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Abstract. We discuss estimates of the Hausdorff and fractal dimension of a global

attractor for the semilinear wave equation

utt + δut − φ(x)∆u + λ f(u) = η(x), x ∈ RN , t ≥ 0,

with the initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), where N ≥ 3,

δ > 0 and (φ(x))−1 := g(x) lies in LN/2(RN ) ∩ L∞(RN ). The energy space

X0 = D1,2(RN )×L2
g(RN ) is introduced, to overcome the difficulties related with the

non-compactness of operators, which arise in unbounded domains. The estimates

on the Hausdorff dimension are in terms of given parameters, due to an asymptotic

estimate for the eigenvalues µ of the eigenvalue problem −φ(x)∆u = µu, x ∈ RN .

1. Introduction. In this paper we are concerned with estimates on the dimension
of a global attractor for the semilinear hyperbolic initial value problem

utt + δut − φ(x)∆u + λf(u) = η(x), x ∈ RN , t > 0, (1.1)

u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈ RN , (1.2)

with the initial conditions u0(x), u1(x) in appropriate function spaces, N ≥ 3
and δ > 0. Models of this type arise mainly in wave phenomena of various areas in
mathematical physics (see [2, 20, 28, 33]). Throughout the paper we assume that
the functions φ, g, η : RN −→ R and f : R −→ R satisfy the following conditions:

(G) φ(x) > 0, for all x ∈ RN , (φ(x))−1 := g(x) is a smooth function and g ∈
LN/2(RN )∩L∞(RN ). Functions φ of this type arise in wave phenomena involving
a slowly varying wave speed (e.g. see [33, p. 632]),

(H) η ∈ L2
g(RN ),

(F) f : R → R is a smooth function such that f(0) = 0. Furthermore, |f(s)| ≤ c∗|s|
and |f ′(s)| ≤ c2|s|, where c∗, c2 are positive constants.

In certain cases we shall impose some extra conditions on f , which are

1991 Mathematics Subject Classification. 35B40, 35B41, 35L15, 37L30.
Key words and phrases. Dynamical Systems, Attractors, Hyperbolic Equations, Unbounded

Domains, Generalized Sobolev Spaces, Hausdorff Dimension.

This work was partially supported by a grant from Papakyriakopoulos Legacy, NTUA, Athens.

939



940 NIKOS I. KARACHALIOS & NIKOS M. STAVRAKAKIS

(F∞) f ′ is in L∞(R),
(Fδ) There exist δ0 ∈ (0, 2/(N − 2)) such that |f ′(s1)− f ′(s2)| ≤ C|s1 − s2|δ0 .

For the existence of attractors of evolution equations in the bounded domain
case we refer to the monographs of A V Babin and M I Vishik [3], J K Hale [16],
O A Ladyzenskaja [21], R Temam [31]. For the unbounded domain case, among
other contributions, we refer to the works of F Abergel [1], A V Babin and M I
Vishik [4], E Feiresl, Ph Laurençot, F Simondon, H Touré [14], R Rosa [30] for a
class of parabolic and Navier-Stokes equations and of J Ball [5], E Feiresl [12, 13]
for semilinear damped wave equations. The recent works of Belleri-Pata and Zelik,
[6, 34], consider nonautonomous semilinear damped wave equations: Paper [6],
studies a strongly damped equation in R3. In the case of nonautonomous exterior
force, the corresponding semigroup possesses an absorbing set, while in the case of
the autonomous system, the authors prove existence of global attractor in the usual
phase space, via an appropriate cut-off decomposition. The work [34], extends the
weighted Sobolev space-setting of [4], in order to show existence of finite dimensional
global attractor for the nonautonomous damped wave equation in RN .

Questions concerning global existence, and blow-up of solutions for nonlinear
wave equations, in bounded or unbounded domains, treated in the recent works of
H A Levine and J Serrin [23], H A Levine, S R Park, J Serrin [24], P Pucci and J
Serrin [27], G Todorova [32] and to [18], [19], for a problem similar to (1.1)-(1.2),
involving blow-up type nonlinearities.

