 1) g(x, u, v).

Systems of the form (1.1) where hypothesis (P) is satisfied are called
potential systems; This hypothesis enables us to define the corresponding
functional on a proper product space and to use variational techniques. As
a consequence, a basic property (as it is stated in [13]) of the potential
systems is that they behave in a certain sense like scalar equations. This
will be clear throughout this paper, as the arguments of [6] for the equation
can be carried out to the case of the system. Also, we may note that the
isolation result (see Theorem 3.6) completes the basic properties (as in the
scalar equation case) of the principal eigenvalue for the system (see [2, 10]).

However, it is expected that the system and the scalar equation will
have certain differences. For example, systems of the form (1.1) may have
semitrivial solutions, i.e., solutions of the form (u, 0) or (0, v) (see Lemma
(6.2) below), where bifurcation from semitrivial solutions may occur. An-
other difference, in the case where p 6= q is that the eigenspaces corresponding
to the eigenvalue problem (1.3) are not linear subspaces. Actually, they are
not homogeneous in the Cartesian product with components u and v, as it
is in the case of the p-Laplacian equation (see [16, Remark 5.4]). Finally,
there is a lack of general regularity theory when we treat nonlinear elliptic
systems. For more details we refer to [5] and the references therein.

As an application of system (1.1) consider the following problem (p = q =
2)

−∆u = λa(x)u+ λ b(x) v + f(x, λ, u, v),
−∆v = λ d(x) v + λ b(x)u + g(x, λ, u, v), (1.5)

u|∂Ω = v|∂Ω = 0. (1.6)
The solutions of the problem (1.5), (1.6) correspond to the steady-state so-
lutions of a competition model arising in popular dynamics. The coefficient
functions a(x), b(x), d(x) represent the fact that this competition is taking
place in a spatial heterogeneous environment. The case of spatial homo-
geneous environment, i.e., when a, b, d are positive constants, is studied in
the papers [11] and [12]). The boundary conditions (1.6) means that the
environment outside Ω is lethal.

Problems where the p - Laplacian operator −∆p is present arise both from
pure mathematics (theory of quasiregular and quasiconformal mappings),
as well as from applications, e.g. Non-Newtonian fluids, reaction-diffusion
problems, porous media, astronomy, etc. In the case of bounded domain,
under various boundary conditions, there is quite an extensive literature
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for the eigenvalue problem under consideration. We refer to [10] and the
references therein for the equation and to the works [2, 4] for the system.

Several works dealing with the eigenvalue problem in unbounded domains
have recently appeared (see, for example, [2, 6, 7, 10, 15]). Furthermore,
in [6, 7] bifurcation technics are used to prove existence results for the p-
Laplacian equation in RN .

The rest of the paper is organized in six sections. In Section 2, we intro-
duce the necessary operators and establish the basic characteristics of them.
In Section 3, we recall the main results from [10] concerning the existence of
positive principal eigenvalue as well as the regularity and the asymptotic be-
havior of the corresponding eigenfunctions in D1,p(Ω)×D1,q(Ω) for a related
to (1.3) and (1.4) problem (see system (3.1), (3.2)). Then we prove that the
principal eigenvalue of (1.1) is isolated. The main idea is to consider sys-
tem (1.3) rather than system (3.1). Then, it was possible to adapt standard
arguments in order to prove this isolation result for system (1.3). In Sec-
tion 4, we prove that the operators, generated by the system (1.1) satisfy a
condition under which it is possible to define their degree (condition (S)+).
In Section 5, the existence of a continuum of nontrivial solutions bifurcating
out from the first eigenvalue of the problem (1.3)-(1.4) is achieved. In Sec-
tion 6, considering the regularity of the solutions we describe the behavior
of the continuum of nontrivial solutions for the perturbed problem (1.1) in
the product space D1,p(Ω)×D1,q(Ω).

This work constitutes the first attempt to apply bifurcation techniques
on quasilinear elliptic systems defined in a general domain (bounded or un-
bounded) with varying coefficients. So, in this direction, the present paper
may be considered as a generalization of the work done on the equation (e.g.
see [6] and [7]). The procedure we follow is based on the isolation of the
principal eigenvalue of the system (1.3) (which is of independent interest).
As far as we know, the isolation result is the first one in this direction, both
in bounded and unbounded case. Observe, that in general we have p 6= q
(compare with the decoupling method used in [9] and the method used in
[11, 12]). Our main bifurcation result is based on the classical Rabinowitz
Theorem [14], for similar results we refer to the works [6, 7, 8, 9, 11, 12].
Meanwhile, here we extend the results achieved in [16] concerning the expo-
nents and the multiplicity results achieved in [17].
Notation. For simplicity we use the symbol ||.||p for the norm ||.||Lp(Ω)

and D1,p for the space D1,p(Ω). BR and BR(c) will denote the balls in Ω of
radius R and centers zero and c, respectively. Also the Lebesgue measure
of a set Ω ⊂ RN will be denoted by |Ω|. An equality introducing definition
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is denoted by =:. Integration in all of Ω will be denoted with the integral
symbol

∫
without any indication.

2. Space and operator settings

Consider the product space Z := D1,p(Ω) × D1,q(Ω) equipped with the
norm ||z||Z := ||u||1,p + ||v||1,q, z = (u, v) ∈ Z, where

||u||1,p :=
(∫

Ω
| 5 u|p dx

)1/p
.

In the bounded domain case, we notice that ||u||1,p is a norm equivalent
to the standard Sobolev norm in the space W 1,p

0 , i.e., W 1,p
0 (Ω) = D1,p(Ω).

However, in the case of Ω been an unbounded domain, ||u||1,p is the norm of
the space D1,p(Ω) and W 1,p

0 (Ω) $ D1,p(Ω).

It is known that D1,p(Ω) = {u ∈ L
Np
N−p (Ω) : 5u ∈ (Lp(Ω))N} and that

there exists K0 > 0, such that for all u ∈ D1,p(Ω), the following inequality
holds

||u|| Np
N−p

≤ K0 ||u||D1,p . (2.1)

Clearly, the space D1,p is a reflexive Banach space. For more details we
refer to [1]. Our approach is based on the following generalized Poincare’s
inequality.

