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ASYMPTOTIC BEHAVIOR OF SOLUTIONS

OF SOME NONLINEARLY DAMPED

WAVE EQUATIONS ON RN

Nikos Karachalios � Nikos Stavrakakis

Abstract� We discuss the asymptotic behavior of solutions of the nonlin�
early damped wave equation

utt � �jutj
m��ut � ��x��u � �ujuj���� x � RN� t � ��

with the initial conditions u�x� �� � u��x� and ut�x��� � u��x�� in the case
where N � 	� � � � and ���x���� � g�x� is a positive function lying in
Lp�RN� � L��RN�� for some p
 We prove blow�up of solutions when the
source term dominates over the damping� and the initial energy is assumed
to be positive
 We also discuss global existence energy decay of solutions


1. Introduction

The aim of this work is to study the asymptotic behavior of solutions of the
following semilinear hyperbolic Cauchy problem

utt + δ|ut|m−1ut − φ(x)∆u = λu|u|β−1, x ∈ RN, t ≥ 0,(1.1)
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u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN,(1.2)

where N ≥ 3, m > 1 and δ > 0. Throughout the paper we assume that φ (and g)
satisfies the following hypothesis

(G ) φ(x) > 0, for all x ∈ RN, (φ(x))−1 =: g(x) ∈ LN/2(RN) ∩ L∞(RN) and
1 < m ≤ (N + 2)/(N − 2).

In addition to the principal condition G we shall use the following hypotheses
for g and the exponent β,

(G 1) g ∈ L1(RN) ∩ L∞(RN) and 1 < β ≤ N/(N − 2),
(G 2) (N + 2)/N ≤ β ≤ N/(N − 2).

Equations with non-constant coefficient arise in many phenomena of mathe-
matical physics involving wave propagation in nonhomogeneous medium (see [1],
[17], [26], [29], [30]). We refer also to [2], [7], [11], [12] for equations of parabolic
type. The particular case treated here includes functions of the form

φ(x) ∼ c0 + ε|x|γ , ε > 0, γ > 0, c0 > 0,

resembling phenomena of rapidly varying wave speed around the constant speed
c0 (see [30] and [7], [11], [12] for the physical description in parabolic equations).
There is a growing interest on the study of the interaction of nonlinear damping
and source terms on the long time behavior of solutions of wave equations. In the
case of bounded domains and φ(x) = constant we refer to the works [9] and [10].
In [9] it is proved that global existence occurs, when the damping term dominates
over the source term, while blow-up appears in the opposite situation and under
the assumption of sufficiently negative initial energy. In [10] global existence
results are given for sufficiently small initial data, but there are not any relations
between the exponents of the source and damping. The corresponding blow-up
result is proved under the assumption of positive initial energy and sufficiently
small values of damping, i.e. E(0) < Eδ < E1. The value E1 denotes the depth
of the potential well introduced in [24] (see also [23]). Global non-existence
and blow-up results are extended to the case of negative initial energy in the
work [21] concerning abstract quasilinear equations. In this work, among other
applications (e.g. mean curvature and polyharmonic operators), it is treated
the case of variable bounded diffusion coefficient in bounded domains. The case
0 ≤ E(0) < E1 is discussed first in [25], for linearly damped quasilinear equations
and bounded domains. In the work [29] the results of [25] are extended to most
of the applications presented in [21] in bounded domains (including the models
of bounded variable coefficients).

The problem becomes more complicated in the case of unbounded domains
as in general, the equation does not give rise to coercive or compact operators.
Important contributions to this direction are contained in the works [20], [22],
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[25], [27], [28]. The works [20], [27] extend the result of [21] for the problem
(1.1)–(1.2) and negative initial energy, with φ(x) = constant, involving “mass”
and “mass-free” nonlinearities, respectively. Generally speaking, the “mass”
case implies coercivity (see [25]), a necessary assumption for the extension of
the results in unbounded domains. In the “mass-free” (“non-coercive”) case it
is necessary to assume initial data having compact support, which implies the
finite speed of propagation property. In [22], a method using this assumption is
developed, to extend the result of [25] in the “mass free”, nonlinearly damped
semilinear equation. In the recent work [28], it is treated the linear damped
equation. Global existence is proved for sufficiently small initial data when
the source exponent is in ((N + 2)/N, N/(N − 2)) while blow-up holds when the
source is in (1, (N + 2)/N) and initial data having positive average. Moreover, it
is made the important observation that the support of the solution is concetrated
in a ball much smaller than |x| < t + K where K is the radius of the support of
the initial data.

