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1. Introduction

In this paper, we study the multiplicity and regularity of the solutions of the quasi-
linear elliptic system

−�pu= �a(x)|u|�−2u + �b(x)|u|
−1|v|�+1u; x∈RN ;

−�qv= �d(x)|v|�−2v + �b(x)|u|
+1|v|�−1v; x∈RN ; (1.1)

u(x)¿ 0; v(x)¿ 0 for all x∈RN ; lim
|x|→∞

u(x) = lim
|x|→∞

u(x) = 0; (1.2)

where the p-Laplacian operator �pu is �pu=:div(|∇u|p−2∇u). In addition, we
assume that 1¡p¡N; 1¡q¡N; 
¿ 0 and �¿ 0. For the positive constants 
; �;
p; q and N we consider that the following inequality is valid:


 + 1
p∗ +

� + 1
q∗

¡ 1; (1.3)

where p∗ and q∗ are the critical Sobolev exponents: p∗ =Np=(N−p) and q∗ =Nq=(N−
q). Throughout this paper we assume that the following general hypothesis is satis2ed.
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(H) 26 �6p∗; 26 �6 q∗; a∈Lp∗=(p∗−�)(RN ); d∈Lq∗=(q∗−�)(RN ) and b∈
L!(RN ), where !=p∗q∗=[p∗q∗ − (
 + 1)p∗ − (� + 1)q∗]. Moreover, a; d and b are
smooth functions at least of C0; �

loc (RN ), for some �∈ (0; 1).

In certain cases the coeGcients a; d and b will satisfy some extra hypothesis, which
is described as follows. Let the function h : RN →R. We say that h satis2es the
hypothesis

(H∞) if h∈L∞(RN ) and tends uniformly to zero, as |x| → ∞, in the sense

lim
R→∞

‖h‖L∞(RN−BR) = 0;

(H+) if there exists � ⊆ RN , with |�|¿ 0 such that h(x)¿ 0 for every x∈�.

We also deal with the equation

−�pu= �g(x)|u|�−2u; x∈RN ; (1.4)

u(x)¿ 0 for all x∈RN ; lim
|x|→∞

u(x) = 0; (1.5)

where 1¡p¡N; 26 �6p∗ and � 	=p. Throughout the paper we assume that g
satis2es the following condition:

(G) g is at least a C0; �
loc (RN )-function, for some �∈ (0; 1) and g∈Lp∗=(p∗−�)(RN ).

Such kinds of systems have been studied by many authors both in bounded and
unbounded domains. We mention the papers [1,3,6] and the references therein.

This paper is organized as follows: in Section 2, we recall the homogeneous space
D1;p(RN ), we introduce the necessary operators and establish their basic characteristics.
In Section 3, we prove the existence of at least one solution for Eqs. (1.4) and (1.5).
The regularity of the solutions is also studied. In the bounded domain case, the problem
is studied by Ôtani [4], where the existence was proved by means of a subdiKerential.
The critical case �=p gives rise to an eigenvalue problem, for which there is
an extensive literature. We refer to the works [2,3], and the references therein. In
Section 4, we investigate the existence of nonsemitrivial solutions for system (1.1)
and (1.2). To this end, we use the results of Section 3 on Eqs. (1.4) and (1.5). In
this section, we extend earlier results on the bounded domain (see works [1,9]) and
complete the study, done in [3], for this problem on RN concerning the range of the
exponents. In Section 5, we answer the regularity question raised in [3], extending it to
a wider class of systems. This is done by adapting Moser’s iterative scheme to systems
on RN . Furthermore, we may consider the regularity results as an extension of those
obtained by [9] to all RN .
Notation: For simplicity, we use the symbol ‖:‖p for the norm ‖:‖Lp(RN ) and D1;p

for the space D1;p(RN ). BR and BR(c) will denote the balls in RN of centres and c,
respectively, and radius R. In addition, the Lebesgue measure of a set � ⊂ RN will
be denoted by |�|. An equality introducing de2nition is denoted by=:. The integral
symbol

∫
without any indication will be used for integration on all of RN .
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2. Space and operator settings

It is going to be proved that the natural space setting for our problem is the space
Z =D1;p(RN )×D1; q(RN ), with the norm ‖z̃‖Z = ‖u‖1;p + ‖v‖1; q, where z̃ = (u; v). The
space D1;p(RN ) is the closure of C∞

0 (RN ) functions with respect to the norm

‖u‖D1; p(RN ) =:
(∫

RN
|∇u|p dx

)1=p

:

It is known that D1;p(RN ) = {u∈LNp=(N−p)(RN ) : ∇u∈ (Lp(RN ))N} and that there
exists K0 ¿ 0, such that for all u∈D1;p(RN )

‖u‖LNp=(N−p) 6K0‖u‖D1; p : (2.1)

The space D1;p is a re3exive Banach space. For more details, we refer to [3]. Our
approach is based on the following generalized Poincare’s inequality.

