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Abstract. We discuss the asymptotic behaviour of the Schrödinger
equation

iut + uxx + iαu − kσ(|u|2)u = f, x ∈ R, t ≥ 0, α, k > 0

with the initial condition u(x, 0) = u0(x). We prove existence of a global
attractor in H2(R), by using a decomposition of the semigroup in weighted
Sobolev spaces to overcome the noncompactness of the classical Sobolev
embeddings.
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1 Introduction

The aim in this note is to show existence of global attractor for the initial value
problem

iut + uxx + iαu− kσ(|u|2)u = f, α, k > 0, x ∈ R, t ≥ 0, (1.1)

u(x, 0) = u0(x). (1.2)

The zero order dissipation term (α > 0) is considered as the weak damping. We
assume that the function σ satisfy the growth condition

σ(s) ≤ csγ−1, for some c > 0, 0 ≤ γ < ∞. (C)
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The Cauchy poblem for the nonlinear Schrödinger equation and the asymptotic
behaviour of solutions have been treated by many authors. We refer on the mono-
graph [6] and on [7], [12], [15], [21], [24], [27] for results on existence, non-existence
and blow-up of solutions. Questions on the existence of global attractors for the
problem (1.1)–(1.2) have been treated first by J.M. Ghidaglia [10], where the exis-
tence of a maximal attractor in the weak topologies of H1(0, L) and H2(0, L) is
proved. In [2] it is proved that there exist a maximal attractor in the strong topo-
logy of H1(Ω), when Ω is a bounded domain of R

2. Existence of global attractors
in H1(Ω), when Ω is a bounded interval, is also given in [13], based on a specific
decomposition of the semigroup. In [13] important results for the regularity of
the attractor are also included. In fact it is shown that, if f ∈ C∞ the global
attractor is in Hk(Ω), for any k ≥ 2. In general, when the equations are consi-
dered in unbounded domains the difficulties arise by the lack of compacteness of
the embeddings of the classical Sobolev spaces. However, various methods and
techniques have been introduced by several authors, to overcome this difficulty.
In [4] weighted Sobolev spaces have been introduced for the study of attractors
for the parabolic equations defined in all of R

N . Nevertheless, one has to restrict
initial data on weighted spaces, when the work is done directly on this functional
setting. For results on the existence of global attractors in weighted spaces we also
mention the papers [1] and [8]. In [5] a method using the energy equation is intro-
duced that yields existence of attractors in classical Sobolev spaces. This energy
method is also used in [11] for the study of the KdV equation and in [2], to obtain
compactness of the trajectories for the problem (1.1)–(1.2) in H1(Ω), where Ω is
a bounded subset of R

N . In [28] an energy equation is derived and the energy
method is applied for the proof of existence of globall atractor in H2

per(R). Using
Strichartz estimates E. Feiresl [9] has proved existence of the global attractor in
the classical energy space for semilinear wave equations in R

N . A later approach
is based on the use of homogeneous Sobolev spaces and their compact embeddings
in the appropriate weighted-L2 spaces. This general space setting (more general
than the classical one) is introduced in our joint works [17, 18, 19, 20] for the
study of a semilinear wave equation in R

N and presented in details in [16]. In [23]
the existence of the global attractor in the strong topology of H1(RN ), N ≤ 3
for the problem (1.1)–(1.2) is proved. This is achieved by using certain weighted
Sobolev spaces as an intermediate tool. In the present work using a decomposi-
tion S(t) = S1(t) + S2(t) of the semigroup, weighted Sobolev spaces are used to
achieve uniform compactness for S2(t) and hence existence of a global attractor in
the more regular space H2(R). Note also that no further restrictions were imposed
on the initial conditions (1.2) and the exterior force f . The choice of a standard
type nonlinearity and the dimension n = 1 are made just for technical reasons.
The results achieved can be extended to higher dimensions to equations involv-
ing more general nonlinearities (see [10], [23]). We would like to mention that
the same result may also be proved by using the method developed in [28], since
for the application of the energy method it is not necessary to consider compact
embeddings of the function spaces involved. The paper is organized as follows. In
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Section 2, we present some preliminary facts to be used in the sequel. In Section 3,
the proof of the existence of an absorbing set in H2(R) is developed. In the final
Section 4, the construction of the global attractor is presented.

