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Abstract. We prove certain local bifurcation results for the mean curvature prob-
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This is achieved by applying standard local bifurcation theory. The use of certain
equivalent weighted and homogeneous Sobolev spaces was proved to be crucial.
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1. Introduction

In this paper we study the bifurcation of a continuum of solutions for
the mean curvature equation

VU
Y <W> = Ag(z)f(u), =eRY, (1)
u(z) >0, almost everywhere in RY. (2)

It is proved that the continuum of solutions bifurcates from the
positive principal eigenvalue of the linearized problem

—Au=\g(z)u, zeRY, (3)

u(z) >0, forall z € RY, (4)

where A € R and 2 < N < 5. We are not going to discuss the case
of dimensions 1 and 2. It seems that other approaches would be
necessary for treating these cases. The general hypotheses, which will
be assumed throughout the paper, are the following

(G) g is a smooth function, at least of type CU*(RYN), for some
a € (0,1), such that ¢ € LN?(RN)NL®(RY) and there exists
QF C RN of positive measure, i.e., |QF| > 0, such that g(z) > 0,
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2 N. M. Stavrakakis & N. B. Zographopoulos

for all z € Q.

(F) f: R+~ [0,00) is a smooth function, such that f(0) = 0,
f'(0) >0 and f(s) >0, forall s#0. Also, f',f" € L*°(R) and
there exists k* > 0, such that |f(s)] < k*s, for all s € R*.

Furthermore, for the weight function g, we assume the following
hypotheses

(G) g(x) >0, forall z€RYN,

(G™) there exists Q= C RN with |7 >0 such that g(z) <0, for
all z€ Q™.

The mean curvature equation, which is connected with the least
surface problem, has a variety of applications both in pure mathe-
matics and in natural sciences, see for example (G. Gilbarg and N. S.
Trudinger, 1983), (E. Zeidler, 1986) and (E. Zeidler, 1985).

From the mathematical point of view, problem (1) is of great interest
because of it’s non-uniformity considered as an elliptic equation. So
the corresponding operator is not (strongly or weakly) coercive in the
standard reflexive Sobolev spaces.

For the bounded domain case, we refer to the works (C. O. Horgan,
L. E. Payne and G. A. Philippin, 1995) (L. E. Payne and G. A. Philip-
pin, 1994), for a priori estimates and maximum principle. Existence
results have been obtained in (E. S. Noussair, C. A. Swanson and Y.
Yianfu, 1993) using a barrier method. In the paper (A. Greco, 1998) the
existence of radial solutions is proved. In (M. Nakao, 1990) the existence
of global bifurcation was proved. Here the problem is studied in the
classical space setting. So, the “blowing up” technique, was possible to
be applied (see (E. Zeidler, 1986)).

In the unbounded domain case we mention the existence results of
(E. S. Noussair, C. A. Swanson, 1993), where a barrier method was
used. For a priori estimates and maximum principle we refer to the
work (L. Caffarelli, N. Garofalo and F. Segala, 1994) in all RY. Also,
estimates were obtained for a corresponding parabolic equation in the
paper (M. Nakao and Y. Ohara, 1996). Nonexistence results for positive
solutions appear in a recent paper by (W. Allegretto, 2000), where a
generalized type of Picone’s identity is used.

Recently some works have appeared dealing with bifurcation phe-
nomena of semilinear and quasilinear equations and systems on RY.
We may mention among others the papers (K. J. Brown and N. M.
Stavrakakis, 1996; P. Drabek and Y. X. Huang, 1997; N. M. Stavrakakis
and N. B. Zographopoulos, 1999; N. M. Stavrakakis and N. B. Zo-
graphopoulos, 2000). For a rather complete discussion on such kind of
methods we refer to (N. B. Zographopoulos, 2000).
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Bifurcation Results for Mean Curvature Equations on RV 3

To be able to carry out our study and especially to apply the bifur-
cation methods, we introduce certain equivalent weighted and homo-
geneous Sobolev spaces. This is done in Section 2. Also we briefly state
results, to be used later, concerning the existence, of the first positive
principal eigenvalue A\ of the linearized problem (3) - (4). In Section
3, we deal with some basic properties of the mean curvature operator.
Finally, in Section 4, we prove the existence of a local continuum of
nonnegative solutions of problem (1) - (2) branching out from the first
eigenvalue of the linearized problem (3) - (4).

REMARK 1.1. We want to mention that the restriction in the dimen-
sion: 2 < N <5 s imposed in order to obtain the differentiability of
the operators, which correspond to the right hand side of the equation
(1) (see Lemma 4.2) and not because of the mean curvature operator.
Also this restriction is necessary for the proof of some useful estimates.
For similar thinks in the semilinear elliptic problem we refer to the

work of (K. J. Brown and N. M. Stavrakakis, 1996 ).