Lemma 2.1. Suppose g ∈ LN/p(Ω). Then there exists α > 0 such that∫
Ω
| 5 u|pdx ≥ α

∫
Ω
|g||u|pdx, (2.2)

for all u ∈ D1,p(Ω).

We introduce the operators J1, J2, D1, D2, B1, B2, F : Z → Z∗ in the
following way.

〈J1(u, v), (φ, ψ)〉 =:
∫

Ω
| 5 u|p−2 5 u5 φ

〈J2(u, v), (φ, ψ)〉 =:
∫

Ω
| 5 v|q−2 5 v5 ψ

〈D1(u, v), (φ, ψ)〉 =:
∫

Ω
a(x)|u|p−2uφ

〈D2(u, v), (φ, ψ)〉 =:
∫

Ω
d(x)|v|q−2v ψ



6 N.M. Stavrakakis and N.B. Zographopoulos

〈B1(u, v), (φ, ψ)〉 =:
∫

Ω
b(x)|u|α|v|βv φ

〈B2(u, v), (φ, ψ)〉 =:
∫

Ω
b(x)|u|α|v|βuψ

〈F1(u, v), (φ, ψ)〉 =:
∫

Ω
f(x, λ, u, v)φ

〈F2(u, v), (φ, ψ)〉 =:
∫

Ω
g(x, λ, u, v)ψ.

Lemma 2.2. The operators Ji, Di, Bi, i = 1, 2, are well defined.

Proof. The result may be obtained by Hölder’s inequality and the properties
of the coefficient functions. ¤
Lemma 2.3. The operators Ji, i = 1, 2, are continuous. The operators Di,
Bi, Fi, i = 1, 2, are compact. Furthermore, the operators Fi, i = 1, 2, satisfy
the relations

lim
||(u,v)||Z→0

||Fi(u, v)||Z∗
||u||p−1

1,p + ||v||q−1
1,q

= 0. (2.3)

Proof. The proof of the continuity and compactness properties of the op-
erators follows the same lines as in [10] and [16]. Concerning relation (2.3)
we have that

||F1(u, v)||Z∗ ≤ sup
||φ||1,p≤1

{∫
m(x)|u|γ |v|δ+1|φ| dx+

∫
µ(x)|u|η|φ| dx

}
≤ c sup

||φ||1,p≤1

{
||m(x)||ω2,1 ||u||γp∗ ||v||δ+1

q∗ ||φ||p∗ + ||µ(x)||ω3 ||u||ηp∗ ||φ||p∗
}
.

The range of the exponents γ, δ and η implies the following
‖F1(u, v)‖Z∗
‖u‖p−1

1,p + ‖v‖q−1
1,q

≤ ‖m(x)‖ω2,1‖u‖
γ−(p−1)
p∗ ‖v‖β+1

q∗ + ‖µ(x)‖ω3‖u‖
η−(p−1)
p∗ → 0,

or
‖F1(u, v)‖Z∗
‖u‖p−1

1,p + ‖v‖q−1
1,q

≤ ‖m(x)‖ω2,1‖u‖γp∗‖v‖
β+1−(q−1)
q∗ +‖µ(x)‖ω3‖u‖

η−(p−1)
p∗ → 0,

as ||z|| → 0. The analogous holds for the operator F2(u, v). ¤
Next, we introduce the operators Ãλ, Aλ : Z → Z∗ as:

Ãλ(u, v) =: (α+ 1)
[
J1(u, v)− λD1(u, v)− λB1(u, v)

]
+ (β + 1)

[
J2(u, v)− λD2(u, v)− λB2(u, v)

]
. (2.4)
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Aλ(u, v) =: Ãλ(u, v)− F ′(u, v). (2.5)

Finally, we define the notion of the weak solution for the problem (1.1).
We say that (u, v) is a weak solution of the system (1.1), if and only if
Aλ(u, v) = 0 in Z∗. This definition follows from the fact that (u, v) must be
a critical point of the functional Φ : Z → R defined by

Φ(u, v) =:
α+ 1
p

∫
| 5 u|p +

β + 1
q

∫
| 5 v|q − λα+ 1

p

∫
a(x)|u|p

−λβ + 1
q

∫
d(x)|v|q − λ

∫
b(x)|u|α|v|βuv − λ

∫
F (u, v).

Notation. For the convenience of the representation in the sequel we intro-
duce the operators

J(u, v) =:
α+ 1
p

J1(u, v) +
β + 1
q

J2(u, v),

D(u, v) =:
α+ 1
p

D1(u, v) +
β + 1
q

D2(u, v),

B(u, v) =:
α+ 1
p

B1(u, v) +
β + 1
q

B2(u, v),

C(u, v) =: D(u, v) +B(u, v).

3. The unperturbed system

In this section we study the unperturbed problem (1.3), (1.4). To this
end, it is convenient to recall from the works [2, 10] some results concerning
the following eigenvalue problem

−∆pu = λa(x) |u|p−2u+ λ b(x) |u|α−1 |v|β+1 u, x ∈ Ω,
−∆qv = λ d(x) |v|q−2 v + λ b(x) |u|α+1 |v|β−1 v, x ∈ Ω,

(3.1)

u|∂Ω = v|∂Ω = 0. (3.2)
We shall restrict our study to the case (G+). Similar results may be obtained
for the case (G−) by symmetry.

Theorem 3.1. (i) The system (3.1), (3.2) admits a positive principal eigen-
value λ1, given by

λ1 = inf
〈C(|u|,|v|),(|u|,|v|)〉=1

〈J(u, v), (u, v)〉. (3.3)

The associated normalized eigenfunction (u1, v1) belongs to D1,p×D1,q, each
component is positive and of class C1,ζ(Br), for any r > 0, where ζ = ζ(r) ∈
(0, 1). In addition,
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(i) the set of all eigenfunctions corresponding to the principal eigenvalue
λ1 forms a one dimensional manifold, E1 ⊂ Z, which is defined by E1 =
{(c1u1, c

q/p
1 v1); c1 ∈ R}.