Lemma 2.1. Suppose g∈LN=p(RN ). Then there exists 
¿ 0 such that∫
RN

|∇u|p dx¿ 

∫
RN

|g||u|p dx; (2.2)

for all u∈D1;p.

We introduce the operators J1; J2; D1; D2; B1; B2 : Z → Z∗ in the following way:

(J1(u; v); (w; z))Z =:

 + 1
p

∫
RN

|∇u|p−2∇u∇w;

(J2(u; v); (w; z))Z =:
� + 1

q

∫
RN

|∇v|q−2∇v∇z;

(D1(u; v); (w; z))Z =:
� + 1
p

∫
RN

a(x)|u|�−2uw;

(D2(u; v); (w; z))Z =:
� + 1
p

∫
RN

d(x)|v|�−2vz;

(B1(u; v); (w; z))Z =:
∫
RN

b(x)|u|
−1|v|�+1uw;

(B2(u; v); (w; z))Z =:
∫
RN

b(x)|u|
+1|v|�−1vz:

The next lemma establishes some basic properties for the above operators. Its proof is
given in [6, Lemma 2.2].

Lemma 2.2. The operators Ji; Di; Bi; i= 1; 2; are well de5ned. In addition; Ji; i= 1; 2;
are continuous and the operators Di; Bi; i= 1; 2; are compact.
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We say that (u; v) is a weak solution of system (1.1) if (u; v) is a critical point of
the functional A : Z → R, de2ned by

A(u; v) =: �

 + 1
p

∫
|∇u|p + �

� + 1
q

∫
|∇v|q − �


 + 1
�

∫
a(x)|u|�

− �
� + 1

�

∫
d(x)|v|� − �

∫
b(x)|u|
+1|v|�+1:

Since A(|u|; |v|) =A(u; v), if (u; v) is a critical point of A, then the same is true for
(|u|; |v|). So we may consider that u(x)¿ 0 and v(x)¿ 0. Finally, the next de2nition
will be proved to be of great importance for our study, so we describe it.

De�nition 2.3. We say that a functional A : Z → R satis5es the (PS) condition, if
every sequence {(un; vn)} ⊂ Z such that A(un; vn) is bounded and A′(un; vn) → 0 in Z ,
as n → ∞, is relatively compact in Z .

3. The equation −�pu= �g(x)|u|�−2u

In this section, we prove the existence of nontrivial solutions for Eqs. (1.4) and
(1.5) and state under certain conditions the regularity of these solutions. The natural
space setting for (1.4) is the space D1;p(RN ). We de2ne the fuctional Â : D1;p → R,
by

Â(u) =:
1
p

∫
|∇u|p − �

�

∫
g(x)|u|�:

The fact that Â is well de2ned and is continuously FrNechet diKerentiable may be ob-
tained by a standard procedure.

Lemma 3.1. For any �∈R; the functional Â satis5es the (PS) condition.

Proof. Let the sequence {un} ⊂ D1;p be such that Â(un) is bounded and Â
′
(un) → 0

in D1;p, as n → ∞. Then we consider the relation

Â(un) −
(
Â
′
(un);

un

p

)
= �

(
1
p

− 1
�

)∫
g(x)|un|�

and follow the steps of [6, Lemma 2:3] to obtain the conclusion of the lemma.

Theorem 3.2. Let 26 �¡p∗; � 	=p and �g(x) satis5es (H+). Then Eq. (1:4) admits
at least one nontrivial solution u0; such that u0(x)¿ 0 for all x∈RN . Moreover;
(a) if �¡p; then Â(u0)¡ 0; and
(b) if �¿p; then Â(u0)¿ 0.

Proof. (a) Let �¡p. Then Â(u) is bounded from below, for all u∈D1;p and Â(t+)¡0,
for t which is small enough and +∈C∞

0 (�). Hence, by a global minimization argument
we obtain the existence of a nontrivial solution u0, such that Â(u0)¡ 0.
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(b) Let �¿p. Then for every un ∈D1;p such that ‖un‖1;p = r, where r is 2xed and

small enough, we have that Â(u)¿k ¿ 0, for some k = k(p; �; g(x); K0). Hence, by
the mountain pass theorem we obtain the existence of a nontrivial solution u0, such
that Â(u0)¿ 0.