We would like to mention that evolution equations, involving diffusion coef-
ficients φ(x) → c± > 0, as x → ±∞, are functionally formulated in the classical
Sobolev space setting (e.g. see [8], [26]). In the special case of problem (1.1)–(1.2)
treated here, it is unclear a priori in which function spaces solutions might lie.

In works [14], [15], [16] it is proved that the problem (1.1)–(1.2) (with weak
dissipation) is naturally formulated in a homogeneous Sobolev and weighted Lp-
space setting. It is the appropriate functional setting to overcome the difficulties
that arise from the appearance of the “unbounded” diffusion coefficient and the
consideration of the problem on RN. These works constitute the first complete
application of the homogeneous Sobolev spaces, for the study of time dependent
problems in unbounded domains, which have been used in the past for the study
of nonlinear elliptic equations (see [5], [6] and the references therein). In [15]
the linear damping case (m = 1) is considered. The results concern blow-up
of solutions for all negative initial energies and global existence for sufficiently
small initial data. Here we extend the blow-up result in the case of positive
initial energy. In the case of nonlinear damping, we also prove global existence
and energy decay. A difference of the results presented here with those of [20],
[22], [25], [27], [28], is that it is not necessary to assume compactness of the
support of the initial data. This is a consequence of the appearance of the function
φ(x) → ∞ (see the discussion in [21]). This observation combined with the fact
that the classical energy space is included in the energy space defined by (1.1)–
(1.2), shows that the problem is solvable for a wide class of initial data.

The work is organized as follows. In Section 2, we recall the basic properties
of the energy space and give the functional formulation of the problem. In
Section 3, we first prove that solution blows-up in finite time in the case where
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(G 1) is satisfied, the initial energy E∗(0) < P0 for some P0 > 0 and the initial
condition u0 is large in an appropriate norm The existence of global solutions is
proved, under the hypothesis (G 2), the initial energy been bounded as above and
the ininitial condition u0 is sufficiently small (in the sense that it is in a potential
well). In addition, if (G 1) is satisfied the energy decay of solutions is also derived.
As in [10], we don’t assume any ordering relation between the exponents m and β.
In Section 4 we prove the corresponding blow-up result for the linearly damped
equation. In this case we may relax the condition (G 1) assumed also in [15], for
the blow-up result for negative initial energies, by assuming condition (G 2).

Notation. We denote by BR the open ball ofRN with center 0 and radius R.
Sometimes for simplicity we use the symbols D1,2, Lp, 1 ≤ p ≤ ∞, for the spaces
D1,2(RN), Lp(RN), respectively, ‖ · ‖p for the norm ‖ · ‖Lp(RN).

2. Preliminaries

This section is a brief description of the space setting on which problem
(1.1)–(1.2) is formulated. For the details and proofs of the results, we refer to
[5], [15]. The space D1,2(RN) is defined as the closure of C∞

0 (RN) functions with
respect to the “energy norm” ‖u‖D1,2 =:

∫
RN | 	 u|2 dx. It is well known that

D1,2(RN) = {u ∈ L2N/(N−2)(RN) : 	u ∈ (L2(RN))N }

and that D1,2(RN) is embedded continuously in L2N/(N−2)(RN), i.e. there exists
k > 0 such that

‖u‖2N/(N−2) ≤ k‖u‖D1,2.