Notation. For simplicity we use the symbol |.||2 for the norm ||.|[ > (ga)

and D2 for the space D"2(RY). Br and Bgr(c) will denote the
balls in RN of radius R and centers zero and ¢, respectively. Also
the Lebesgue measure of a set Q C RY will be denoted by |9].
An equality introducing definition is denoted by =:. Integration in
all of RY will be denoted with the integral symbol [ without any
indication.

2. Space Setting - The Linearized Problem
The natural space setting for the eigenvalues of the linear elliptic prob-

lem (3)-(4), as we show next, will be the energy space DV2(RY), i.e.,
the closure of the C§°(RY) functions with respect to the energy norm

1/2
lullore = ([ | 1wl da)
RN

DLRY) = {u e L¥2 (RY) : |yul € L2(RY)}

It is known that
and that there exists Ky > 0, such that, for every u € DV2(RV)

lull 2a < Ko [[u|pr2, (1)

and DV2(RY) is a reflexive Banach space.
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Our approach here is based on the following generalized Poincaré in-
equality.

LEMMA 2.1. Suppose that g € LN/2(RN). Then there exists a =
1/K||g||1/2 >0 such that

N/2
2 2
[ valdr=a [ gl ds,

for all u € C§°(RY).

Thus if g € LV/?(RV) and « >0 is as in Lemma 2.1, we may define
an inner product on C§°(RY) by

<uyw >=: dz — 2 d
U, v —./RNvuvv m—a/RNguv Z.

Next we define the weighted Sobolev space V' to be the completion of
C§° functions with respect to the above inner product. The space V
depends on the function g¢; it is natural to expect that V grows as
|g| becomes smaller. However, under condition (G) it is proved (see
(K. J. Brown and N. M. Stavrakakis, 1996)) that ) is independent of
the function g¢. In fact, the space V is characterized by the following
lemma.

LEMMA 2.2. Suppose g€ LN/2(RN). Then V = D2,

Thus we may henceforth suppose that the norm in V), coincides with
the norm ||.||p1,2 and that the inner product in V is given by

< u,v >:/ vu\y/vde.
RN

Following a standard procedure, we define the bilinear form
B(u,v) ::/ guv dz,
RN

2N
for every w,v € V. Since V C L¥—2(RY) we obtain that A3 is
bounded in V. Hence by Riesz Representation Theorem we may define
a bounded linear operator M, such that

< Mu,v >=: B(u,v), for every u,v € V.
It is standard to check the following result.

LEMMA 2.3. Suppose that g € LN/>(RN). Then operator M is
selfadjoint and compact.
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To simplify notation, without loss of generality, we assume that f'(0) =
1. So (3) is exactly the linearization of (1). By means of classical spec-
tral methods the following results are proved concerning the existence,
positivity and principality of the first eigenvalue.

THEOREM 2.4. a) Assume that the function ¢ satisfies hypothe-
sis (G*). Then problem (3)-(4) admits a positive principal eigenvalue
given by
A =: _inf 2.
VT M=t [[ellr.2
b) Assume that function ¢ satisfies hypothesis (G~ ). Then problem
(3)-(4) admits two principal eigenvalues given by

AT =: inf 2

! <leilu>:1 [ullpr.,

A7 = — inf 2.
! <Muu>=-1 [[elir.2

The associated eigenfunction ¢ (T, ¢~ respectively), belongs (belong)
to the space DY2(RN) and is a classical solution of the problem (3)-

(4)-

Having in mind the application of the bifurcation theory for the study
of the mean curvature problem (1)—(2), information concerning the
dimension of the eigenspace associated to the principal eigenvalues of
the linearized problem (3)—(4) are of basic importance. The main results
in this direction, needed in the rest of the paper, can be stated as follows

THEOREM 2.5. Assume that the function g satisfies hypothesis (GT)
( (G~ ), respectively). Then we have:

(i) the eigenspace corresponding to the principal eigenvalue Ay, (AT,
A~ respectively) is of dimension 1,

(ii) \1 (AT, A= respectively) is the only eigenvalue of problem (3)-(4),
to which corresponds a positive eigenfunction.

Proof The proof of this theorem is long and technical.

REMARK 2.6. The algebraic and the geometric multiplicities of the
eigenvalues of the problem under discussion are equal since by Lemma
2.3 the operator M is compact and selfadjoint (see (E. Zeidler, 1986)).