Remark 3.3. We have to note that if �g(x) does not satisfy condition (H+) then
Eq. (1.4) admits no nontrivial solution.

In the remaining part of this section, we shall prove the C1; a
loc regularity as well as

the asymptotic behaviour of the solutions of Eq. (1.4).

Theorem 3.4. Let g∈L∞(RN ) and suppose that u∈D1;p is a solution of (1:4); for
some �∈R. Then u∈L∞(RN ) and u(x) decays uniformly to zero; as |x| → +∞.

Proof. The proof is based on the classical Moser’s iteration scheme as it was
adapted by Ôtani for the bounded domain case in [4, Theorem II]. Let k ∈N and L=
(|�|‖g‖∞)1=pK0. Then we introduce the sequences

�k+1 =: �∗k p
∗=p; �∗k =: �k − � + p; �1 =:p∗; (3.1)

Lk+1 =:Lp=�∗k (�k − � + 1)−1=�∗k (�∗k =p)p=�∗k L�k =�
∗
k

k ; L1 = ‖u‖p∗ : (3.2)

We claim that, for every k ∈N, the following estimate is true:

‖u‖�k 6Lk : (3.3)

For k = 1, inequality (3.3) is obvious. We suppose that estimate (3.3) holds for some
k. We de2ne, for n∈N, the C1 real functions  n, as

 n(t)=:

{
t; |t|6 n;

n + 1; |t|¿ n + 2
; 06  ′

n(t)6 1: (3.4)

Setting un =  n(u) we obtain that |un|l−2un belongs to D1;p ∩ L∞, for all l∈ [2;+∞).
Multiplying Eq. (1.4) by |un|�k−�un and integrating over RN , we derive

(�k − � + 1)
∫

|∇u|p ′
n(u)|un|�k−� = �

∫
g(x)|un|�k−�+1|u|�−1: (3.5)

The de2nition of un implies that

�
∫

g(x)|un|�k−�+1|u|�−16 |�|
∫

|g(x)||u|�k 6 |�|‖g‖∞‖u‖�k�k : (3.6)

On the other hand, from (3.4) and (2.1) it follows that:

(�k − � + 1)
∫

|∇u|p ′
n(u)|un|�k−�¿ (�k − � + 1)

∫
|∇un|p|un|�k−�

¿ (�k − � + 1)(p=�∗k )
p
∫

|∇(|un|�∗k =p)|p

¿K−p
0 (�k − � + 1)(p=�∗k )

p‖|un|�∗k =p‖pp∗ : (3.7)
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Hence from relations (3.5)–(3.7) we deduce

‖un‖�
∗
k

�k+1
= ‖|un|�∗k =p‖pp∗ 6 |�|‖g‖∞K−p

0 (�k − � + 1)−1(p=�∗k )
pL�k

k ;

which implies that

‖un‖�k+1
6Lk+1:

Letting n → ∞, we prove (3.3), for any k ∈N. Setting

0=p∗ log L(p∗ − min{p∗(�− p)=(p∗ − p); 0});
we get the following estimate:

Lk 6 (p∗=p)k−1L1 + {0((p∗=p) − 1)

+p∗ log(p∗=p)}((p∗=p)k−1 − 1)=((p∗=p) − 1)2:

Then the solutions of (1.4) satisfy the following L∞ estimate:

‖u‖∞6 lim
k→+∞

‖u‖�k 6 ed; (3.8)

where d= [L1 + {0((p∗=p) − 1) + p∗ log(p∗=p)}=((p∗=p) − 1)]=(p∗ − (p∗=p)). By
Serrin [5, Theorem 1], there exists a constant C =C(N; �2), such that for any solution
u∈D1;p of the equation

−�pu=f;

the following estimate is true:

sup
y∈B1(x)

|u(y)|6C{‖u‖Lp(B2(x)) + ‖f‖L�2 (B2(x))}:

Since the sequence �k is increasing and �k → ∞, as k → ∞, there exists some k ∈N
such that q= �k=(�− 1)¿ �2. Then for any solution of Eq. (1.4) we have

sup
y∈B1(x)

|u(y)|6C{‖u‖L�1 (B2(x)) + |�‖|g‖∞‖|u|�−1‖1=(�−1)
Lq(B2(x))}:

Since |u|�−1 belongs to Lq(RN ), we may conclude that u decays uniformly to zero, as
|x| → +∞.

Corollary 3.5. If u(x) is a solution of (1:4); then u∈C1; a(Br); for any r ¿ 0 and
a= a(r)∈ (0; 1).