In [5, Lemma 2.1] it is proved that the generalized Poincaré’s inequality

(2.1)
∫
RN

| 	 u|2 dx ≥ α

∫
RN

gu2 dx,

holds for all u ∈ C∞
0 (RN) and g ∈ LN/2(RN), where α =: k−2‖g‖−1

N/2. It is shown

that D1,2(RN) is a separable Hilbert space. The space L2
g(RN), defined to be

the closure of C∞
0 (RN) functions with respect to the inner product (u, v)L2

g
=:∫

RN guv dx, is a separable Hilbert space. Moreover, the embedding D1,2(RN) ⊂
L2

g(RN) is compact. The following lemmas will be used in the sequel.

Lemma ���� Let g ∈ L2N/(2N−pN+2p)(RN). Then we have the following
continuous embedding

D1,2(RN) ⊂ Lp
g(RN),

for all 1 ≤ p ≤ 2N/(N − 2).

Remark ���� Let us note that the assumption of Lemma 2.1 is satisfied
under the hypothesis (G ), if 2 ≤ p ≤ 2N/(N − 2).
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Lemma ���� Assume that 1 < a, b, c < ∞, s ∈ [0, c−1) and a−1 +b−1 +c−1 =
1. Then for every u ∈ La

g , v ∈ Lb
g, w ∈ Lc

g and every K > 0 we have the
inequality ∣∣∣∣

∫
RN

guvw dx

∣∣∣∣ ≤ Ks−c−1
‖w‖Lc

g
(‖u‖a

La
g

+ ‖v‖b
Lb

g
+ K)1−s.

Lemma ���� Assume that g ∈ L1(RN) ∩ L∞(RN). Then the following con-
tinuous embedding Lp

g(RN) ⊂ Lq
g(RN) is true, for any 1 ≤ q ≤ p < ∞.

In [15] it is proved that the operator A0 = −φ∆ with domain of definition
D(A0) = C∞

0 (RN) is a symmetric, strongly monotone operator on L2
g(RN). By

applying the Friedrichs extension theorem (see [31]), we construct the energetic
extension AE = −φ∆ of A0, defined to be the duality mapping of D1,2(RN).
The Friedrichs extension A of A0 is a self-adjoint operator and its domain D(A),
is a Hilbert space endowed with the norm

‖u‖D(A) =
{ ∫
RN

g|u|2 dx +
∫
RN

φ|∆u|2 dx

}1/2

,

which is equivalent to the norm

‖Au‖L2
g

=
{ ∫
RN

φ|∆u|2 dx

}1/2

.

The compact and dense embeddings

D1,2(RN) ⊂ L2
g(RN) ⊂ D−1,2(RN),

will serve as the evolution triple for (1.1)–(1.2). Finally, we give the definition
of the weak solution for the problem (1.1)–(1.2).

Definition ���� A weak solution of (1.1)–(1.2) is a function u(x, t) such
that

(i) u ∈ L2[0, T ; D1,2(RN)], ut ∈ L2[0, T ; L2
g(RN)], utt ∈ L2[0, T ; D−1,2(RN)]

with ut ∈ Lm+1
g ([0, T ) ×RN),

(ii) for all v ∈ C∞
0 ([0, T ] ×RN), satisfies the generalized formula

(2.2)
∫ T

0
(utt(τ), v(τ))L2

g
dτ + δ

∫ T

0
(h(ut(τ)), v(τ))L2

g
dτ

+
∫ T

0

∫
RN

	u(τ) 	 v(τ) dx dτ − λ

∫ T

0
(f(u(τ)), v(τ))L2

g
dτ = 0,

where f(s) = |s|β−1s, h(s) = |s|m−1s, and
(iii) satisfies the initial conditions

u(x, 0) = u0(x) ∈ D1,2(RN), ut(x, 0) = u1(x) ∈ L2
g(RN).
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Remark ���� We may see by using a density argument, that the generalized
formula (2.2) is satisfied for every v ∈ L2[0, T ; D1,2(RN)]. Note that in case of
bounded domain Ω, H1

0 (Ω) ≡ D1,2(Ω), while H1(RN) ⊂ D1,2(RN). Moreover,
by the definition of g we have that L2(RN) ⊂ L2

g(RN). Therefore although
weighted space is involved, the solvability of (1.1)–(1.2) is obtained for a more
general class of initial data in contrast to the weighted spaces environment used
in [3].