2 Preliminaries

In this section, we recall some basic results related to the functional setting of the
problem (1.1)–(1.2). We consider the differential operator

Au = −iuxx, (2.3)

on the Hilbert space L2(R) with domain of definition D(A) = H2(R). We have
that the operator iA is self adjoint in L2(R) (see also [25, Lemma 5.2, Chapt 7]).
Then we have the following local existence result ([6]).

Theorem 2.1 Let T > 0, u0 ∈ H1(R) and f ∈ L2(R) and assume that condition
(C) holds. Then there exists a unique solution for the problem (1.1)–(1.2) such that

u ∈ C([0, T ], H1(R)) ∩ C1([0, T ], H−1(R)).

In addition, if u0 ∈ H2(R) then

u ∈ C([0, T ], H2(R)) ∩ C1([0, T ], L2(R)).

We can define by Theorem 2.1 the semigroup of operators

S(t) : H2(R) → H2(R), such that
S(t) : u0 → u(t), t ≥ 0.

To study the properties of the semigroup S(t) we use weighted Sobolev spaces
introduced in [4]. For w(x) = (1 + |x|2)γ , γ > 0, the weighted-L2 space is
defined by

L2
w(R) :=

{
u : R → C : ‖u‖2

L2
w

:=
∫

R

g|u|2 dx < ∞
}
. (2.4)

The weighted Sobolev spaces are introduced as follows

Hm
w (R) :=


u ∈ L2

w(R) : ‖u‖2
Hm

w
:=

∑
|a|≤m

‖∂au‖2
L2

w
< ∞


 , (2.5)

where ∂a is the usual multiindex notation. For g(x) as above we have the following
compactness lemma (see also [4, Lemma 2.16]) that will be used in the sequel.

Lemma 2.3 The embedding H3(RN ) ∩H2
w(RN ) ↪→ H2(RN ) is compact.
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Proof. For completeness, we just sketch the proof. Set BR = {x ∈ R
N : |x| < R}.

Let F be a bounded set in H3(RN ) ∩H2
w(RN ). We may easily see that for every

u ∈ F
‖u‖

H2(RN \BR)
≤ CF (1 +R)−γ . (2.6)

Consider the set
FR := {u ∈ F : u|BR

} .
Since H3(BR) ↪→ H2(BR), compactly, there exists a finite covering of ε/2-balls
of H3(BR) for the set FR ⊂ H2(BR). From (2.6) we see that an ε-covering of
the set F in H2(RN ) can be obtained by choosing R large enough such that
CF (1 +R)−γ ≤ ε/2. �

To estimate several quantities, we shall use the weight function g(x) =
(1 + ε0|x|2)γ , for some ε0 ∈ (0, 1]. We have the following equivalence of norms

C−1
ε0 ‖g 1

2u‖2 ≤ ‖u‖L2
w

≤ Cε0‖g
1
2u‖2. (2.7)

3 Existence of absorbing set in H2(R)
In this section we show the existence of an absorbing ball in H2(R) by obtaining
uniform in time estimates. We start with the following lemma.

Lemma 3.1 Let f ∈ L2(R). Then there exists a constant M1 independent of t
such that as t → ∞

‖u(t)‖2
2 ≤ M1

Proof. We multiply (1.1) by u, we integrate over R and we keep the imaginary
parts. Then we get

1
2
d

dt
‖u‖2

2 + α‖u‖2
2 = Im(u, f) ≤ α

2
‖u‖2

2 +
‖f‖2

2

2α

and the result comes by application of the Gronwall’s lemma. �

Lemma 3.2 Let f ∈ L2(R). Then there exists a constant M2 independent of
t such that as t → ∞

‖ux(t)‖2
2 ≤ M2

Proof. Now we multiply equation (1.1) by −ut − αu. This time we keep the real
parts and we get the equation

1
2
d

dt
{‖ux‖2

2 + kΣ(|u|2) + 2Re(f, u)} + kαΣ(|u|2)
+α‖ux‖2

2 + αRe(f, u) = 0.
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where Σ(s) =
∫ s

0 σ(r)dr. We have the inequality

1
2
d

dt
J1(u) + αJ1(u) ≤ α

2
‖f‖2

2 +
1
2α

‖u‖2
2, (3.8)

where
J1(u) = ‖ux‖2

2 + Σ(|u|2) + 2Re(f, u).