Proof. The proof is a consequence of Theorem 3.4 and the results of Tolksdorf [7].

Remark 3.6. If in addition to the hypothesis of Theorem 3.2 we have that g∈L∞(RN ),
the corresponding solutions of (1.4) are strictly positive. This is a direct consequence
of VNazquez’ Maximum Principle [8].
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4. Multiplicity

Before we give the multiplicity results, we recall some existence results obtained in
[6]. First we assume that 
; �; p and q satisfy one of the following hypothesis:

(I) 
+1
p + �+1

q ¡ 1,

(II) 
+1
p∗ + �+1

q∗ ¡ 1 and 
+1
p + �+1

q ¿ 1,

(III) 
+1
p + �+1

q = 1,

(IV) 
+1
p∗ + �+1

q∗ = 1.
For each hypothesis we have to distinguish several cases.

(I) Suppose that there exist p1; q1 ∈R+, such that p1 ¡p; q1 ¡q and 
+1
p1

+
�+1
q1

= 1. Then the following cases are assumed.
(i) �¡p; �¡q and a(x); d(x); b(x) have the same sign at every x∈RN ,
(ii) �¡p; �¡q so that 
+1

� + �+1
� ¡ 1 and �b(x)¿ 0,

(iii) �¡p; �¡q so that 
+1
� + �+1

� ¿ 1 and �b(x)¡ 0,
(iv) �¿p; �¿q and �b(x)¡ 0,
(v) �¡p; �¡q so that 
+1

� + �+1
� = 1,

(vi) �¡p1; �a(x)¿ 0; �¡q1 and �d(x)¿ 0,
(vii) �¡p1; �a(x)¿ 0; �¿q1 and �d(x)¡ 0,
(viii) �¿p1; �a(x)¡ 0; �¡q1 and �d(x)¿ 0,
(ix) �¿p1; �a(x)¡ 0; �¿q1 and �d(x)¡ 0.

The next theorem states the existence results obtained in [6, Theorem 3:3].

Theorem 4.1. (a) Let one of the hypotheses (i); (iii) and (v)–(viii) be satis5ed; and
in addition �a(x) or �d(x) satisfy (H+); or assume that hypothesis (ix) is satis5ed
and in addition; �b(x) satis5es (H+); or hypothesis (ii) is satis5ed; then problem
(1:1) has at least one nonnegative (componentwise) solution.

(b) If hypothesis (iv) is satis5ed; and in addition �a(x) or �d(x) satisfy (H+);
then problem (1:1) has at least one nonnegative (componentwise) solution.

(II) Suppose that there exist p1; q1 ∈R+, such that p1 ¿p; q1 ¿q and (
+1)=p1+
(� + 1)=q1 = 1. Then the following cases are assumed:

(i) p6 �; q6 � and a(x); d(x); b(x) have the same sign at every x∈RN ,
(ii) �¿p; �¿q so that 
+1

� + �+1
� ¡ 1 and �b(x)¡ 0,

(iii) �¿p; �¿q so that 
+1
� + �+1

� ¿ 1 and �b(x)¿ 0,
(iv) �¡p; �¡q and �b(x)¿ 0,
(v) �¿p; �¿q so that 
+1

� + �+1
� = 1,

(vi) �¡p1; �a(x)¡ 0; �¡q1 and �d(x)¡ 0,
(vii) �¡p1; �a(x)¡ 0; �¿q1 and �d(x)¿ 0,
(viii) �¿p1; �a(x)¿ 0; �¡q1 and �d(x)¡ 0,
(ix) �¿p1; �a(x)¿ 0; �¿q1 and �d(x)¿ 0.

The next theorem states the existence results obtained in [6, Theorem 4.3].
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Theorem 4.2. (a) Let one of the hypotheses (i); (ii); (v) and (ix) be satis5ed; and
in addition �a(x) or �d(x) satisfy (H+); or assume that one of the hypotheses
(iii) and (vii)–(ix) is satis5ed; then problem (1:1) has at least one nonnegative
(componentwise) solution.

(b) If the hypothesis (vi) is satis5ed and in addition �b(x) satis5es (H+); then
problem (1:1) has at least one nonnegative (componentwise) solution.

(III) The following cases are assumed:
(i) If �¡ 0,
(ii) If �¡�1 and a(x)d(x)¿ 0, almost everywhere on RN .
The next theorem states the existence results obtained in [6, Theorem 5:6].