3. The nonlinearly damped equation (m > 1)

In this section we prove that in the nonlinear damping case solutions blow-
up in finite time, under the assumption of positive initial energy and sufficiently
large initial data u0. On the other hand, if the initial condition u0 is in a modified
potential well it is shown that solutions exist globally and energy decays. First
we give the following local existence result.

Proposition� Let g satisfy conditions (G 1) or (G 2). Suppose that the con-
stants δ > 0, λ < ∞ and the initial conditions

u0 ∈ D1,2(RN) and u1 ∈ L2
g(RN),

are given. Then there exists T > 0 such that the problem (1.1)–(1.2) admits
a unique (weak) solution with

u ∈ C[0, T ; D1,2(RN)] and ut ∈ C[0, T ; L2
g(RN)] ∩ Lm+1

g ((0, T ) ×RN).

Proof� The proof follows the lines of [15]: For the solvability of the problem
(1.1)–(1.2) restricted on the ball BR ofRN, we combine density arguments similar
to those of [9, Proposition 2.1] and estimates of [15, Proposition 3.1(a)]. The
extension of solution to all of RN, as R → ∞, is obtained exactly as in [15,
Proposition 3.1(b)]. �

Blow up of solutions. Multiplying equation (1.1) by gut and integrating
over RN we obtain the energy relation

(3.1)
1
2

d

dt
‖ut‖2

L2
g

+ δ‖ut‖m+1
Lm+1

g
+

1
2

d

dt
‖u‖2

D1,2 =
λ

β + 1
d

dt

∫
RN

g(x)|u|β+1 dx.

The energy of the problem (1.1)–(1.2) is defined as

(3.2) E∗(t) =:
1
2

‖ut(t)‖2
L2

g
+

1
2

‖u(t)‖2
D1,2 − λ

β + 1

∫
RN

g(x)|u(t)|β+1 dx.

From (3.1), (3.2) it is easily seen that, for every t ∈ [0, T ), E∗(t) is a nonincreasing
function of t and

(3.3) E∗(t) + δ

∫ t

0
‖ut(s)‖m+1

Lm+1
g

ds = E∗(0).



short title � �

From Lemma 2.1 and assumption (G ) we have that D1,2(RN) ↪→ Lβ+1
g (RN), for

1 < β ≤ N/(N − 2), i.e.,

(3.4) ‖u‖
Lβ+1

g
≤ Cg‖u‖D1,2,

where Cg = ‖g‖1/(β+1)
a , with a = 2N/(N(β − 1) + 2(β + 1)). Using the energy

(3.2) and the embedding inequality (3.4) we get that

(3.5) E∗(t) ≥ 1
2

‖u‖2
D1,2 − λ

β + 1
‖u|β+1

Lβ+1
g

≥ 1
2Cg

‖u‖2
Lβ+1

g
− λ

β + 1
‖u‖β+1

Lβ+1
g

.

Denoting by p ≡ p(t) = ‖u(t)‖Lβ+1
g

, we consider the functional

(3.6) P (p) =
1

2Cg
p2 − λ

β + 1
pβ+1.

There exists a unique maximum value P0 for the function P at a point p0, where

P0 = λ

(
1

λC2
g

)(β+1)/(β−1)
β − 1

2(β + 1)
and p0 =

(
1

λC2
g

)1/(β−1)

.

Next, we state the following two conditions, to be used in the sequel

E∗(0) < P0,(3.7)

p(0) > p0.(3.8)

Following the lines of [25], it can be shown that the assumptions (3.7) and (3.8)
imply the inequalities

(3.9) p(t) ≥ p0 and ‖u(t)‖2
D1,2 ≥ 1

C2
g

p2
0, for every t ∈ [0, T ).

Theorem ���� Let us suppose that hypothesis (G 1) and conditions (3.7)–
(3.8) are satisfied. We also assume that m < β. Then the solution of problem
(1.1)–(1.2) blows-up in finite time.