(ii) λ1 is the only eigenvalue of (3.1), (3.2) to which corresponds a com-
ponentwise positive eigenfunction.

Remark 3.2. In the case where a ≡ 0 and d ≡ 0, Theorem 3.1 still hold,
see [16, Theorems 5.1 and 5.3].

Concerning now, system (1.3), (1.4) we may obtain the following results.

Theorem 3.3. The system (1.3), (1.4) admits a positive principal eigenvalue
λ1 given by (3.3). The associated normalized eigenfunction (u1, v1) belongs to
D1,p×D1,q, each component is positive and of class C1,ζ(Br), for any r > 0,
where ζ = ζ(r) ∈ (0, 1).

Proof. Since for positive solutions systems (1.3), (1.4) and (3.1), (3.2)
coincide, we deduce from Theorem 3.1 that (λ1, u1, v1) is also an eigenpair
for the system (1.3), (1.4). Assume that there exists another nontrivial
eigenpair (λ∗, u∗, v∗) of the system (1.3), (1.4), such that 0 < λ∗ < λ1. Then
the following equality must be satisfied

λ∗ =
〈J(u∗, v∗), (u∗, v∗)〉
〈C(u∗, v∗), (u∗, v∗)〉

, (3.4)

with 〈C(u∗, v∗), (u∗, v∗)〉 > 0. Set

u∗ =:
|u∗|

〈C(|u∗|, |v∗|), (|u∗|, |v∗|)〉1/p
and v∗ =:

|v∗|
〈C(|u∗|, |v∗|), (|u∗|, |v∗|)〉1/q

.

Using condition (H) we may easily verify that

〈J(u∗, v∗), (u∗, v∗)〉 =
〈J(u∗, v∗), (u∗, v∗)〉

〈C(|u∗|, |v∗|), (|u∗|, |v∗|)〉
(3.5)

and
〈C(u∗, v∗), (u∗, v∗)〉 = 1. (3.6)

Relations (3.3)–(3.6) and the following inequality

〈J(u, v), (u, v)〉
〈C(|u|, |v|), (|u|, |v|)〉 ≤

〈J(u, v), (u, v)〉
〈C(u, v), (u, v)〉 , (3.7)

which holds for every (u, v) ∈ Z, such that 〈C(u, v), (u, v)〉 > 0, imply that

λ1 = inf
〈C(|u|,|v|),(|u|,|v|)〉=1

〈J(u, v), (u, v)〉
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≤ 〈J(u∗, v∗), (u∗, v∗)〉 =
〈J(u∗, v∗), (u∗, v∗)〉

〈C(|u∗|, |v∗|), (|u∗|, |v∗|)〉

≤ 〈J(u∗, v∗), (u∗, v∗)〉
〈C(u∗, v∗), (u∗, v∗)〉

= λ∗.

The last inequality leads to a contradiction and the proof is completed. ¤
Theorem 3.4. (i) The set of all eigenfunctions corresponding to the prin-
cipal eigenvalue λ1 of the system (1.3), (1.4) forms a one dimensional man-
ifold, E1 ⊂ Z, which is defined by E1 = {(c1 u1, c

q/p
1 v1) ; c1 ∈ R}.

(ii) λ1 is the only eigenvalue of (1.3), (1.4) to which corresponds a com-
ponentwise positive eigenfunction.

Proof. (i) Inequality (3.7) implies that if (u, v) 6≡ (0, 0) is an eigenfunction
of (1.3), (1.4) corresponding to λ1, then (|u|, |v|) must be an eigenfunction,
too. Since for positive solutions systems (1.3), (1.4) and (3.1), (3.2) coincide,
we deduce from the proof of Theorem 3.1 (see [2]), that there exists a positive
constant k, so that |u| = kpu1 and |v| = kqv1, for every x ∈ Ω. Suppose,
now, that u or v changes sign. Then, since they are smooth functions there
exists some x0 ∈ Ω, such that u(x0) = 0 or v(x0) = 0. Hence, u1(x0) = 0 or
v1(x0) = 0, which is a contradiction.

(ii) The result follows from the fact that systems (1.3), (1.4) and (3.1),
(3.2) are the same for positive solutions. ¤
Remark 3.5. We want to emphasize the fact that the solution sets of (1.3),
(1.4) and (3.1), (3.2) are not the same. For example, (u1,−v1) and (−u1, v1)
are solutions of (3.1), (3.2), while they are not satisfying the system (1.3),
(1.4).

Finally, we shall prove that the eigenvalue λ1 is isolated. The proof will
extend the ideas developed in the proof of the analogous result for the equa-
tion [7, Proposition 2.2].

Theorem 3.6. The principal eigenvalue λ1 > 0 is isolated in the following
sense: there exists η > 0, such that the interval (0, λ1 + η) does not contain
any other eigenvalue than λ1.

Proof. Suppose there exists a sequence of eigenpairs (λn, un, vn) of (1.3),
(1.4) with λn → λ1. By the variational characterization of λ1 we know that
λn ≥ λ1. So, we may have that λn ∈ (λ1, λ1 + η), for each n ∈ N. Further-
more, without loss of generality we may assume that ||un|| = ||vn|| = 1, for
all n ∈ N. Hence, there exists some (ũ, ṽ) ∈ Z, such that (un, vn) ⇀ (ũ, ṽ).
This weak convergence and the simplicity of λ1 imply that (ũ, ṽ) = (u1, v1)
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or (ũ, ṽ) = (−u1,−v1). Let us suppose that (un, vn) ⇀ (u1, v1) in Z. For
any two pairs of eigenfunctions (un, vn), (um, vm) substituted to the system
(1.3), we get

−(∆pun −∆pum) = λna(x)|un|p−2un − λma(x)|um|p−2um
+λnb(x)|un|α|vn|βvn − λmb(x)|um|α|vm|βvm,

−(∆qvn −∆qvm) = λnd(x)|vn|q−2vn − λmd(x)|vm|q−2vm
+λnb(x)|un|α|vn|βun − λmb(x)|um|α|vm|βum.