Theorem 4.3. If one of the cases (i) or (ii) is satis5ed and �a(x) or �d(x) satisfy
(H+); then problem (1:1) has at least one nonnegative (componentwise) solution.

(IV) The following cases are assumed:
(i) �¡p; �¡q and �b(x)¡ 0,
(ii) �¿p; �¿q and �b(x)¿ 0,
(iii) �a(x)¡ 0 and �d(x)¡ 0.
The next theorem states the existence results obtained in [6, Theorem 6:3].

Theorem 4.4. (a) Let one of the cases (i) and (ii) be satis5ed and in addition; �a(x)
or �d(x) satisfy (H+); or

(b) let hypothesis (iii) be satis5ed and in addition �b(x) satis5es (H+); and
�¡p∗; �¡q∗.
Then problem (1:1) has at least one nonnegative (componentwise) solution.

Throughout this section, we assume that at least one of the quantities �a(x) or �d(x)
satisfy condition (H+). Under this assumption, Theorem 3.2 implies that there exist at
least one semitrivial solution for system (1.1). If both a(x) and d(x) satisfy (H+), we
have at least two semitrivial solutions. Let us note that if on the contrary �a(x)¡ 0
and �d(x)¡ 0 (simultaneously) the solutions which are obtained are not semitrivial.
This occurs under case (ix) in the 2rst hypothesis, case (vi) in the second hypothesis
and case (iii) in the fourth hypothesis.

Theorem 4.5. Let the hypothesis of Theorems 4:1; 4:3 and 4:4 hold such that �¡p
and �¡q. Furthermore; we assume that at least one of the following conditions is
satis5ed.

(a) If a(x); d(x); b(x) satisfy (H+) at the same � ⊆ RN ;
(b) If �b(x) satis5es (H+) and �+ 1¡� or 
+ 1¡� depending on which one of

the functions a(x) and d(x) satis5es (H+); respectively;
(c) If �b(x) does not satisfy (H+) and �+1¿� or 
+1¿� depending on which

one of the functions a(x) and d(x) satis5es (H+); respectively.
Then system (1:1) has at least two or three nonnegative (componentwise) solutions

and at least one of them is not semitrivial.
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Proof. (a) Let a(x) satisfy (H+) and (u0; 0) a semitrivial solution of (1.1). Then for
each v∈D1; q and t ¿ 0

A(u0; tv) =

 + 1
p

∫
|∇u0|p + tq

� + 1
q

∫
|∇v|q − �


 + 1
�

∫
a(x)|u0|�

− t��
� + 1

�

∫
d(x)|v|� − t�+1�

∫
b(x)|u0|
+1|v|�+1:

If case (i) of hypothesis (I) holds, we have that A(u0; t+)¡A(u0; 0), for t which is
small enough, where +∈C∞

0 (�). This implies that inf{A(u; v); (u; v)∈Z}¡A(u0; 0).
In the same way, if (0; v0) is a semitrivial solution of system (1.1), we obtain
inf {A(u; v); (u; v)∈Z}¡A(0; v0). Then from the proof of Theorem 4.1 we deduce the
existence of a solution for system (1.1), which is not semitrivial, and the multiplicity
result follows.

Similarly, the result may be obtained for the other hypothesis and cases.

The following lemma gives an inequality result, to be used later.

Lemma 4.6. Let 
; �; p and q be positive real numbers; such that

 + 1
p

+
� + 1

q
¿ 1: (4.1)

Then 
 + � + 2¿min{p; q}. Moreover; if (4:1) holds as an equality; then we have
max{p; q}¿
 + � + 2¿min{p; q}.

Proof. Let p¿q, so p= xq for some x¿ 1. Inequality (4.1) implies that 
 + 1¿
x[q − (� + 1)], and the result follows. If (4.1) holds as an equality, assuming that

 + � + 2¿p we conclude that x6 1, which is a contradiction. Hence, the proof is
complete.

Theorem 4.7. Let the hypothesis of Theorem 4:3 hold such that �¿p and �¿q.
Furthermore; we assume that at least one of the following conditions is satis5ed.

(a) p¿q; �d(x) satis5es (H+) and 
 + � + 2¡�;
(b) p¡q; �a(x) satis5es (H+) and 
 + � + 2¡�.
Then system (1:1) has at least two or three nonnegative (componentwise) solutions

and at least one of them is not semitrivial.