The proofs of all results presented in this section are given in detail in
(K. J. Brown and N. M. Stavrakakis, 1996).
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3. Properties of the Mean Curvature Operator

In this section we state some basic properties of the operators corre-
sponding to problem (1)—(2). We introduce the operator A : D'? —
D'? and the functional F : D% — R, as follows:

(A(w),0) = [ L g,

IRV T
Flu) = /(,/1 v uf? — 1) da.

THEOREM 3.1. The operator A and the functional F are well
defined. Moreover, holds that

F(u) < (A(u), u), (1)
for every u € D2,
Proof The result for the operator A is implied by the inequality

| v ul

—= < .
VESETEA

On the other hand, from the inequality

v ul? | v ul?
Vit |wvuff-1= | < ,
|Vl T+ VIF[VuP — VItV apP

we deduce the relation (1). ¢

The next two lemmas state some abstract estimates needed in the
sequel.

LEMMA 3.2. For any positive real numbers a, b the following
inequalities hold

‘ a _ b
Vi+aZ V1402

< |a_b|7 (2)

a b a b 2
— a—b)> — , 3
(\/1+a2 x/1+b2>( )_<\/1+a2 x/1+b2> )
Proof Following some simple calculations we obtain that

b

‘ a _ a+b
Vi+aZ V14562

TVt VIR (VTR + bVt @)

|a—b.
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Bifurcation Results for Mean Curvature Equations on RV 7

The proof of the inequality (2) is completed by the following relation

a+b<aVvV1+b+bV1+a?

Relation (3) may be written equivalently as

<\/1(—l|ra2 - VlinN(a_b)_ <\/1ia2 B \/1Z:Lbz>} >0. (4)

The result for the inequality (4) is an immediate consequence of the
fact that

<\/1C—L|-a2 _\/13_()2)(@_()) >0,

for every a,b e RT. &

Notation For the simplification of the representation we denote by
N(u) the quantity
N(u) =:1+|vul

A generalization of the previous lemma is the following result.

LEMMA 3.3. For every u, v € DY“2, the following inequalities hold

vv__ VY u—
T | <l v vl 9
VA 4 W |vul vl )?
(\/—N(u) ,/_N(U)> (v V)Z<\/N(u) \/N(v)>’ (6)

1 1
‘ (N(u))32  (N(v))3/2 < kv u—wol, (7)

where k>0 is independent of u and v.

Proof Raising to the square both sides of inequality (5) and making
some calculations, we obtain that

2| N (W) N(w) — /N@) N0 | 7 w0 < | 9 ul'Nw) + | v o' Na).
Also, from relation (2) we have that

|vul v

VN() N
Since wu-vv < | ul| v ov| we get inequality (5). With a similar
procedure we may prove that relation (6) may be written as follows
vl (vl [\/N(U)Jr\/N(U) —2

VN(©) /N () ]V“'V”'

<|vu-—wvl

\s\|vu|—|vv|

2 2
|V ul* [vul n

VN(@u) N(u) +/N@w) N(v) —
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Also, from (5) we deduce that

(G- aoow-rom (- )’

Again the fact that u-yv < | u|| v v| implies inequality (6).
Finally, concerning inequality (7) we have that
‘ 1 1
(N(u)3/2 (N (v))3/2

‘ (N (u)* — (N(v))®

[(N(u))?72 + (N (0))¥2] [(N (u) (N (v))]/2

< el (vul+|vo) (VW) + (N(w)(N(v) + (N(v))’]
B [(N(u))*2 + (N (0))¥?] [(N (u) (N (v))]/2 '

The last result and inequality |7 u| 4+ | 7 v| < (N(u))'/? (N (v))'/2,
which holds for every u, v in D2, imply relation (7). <

Next we prove that the operator A is Fréchet differentiable.

THEOREM 3.4. The operator A is Fréchet differentiable in D2
with

/ _ vh
(A (u)h,v) _/(1+|vu|2)3/2 VWM,

for every u, h and v in D2

Proof In order to prove that A is Fréchet differentiable, we prove
that there exists the Gateaux derivative of A in D"? as a continuous
operator (see (M. S. Berger, 1977, Theorem 2.1.13)). Setting

A(u,th) = A(u + th) — A(u) — tA'(u)h,
we have that
||A(u, th)||> = (A(u+ th) — A(u) — tA'(u)h, A(u, th))

/[vu—i—tvh_ vu  tyh 2dx
VN(u+th) /N (N(u))3/?