For the wave equation (1.1)-(1.2), it is unclear a priori, which is the appropriate
phase space. In [17], homogeneous Sobolev spaces were introduced, for the study
of the asymptotic behavior of solutions, of (1.1)-(1.2). This space setting, proved
to be the natural one, for the treatment of the unbounded diffusion coefficient,
and the unbounded domain. Although weighted Lp-spaces are involved, it is not
restrictive, for the initial data and the exterior forces. The main result in [17], is
the existence of a global attractor. In the present work, which could be consid-
ered as a continuation of [17], we derive an estimate of the Hausdorff and fractal
dimension, of the global attractor. At this point we would like to note, that for
dissipative evolution equations considered in unbounded domains, the question of
finite dimensionality of the global attractor is nontrivial, see [34]: Even in the au-
tonomous case, the global attractor can be infinite dimensional. This is in contrast
with the bounded domain case, where infinite dimensional attractors appear only
in the nonautonomous systems.

The estimates of the Hausdorff dimension of the global attractor, are in terms
of the given parameters and are based on the fundamental results of Constantin-
Foias-Temam, on the dimension of functional invariant sets, and the asymptotic
distribution of eigenvalues of the differential operator −φ∆ in RN , acting in an
appropriate weighted L2-space (see [8], [22],[26] and references therein, for the as-
ymptotic distribution of eigenvalues of various differential operators).

Notation: We denote by BR the open ball of RN with center 0 and radius R.
Sometimes for simplicity reasons we use the symbols D(A), Lp, 1 ≤ p ≤ ∞, D1,2,
respectively for the spaces D(A)(RN ), Lp(RN ), D1,2(RN ), respectively; ||.||p for
the norm ||.||Lp(RN ). By (·, ·)L2

g
, (·, ·)D1,2 we denote the scalar products of the

corresponding spaces. The constants C or c are considered in a generic sense.
The end of the proofs is marked by “�”.
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2. Preliminary Results. For later use, in this section we copy some basic results
from [17]. We also give the asymptotic estimate for the eigenvalues of the differential
operator, that appears in the equation. The phase space of the problem (1.1)-(1.2),
is the product space X0 = D1,2 × L2

g. By D1,2(RN ), we define the closure of the
C∞

0 (RN ) functions with respect to the “energy norm” ||u||D1,2 =:
∫

RN | 5 u|2dx. It
is well known that

D1,2(RN ) =
{

u ∈ L
2N

N−2 (RN ) : 5u ∈ (L2(RN ))N
}

,

and that D1,2(RN ) can be embedded continuously in L
2N

N−2 (RN ), i.e., there exists
CE > 0 such that

||u|| 2N
N−2

≤ CE ||u||D1,2 . (2.1)

The best possible embedding constant for (2.1), is ( [11, p. 533], and references
therein)

CE =
1
4
N(N − 2)

{
NωNΓ

(
1
2

)
Γ

(
N

2

)
Γ

(
N + 1

2

)} 2
N

,

where ωN = π
N
2 /Γ

(
1 + N

2

)
, is the volume of the unit ball in RN . We shall fre-

quently use, the following generalized Poincaré inequality (see [7, Lemma 2.1])∫
RN

| 5 u|2dx ≥ α

∫
RN

gu2dx, (2.2)

for all u ∈ C∞
0 (RN ). It is found that α = C−2

E ||g||−1
N/2.

It can be shown (see [7, Lemma 2.2]), that D1,2 is a separable Hilbert space. The
weighted Lebesque space L2

g(RN ), is defined to be the closure of C∞
0 (RN ) functions,

with respect to the inner product

(u, v)L2
g

=:
∫

RN

g u v dx.

Clearly, L2
g(RN ) is a separable Hilbert space. The following lemma is crucial for

the analysis of the problem.

Lemma 2.1. Suppose that g ∈ LN/2
⋂

L∞. Then D1,2 is compactly embedded in
L2

g.

Proof Let {un} be a bounded sequence inD1,2(RN ). Then there exists a constant
c > 0, such that for all positive integers m, n and any R > 0,∫

RN

g(un − um)2dx ≤ ||g(un − um)||
L

2N
N+2 (RN )

||(un − um)||
L

2N
N−2 (RN )

≤ c{||g(un − um)||
L

2N
N+2 (RN\BR)

+ ||g(un − um||
L

2N
N+2 (BR)

}.