Proof. (a) Let 0¡�¡�1 and p¿q. Since �d(x) satis2es condition (H+), then for
some �= �0 we have a semitrivial solution (0; v0), for system (1.1), i.e.,∫

|∇v0|q = �0

∫
d(x)|v0|�: (4.2)

From (4.2) and the de2nition of A(u; v), for u∈D1;p we obtain

A(tu; tv0) = tp

 + 1
p

∫
|∇u|p − t��0


 + 1
�

∫
a(x)|u|�

+ t��0(� + 1)
(

1
q
− 1

�

)∫
d(x)|v0|� − t
+�+2�0

∫
b(x)|u|
+1|v0|�+1:
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The hypothesis of the theorem and Lemma 4:6 imply that A(tu; tv0)¡ 0, for t which
is small enough. Then we deduce, that there exists an r, such that

inf
‖(u;v)‖Z6r

A(u; v)¡ 0:

From the last inequality we derive that for 3¿ 0 there exists a �¿ 0, such that
−36A(u; v), for every (u; v)∈Z , with r − �6 ‖(u; v)‖Z 6 r. So, for some r′ ¡r,
and for all (u; v) with r′6 ‖(u; v)‖Z 6 r it holds that

A(u; v)¿ 1
2 inf
‖(u;v)‖Z6r

A(u; v): (4.3)

Let (un; vn) be a minimizing sequence of inf{A(u; v) : (u; v)∈ OB(0; r)}. From (4.3) we
may assume that (un; vn)∈ OB(0; r′). The ball OB(0; r) equipped with the metric

dist((u; v); (w; z)) = ‖∇u−∇w‖p + ‖∇v−∇z‖q;
becomes a complete metric space. Let �n ¿ 0 be some sequence of positive real num-
bers, such that �n → 0, as n → ∞. Then by Ekeland’s variational principle we may
assume that, every (un; vn) is a minimizer for the set

{A(u; v) + �n(‖∇u−∇w‖p + ‖∇v−∇z‖q) : (u; v)∈ OB(0; r)}:
This implies that A′(un; vn) → 0, as n → ∞. Hence, we deduce that (un; vn) is a
(PS) sequence for the functional A. Since A(u; v) satis2es (PS) condition, we have the
existence of a solution (u∗; v∗) for system (1.1), such that

A(u∗; v∗) = inf
‖(u;v)‖Z6r

A(u; v)¡ 0:

Moreover, we may note that the solution, derived in this way, is a nonsemitrivial one,
since every semitrivial solution must satisfy A(u0; 0)¿ 0 or A(0; v0)¿ 0. In a similar
way the conclusion follows for (b).

Finally, we give a multiplicity result of hypothesis (II).

Theorem 4.8. Let the hypothesis of Theorem 4:2 hold such that �¿p and �¿q.
Also assume that b(x) satis5es (H+) and that 
 + � + 2¡min{�; �}. Furthermore;
we assume that at least one of the following conditions is satis5ed.

(a) 
+�+2¡max{p; q}; and if p¡q then �a(x) satis5es (H+) or if p¿q then
�d(x) satis5es (H+);

(b) �a(x) and �d(x) satis5es (H+).
Then system (1:1) has at least two or three nonnegative (componentwise) solutions

and at least one of them is not semitrivial.

Proof. The proof follows the lines of Theorem 4.7.

5. Regularity results

In this last section, we prove some regularity results for the solutions of system
(1.1). More precisely, we are going to prove the L∞ character of the solutions, then
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the regularity results easily follow. Throughout this section, we assume in addition that
the functions a; b; d satisfy the following hypothesis:

b∈L!1 ∩ L∞; a∈Lq∗=(�+1) ∩ L!2 and d∈Lp∗=(
+1) ∩ L!3 ;

where

!2 =
p∗q∗

p∗(� + 1) + q∗(
 + 1 − �)
and !3 =

p∗q∗

q∗(
 + 1) + p∗(� + 1 − �)
:

Let 
; � satisfy the strict inequality


 + 1
p∗ +

� + 1
q∗

¡ 1: (5.1)

Let us note that (5.1) corresponds to hypotheses (I)–(III). In addition, we assume that

; � satisfy the inequalities

p∗

p

(
1 − � + 1

q∗

)
¿ 1 and

q∗

q

(
1 − 
 + 1

p∗

)
¿ 1: (5.2)

Furthermore, for �; � we assume that

�¡p∗ � + 1
q∗

+ (
 + 1) and �¡q∗

 + 1
p∗ + (� + 1): (5.3)

Here, we are going to extend to the system the procedure followed in Theorem 3.4
for the equation. For k ∈N, we introduce the sequences �k ; Lk ; 5k ; Mk , with �1 =p∗,
L1 = ‖u‖p∗ ; 51 = q∗; M1 = ‖v‖q∗ , such that