We use estimate of Lemma 3.1 and Gronwall’s inequality to obtain the result.
�

Lemma 3.3 Let f ∈ L2(R). Suppose also that

k <
α

3c∗cM
,M = max{M2γ+1

1 ,M2γ+1
2 } (3.9)

Then there exists a constant M3 independent of t such that as t → ∞,

‖uxx(t)‖2
2 ≤ M3.

Proof. We multiply (1.1) by uxxt +αuxx, integrate over R and keep the real parts
to obtain

1
2
d

dt

{
‖uxx‖2

2 − 2kRe
∫

R

σ(|u|2)uuxxdx− 2Re
∫

R

fuxxdx

}

+α‖uxx‖2
2 − αkRe

∫
R

σ(|u|2)uuxxdx− αRe

∫
R

fuxxdx

= −kRe
∫

R

σ′(|u|2)|u|2ut uxxdx− kRe

∫
R

σ′(|u|2)u2ut uxxdx

−kRe
∫

R

σ(|u|2)utuxxdx. (3.10)

To estimate the integral terms of the right-hand side of (3.10), we insert equation
(1.1). By using (C), we observe that

k

∫
R

|σ(|u|2)| |ut| |uxx|dx ≤ ck

∫
R

|u|γ1 |uxx|2dx

+αck

∫
R

|u|γ2 |uxx|dx+ ck2
∫

R

|u|γ3 |uxx|dx

+ ck

∫
R

|u|γ1 |f | |uxx|dx,

where γj(γ) > 0, j = 1, 2, 3. Using Gagliardo-Nirenberg inequality

‖u‖∞ ≤ c∗‖u‖
1
2
2 ‖ux‖ 1

2
2 , u ∈ L2(R) ∩H2(R),
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and Lemmas 3.1 and 3.2, we deduce that

ck

∫
R

|u|γ1 |uxx|2dx ≤ ck‖u‖γ1∞‖uxx‖2
2

≤ c∗ck
{

1
2
‖u‖γ1

2 +
1
2
‖ux‖γ1

2

}
‖uxx‖2

2

≤ C∗

{
Mγ1

1

2
+
Mγ1

2

2

}
‖uxx‖2

2

≤ C∗M
2

‖uxx‖2
2, M = max{Mγ1

1 , Mγ1
2 }

ck

∫
R

|u|γ1 |f | |uxx|dx ≤ α0‖uxx‖2
2 + c1(α, k,M)‖f‖2

2,

where C∗ = c∗ck and α0 depends on α. The rest of the integrals that appear
in (3.10) can be estimated similarly. From this procedure we may derive the
inequality

1
2
d

dt
J2(u) + α∗J2(u) ≤ M∗,

J2(u) = ‖uxx‖2
2 − 2kRe

∫
R

σ(|u|2)uuxxdx− 2Re
∫

R

fuxxdx,

taking into account that α∗ = α/2 − (3c∗ckM)/2 > 0 which justifies assumption
(3.9). The constant M∗ depends on α, c∗, k,M, ‖f‖2. The lemma is proved by
applying Gronwall’s ineqality in (3). �

Lemma 3.4 Let f ∈ L2(R). Then there exists an absorbing set in H2(R), for the
semigroup S(t) defined by the problem (1.1)−(1.2).

Proof. By using the uniform in time estimates of Lemmas 3.1, 3.2 and 3.3 we
may show that there exists a time t0 and some ρ0 > 0, such that for every fixed
ρ1 ≥ ρ0,

‖u(t)‖2
H2 ≤ ρ2

1, for every t ≥ t0.

The ball BH2(0, ρ1), defines an absorbing set on H2(R). �

4 Construction of the global attractor

In this section we prove that the semigroup associated with the problem
(1.1)–(1.2) posses a global attractor in H2(R). The aim is to verify the classi-
cal theorem on existence of attractors (see [26, Theorem 1.1]. Motivated by [23],
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we decompose the solution of the original problem as u = ϕ + ψ, where ϕ, ψ
satisfy the system of equations

iϕt + ϕxx + iαϕ = kσ(|u|2)u− iδψxx + (f − fR),
ϕ(x, 0) = u0, f

R ∈ C∞
0 (R) (4.1)

iψt + ψxx + iαψ − iδψxx = fR,

ψ(x, 0) = 0. (4.2)

Concerning the solution of problem (4.2), we have the following lemma.