Since {un} is bounded in D1,2(RN ), {un} is bounded in H1(BR). By a diago-
nalization procedure, we can find a subsequence (denoted again by {un}), which
converges in L

2N
N+2 (BR), for all R > 0. On the other hand,

||g(un − um)||
L

2N
N+2 (RN\BR)

≤ ||g||
L

N
2 (RN\BR)

||un − um||
L

2N
N−2 (RN\BR)

.

Since g ∈ L
N
2 ∩L∞, we can make ||g||

L
N
2 (RN\BR)

as small as we please, by choosing
R sufficiently large. Hence there exist ε > 0∫

RN

g(un − um)2dx ≤ ε

2
+

ε

2
,
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for m and n sufficiently large. Therefore {un} is a Cauchy sequence in L2
g(RN ). �

To analyze the properties of the operator −φ∆ in the space setting described
above, we consider the equation

−φ(x)∆u(x) = η(x), x ∈ RN (2.3)

without a boundary condition, as an operator equation

A0u = η, A0 : D(A0) ⊆ L2
g(RN ) → L2

g(RN ), (2.4)

where A0 = −φ∆ with domain of definition D(A0) = C∞
0 (RN ) and η ∈ L2

g(RN ). In
[17], it is shown by using inequality (2.2), that the assumptions of the Friedrichs’
extension theorem (see [35, Theorem 19.C]) are satisfied. The energetic scalar
product is

(u, v)E =
∫

RN

5u5 vdx,

and the energetic space XE is defined as the completion of D(A0) with respect to
(u, v)E , i.e., the energetic space coincides with the homogeneous Sobolev space
D1,2(RN ). The energetic extension AE = −φ∆ of A0, is defined to be the duality
mapping of D1,2(RN ). The Friedrichs’ extension A of A0, is defined as the restric-
tion of the energetic extension AE , to the Hilbert space D(A), endowed with the
graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A).

The norm induced by the scalar product (u, v)D(A) is

||u||D(A) =
{∫

RN

g|u|2 dx +
∫

RN

φ|∆u|2 dx

} 1
2

,

which is equivalent to the norm

||Au||L2
g

=
{∫

RN

φ|∆u|2 dx

} 1
2

.

Moreover, as a consequence of Lemma 2.1, we obtain the following embedding
relations

D1,2(RN ) ⊂ L2
g(RN ) ⊂ D−1,2(RN ), (2.5)

which are compact and dense. It follows from the compactness of the embeddings
in (2.5), that for the eigenvalue problem

−φ(x)∆u = µu, x ∈ RN , (2.6)

there exists a complete system of eigensolutions {wn, µn}, satisfying the following
relations {

−φ∆wj = µjwj , j = 1, 2, ..., wj ∈ D(A),
0 < µ1 ≤ µ2 ≤ ..., µj →∞, as j →∞.

The eigenfunctions wj , j = 1, 2, ..., belong to the space D1,2(RN ), and are also
eigenfunctions of the weak eigenvalue problem∫

RN

5u5 v dx = µ

∫
RN

guv dx, v ∈ D1,2(RN ), ∀ u ∈ C∞
0 (RN ). (2.7)

Note that the eigenfunctions wj , j = 1, 2, ..., of problem (2.6) (or (2.7)), can
be arranged to form a complete orthonormal system in L2

g(RN ). Concerning the
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asymptotic behavior of the eigenfunctions of problem (2.6), every solution u of (2.6)
is such that

|u(x)| → 0, as |x| → ∞, (2.8)
(see [7, Theorem 3.2]). For the eigenvalues of the problem (2.6) the following result
holds:

Proposition 2.2. The eigenvalues of (2.6) satisfy the asymptotic estimate

µj ≥ K j
2
N , K =

1
e CE ||g||N/2

(2.9)

Proof The result follows by adaptation of [11, p. 531-533] in the case where
Ω = RN . We consider the function

H(x, y, t) =
∞∑

i=1

e−µitwi(x)wi(y), x, y ∈ RN , t > 0, (2.10)

Taking into account (2.8), we observe that H(x, y, t) satisfies in the weak sense, the
properties (

φ(y)∆y −
∂

∂t

)
H(x, y, t) = 0, (2.11)

H(x, y, t) > 0, in RN × RN × (0,∞), (2.12)
lim

|x|2+|y|2→∞
H(x, y, t) = 0, t ∈ (0,∞). (2.13)

Since wi, i = 1, 2, ..., can be arranged to form a complete orthonormal system in
L2

g(RN ), the function h(t) =
∑∞

i=1 e−2µit, can be written as

h(t) =
∫

RN

∫
RN

H2(x, y, t)g(x)g(y)dxdy.