Multiplying the first equation by (un − um), the second by (vn − vm), in-
tegrating by parts and following the estimates developed in [6] (using the
compactness of the operators D and B), we obtain∫

| 5 un|p →
∫
| 5 u1|p and

∫
| 5 vn|q →

∫
| 5 v1|q,

i.e., we get the strong convergence of un → u1 in D1,p and vn → v1 in D1,q,
respectively. This means that (un, vn) → (u1, v1) strongly in the product
space Z. Given n fixed, we may get from the system (1.3), (1.4) that∫
| 5 un|p−2 5 un 5 φ = λn

∫
a(x)|un|p−2unφ+ λn

∫
b(x)|un|α|vn|βvnφ,∫

| 5 vn|q−2 5 vn 5 ψ = λn

∫
d(x)|vn|q−2vnψ + λn

∫
b(x)|un|α|vn|βunψ,

for all (φ, ψ) ∈ Z. Since from Theorem 3.4, λ1 is the only eigenvalue of
(1.3), (1.4), to which corresponds a positive eigenfunction (u1, v1), we may
introduce the sets U−n =: {x ∈ Ω : un(x) < 0} and V−n =: {x ∈ Ω : vn(x) <
0}, where we must have |Ω−n | > 0, with Ω−n = U−n ∪ V−n .

Denoting by u−n = min{0, un} and v−n = min{0, vn} and choosing φ ≡ u−n
and ψ ≡ v−n , it follows that∫

U−n
| 5 u−n |p = λn

∫
U−n

a(x)|u−n |p + λn

∫
U−n

b(x)|u−n |α|vn|βu−n vn,∫
V−n
| 5 v−n |q = λn

∫
V−n

d(x)|v−n |q + λn

∫
V−n

b(x)|un|α|v−n |βunv−n .

Since the products u−n v
+
n and u+

n v
−
n are negative, from the above system of

equations we obtain that∫
U−n
| 5 u−n |p ≤ λn

∫
U−n

a(x)|u−n |p + λn

∫
U−n

b(x)|u−n |α|v−n |βu−n v−n ,∫
V−n
| 5 v−n |q ≤ λn

∫
V−n

d(x)|v−n |q + λn

∫
V−n

b(x)|u−n |α|v−n |βu−n v−n .
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From the definition of the space D1,p, Hölder and Young inequalities and
the embedding (2.1) we derive that

||u−n ||pD1,p(Ω−n )
≤ c1 (λ1 + η)

[
||a(x)||

L
N
p (Ω−n )

||u−n ||pD1,p(Ω−n )

+||b(x)||Lω1 (Ω−n )

(
||u−n ||pD1,p((Ω−n )

+ ||v−n ||qD1,q((Ω−n )

)]
(3.8)

and

||v−n ||qD1,q(Ω−n )
≤ c2 (λ1 + η)

[
||d(x)||

L
N
q (Ω−n )

||v−n ||qD1,q(Ω−n )

+||b(x)||Lω1 (Ω−n )

(
||u−n ||pD1,p((Ω−n )

+ ||v−n ||qD1,q((Ω−n )

)]
. (3.9)

Finally, from the inequalities (3.8) and (3.9), we may obtain

1 ≤ c3

(
max

{
||a(x)||

L
N
p (Ω−n )

, ||d(x)||
L
N
q (Ω−n )

}
+ ||b(x)||Lω1 (Ω−n )

)
.

So, there exists some constant c4 > 0 independent from un, vn and λn such
that

|Ω−n | > c4 > 0. (3.10)

From relation (3.10) we may choose some constant K0 large enough, such
that

|Ω−n ∩BK(0)| > c5 > 0, (3.11)

for any K ≥ K0, where the constant c5 depends neither on λn nor on un.
From the fact that un → u1 strongly in D1,p and vn → v1 strongly in D1,q,
we have that un → u1 in Lp

∗
(Ω) and vn → v1 in Lq

∗
(Ω). So un → u1 in

Lp
∗
(BK(0)) and vn → v1 in Lq

∗
(BK(0)). By Egorov’s Theorem we conclude

that un(x) converges uniformly to u1(x) on BK(0) with the exception of
a set with arbitrarily small measure and vn(x) does the same to v1(x) on
BK(0). But this contradicts (3.11) and the conclusion follows. ¤

Remark 3.7. We notice that the above result is still valid in the case where
a(x) ≡ 0 or d(x) ≡ 0, see Remark 3.2.

4. Topological degree

For completeness of the presentation in this section we recall some basic
facts on the topological degree theory and prove the necessary conditions for
the system case. The procedure is analogous to that in [6] for the equation.
First, we define the topological degree for operators from a Banach space X
to its dual X∗.
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Definition 4.1. Let X be a reflexive Banach space, X∗ its dual and A :
X → X∗ be a demicontinuous operator. We say that the operator A satisfies
the condition (S)+, if for any sequence un ∈ X satisfying un ⇀ u0 (weakly)
in X and

lim sup
n→∞

(A(un), un − u0)X ≤ 0,

we have that un → u0 (strongly) in X.

For more details about this property we refer to [19, pp. 583]. We recall
that if the operator A satisfies property (S)+, then it is possible to define
the degree Deg [A,D, 0], where D ⊂ X is a bounded open set such that
A(u) 6= 0, for any u ∈ ∂D. We also recall that if A satisfies the condition
(S)+, then A+K also satisfies the condition (S)+, for any compact operator
K : X → X∗. The next two lemmas will be useful in the next section.

Lemma 4.2. Let A be a potential operator with Φ′(u) = A(u), u ∈ X, for
some continuously differentiable functional Φ : X → R. Let u0 be a local
minimum of Φ and an isolated point for which A(u0) = 0. Then

Ind(A, u0) = 1.

Lemma 4.3. Assume that 〈A(u), u〉X > 0, for all u ∈ X with ||u||X = r.
Then

Deg[A,Br(0), 0] = 1.

Now, we are going to prove that the operators Ã and A satisfy the (S+)
condition.

Lemma 4.4. The operators Ãλ, Aλ satisfy the (S+) condition, where Ãλ
and Aλ are given by (2.4) and (2.5), respectively.