Lemma 4.1 The solution ψ of the initial value problem (4.2) is in L∞

[R+;Hm(R)],m ≥ 0.

Proof. Denote by ψ(m) the m-order (weak) derivative of the function ψ. We mul-
tiply (4.2) by (−1)mψ(2m) and keep imaginary parts to obtain the equation

1
2
d

dt
‖ψ(m)‖2

2 + α‖ψ(m)‖2
2 + δ‖ψ(m+1)‖2

2

= (−1)mIm
∫

R

fRψ(2m) dx. (4.3)

We have that ∣∣∣∣
∫

R

fRψ(2m) dx

∣∣∣∣ ≤ 1
2δ

‖fR
(m−1)‖2

2 +
δ

2
‖ψ(m+1)‖2

2 (4.4)

Relations (4.3), (4.4) and Gronwall’s inequality imply the estimate

‖ψ(m)‖2
2 ≤ c(δ)(1 − exp(−αt))‖fR

(m−1)‖2
2.

In the case m = 0, fR ∈ H−1(R) and ‖fR
(−1)‖2 ≡ ‖fR‖H−1 . �

Next lemma shows that the solution ψ of the initial value problem (4.2) is bounded,
uniformly in time in H2

w(R).

Lemma 4.2 The solution ψ of the initial value problem (4.2) is in L∞[R+;H2
w(R)].

Proof. We multiply (4.2) by gψ and keep imaginary parts. The obtained equa-
tion is

1
2
d

dt
‖g1/2ψ‖2

2 + α‖g1/2ψ‖2
2 + δ‖g1/2ψx‖2

2 = δReZ1(ψ)

+ImZ1(ψ) − ImZ2(ψ), (4.5)
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where Z1(ψ) =
∫

R
gxψxψdx and Z2(ψ) =

∫
R
gfRψdx. We observe that the

following estimates hold

|ImZ1(ψ)| ≤ cε0

∫
R

g|ψx||ψ| dx ≤ α

6
‖g1/2ψ‖2

2 + c1ε0
2‖g1/2ψx‖2

2, (4.6)

|ImZ2(ψ)| ≤ α

6
‖g1/2ψ‖2

2 + c2ε0
2‖g1/2fR‖2

2. (4.7)

From (4.5), (4.6) and (4.7) we get for ε0 sufficiently small

1
2
d

dt
‖g1/2ψ‖2

2 +
α

2
‖g1/2ψ‖2

2 + δ0‖g1/2ψx‖2
2 ≤ c‖g1/2fR‖2

2, δ0 > 0.

Since fR has compact support the term ‖g1/2fR‖2
2 is bounded. We apply

Gronwall’s lemma to obtain that

‖g1/2ψ‖2
2 ≤ c3(1 − exp(−αt))‖g1/2fR‖2

2. (4.8)

Multiply equation (4.2) by −gε0ψxx, keep again imaginary parts to get

1
2
d

dt
‖g1/2ψx‖2

2 + α‖g1/2ψx‖2
2 + δ‖g1/2ψxx‖2

2 + iImZ3(ψ,ψt)

+αReZ4(ψ) = −ImZ5(ψ), (4.9)

where

Z3(ψ,ψt) =
∫

R

ψtψxgxdx, Z4(ψ) =
∫

R

ψψxgxdx,

Z5(ψ) =
∫

R

gfRψxxdx.

Inserting equation (4.2) in Z3(ψ,ψt) we get

iImZ3(ψ,ψt) = −αRe
∫

R

gxψψxdx− Im
∫

R

gxψxxψxdx

δRe

∫
R

gxψxxψxdx+
∫

R

gxf
Rψxdx. (4.10)

All the integral terms that appear in (4.10) can be estimated by using Young’s
inequality as in (4.6), (4.7) and eventually

1
2
d

dt
‖g1/2ψx‖2

2 +
α

2
‖g1/2ψx‖2

2 + δ1‖g1/2ψxx‖2
2

≤ c‖g1/2fR‖2
2, or

‖g1/2ψx‖2
2 ≤ c4(1 − exp(−αt))‖g1/2fR‖2

2. (4.11)
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We proceed by multiplying equation (4.2) by gψxxxx keep imaginary parts, to
obtain