Proof� As in [29], we define the functional

(3.10) F (t) =: E∗
1 − E∗(0) + δ

∫ t

0
‖ut(s)‖m+1

Lm+1
g

ds for some E∗
1 ∈ (E∗(0), P0).

From (3.2), (3.3), (3.7)–(3.8) and (3.10) we get that the functional F (t) is in-
creasing, positive function of t and

(3.11)
λ

β + 1
‖u‖β+1

Lβ+1
g

≥ E∗
1 − E∗(t) = F (t) ≥ F (0) > 0.
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Let 0 < ε < β − 1. We multiply (1.1) by gu and integrate over RN to obtain

(3.12)
d

dt
(u(t), ut(t))L2

g
= ‖ut(t)‖2

L2
g

− δ(|ut(t)|m−1ut(t), u(t))L2
g
‖u(t)‖2

D1,2

+ λ

∫
RN

g(x)|u(t)|β+1 dx

+ (β + 1 − ε)E∗(t) − (β + 1 − ε)E∗(t).

We insert (3.2) and (3.11) in (3.12) to get the inequality

(3.13)
d

dt
(u, ut)L2

g
≥ C1(ε)

2
‖ut‖2

L2
g

+
C2(ε)

2
‖u‖2

D1,2 + C3(ε)‖u‖β+1
Lβ+1

g

− δ(|ut|m−1ut, u)L2
g

+ C4(ε)F (t) − C4(ε)E∗
1 ,

where C1(ε) = β+3−ε, C2(ε) = β−1−ε, C3(ε) = ελ/(β + 1), C4(ε) = β+1−ε.
From (3.9) and (3.13) it follows that

(3.14)
d

dt
(u(t), ut(t))L2

g
≥ C1(ε)

2
‖ut(t)‖2

L2
g

+ C3(ε)‖u(t)‖β+1
Lβ+1

g

+ C4(ε)F (t) − δ(|ut(t)|m−1ut(t), u(t))L2
g

+ C4(ε)
{

C2(ε)
C4(ε)

1
2C2

g

p2
0 − E∗

1

}
.

We estimate the fourth term on the right-hand side of (3.14) as follows: We
apply Hölder’s inequality with exponents p = β(m + 1)/(β − m) and q = β(m +
1)/m(β + 1) to get that

(3.15) ‖h(ut)‖Lβ∗
g

=
( ∫
RN

gp−1
gq−1

|ut|mβ∗ dx

)β−1
∗

≤ M2‖ut‖m
Lm+1

g
,

where M2 = ‖g‖p−1

1 and β∗ = (β + 1)/β is the Hölder conjugate of β + 1. Hence
using (3.10), we obtain that

(3.16) |δ(h(ut(t)),u(t))L2
g
|

≤ δ‖h(ut(t))‖Lβ∗
g

‖u(t)‖Lβ+1
g

≤ δM2‖ut(t)‖m
Lm+1

g
‖u(t)‖Lβ+1

g

≤ δM2‖ut(t)‖m
Lm+1

g
{‖u(t)‖β+1

Lβ+1
g

}1/(m+1){‖u(t)‖β+1
Lβ+1

g
}−k,

where k = 1/(m + 1) − 1/(β + 1) and 0 < k < 1, when β > m. Using relations
(3.11) and (3.16) we obtain that

(3.17) |δ(h(ut(t)), u(t))L2
g
|

≤ δM2‖ut(t)‖m
Lm+1

g
× {‖u(t)‖β+1

Lβ+1
g

}1/(m+1)
{

β + 1
λ

}−k

F (t)−k.
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Now Young’s inequality for some ε0 > 0, implies that

(3.18) |δ(h(ut(t)), u(t))L2
g
|

≤ {C5εm+1
0 ‖u(t)‖β+1

Lβ+1
g

+ δ(m+1)/mε
−(m+1)/m
0 ‖ut(t)‖m+1

Lm+1
g

}F (t)−k.