Since the following relations hold

vu+ts/h VU t<v h

VN@w+th) N (N(u))? <2(|vul+[vh)
and

vu+tyh vu  tvh || wu i
0| NG+ ) VN (N || /N ) \/— !
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Bifurcation Results for Mean Curvature Equations on RV 9
by Lebesgue’s Dominated Convergence Theorem we have that

. 2
lim [[A(u, th)]” =

Hence, the operator A is Gateaux differentiable in D2

In order to prove that the operator A’(u)h is continuous with
respect to wu, it suffices to prove that it is continuous for every h € Cg°.
Assume that wu, v, ¢ € D2, then we have

1
! /
(A= A0 )| < [| s~ || I v bl 8)
;From (7), (8) and Holder’s inequality, we obtain that

A~ A 0)h, )] <

for some positive constant ¢ and the proof is completed.
COROLLARY 3.5. The operator A is continuous in D2,

The connection between the operator A and the functional F, is given
by the next result.

THEOREM 3.6. The operator A is a potential operator. A potential
for A is the functional F.

Proof We notice that for the Fréchet derivative A’ of A holds that
(A (w)v,w) = (v, A'(u)w), for every wu,v,w € D2 (9)

Therefore, in order to prove that A is a potential operator, it suffices
to prove that the mapping (¢,s) — (A'(w +tu+sv)z,y) is continuous
in [0,1] x [0,1], for every wu,v,w,z,y € D"? (see (E. Zeidler, 1986,
Proposition 41.5)). Assume that (t;,s;) € [0,1] x [0,1], i =1,2. Then
we have that

W@ a) = (4020 < [| e = || 9 vl
where

t=vyw+tivu+s1yv and 9 =\yw+1iyyu+ S2\0.
Following the same procedure as in the proof of Theorem 3.4, we may
derive that

11
(N(u)*2  ((N(v))*?

SC|(t1—tg)vu+(31—52)vv||ﬂ+6|,
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10 N. M. Stavrakakis & N. B. Zographopoulos

where C = (N(@))%+(N(a

9))2 .
(V@) 2 (N (D ))33)2( (o )Hg (@) . From the following

) (N(@))3/2 (N(7))3/2

inequality
1 1

V@~ (@]
Lebesgue’s Dominated Convergence Theorem implies that the mapping
(t,s) = (A'(w + tu + sv)z,y) is continuous in [0,1] x [0, 1], so that
A is a potential operator. It is clear that a potential for A 1is the
functional F. $

vizllvyl <2 vzl vyl

Another, important property of the operator A and so for the func-
tional F', is stated in the next lemma.

THEOREM 3.7. The operator A 1is strictly monotone, i.e.,
(A(u) — A(v),u —v) >0,

for every u, v in DY2, with u # v.

Proof Assume that, for some wu, v in D2, holds that
(A(u) — A(v),u —v) =0.

Then, relation (6) implies that

/ (ﬁ(m - XZU))Z“ =0

Hence, we obtain that A(u) = A(v), almost everywhere in RY . Making
some simple calculations, we conclude that u = v, almost everywhere
in RY and the proof is completed. ¢

COROLLARY 3.8. The functional F is strictly convex in D2,

Proof Result is an immediate consequence of (E. Zeidler, 1986, Propo-
sition 25.10).

4. Local Bifurcation Results

In this section we state some existence results for the nonlinear prob-
lem (1)-(2) near the point (A;,0), proving the existence of a local
branch of solutions bifurcating from the trivial solution. To apply local
bifurcation theory we introduce the nonlinear operator P: RxV — V
through the relation

< P(\u),¢>= /RN

1
Ty VUV bde = [ aftigdr, (1)

for every ¢ € V, where <,> denotes the inner product in D2,
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LEMMA 4.1. The operator P is well defined by (1).

Proof For fixed u € D? we define the functional

1
v0) = [ T vuveds =2 [ ofwsds

where ¢ € D2, Since the function f satisfies hypothesis (F), then
N
flu) € Lns (RY) and for some positive constant K; holds that
@) <1l ulle 119 @l + 1M llgllge 17| 1611 o5,
< Ki([l v ullz + (A lglny2 (1 (@)l]2x ) [[]]v-

So @ isa bounded linear functional. Hence by the Riesz Representation
Theorem we may define P as in (1). $

LEMMA 4.2. The operator P defined by (1) is continuous and for
N = 3,4,5, is Fréchet differentiable with continuous Fréchet deriva-
tives, given by

<SPS > = fon o V6V Bz — X fax gf (u) ) de,
< P/\(>\,U),¢ > = _fRN gf(u)¢d$,

< P/\u(>‘7u)¢7d) > = — fRN 9f’(“)¢¢ d]?,
for all ¢, € D2,

Proof We refer to the proof of Theorem 3.4. See also (K. J. Brown and
N. M. Stavrakakis, 1996). <

Next we have the following local result.