By using (2.11)-(2.13) we get

∂h
∂t

= −2
∫

RN

g(x)
∫

RN

| 5y H(x, y, t)|2dydx, (2.14)

and by Hölder’s inequality

h(t) ≤

[∫
RN

g(x)
(∫

RN

H
2N

N−2 (x, y, t)dy

)N−2
N

dx

] N
N+2

×

[∫
RN

g(x)
(∫

RN

H(x, y, t)g
N+2

4 (y)dy

)2

dx

] 2
N+2

. (2.15)

The function

Q(x, t) =
∫

RN

H(x, y, t)g
N+2

4 (y)dy,

satisfies in the weak sense the properties(
φ(x)∆x −

∂

∂t

)
Q(x, t) = 0, (2.16)

lim
|x|→∞

Q(x, t) = 0, t ∈ (0,∞), (2.17)

Q(x, 0) = g
N−2

4 (x). (2.18)
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From (2.16), (2.17), we obtain
∂

∂t

∫
RN

g(x)Q2(x, t)dx ≤ 0,

which with (2.18) implies that∫
RN

g(x)Q2(x, t)dx ≤
∫

RN

g(x)Q2(x, 0)dx =
∫

RN

g
N
2 (x)dx. (2.19)

By using (2.1), (2.15), (2.19) and (2.14), we derive the inequality

||g||−1
N/2h

N+2
N (t) ≤ CE

∫
RN

g(x)
∫

RN

| 5y H(x, y, t)|2dydx = −CE

2
∂h
∂t

, or

h−
N+2

N dh ≤ − 2
CE ||g||N/2

dt. (2.20)

Integration of (2.20) shows that
∞∑

i=1

e−2µit = h(t) ≤
(

4
CEN ||g||N/2

)−N
2

t−
N
2 .

For t = N/4µj , the last inequality implies that

je
−N
2 ≤

∞∑
i=1

exp
(
−Nµi

2µj

)
≤ µ

N
2

j

(
N

4

)−N
2

(
4

CEN ||g||N/2

)−N
2

≤ µ
N
2

j

(
1

CE ||g||N/2

)−N
2

. �

We use the evolution triple (2.5), to give the following definition of weak solution
for the problem (1.1)-(1.2).

Definition 2.3. Let η satisfy (H) and {u0, u1} ∈ X0. A weak solution of (1.1)-
(1.2) is a function u(x, t) such that
(i) u ∈ L2[0, T ;D1,2(RN )], ut ∈ L2[0, T ;L2

g(RN )], utt ∈ L2[0, T ;D−1,2(RN )],
(ii) for all v ∈ C∞

0 ([0, T ]× RN ), satisfies the generalized formula∫ T

0

(utt(τ), v(τ))L2
g
dτ + δ

∫ T

0

(ut(τ), v(τ))L2
g
dτ +

∫ T

0

∫
RN

5u(τ)5 v(τ) dxdτ

+ λ

∫ T

0

(f(u(τ)), v(τ))L2
g
dτ =

∫ T

0

(η, v)L2
g(RN ) dτ.

Remark 2.4. We may see by using a density argument, that the generalized for-
mula (2.21) is satisfied for every v ∈ L2[0, T ;D1,2(RN )]. Moreover it can be shown
that the above Definition 2.3 of the weak solution implies that

u ∈ C[0, T ; D1,2(RN )] and ut ∈ C[0, T ; L2
g(RN )].

Finally, we recall the basic results proved in [17].

Theorem 2.5. Suppose that the constants T > 0, δ > 0 and the initial conditions

u0(x) ∈ D1,2(RN ) and u1(x) ∈ L2
g(RN ), (2.21)

are given. Then for the problem (1.1)-(1.2) there exists a (weak) solution such that

u ∈ C[0, T ; D1,2(RN )] and ut ∈ C[0, T ; L2
g(RN )].