Let some 0 < k∗ < k. From (3.11) and (3.18) it holds that

(3.19) |δ(h(ut(t)),u(t))L2
g
|

≤ C5εm+1
0 ‖u(t)‖β+1

Lβ+1
g

F (t)−k

+ δ(m+1)/mε
−(m+1)/m
0 ‖ut(t)‖m+1

Lm+1
g

F (t)k∗−kF (t)−k∗

≤ C5εm+1
0 ‖u(t)‖β+1

Lβ+1
g

F (0)−k

+ δ(m+1)/mε
−(m+1)/m
0 ‖ut(t)‖m+1

Lm+1
g

F (0)k∗−kF (t)−k∗

≤ C5εm+1
0 ‖u(t)‖β+1

Lβ+1
g

F (0)−k

+ δ(m+1)/mε
−(m+1)/m
0 F ′(t)F (0)k∗−kF (t)−k∗

.

A combination of estimates (3.14) and (3.19) with the fact that the last term
on the right-hand side of (3.14) is positive (by assumption (3.9)), shows the
inequality

(3.20)
d

dt
(u(t),ut(t))L2

g

≥ C1(ε)
2

‖ut(t)‖2
L2

g
+ {C3(ε) − C5εm+1

0 F (0)−k}‖u(t)‖β+1
Lβ+1

g

+ C4(ε)F (t) − ε
−(m+1)/m
0 δ(m+1)/mF (0)k∗−kF (t)−k∗

F ′(t).

As in [9] for some µ > 0 to be chosen later, we use the functional

G(t) =: µF (t)1−k∗
+ (ut(t), u(t))L2

g
.

Differentiating G(t) and using (3.20) we see that

(3.21) G′(t) ≥ {µ(1 − k∗) − ε
−(m+1)/m
0 δ(m+1)/mF (0)k∗−k}F (t)−k∗

F ′(t)

+ {C3(ε) − C5εm+1
0 F (0)−k}‖u(t)‖β+1

Lβ+1
g

+ C4(ε)F (t) +
C1(ε)

2
‖ut(t)‖2

L2
g
.

Choosing µ sufficiently large, we may find values for ε0 > 0, such that the
following inequalities hold simultaneously.

K1 = µ(1 − k∗) − ε
−(m+1)/m
0 δ(m+1)/mF (0)k∗−k > 0,

K2 = C3(ε) − C5εm+1
0 F (0)−k > 0.
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Hence, from (3.21), we obtain that

(3.22) G′(t) ≥ K4{‖ut(t)‖2
L2

g
+ F (t) + ‖u(t)‖β+1

Lβ+1
g

} > 0,

for some constant K4 > 0. Therefore, G(t) > G(0) > 0, i.e. G is a strictly
increasing function of t. We set γ = 1/(1 − k∗). Moreover, from Lemma 2.3
(where u = u, v = ut, w = 1, a = β + 1, b = 2, c = 2(β + 1)/(β − 1), s = k∗,
K = F (t)),

(3.23) |(u, ut)L2
g
|

≤ F (t)k∗−(β−1)/2(β+1)‖g‖(β−1)/2(β+1)
1 {‖u‖β+1

Lβ+1
g

+ ‖ut‖2
L2

g
+ F (t)}1/γ .

Note that k∗ ∈ (0, (β − 1)/2(β + 1)), since k∗ ∈ (0, k). From the definition of
G(t) and (3.23), we have that

(3.24) |(u(t), ut(t))L2
g
|γ ≤ K5{‖u(t)‖β+1

L
β+1
g

+ ‖ut(t)‖2
L2

g
+ F (t)},

where K5 = {F (0)k∗−(β−1)/(2(β+1))‖g‖(β−1)(2(β+1))
1 }γ . From relation (3.24) we

get that

G(t)γ ≤ 2γ−1(µγ−1F (t) + |(u(t), ut(t))L2
g
|γ)(3.25)