1
2
d

dt
‖g1/2ψxx‖2

2 + α‖g1/2ψxx‖2
2 + δ‖g1/2ψxxx‖2

2 + ImI1(ψ,ψt)

−ImI2(ψ,ψt) + αReI3(ψ) − αReI4(ψ)
−ImI5(ψ) + δReI5(ψ) − ImI6(ψ)
−ImI7(ψ), (4.12)

where

I1(ψ,ψt) =
∫

R

iψtxgxψxxdx, I2(ψ,ψt) =
∫

R

iψtgxψxxxdx,

I3(ψ) =
∫

R

gxψxψxxdx, I4(ψ) =
∫

R

gxψψxxxdx,

I5(ψ) =
∫

R

gxψxxψxxxdx, I6(ψ) =
∫

R

gxf
Rψxxxdx,

I7(ψ) =
∫

R

gfR
x ψxxxdx.

In order to estimate the integral I1(ψ,ψt), we differentiate equation (4.2) in x (see
[26]). Then ψx satisfies the equation

iψtx + iαψx + ψxxx − iδψxxx = fR
x . (4.13)

We insert 4.13 in I1(ψ,ψt) to get

I1(ψ) = −αRe
∫

R

gxψxψxxdx− Im
∫

R

gxψxxxψxxdx

+δRe
∫

R

gxψxxxψxxdx+ Im
∫

R

gxf
R
x ψxxdx.

Similarly, we insert equation (4.2) in the integral term I2(ψ,ψt), and we have that

I2(ψ) = αRe

∫
R

gxψψxxxdx+ Im
∫

R

gxψxxψxxxdx

−δRe
∫

R

gxψxxψxxxdx− Im
∫

R

gxf
Rψxxxdx.

All the integrals in (4.12) can be estimated by appropriate use of Young’s inequal-
ity. As an example, we give the estimate∣∣∣∣Im

∫
R

gxψxxψxxxdx

∣∣∣∣ ≤ cε0

∫
R

|g| |ψxx| |ψxxx|dx

≤ c(α)‖g1/2ψxx‖2
2 + ε20c(δ)‖g1/2ψxxx‖2

2.
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for sufficiently small ε0. The result is the following inequality

1
2
d

dt
‖g1/2ψxx‖2

2 +
α

2
‖g1/2ψxx‖2

2 + δ2‖g1/2ψxxx‖2
2 ≤ M, (4.14)

where M depends on ‖g1/2fR‖2, ‖g1/2fx‖2, α, δ. Clearly, using (2.7) and inequali-
ties (4.8), (4.11) and (4.14) we obtain the final estimate, which is

‖ψ(t)‖2
H2

w
≤ M1.

�

From Lemma 4.1 we have that ψ ∈ L∞[R+;H3(R)]. Since the embedding
L∞[R+;H3(R)] ↪→ L∞[R+;H2(R)] is continuous and u ∈ L∞[R+;H2(R)] by
Lemma 3.4, we have that for the solution φ = u − ψ of the initial value problem
(4.1) it holds that

‖ϕ‖L∞[R+;H2(R)] ≤ ‖u‖L∞[R+;H2(R)] + ‖ψ‖L∞[R+;H2(R)].

More precisely it is possible to obtain the estimate given by the following lemma.

Lemma 4.3 Let condition (3.9) be satisfied. Then for the solution of the problem
(4.1) there exist α0, K

∗ > 0 such that

d

dt
J3(ϕ) + α0J3(ϕ) ≤ K∗, (4.15)

where J3(u) is defined as

J3(ϕ) = ‖ϕxx‖2
2 − 2kRe

∫
R

σ(|u|2)uϕxxdx

−2δIm
∫

R

ψxxϕxxdx− 2Re
∫

R

Fϕxxdx.