Furthermore, the (weak) solution is unique if (i) N = 3, 4 or (ii) N ≥ 5 and
f ′ satisfies (F∞).
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Theorem 2.6. Let g satisfy (G), η satisfy (H), and f satisfy (F) and (F∞).
If

λ < min
(

α1/2δ

4c∗
,

(αµ1

8

)1/2 1
c∗

)
, (2.22)

the dynamical system associated to the problem (1.1), (1.2), possesses a global at-
tractor A = ω(B0), which is compact, connected and maximal among the functional
invariant sets in X0.

Note that in the absence of an external force η(x), the existence of an absorbing
set in X0 may be shown for all λ > 0, if the functions g, f satisfy the following
pseudocoercivity hypothesis

lim inf
||φ||D1,2→∞

∫
RN g(x)F (φ)dx

||φ||2D1,2

≥ 0,

lim inf
||φ||D1,2→∞

∫
RN g(x)f(φ)φdx− C

∫
RN g(x)F (φ)dx

||φ||2D1,2

≥ 0,

for some C > 0, where F (s) =
∫ s

0
f(s)ds.

3. The Hausdorff Dimension of the Global Attractor in X0. In this section
we prove that the global attractor given in Theorem 2.6, is finite dimensional.
We follow the standard methods appearing in [15], [31]. By Theorem 2.5 we may
associate to the problem (1.1)-(1.2), the semigroup of operators S(t) : X0 7−→ X0

by
S(t) : {u0, u1} 7−→ {u(t), ut(t)}.

Denote by ε0 = min(δ/4, µ1/2δ). Then for any ε ∈ (0, ε0], we consider the semi-
group of operators Sε(t) := RεS(t)R−ε, defined by

Sε(t) : {u0, v1 = u1 + εu0} 7−→ {u(t), v(t) = ut(t) + εu(t)}.
The operator Rα, α ∈ R, is an isomorphism of X0, given by the formula

Rα : {x, y} → {x, y + αx}, for any x, y ∈ X0.

It is easy to see that the new operators Sε(t) form a group, and any result
concerning the semigroup S(t) can be directly assigned to Sε(t), i.e. if A is the
maximal attractor defined by Theorem 2.6 for S(t) , then RεA is the maximal
attractor for Sε(t). To prove the first result of this section, which is the differentia-
bility of the semigroup S(t), we need two lemmas. The first lemma is a restatement
of an interpolation result, phrased as follows.

Lemma 3.1. Let 0 < δ0 < 2
N−2 . Then we have that

||u||
L

2(δ0+1)
g

≤ C||u||D1,2 .

Proof From [25], [29] we have the interpolation inequality

||u||La
g
≤ ||u||1−ρ

Lb
g
||u||ρ

Lp∗
g

,

where b ≤ a ≤ p∗ = 2N/(N − 2) and ρ ∈ (0, 1), satisfy the relation 1/a =
(1− ρ)/b + ρ/p∗. We set a = 2(δ0 + 1), b = 2 and we find ρ = Nδ0/2(δ0 + 1). This
value of ρ is in (0, 1) if 0 < δ0 < 2/(N − 2). From (2.1), (2.2) we have that

||u||
L

2(δ0+1)
g

≤ ||u||1−ρ
L2

g
||u||ρ

Lp∗
g

≤ (α−1)1−ρ||u||1−ρ
D1,2 ||g||ρ∞||u||

ρ
2N

N−2

= (k2||g||N/2)1−ρ||g||ρ∞kρ||u||D1,2 .
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So, the lemma is proved with C = k2−ρ||g||1−ρ
N/2||g||

ρ
∞. �

Lemma 3.2. Assume that either (i) N = 3, 4 or (ii) N ≥ 5 and f satisfies
(F∞). Then the linearized problem of (1.1)-(1.2) around the solution u

Vtt + δVt − φ(x)∆V + λf ′(u)V = 0, x ∈ RN , t ∈ [0, T ],
V (x, 0) = z ∈ D1,2(RN ), Vt(x, 0) = ω ∈ L2

g(RN ).

has a unique (weak) solution.