≤ K6{‖ut(t)‖2
L2

g
+ F (t) + ‖u(t)‖β+1

Lβ+1
g

} ≤ K6

K4
Ḟ (t),

where K6 = max{(2µ)γ−1, (2µ)γ−1K5}. The last inequality (3.25) implies that
G′(t) ≥ CG(t)γ . Well known arguments (see [4, Theorem 4.2]), imply that G′(t)
cannot be global in time and the proof is completed. �

Global existence and energy decay. Consider the potential well

W =: Int{u ∈ D1,2(RN) : K (u) =: ‖u‖2
D1,2 − λ‖u‖β+1

Lβ+1
g

≥ 0},

where IntB denotes the interior of the set B. It is easily seen that K (u) ≥ 0 for
small u ∈ D1,2 and 0 ∈ W For the details we refer to [15, p. 164–165].

Theorem ���� Let condition (3.7) and hypothesis (G 2) be fulfilled. Assume
that u0 ∈ W and

(3.26) λ <

{
Cβ+1

g

(
2(β + 1)P0

β − 1

)(β−1)/2}−1

=: λ−1
0 .

Then

(i) the unique (weak) solution of (1.1)–(1.2) is such that

u ∈ C([0, ∞); D1,2(RN)) and ut ∈ C([0, ∞); L2
g(RN)).
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(ii) In addition, if condition (G 1) is satisfied, the solution decays in time,
i.e.

lim
t→∞

‖u(t)‖2
D1,2 = lim

t→∞
‖ut(t)‖2

L2
g

= 0.

Proof� (i) Assume that there exists some time T ∗ > 0, such that u(t) ∈ W ,
where 0 ≤ t < T ∗ and u(T ∗) ∈ ∂ W . Then K (u(T ∗)) = 0 and u(T ∗) �= 0. Since
u(t) ∈ W we may see that

(3.27) J (u(t)) =:
1
2

‖u(t)‖2
D1,2 − λ

β + 1
‖u(t)‖β+1

Lβ+1
g

≥ β − 1
2(β + 1)

‖u(t)‖2
D1,2,

for t ∈ [0, T ). Furthermore, from (3.3) and (3.7) we have

(3.28) J (u(t)) ≤ E∗(t) ≤ E∗(0) < P0, for all t ∈ [0, T ).

Using (3.4), (3.27) and (3.28) we obtain the inequality

(3.29) ‖u(t)‖β+1
Lβ+1

g
≤ Cβ+1

g (‖u(t)‖2
D1,2)(β−1)/2‖u(t)‖2

D1,2 ≤ λ0‖u(t)‖2
D1,2,

for t ∈ [0, T ). For t = T ∗ we have

(3.30) K (u(T ∗)) ≥ (1 − λλ0)‖u(T ∗)‖2
D1,2 > 0,

if λ < 1/λ0 (which justifies assumption (3.26)). This contradiction implies that
T = ∞. Also from (3.4), (3.27) and (3.28) we get the estimates every t ∈ [0, ∞),

‖u(t)‖2
D1,2 + ‖ut(t)‖2

L2
g

≤ 2
β + 1
β − 1

P0,(3.31)

∫ t

0
‖ut(s)‖m+1

Lm+1
g

ds ≤ P0

δ
.(3.32)

(ii) Consider the case β > m. To prove the decay of the energy norm of
solutions at infinity, we integrate with respect to the time t relation (3.12), use
Poincaré’s inequality (2.1) and estimates (3.31), (3.32), to obtain

(3.33)
∫ t

0
K (u(s)) ds ≤

∫ t

0
‖ut(s)‖2

L2
g

ds + |(u(t), ut(t))L2
g
|

+ |(u0, u1)L2
g
| + δ

∫ t

0
(h(ut(s)), u(t))L2

g
ds

≤ M +
∫ t

0
‖ut(s)‖2

L2
g

ds + δ

∫ t

0
(h(ut(s)), u(s))L2

g
ds,

with M = 4 min{(β + 1)/(2(β − 1)), 1/(2α)}P0.
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Using (3.4) and inequalities (3.15), (3.31) we estimate the last term of the
right-hand side of (3.33), as follows