Proof. We note that since the operators Di, Bi and F ′ are compact, it
suffices to prove that the operator J(u, v) satisfies the (S+) condition. Let
us suppose that the sequence (un, vn) converges to (u0, v0) weakly in the
space Z and

lim sup
n→∞

〈J(un, vn), (un − u0, vn − v0)〉Z ≤ 0.

From the weak convergence we have that

lim
n→∞

〈J(u0, v0), (un − u0, vn − v0)〉Z = 0.

So

0 ≥ lim sup
n→∞

〈J(un, vn)− J(u0, v0), (un − u0, vn − v0)〉Z
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= lim sup
n→∞

{
α+ 1
p

∫
(| 5 un|p−2 5 un − | 5 u0|p−2 5 u0)(5un −5u0)

+
β + 1
q

∫
(| 5 vn|q−2 5 vn − | 5 v0|q−2 5 v0)(5vn −5v0)

}
. (4.1)

It is also valid, that, for any s, t ∈ Lp(Ω) (see [6, relation 2.12])∫
(|s|p−2s− |t|p−2t)(s− t) ≥ (||s||p−1

p − ||t||p−1
p )(||s||p − ||t||p) ≥ 0. (4.2)

From (4.1) and (4.2) we obtain that

|| 5 un||p → || 5 u0||p and || 5 vn||p → || 5 v0||p.
Then, the conclusion of the lemma is obvious. ¤

5. Bifurcation from λ1

In this section we shall prove the existence of a bifurcation from the prin-
cipal eigenvalue λ1, by using the topological degree as it is defined in the
last section for the operators Ãλ, Aλ.

Definition 5.1. Let E = R× Z be equipped with the norm

||(λ, u, v)||E = (|λ|2 + ||(u, v)||2Z)1/2, (λ, u, v) ∈ E. (5.1)

We say that the set

C = {(λ, u, v) ∈ E : (λ, u, v) solves (1.1), (u, v) 6= (0, 0)}
is a continuum of nontrivial solutions of (1.1), if it is a connected set in E
with respect to the topology induced by the norm (5.1). We say λ0 ∈ R is
a bifurcation point of the system (1.1) (in the sense of Rabinowitz), if there
is a continuum of nontrivial solutions C of (1.1) such that (λ0, 0, 0) ∈ C̄

and C is either unbounded in E or there is an eigenvalue λ̂ 6= λ0, such that
(λ̂, 0, 0) ∈ C̄.

To prove the main result of the present work we follow the ideas developed
for the equation in [6]. For this we need the following construction. Fix
K > 0 and define a function ψ : R→ R by

ψ(t) =:
{

0, t ≤ K,
2δ
λ1

(t− 2K), t ≥ 3K,

where δ is such that the interval (λ1, λ1+δ) contains none eigenvalue of (1.3).
The function ψ(t) can be chosen positive and strictly convex in (K, 3K). We
define the functional

Ψλ(u, v) =: 〈J(u, v), (u, v)〉 − λ〈C(u, v), (u, v)〉+ ψ(〈J(u, v), (u, v)〉).
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Then Ψλ is continuously Fréchet differentiable with derivative

〈(Ψλ)
′
(u, v), (w, z)〉 = 〈Ψλ

u(u, v), (w, z)〉+ 〈Ψλ
v (u, v), (w, z)〉,

where

〈Ψλ
u(u, v), (w, z)〉 = (α+ 1)

{(
1 + ψ

′
(〈J(u, v), (u, v)〉)

)
〈J1(u, v), (w, z)〉

− λ 〈D1(u, v), (w, z)〉 − λ 〈B1(u, v), (w, z)〉
}
, (5.2)

〈Ψλ
v (u, v), (w, z)〉 = (β + 1)

{(
1 + ψ

′
(〈J(u, v), (u, v)〉)

)
〈J2(u, v), (w, z)〉

− λ 〈D2(u, v), (w, z)〉 − λ 〈B2(u, v), (w, z)〉
}
. (5.3)

In addition, the critical points (u0, v0) of Ψλ occur, if Ψλ
u = Ψλ

v = 0, i.e.,∫
| 5 u0|p−25 u05w− λ

L

∫
a(x) |u0|p−2 u0w−

λ

L

∫
b(x)|u0|α|v0|βv0w = 0

and∫
| 5 v0|q−2 5 v0 5 z +

λ

L

∫
d(x) |v0|q−2 v0 z −

λ

L

∫
b(x)|u0|α|v0|βu0z = 0,

where L =: 1 + ψ
′
(〈J(u0, v0), (u0, v0)〉). However, since λ ∈ (λ1, λ1 + δ), the

only nontrivial critical points of Ψλ occur if

ψ
′
((J(u0, v0), (u0, v0))) =

λ

λ1
− 1. (5.4)

Hence, we must have (J(u0, v0), (u0, v0)) ∈ (K, 3K). In this case either
(u0, v0) = (u1, v1) or (u0, v0) = (−u1,−v1). So for λ ∈ (λ1, λ1 + δ) we
have precisely three isolated critical points 0, (u1, v1), (−u1,−v1). The next
lemmas describe the main characteristics of the functional Ψλ.

Lemma 5.2. The functional Ψλ is a) weakly lower semicontinuous and b)
weakly coercive, with λ ∈ (λ1, λ1 + δ).

Proof. a) Let (un, vn) ⇀ (u0, v0) weakly in Z. Then, from the compactness
of C we get that

〈C(un, vn), (un, vn)〉 → 〈C(u0, v0), (u0, v0)〉. (5.5)

Since lim infn→∞ || 5 un||p ≥ ||5 u0||p, lim infn→∞ || 5 vn||q ≥ ||5 v0||q and
ψ is nondecreasing, we have that

lim inf
n→∞

{〈J(un, vn), (un, vn)〉+ ψ(〈J(un, vn), (un, vn)〉)}
≥ 〈J(u0, v0), (u0, v0)〉+ ψ(〈J(u0, v0), (u0, v0)〉). (5.6)
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From (5.5) and (5.6) we obtain

lim inf
n→∞

Ψλ(un, vn) ≥ Ψλ(u0, v0).