Proof Following ideas from Lemmas 4.2, 4.3 in [17], we are able to prove that the
linearized problem (3.1), posses a unique solution V such that V ∈ C[R,D1,2(RN )]
and Vt ∈ C[R, L2

g(RN )]. �
The differentiability result for the semigroup S(t) has as follows.

Lemma 3.3. Assume that f satisfy conditions (F∞) and (Fδ). Then for any t > 0,
the mapping S(t) is Fréchet differentiable on X0. The differential at φ0 = {u0, u1}
is the linear operator L(t, φ0) on X0 given by

L(t, φ0) : {z, ω} 7−→ {V (t), Vt(t)},

where V denotes the solution of the first variation problem ( 3.1).

Proof There exists R > 0 and {z, ω} ∈ X0, such that for φ0 = {u0, u1}, φ̃0 =
{u0 + z, u1 + ω}, we have ||φ0||X0 ≤ R, ||φ̃0||X0 ≤ R. Next, we consider the
associated solutions φ = S(t)φ0 = {u(t), ut(t)}, φ̃ = S(t)φ̃0 = {ũ(t), ũt(t)} and
their difference w = u− ũ, which satisfies the initial value problem

wtt + δwt − φ(x)∆w + λ[f(u)− f(ũ] = 0,
w(x, 0) = z, wt(x, 0) = ω.

(3.1)

Using ideas from [17, Proposition 3.2 (c)], we may obtain the following estimate

||φ(t)− φ̃(t)||2X0
= ||u(t)− ũ(t)||2D1,2 + ||ut(t)− ũt(t)||2L2

g

≤ exp (Ct)
{
||z||2D1,2 + ||ω||2L2

g

}
. (3.2)

Consider the difference W = ũ − u − V . We easily get that W is a solution of
the initial value problem

Wtt + δWt − φ(x)∆W + λf ′(u)W = λF,
W (x, 0) = 0,
Wt(x, 0) = 0,

where F = f(u)− f(ũ)− f ′(u)(u− ũ). By application of the mean value theorem,
we have that for τ ∈ [0, 1],

F =
∫ 1

0

[f ′(τ ũ + (1− τ)u)− f ′(u)](u− ũ)dτ. (3.3)

We multiply equation (3.3) by gWt and we integrate over RN , to obtain the equality

1
2

d

dt

{
||W ||2D1,2 + ||Wt||2L2

g

}
+ δ||Wt||L2

g
= λ

∫
RN

g[F − f ′(u)W ]Wt dx. (3.4)
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Using hypotheses (Fδ), (F∞) and (3.3), we have the following estimate, for the
right-hand side of (3.4),∣∣∣∣λ ∫

RN

g[F − f ′(u)W ]Wt dx

∣∣∣∣ ≤
≤ λ

∫
RN

g |f ′(u)| |W | |Wt| dx + λ

∫
RN

g |F | |Wt| dx

≤ C1||W ||L2
g
||Wt||L2

g
+ C2||Wt||L2

g

{∫
RN

g |u− ũ|2(δ0+1) dx

}1/2

≤ C3||W ||D1,2 ||Wt||L2
g

+ C2||Wt||L2
g
||u− ũ||δ0+1

L
2(δ0+1)
g

≤ C4

{
||W ||2D1,2 + ||Wt||2L2

g

}
+ C5||u− ũ||2(δ0+1)

L
2(δ0+1)
g

(3.5)

Using (3.2), (3.4), (3.5), Lemma 3.1 and Gronwall’s Lemma, we deduce that{
||W ||2D1,2 + ||Wt||2L2

g

}
≤ C6 exp(C4t)×

∫ t

0

||u(s)− ũ(s)||2+2δ0
D1,2 dt

≤ C6 exp(C7t)×
{
||z||2D1,2 + ||ω||2L2

g

}1+δ0

. (3.6)

Relation (3.6) is equivalent to

||φ̃(t)− φ(t)− {V (t), Vt(t)}||2X0
≤ C6 exp (C7t)× ||{z, ω}||2+2δ0

X0
, i.e

||S(t)(φ0 + h)− S(t)(φ0)− L(t, φ0)h||2X0

||h||2X0

→ 0 in X0

as h = {z, ω} → 0 and the lemma is proved. �
For the proof of the main result, we shall use the following lemma, which gives

additional information for the global attractor A. We define X1 := D(A)×D1,2.