THEOREM 4.3. (Local Bifurcation) There exists ey > 0 and con-
tinuous functions 1 : (—€p,e0) — R and 1 : (—eg,e0) — [p]= such
that n(0) = X1, ¥(0) =0 and every nontrivial solution of P(\,u) =0
in a small neighborhood of (A\1,0) is of the form (Ac,ue) = (n(e), ep+
b(e)).

Proof We shall prove that the operator P satisfies all the hypotheses of
the local bifurcation theorem, see (M. Crandall and P. H. Rabinowitz,
1971).

(i) The operator P,(A1,0) is linear, compact, selfadjoint and holds
that P,(A\1,0)¢ = 0, if and only if ¢ € V is a solution of the (3).
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12 N. M. Stavrakakis & N. B. Zographopoulos

Therefore N(P,(A1,0)) = [¢], where ¢ is the principal eigenvalue of
(3). So 1 € R(P,(\1,0)), if and only if there exists w € DH?(RY) and
< 1), >=< Py(A1,0)w, ¢ >. But selfadjointness of P,(A1,0) implies
that
< Py(A1,0)w, ¢ >=< w, P,y(A,0)¢p >=< w,0 >= 0.

Hence R(P,()\1,0)) = [¢]*.

(ii) Let w € N(Py,(A1,0)) N R(Py(A1,0)). Then P,(A,0)w = 0
and there exists 1 € DY2, such that < P,(\1,0)¢,w >=< w,w >.

Again the selfadjointness of the operator P,(A1,0) implies that 0 =<
1, Py(A1,0)w >=< w,w >. So

1/2
< wyw >= |[w]|prs = (/ |vw|2dx> 0.
RN
We conclude that w = 0, almost everywhere in RV, i.e.,

Py(A1,0)) () R(Pu(A1,0)) = {0}.

Also, it is easy to see that
N(P,(A\1,0)) ® R(P,(\,0)) = DH3(RY).

(iii) Finally, we have that Py,(A1,0)¢ & R(P,(A1,0)) (transver-
sality condition), since

< Pu(0)d >= = [ g¢tds <0
R

and the proof is completed. <

In the remaining part of this section we give some results concerning
the sign of the solutions of (1) near the bifurcation point (A1,0).

THEOREM 4.4. Let (A,ue) be the solutions of equation (1)-(2), as
they are defined in Theorem 4.3. Then there exists e¢g > 0, such that
ue(x) >0, almost everywhere in RN and e € (0,¢).

Proof We proceed by contradiction, i.e., suppose that the assertion of
the theorem is not true. Let (\,,u,) be a sequence of solutions of
(1), as they are defined in Theorem 4.3, such that (A,,u,) — (A1,0).
We denote by 4y, = u,/||un|| the normalization of wu,. Then there
exists a subsequence of #,, which again we denote by ,, such that it
converges weakly in D'? to some function @g. From equation (1) we
have that

f (up) up, de. (2)

\/N(un
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Bifurcation Results for Mean Curvature Equations on RV 13

The equation (2), from Lemma 4.2, can be written as

J 19l o+ O(ual P) = A [ () do+ O(fual ). (3)

The compactness of the operator M (see Lemma 2.3) implies that (3)
in the limit gives

/|vﬂ0|2dm:)\1/g(x)ﬁgdx.

So, the function %y must be the eigenfunction ¢.

lullpr2

Figure 1. Bifurcation Diagram

Next we introduce the following notation U, =: {x € RV : i, (z) <
0}. It is clear that

|19 o+ Olllunl B) = A [ (@)t 2 da + Ol ).
Holder’s inequality and relation (1), imply that

llaz 113 2 = Ounll,-) < collg(@)]x/2 gy llin 11 2 + Olunlly,-),

or, equivalently
er < 9@l )

where the constant c¢; is independent from wu,. Then we deduce the
existence of a constant My > 0, large enough, such that

(U, N Bar(0)] > e,
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14 N. M. Stavrakakis & N. B. Zographopoulos

for all M > M, and the constant c¢5; > 0 is independent from
An and wu,. Following a similar procedure as in (P. Drdbek and Y. X.
Huang, 1997, Lemma 2.3), which is based on the Egorov’s Theorem, we
conclude by contradiction that the functions u, are nonnegative, for n
large enough. Hence, holds that u, > 0, for all (A, u,) € CNB,(A1,0),
with 7 > 0, small enough. So we have a bifurcation diagramm from
the principal eigenvalue A, which may look like the one in Figure 1.

&

REMARK 4.1. We notice that all the arguments, obtained in this work,
are applicable to the bounded domain case and similar results may be
obtained.
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