�k+1 =: �∗k p
∗=p; �∗k =: �k − �̃k + p;

�̃k =:
�k(� + 1)

q∗
+ (
 + 1); 7k =

�k

�̃k − �
;

Lk+1 =:Lp=�∗k (�k − �̃k + 1)−1=�∗k (�∗k =p)p=�∗k max{‖a‖7k =�∗k7k ; L�k =�
∗
k

k ; M51=�∗k
1 };

5k+1 =: 5∗k q
∗=q; 5∗k =: 5k − 5̃k + q;

5̃k =:
5k(
 + 1)

p∗ + (� + 1);  k =
5k

5̃k − �
;

Mk+1 =:Lq=5∗k (5k − 5̃k + 1)−1=5∗k (5∗k =q)
q=5∗k max{‖d‖ k =5

∗
k

 k
; M5k =5

∗
k

k ; L�1=5∗k
1 };

where L= (|�| · max{1; ‖b‖∞})1=pK0 and M = (|�| · max{1; ‖b‖∞})1=qK0.
The next lemma states some basic properties for the sequences �k and 5k .
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Lemma 5.1. Let conditions (1:3) and (5:2) hold. Then �k and 5k have the following
properties:
(i) �k and 5k are increasing;
(ii) �k → ∞ and 5k → ∞; as k → ∞,
(iii) �k − �̃k ¿ 0 and 5k − 5̃k ¿ 0.

Proof. We give the proof for �k . In a similar way, the conclusions follow for 5k .
(i) Since �1 =p∗, from (5.2) and the de2nition of �k , it follows that

�∗1 =p∗
(

1 − � + 1
q∗

)
− (
 + 1) + p¿p:

Hence, �2 ¿p∗ = �1. Suppose that �k ¿�k−1, for some k ∈N. From the fact that

�k+1 =
{
�k

(
1 − � + 1

q∗

)
− (
 + 1) + p

}
p∗

p
; (5.4)

we obtain �k+1 ¿�k . Hence, by induction �k is an increasing sequence.
(ii) From (5.4) we may express �k in terms of k, as

�k = 3k−1�1 +
k−2∑
i=0

3i8= 3k−1�1 + 8
3k−2 − 1
3− 1

;

where

3=
p∗

p

(
1 − � + 1

q∗

)
and 8=

p∗

p
(p− (
 + 1)):

Letting k → ∞, and using (5.2), we derive that �k → ∞.
(iii) Since �k is an increasing sequence, the conclusion follows directly from

(5.2).

In the following lemma, we give the connection between the solutions of system
(1.1) and the sequences we introduce above.

Lemma 5.2. Let (u; v) be a solution of system (1:1). For every k ∈N; u belongs to
L�k (RN ); v belongs to L5k (RN ) and satisfy

‖u‖�k 6Lk and ‖v‖5k 6Mk: (5.5)

Proof. We study only the case of u. The case of v may be treated similarly. Proceeding
by induction, we see that for k = 1, inequalities (5.5) are obvious. We suppose that
(5.5) hold for some k. We recall the construction of  n from (3.4) and set un =  n(u).
Multiplying the 2rst equation of system (1.1) by |un|�k−�̃k un and integrating we obtain

(�k − �̃k + 1)
∫

|∇u|p ′
n(u)|un|�k−�̃k = �

∫
a(x)|un|�k−�̃k+1|u|�−1

+ �
∫

b(x)|un|�k−�̃k+1|u|
|v|�+1: (5.6)
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From the de2nition of un and vn and from the fact that
�k − �̃k + 
 + 1

�k
+

� + 1
q∗

= 1;

we obtain

�
∫

b(x)|un|�k−�̃k+1|u|
|v|�+1 6 |�|‖b‖∞
∫

|u|�k−�̃k+
+1|v|�+1

6 |�|‖b‖∞
(∫

|u|�k
)(�k−�̃k+
+1)=�k (∫

|v|q∗
)(�+1)=q∗

6 |�|‖b‖∞ max{‖u‖�k�k ; ‖v‖
q∗

q∗}: (5.7)

Next, we note that
1
7k

+
�k − �̃k + �

�k
= 1:

Hence

�
∫

a(x)|un|�k−�̃k+1|u|�−1 6 |�|
(∫

|a(x)|7k
)1=7k (∫

|u|�k
)(�k−�̃k+�)=�k

6 |�|max{‖a(x)‖7k7k ; ‖u‖
�k
�k}: (5.8)