Lemma 3.4. Let the functions f and η satisfy conditions (F∞) and (H) respec-
tively. Then the global attractor A is included and is bounded in the space X1.

Sketch of Proof We differentiate equation (1.1) with respect to time. Using (F∞),
we may see that f ′(u)ut ∈ Cb(R, L2

g(RN ). Therefore, we may apply arguments
similar to those used for the proof of [17, Lemma 4.7] to obtain that {ut, utt} ∈
Cb(R, X0). Then equation (1.1) implies that −φ∆u ∈ Cb(R, L2

g(RN )), i.e, u ∈
Cb(R, D(A)). By following the lines of [31, Theorem 3.2, pg 210], we obtain the
result. �.
Setting θ = Rεφ = {u, v = ut + εu}, we may rewrite the problem (1.1)- (1.2), as a

first order evolution equation of the form

θt = B(θ) = −Aεθ − λb(θ) + η̃,

where θ = {u, v}, b(θ) = {0, f(u)}, η̃ = {0, η} and

Aε =
(

εI −I
−φ∆− ε(δ − ε)I (δ − ε)I

)
.

Here I denotes the identity mapping. Also for simplicity of the presentation,
when we write the vector {u, v} we mean the transposed form of it, i.e., {u, v}T .
By the above notation, the first variation equation (3.1) has the form

Θt = B′(θ)Θ = −AεΘ− λb′(θ)Θ,

Θ(0) = ξ, (3.7)
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where Θ = {V, Vt + εV }, b′(θ)Θ = {0, f ′(u)V }, ξ = {z, ω} ∈ X0. Let ξk, k =
1, 2, ...,m initial values in X0 and Θk(t) the (unique) solutions of (3.7) with
Θk(0) = ξk. Recall that in the generalized Liouville formula

|Θ1(t) ∧ ... ∧Θm(t)|∧mX0 = |ξ1 ∧ ... ∧ ξm|∧mX0 ×

× exp
∫ t

0

Tr(B′(Sε(s)θ0) ◦Qm(s)) ds, (3.8)

the m−trace Tr(B′(Sε(s)θ0)◦Qm(s)), provides information for the evolution of the
m−dimensional volumes, transported along Sε(t)θ0, by the first variation equation.
We denote by Qm(t) the orthogonal projector in X0 onto the subspace spanned by
Θ1(t), ...,Θm(t). We also denote by

Φj(t) = {zj , ωj}, j = 1, ...,m,

an orthonormal basis of span{Θ1(t), ...,Θm(t)} = Qm(t). We have that

Tr(B′(Sε(s)θ0) ◦Qm(s)) =
m∑

j=1

(B′(θ(s))Φj(s), Φj(t))X0 , (3.9)

where ({p, q}, {p̃, q̃})X0 = (p, p̃)D1,2 + (q, q̃)L2
g
, is the inner product in X0 for

p, p̃ ∈ D1,2 and q, q̃ ∈ L2
g. Under the above notations, we have the following

main result of this section.

Theorem 3.5. Let conditions (F∞) and (Fδ) and (2.22) be fulfilled. Then there
exist m such that 1

m

∑m
j=1 µ−1

j ≤ ρ2
1

2γ2 , for which, the Hausdorff dimension of the
global attractor X in X0, of the dynamical system associated with problem (1.1)-
(1.2), is less than or equal to m, and the fractal dimension is less than or equal to
4m
3 .

Proof From Lemma 3.4, we have that RεA ⊂ X1. Using this fact and condition
(F∞), we may write

(B′(θ(s))Φj , Φj)X0 = (−AεΦj , Φj)X0 + (−b′(θ)Φj , Φj)X0

= − ({εzj − ωj , −φ∆zj − ε(δ − ε)zj + (δ − ε)ωj}, {zj , ωj})X0

− ({0, λf ′(u)zj}, {zj , ωj})X0

= − ε||zj ||2D1,2 + (zj , ωj)D1,2 − (−φ∆zj , ωj)L2
g

+ ε(δ − ε)(zj , ωj)L2
g

− (δ − ε)(ωj , ωj)L2
g
− λ(f ′(u)zj , ωj)L2

g

≤ − ρ1

{
||zj ||2D1,2 + ||ωj ||2L2

g

}
+ λ||f ′||∞

∫
RN

g |zj | |ωj |dx, (3.10)

whith ρ1 = ε/2, 0 ≤ ε ≤ ε0, where ε0 = min(δ/4, µ1/2δ) ([17, Lemma 4.1]). Setting
γ = λ||f ′||∞, and applying Young’s inequality to the relation (3.10), we have that