b) Assume that ||(un, vn)||Z →∞. Actually, 〈J(un, vn), (un, vn)〉 → ∞. For
〈C(un, vn), (un, vn)〉 ≤ 0, holds that Ψλ(un, vn) ≥ J(un, vn), (un, vn)〉 → ∞.
While, for 〈C(un, vn), (un, vn)〉 > 0, it follows that

Ψλ(un, vn) = 〈J(un, vn), (un, vn)〉 − λ〈C(un, vn), (un, vn)〉
+ ψ(〈J(un, vn), (un, vn)〉)
= 〈J(un, vn), (un, vn)〉 − λ1〈C(un, vn), (un, vn)〉
+ (λ1 − λ)〈C(un, vn), (un, vn)〉+ ψ(〈J(un, vn), (un, vn)〉)
≥ (λ1 − λ)〈C(un, vn), (un, vn)〉+ ψ(〈J(un, vn), (un, vn)〉)
≥ −δ〈C(un, vn), (un, vn)〉+ ψ(〈J(un, vn), (un, vn)〉)

≥ − δ

λ1
〈J(un, vn), (un, vn)〉+

2δ
λ1

[〈J(un, vn), (un, vn)〉 − 2K],

where we used the variational characterization (3.3) for λ1 and the definition
of ψ. So Ψλ(un, vn)→∞ and the proof of the lemma is completed. ¤
Lemma 5.3. The critical points (u1, v1), (−u1,−v1) of Ψλ are of minimum
type, with λ ∈ (λ1, λ1 + δ).

Proof. Lemma 5.2 implies that (see [19, Theorem 25.D]) Ψλ attains a min-
imum on Z. On the other hand, from relation (5.4) and the strict convexity
of ψ on (K, 3K) we have that

Ψλ(u1, v1) =
λ− λ1

λ1
〈J(u1, v1), (u1, v1)〉+ ψ(〈J(u1, v1), (u1, v1)〉)

< 0 = Ψλ(0, 0).

Since Ψλ(u1, v1) = Ψλ(−u1,−v1) we obtain the conclusion. ¤

Lemma 5.4. The quantity 〈(Ψλ)
′
(u, v), (u, v)〉 is strictly positive for any

(u, v) ∈ Z with ||(u, v)||Z > k, for some large enough positive constant k and
λ ∈ (λ1, λ1 + δ).

Proof. From (5.2), we have

〈1
p

Ψλ
u(u, v), (u, v)〉 =

α+ 1
p
〈J1(u, v)− λD1(u, v)− λB1(u, v), (u, v)〉

+
α+ 1
p

ψ
′
(〈J(u, v), (u, v)〉)

∫
| 5 u|p. (5.7)
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Similarly, from (5.7) we have

〈1
q

Ψλ
v (u, v), (u, v)〉 =

β + 1
q
〈J2(u, v)− λD2(u, v)− λB2(u, v), (u, v)〉

+
β + 1
q

ψ
′
(〈J(u, v), (u, v)〉)

∫
| 5 v|q. (5.8)

Adding (5.7), (5.8) and using condition (H) we obtain

〈1
p

Ψλ
u(u, v) +

1
q

Ψλ
v (u, v), (u, v)〉 = 〈J(u, v), (u, v)〉 − λ〈C(u, v), (u, v)〉

+ ψ
′
(〈J(u, v), (u, v)〉)〈J(u, v), (u, v)〉.

Assume now that ||(un, vn)||Z →∞. Then 〈J(un, vn), (un, vn)〉 → ∞. From
the variational characterization (3.3) for λ1 and the definition of ψ we derive

〈J(u, v)− λC(u, v), (u, v)〉+ ψ
′
(〈J(u, v), (u, v)〉)〈J(u, v), (u, v)〉

= 〈J(u, v), (u, v)〉 − λ1(C(u, v), (u, v)) + ψ
′
(〈J(u, v), (u, v)〉)×

×
[
〈J(u, v), (u, v)〉 − λ− λ1

ψ′(〈J(u, v), (u, v)〉)〈C(u, v), (u, v)〉
]

≥ 2δ
λ1

[
〈J(u, v), (u, v)〉 − 2K

]
×
[
〈J(u, v), (u, v)〉 − λ1

2
〈C(u, v), (u, v)〉

]
.

Since
〈1
p

Ψλ
u(un, vn) +

1
q

Ψλ
v (un, vn), (un, vn)〉 → ∞,

we have that

〈(Ψλ)
′
(un, vn), (un, vn)〉 = 〈Ψλ

u(un, vn) + Ψλ
v (un, vn), (un, vn)〉 → ∞

and the conclusion of the lemma follows. ¤
Lemma 5.5. For the operator Aλ(u, v) the following are true

Ind(Aλ, 0) = 1, λ ∈ (0, λ1) and Ind(Aλ, 0) = −1, λ ∈ (λ1, λ1 + δ).

Proof. From the variational characterization (3.3) of λ1 it follows that for
any λ ∈ (0, λ1), we have

〈Ãλ(u, v), (u.v)〉 > 0, for all (u, v) ∈ Z.
Then the degree

Deg[Ãλ, Br(0), 0], (5.9)
is well defined, for any λ ∈ (0, λ1) and any ball Br(0) ⊂ Z. Applying Lemma
4.3 we get

Deg[Ãλ, Br(0), 0] = 1, for all λ ∈ (0, λ1). (5.10)
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According to Theorem 3.6 there exists a δ > 0 such that the interval (λ1, λ1+
δ) does not contain any eigenvalue of the problem (1.3), (1.4). Hence, the
degree (5.9) is also well defined for all λ ∈ (λ1, λ1 + δ). From Lemmas 4.2
and 5.3, we have

Ind
(
(Ψλ)′, (u1, v1)

)
= Ind

(
(Ψλ)′, (−u1,−v1)

)
= 1. (5.11)

In addition, Lemmas 4.3 and 5.4 imply that

Deg[(Ψλ)
′
, Bk, 0] = 1. (5.12)

We choose k so large that (±u1,±v1) ∈ Bk(0). Now, by the additivity
property of the degree and (5.11), (5.12) we have

Ind((Ψλ)
′
, 0) = −1. (5.13)

Furthermore, by the definition of ψ we obtain

Deg[(Ψλ)
′
, Br, 0] = Ind((Ãλ, 0), (5.14)

for r > 0 small enough. Then we conclude from (5.10), (5.13) and (5.14)
that

Ind(Ãλ, 0) = 1, for all λ ∈ (0, λ1),
Ind(Ãλ, 0) = −1, for all λ ∈ (λ1, λ1 + δ).