As in (3.7) we derive

(�k − �̃k + 1)
∫

|∇u|p ′
n(u)|un|�k−�̃k ¿K−p

0 (�k − �̃k + 1)(p=�∗k )
p‖|un|�∗k =p‖pp∗ :

(5.9)

Since ‖|un|�∗k =p‖pp∗ = ‖un‖�
∗
k

�k+1
, inequality (5.9) implies

(�k − �̃k + 1)
∫

|∇u|p ′
n(u)|un|�k−�̃k ¿K−p

0 (�k − �̃k + 1)(p=�∗k )
p‖un‖�

∗
k

�k+1
:

(5.10)

Applying (5.7), (5.9) and (5.10) to Eq. (5.6) we derive the estimates

‖un‖�k+1
6Lk+1:

Finally, letting n → ∞, we obtain estimate (5.5) for the solution u.

With the help of the above lemma, we are ready to prove the main result of this
section.

Theorem 5.3. Let (u; v) be a solution of (1:1); with the restrictions as stated above.
Then u and v are uniformly bounded on RN .

Proof. We claim that

‖u‖∞6max{1; ‖a(x)‖�̃q∗=(�+1); ‖v‖q
∗

q∗ ; e
d}; (5.11)
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where �̃= q∗=[p∗(� + 1) + q∗(
+ 1)− q∗�] and d a real number to be 2xed later. We
suppose that there exists a subsequence of {k}, which we denote again with {k}, such
that

L�k
k ¿max{‖a(x)‖7k7k ; M51

1 }:
Let Ek =: �k log(Lk) and set a=p∗=p. By simple calculations and using Lemma 5.1,
we derive

Ek+16 rk + aEk ;

where rk =p∗ log(L�̃k). It is now easy to obtain the following inequality for Ek .

Ek 6 ak−1E1 + rk−1 + ark−2 + · · · + ak−2r1: (5.12)

The de2nition of �∗k and Lemma 5.1 imply that

�∗k 6 a3k−1
(
�1 − 8−

3k−2 − 1
3k−1(3− 1)

)
;

where 8− = min{0; 8}. Thus, rk can be estimated as

rk 6p∗(k − 1)log(3) + p∗ log[aL(�1 − 8−)]:

Choosing k to be suGciently large and setting b=p∗ log[aL(�1 − 8−)] we deduce

rk 6p∗(k − 1)log(a) + b: (5.13)

From (5.12) and (5.13) we derive

Ek 6 ak−1E1 + {b(a− 1) + p∗ log(a)}(ak−1 − 1)=(a− 1)2:

Furthermore, from Lemma 5.2 we obtain that

‖u‖∞6 lim sup
k→∞

‖u‖�k 6 lim sup
k→∞

eEk =�k 6 ed; (5.14)

where d= [E1 + {b(a − 1) + p∗ log(a)}=(a − 1)2]=(p∗ − a). Assume now that for a
subsequence kn we have

M51=�kn
1 ¿max{Lkn ; ‖a(x)‖7kn7kn

}:
Since �k is increasing, we derive

‖u‖�kn 6Lkn 6 ‖u‖q∗=�knq∗ 6max{1; ‖v‖q∗q∗}: (5.15)

On the contrary, if for a subsequence kn holds

‖a(x)‖7kn7kn
¿max{Lkn ;M

51=�kn
1 };

then from the de2nition of 7k , the Lebesgue Dominated Convergence Theorem and
condition (5.3) we obtain

‖u‖�kn 6Lkn 6 ‖a(x)‖7kn =�kn7kn
6max{1; ‖a(x)‖�̃q∗=(�+1)}: (5.16)
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Thus, from estimates (5.14)–(5.16) we conclude (5.11), i.e., the uniform boundness
of u. The analogous holds for v.

To complete this section, we state some immediate consequences of Theorem 5.3,
analogous to those of Section 3.

Corollary 5.4. Let the conditions of Theorem 5:3 hold and (u; v) be a solution of
(1:1) then u and v decay uniformly to zero as |x| → ∞. Moreover; both of them are
of class C1; 
(Br); for any r ¿ 0 and 
= 
(r)∈ (0; 1).

Proof. It is a consequence of Theorem (5:3), the results of Serrin [5] and of Tolksdorf
[7].

Corollary 5.5. Let the conditions of Theorem 5:3 hold. Any solution for system (1:1)
obtained by Theorems 4:1–4:8 is strictly positive (componentwise).

Proof. It is a consequence of Theorem 5.3 and the results of VNazquez [8].

Remark 5.6. We note that all the results, obtained in this work, are applicable to the
bounded domain case and similar results may be obtained.
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