(B′(θ(s))Φj , Φj)X0 ≤ −ρ1

{
||zj ||2D1,2 + ||ωj ||2L2

g

}
+

ρ1

2
||ωj ||2L2

g
+

γ2

2ρ1
||zj ||2L2

g

≤ −ρ1

2

{
||zj ||2D1,2 + ||ωj ||2L2

g

}
+

γ2

2ρ1
||zj ||2L2

g
. (3.11)
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Since Φj is an orthonormal basis of QmX0, we have from (3.9), (3.11), the
inequality

m∑
j=1

(B′(θ(s))Φj(s), Φj(t))X0 ≤ −mρ1

2
+

γ2

2ρ1

m∑
j=1

||zj ||2L2
g
. (3.12)

In the previous section, we show that the operator −φ∆ is compact with domain
D(A), and that the injection D1,2(RN ) ⊂ L2

g(RN ) is compact. Therefore applying
the result from [31, Chapter VI, Lemma 6.3], for any orthogonal family of elements
{zj , ωj}, j = 1, ...,m of D1,2(RN )× L2

g(RN ), we have that
m∑

j=1

||zj ||2L2
g
≤

m∑
j=1

µ−1
j . (3.13)

Thus, by (3.12), (3.13), we have the following estimate

Tr(B′(θ(t)) ◦Qm(t)) ≤ −mρ1

2
+

γ2

2ρ1

m∑
j=1

µ−1
j . (3.14)

We integrate (3.14) with respect to time, to obtain the relation

qm := lim sup
t→0

1
t

∫ t

0

Tr(B′(Sε(s)θ0) ◦Qm(s)) ds ≤ −mρ1

2
+

γ2

2ρ1

m∑
j=1

µ−1
j .

From (2.7), we obtain that 1
m

∑m
j=1 µ−1

j → 0, as m → ∞. Hence there exist
m ≥ 1, such that

1
m

m∑
j=1

µ−1
j ≤ ρ2

1

2γ2
. (3.15)

Consequently, we have that

qm ≤ −mρ1

2

1− γ2

2ρ1m

m∑
j=1

µ−1
j

 ≤ −3mρ1

4
.

For i = 1, ...,m,

(qi)+ ≤ γ2

2ρ1

i∑
j=1

µ−1
j ≤ γ2

2ρ1

m∑
j=1

µ−1
j ≤ mρ1

4
, (3.16)

max
1≤i≤m−1

(qi)+
|qm|

≤ 1
3
. (3.17)

Now, we apply the Constantin-Foias-Temam Theorem on the dimension of the
attractor [31, Chapter V, Theorem 3.3], to complete the proof. �

Proposition 2.2, allows for a more explicit estimate on the dimension, in terms of
given parameters (see [31, Chapter VI, pg. 453-454], for the sine-Gordon equation).
By using (2.9), we get that there exist C(K) > 0,

m∑
j=1

µ−1
j ≤ C(K)m1− 2

N . (3.18)

We may consider ρ1 = min (δ/8, 4δ/µ1). We replace 1/ρ1 by

1
ρ̂1

=
8
δ

(
1 +

δ2

µ1

)
,
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in (3.15), which with (3.18) implies that m is the first integer, such that

m ≥
(

2γ2C(K)
ρ̂1

2

)N
2

, γ = λ||f ′||∞.

Remark 3.6. In the functional set-up developed in [17] and in the present article, it
is possible to follow the method of construction of exponential attractors introduced
in [9], [10]. In fact, under the additional assumption that f ′ ∈ L∞(RN ), it can
be proved that the semigroup S(t), satisfies the discrete squeezing property on an
absorbing set of the energy space X1 = D(A)×D1,2(RN ).
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