(5.15)

It follows from relation (2.3) and the homotopy invariance of the degree
under compact perturbations that for r > 0 small enough

Deg[Aλ, Br(0), 0] = Deg[Ãλ, Br(0), 0],

for λ ∈ (0, λ1 + δ)\λ1. Finally, from (5.15) we obtain

Ind(Aλ, 0) = 1, for all λ ∈ (0, λ1),
Ind(Aλ, 0) = −1, for all λ ∈ (λ1, λ1 + δ)

and the lemma is proved. ¤
According to Definition 5.1 we have the following characterization con-

cerning the existence and the geometry of some part of the solution set of
the system (1.1).

Theorem 5.6. The principal eigenvalue λ1 > 0 of the unperturbed problem
(1.3), (1.4) is a bifurcation point (in the sense of Rabinowitz) of the perturbed
system (1.1).

Proof. The index jump result of Lemma 5.5 and the homotopy invariance
of the degree imply that (λ1, 0, 0) is a bifurcation point of (1.1). The rest of
the proof is similar to that of Rabinowitz Theorem, see [14]. ¤

Finally, we discuss the sign of the solution branch close to the bifurcation
point.
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Proposition 5.7. There exists η > 0 small enough, such that for each
(λ, u, v) ∈ C ∩Bη(λ1, 0), we have u(x) ≥ 0 and v(x) ≥ 0, almost everywhere
in Ω.

Proof. Let (λn, un, vn) ∈ C be a sequence such that (λn, un, vn)→ (λ1, 0, 0).
We introduce the sequences ũn and ṽn in the following way.

ũn =:
un

(||un||p1,p + ||vn||q1,q)1/p
and ṽn =:

vn

(||un||p1,p + ||vn||q1,q)1/q
.

The sequences ũn and ṽn are bounded, since

||ũn||p1,p + ||ṽn||q1,q = 1, for every n ∈ N.

Condition (H) implies also that

|un|α |vn|β un vn
||un||p1,p + ||vn||q1,q

= |ũn|α |ṽn|β ũn ṽn, (5.16)

for every n ∈ N. Now, using relations (2.3) and (5.16) we have that∫
| 5 ũn|p = λn

∫
a(x)|ũn|p + λn

∫
b(x)|ũn|α|ṽn|βũnṽn +O(||(un, vn)||Z),∫

| 5 ṽn|q = λn

∫
d(x)|ṽn|q + λn

∫
b(x)|ũn|α|ṽn|βũnṽn +O(||(un, vn)||Z).

Similarly, as in the proof of Theorem 3.6 we derive that for some positive
constant k, ũn → kp u1 and ṽn → kq v1 (strongly) in the spacesD1,p andD1,q,
respectively. We claim that for n large enough, un ≥ 0 and vn ≥ 0. Assume
that the sets U−n = {x ∈ Ω : ũn(x) < 0} and V−n = {x ∈ Ω : ṽn(x) < 0} are
non empty. Using (2.3) we obtain that

1 ≤ c0

(
max

{
||a(x)||

L
N
p (Ω−n )

, ||d(x)||
L
N
q (Ω−n )

}
+ ||b(x)||Lω1 (Ω−n )

)
,

where Ω−n = U−n ∪ V−n . Since ||(un, vn||Z → 0, a ∈ LN/p(Ω), d ∈ LN/q(Ω),
b ∈ Lω(Ω) and c0 does not depend on un or vn, we derive that for some
K0 > 0 large enough

|Ω−n ∩BK(0)| ≥ c1,

for any K > K0, where c1 > 0 depends neither on λn nor on un or vn. Now,
using the same argument as in the proof of Lemma 3.6 based on the Egorov’s
Theorem we deduce that ũn and ṽn (and hence un and vn) are nonnegative
in Ω, for n large enough. Then, it follows that un ≥ 0 and vn ≥ 0, for any
(λ, un, vn) ∈ C ∩Bη(λ1, 0), with η > 0 small enough. ¤
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6. Properties of the continuum C

All the above arguments were obtained by using no kind of regularity for
the solutions of the system (1.1). In the sequel we consider the regularity of
these solutions. Assume the following condition.

(Υ6) |f(λ, x, u, v)| ≤ C (|u|p−1 + |u|p∗−1 + |v|q/p′ + |v|rq/(rp)′),
|g(λ, x, u, v)| ≤ C (|v|q−1 + |v|rq−1 + |u|p/q′ + |u|rp/(rq)′),

where m′ = m
m−1 denotes the conjugate of m, r = N

N−p and C is a positive
constant.

Lemma 6.1. Assume that the condition (Υ6) is satisfied and (u, v) be a
solution of (1.1). Then u and v are of class C1,ζ(Br), for any r > 0 and
ζ = ζ(r) ∈ (0, 1). Moreover, in the unbounded domain case, both u and v
decay uniformly to zero as |x| → ∞.

Proof. Observe that the following inequalities

|u|α|v|β+1 ≤ c(|u|p∗−1 + |v|χ), |u|α+1|v|β ≤ c(|u|rq−1 + |v|ψ),

hold for some χ < rq/(rp)′ and ψ < rp/(rq)′, respectively. The rest of the
proof follows from [3, Theorem 2.1]. ¤

As it will be clear later, it is convenient to recall the following eigenvalue
problem.

−∆pu = λ g(x)|u|p−2u, x ∈ Ω, (6.1)

0 < u(x), x ∈ Ω, (6.2)

where g(x) satisfy certain conditions. It is known, that to the equation (6.1)
corresponds a positive principal eigenvalue λp,g. This eigenvalue is simple
and is the only one to which corresponds a positive eigenfunction φp,g. For
details we refer to the works [2, 10].

Lemma 6.2. (i) (Local Bifurcation) The only possible points of the form
(λ, 0, 0), which the closure of the continuum C̄ may contain, are the points
(λp,a, 0, 0) or (λq,d, 0, 0).