Proof. Set F = f −fR. Following the same procedure as in Lemma 3.3 we obtain
the equation

1
2
d

dt
J3(ϕ) + α‖ϕxx‖2

2 − αkRe

∫
R

σ(|u|2)uϕxxdx

−αδIm
∫

R

ψxxϕxxdx− αRe

∫
R

Fϕxxdx = −δIm
∫

R

ψxxtϕxxdx

−kRe
∫

R

σ′(|u|2)u2ut ϕxxdx− kRe

∫
R

σ(|u|2)utϕxxdx

−kRe
∫

R

σ′(|u|2)|u|2ut ϕxxdx. (4.16)

Differentiate (4.13) in x. Then ψxx satisfy equation

iψtxx + iαψxx + ψxxxx − iδψxxxx = fR
xx. (4.17)
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Hence we may obtain that

δ

∫
R

|ψxxt| |ϕxx|dx ≤ αδ

∫
R

|ψxx| |ϕxx|dx

+(δ + δ2)
∫

R

|ψxxxx| |ϕxx|dx + δ

∫
R

|fR
xx| |ϕxx|dx

≤ α1‖ϕxx‖2
2 + C1‖ψxxxx‖2

2 + C2‖fR
xx‖2

2

and the constants α1, C1, C2 depend on α, δ. Note that ‖ψxxxx‖2 is bounded by
Lemma 4.1. The rest of the indefinite-sign integrals of (4.16) can be estimated
exactly as in Lemma 3.3. Therefore

k

∫
R

|σ(|u|2)| |ut| |ϕxx|dx ≤ α1‖ϕxx‖2
2 + C3(ρ1).

By inserting these estimates in (4.16), inequality (4.15) may be derived, for an
appropriate choice of the constant α1. �

We consider next the following stationary problem

φs
xx + iαφs = k|u|2u+ (f − fR) − iδψxx := F ,

φs ∈ H2(R). (4.18)

Lemmas 3.4, 4.3 and the assumptions on f, fR imply that F ∈ L2(R). Classical
arguments on existence and regularity of solutions of linear elliptic equations (see
[22, Chapter II]) show existence of solution for the problem (4.18). In fact, if we
multiply equation (4.18) by φs and −φs

x, keep imaginary parts and by φs
xx, keep

real parts and add the resulting equations we shall obtain for φs the estimate

‖φs‖H2 ≤ K1(α, δ, k)‖ψxx‖2
2

+K2(α, k, ρ1) +K3(α, δ)‖f − fR‖2
2,

Lemma 4.4 The solution ϕ of problem (4.1) and the solution φs of the stationary
problem (4.18) satisfy the estitmate

‖ϕ− φs‖H2 = ‖u0 − ϕs‖H2 exp(−ct), c > 0

Proof. The difference z := ϕ− φs is the solution of equation

izt + zxx + iαz = 0. (4.19)

Multiply (4.19) consecutively by z, −zxx, zxxxx and keep imaginary parts and
add the resulting equations. Then we have that

1
2
d

dt
‖z‖2

H2 + α‖z‖2
H2 = 0.

The result follows by an application of Gronwall’s Lemma. �
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Finally, we state the main result of this work.

Theorem 4.4 If f ∈ L2(R), then the semigroup S(t) posseses a global attractor
A in H2(R).

Proof. Let u0 be in a bounded set B of H2(R). We decompose S(t) as S(t) =
S1(t) + S2(t) where S1(t)u0 = ϕ(t) and S2(t)u0 = ψ(t), the solutions of problems
(4.1) and (4.2) respectively. Lemmas 4.1 and 4.2 imply that there exist t0 > 0
such that the set O2 := ∪t≥t0S2(t)B is in a bounded set of H3(R) ∩ H2

w(R).
From Lemma 2.3 the set O2 is relatively compact in H2(R). Consider the set
O = O2 + φs. We may write the solution u(t) of the problem (1.1) as u(t) =
(ϕ(t) − φs) + (ψ(t) + φs). Since dist (S1(t)u0, φ

s) → 0 as t → ∞ (Lemma 4.4),
and S2(t)u0 + φs ∈ O, we obtain that

dist (S(t)B, O) → 0, as t → ∞.

Moreover it is clear that the set O is relatively compact in H2(R). The results of
[14], [26] imply the existence of a global attractor for the semigroup S(t). �

Remark 4.5 It is may me possible, by repeating inductively the calculations
of Lemmas 3.3, 4.2, using Lemma 4.1 and the compactness of the embedding
Hm+1(R) ∩ Hm

w (R) ↪→ Hm(R), to show existence of global attractor for
(1.1)–(1.2) in Hm(R), m > 2 if u0 ∈ Hm(R) and f ∈ Hm−2(R).
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