(ii) (Bifurcation from semitrivial solutions) The only possible points of
the form (λ, u, 0), u 6≡ 0 (or (λ, 0, v), v 6≡ 0), which C̄ may contain, are the
points (λp,a, c φp,a, 0) (or (λq,d, 0, c φq,d), respectively), for some real constant
c 6= 0.

(iii) If C̄ contains no point of the form (λ, 0, 0), (λ, u, 0), u 6≡0 and (λ, 0,
v), v 6≡ 0, then every solution (u, v) in C is strictly positive (componentwise).
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Proof. (i) From Lemma 5.7 we may suppose that there exists a sequence
{(λn, un, vn)} ⊆ C, such that un(x) > 0, vn(x) > 0, for all n ∈ N and
x ∈ Ω, un → 0 in D1,p, vn → 0 in D1,q and λn → λ0. Then, we construct
the sequences

ũn =
un

(||un||p1,p + ||vn||q1,q)1/p
and ṽn =

vn

(||un||p1,p + ||vn||q1,q)1/q
.

Repeating the same argument as in Lemma 5.7, we may obtain that (ũn, ṽn)
→ (ũ0, ṽ0) (strongly) in Z, for some (ũ0, ṽ0) ∈ Z, such that ũ0 ≥ 0 and
ṽ0 ≥ 0, satisfying, also, the following equations.∫

| 5 ũ0|p = λ0

∫
a(x)|ũ0|p + λ0

∫
b(x)|ũ0|α|ṽ0|βũ0ṽ0,∫

| 5 ṽ0|q = λ0

∫
d(x)|ṽ0|q + λ0

∫
b(x)|ũ0|α|ṽ0|βũ0ṽ0.

Finally, one of the following must occur.
(a) ũ0 ≡ 0 and ṽ0 ≡ φq,d, so that the closure of the continuum C contains

the point (λq,d, 0, 0), or
(b) ũ0 ≡ φp,a and ṽ0 ≡ 0, so that C̄ contains the point (λp,a, 0, 0), or
(c) ũ0 ≡ k1/pu1 and ṽ0 ≡ k1/qv1, so that C̄ contains no point of the form

(λ, 0, 0).
(ii) The proof follows the same steps of (i).
(iii) Suppose that C̄ contains no point of the form (λ, 0, 0) and for some

solution (λ, u, v) ∈ C there exists a point x0 ∈ Ω, such that u(x0) < 0
(the same will apply, if we assume that v(x0) < 0). By Lemma 5.7, we
may observe that u(x) > 0, x ∈ Ω, for all solutions (λ, u, v) ∈ C close to
(λ1, 0, 0). Since the continuum C is connected, the C1,a

loc - regularity of the
solutions implies that there exists (λ0, u0, v0) ∈ C, such that u0(x) ≥ 0, for
all x ∈ Ω, except some point x0 ∈ Ω, such that u0(x0) = 0 and in any
neighborhood of (λ0, u0, v0) we can find a point (λ̂, û, v̂) ∈ C, with û(x) < 0,
for some x ∈ Ω. Let B denote any open ball containing x0. Then from
Vazquez’ Maximum principle (see [18]), it follows that u0 ≡ 0 on B. Hence,
u0 ≡ 0 on Ω. Thus, we may construct a sequence {(λn, un, vn)} ⊆ C, such
that un(x) > 0 and vn(x) > 0, for all n ∈ N and x ∈ Ω, un → 0 in D1,p,
vn → v0 in D1,q and λn → λ0. Then, the continuum C contains a point of
the form (λ0, 0, v0), which is a contradiction. Similar results may be obtained
for v. ¤

Applying the previous results we are ready to state the main result of this
section in the general case.
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Theorem 6.3. Suppose that the hypothesis (H), (F), (P) and (Υ1)− (Υ6)
hold. Then, there exists a continuum C ⊆ R × Z of uniformly bounded so-
lutions of the problem (1.1) bifurcating from the zero solution at (λ1, 0, 0),
such that one of the following alternatives hold.

(i) The continuum C̄ (in closure) contains one of the points (λp,a, 0, 0) or
(λq,d, 0, 0), and in particular problem (1.1) has a nontrivial positive (compo-
nentwise) solution (u, v) ∈ Z, whenever λ is between λ1 and λp,a or λq,d.

(ii) The continuum C is unbounded and every (u, v) in C is strictly posi-
tive (componentwise).

In the remaining part of this section we study a special case of the system
(1.1), for which the first alternative of Theorem 6.3 is excluded. We assume
the following hypothesis.

(Υ7) a(x) ≡ 0 and d(x) ≡ 0. (see Remark 3.7).

For this kind of systems we have the following bifurcation theorem.

Theorem 6.4. Suppose that the hypothesis (H), (F), (P) and (Υ4)− (Υ7)
hold. Then, there exists a continuum C ⊆ R×Z of solutions of the problem
(1.1) bifurcating from the zero solution at (λ1, 0, 0), such that C is unbounded
and every (u, v) in C is strictly positive (componentwise).

Proof. Following the same lines as in Lemma 6.2, we may prove that C̄
contains no points of the form (λ, 0, 0), (λ, u, 0), u 6≡ 0 and (λ, 0, v), v 6≡ 0.
Hence, C must be unbounded, so that every solution (u, v) is strictly positive
(componentwise). ¤
Remark 6.5. Suppose that C̄ contains no points of the form (λ, 0, 0), e.g.,
the assumptions of the Theorem 6.4 are happening. Suppose also, that there
exists some λ0 > λ1, such that σi(λ0), i = 1, 2, 3, 4. Since the system

−∆pu = λ0 a(x) |u|p−2u+ λ0 b(x) |u|α |v|β v, x ∈ Ω,

−∆qv = λ0 d(x) |v|q−2 v + λ0 b(x) |u|α |v|β u, x ∈ Ω,

cannot have a positive solution in Ω, corresponding to λ0, we conclude that
C must “blow up” in ||(u, v)||Z . This result is the analogous one of the
equation, see [6, Remark 4.7].
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