(3.34)
∫ t

0
(h(ut(s)), u(s))L2

g
ds ≤

∫ t

0
‖h(ut(s))‖Lβ∗

g
‖u(s)‖Lβ+1

g
ds

≤ M2Cg

∫ t

0
‖ut(s)‖m

Lm+1
g

‖u(s)‖D1,2 ds

≤ M3t1/(m+1)
( ∫ t

0
‖ut(s)‖m+1

Lm+1
g

ds

)m/(m+1)

,

with M3 = (2P0(β + 1)/(β − 1))1/2M2Cg. Moreover, using Lemma 2.4, we see
that

(3.35)
∫ t

0
‖ut(s)‖2

L2
g

ds ≤
( ∫ t

0
ds

)(m−1)/(m+1)( ∫ t

0
‖ut(s)‖m+1

L2
g

ds

)2/(m+1)

≤ t(m−1)/(m+1)
( ∫ t

0
‖ut(s)‖m+1

Lm+1
g

ds

)2/(m+1)

.

As in [10], since (d/dt)E∗(t) = −δ‖ut(t)‖m+1
Lm+1

g
it holds that

d

dt
(1 + t)E∗(t) ≤ E∗(t).

We integrate the last inequality over [0, t] and use the relation

(β + 1)J (u(t)) =
β − 1

2
‖u(t)‖2

D1,2 + K (u(t)),

to obtain that

(3.36) (1 + t)E∗(t) ≤ E∗(0) +
1
2

∫ t

0
‖ut(s)‖2

L2
g

ds

+
β − 1

2(β + 1)

∫ t

0
‖u(s)‖2

D1,2 ds +
1

β + 1

∫ t

0
K (u(s)) ds.

Since inequality (3.30) holds for every t ∈ [0, ∞), it follows from (3.36) that

(3.37) (1 + t)E∗(t) ≤ E∗(0) +
1
2

∫ t

0
‖ut(s)‖2

L2
g

ds + M4

∫ t

0
K (u(s)) ds,

where

M4 =
β − 1

2(1 − λλ0)(β + 1)
+

1
β + 1

.

We insert the estimates (3.7), (3.33)-(3.35) to (3.37) to obtain, for every t ∈
[0, ∞),

(3.38) E∗(t) ≤ M5
1

1 + t
+ M6

t(m−1)/(m+1)

1 + t
+ M7

t1/(m+1)

1 + t
,

where M5 = P0+M4M , M6 = (3/2)M4(P0/δ)2/(m+1), M7 = M4δ(P0/δ)m/(m+1).
Finally, we let t → ∞, in (3.38) to obtain that limt→∞ E∗(t) = 0.
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In the case β ≤ m we use the inequality

(h(ut(t)), u(t))L2
g

≤ ‖h(ut(t))‖L
(m+1)/m
g

‖u(t)‖Lm+1
g

≤ C‖ut(t)‖m+1
Lm+1

g
‖u(t)‖D1,2

in order to obtain the estimate (3.34). �

Remark ���� Under the assumptions of Theorem 3.3 for the initial data,
global existence holds with out any relations between β, m (see also [10]). It
is possible to show the global existence of solutions in the case β ≤ m, if g

satisfies (G 1), without any assumption on the initial condition u0 and on the
initial energy E∗(0), as in the works [9] and [20]. In the case δ = 0 global existence
for sufficiently small initial data is shown, when N = 3, 4 and (N + 4)/N ≤ β ≤
N/(N − 2) (see [15, Theorem 5.2])

4. The linearly damped equation (m = 1)

In this section we prove blow-up of solutions when the initial energy is pos-
itive, in the case of the linearly damped equation. We note that in the present
result, we may assume (G 2) instead of condition (G 1) of [15, Theorem 4.2])

Theorem ���� Let conditions (3.7)–(3.8) and hypothesis (G 2) be fulfilled.
Then the solution of the problem (1.1)–(1.2) blows-up in finite time.

Proof� The result will be obtained by application of the Concavity Lemma
introduced by Levine in [18] (see also [25]). For fixed t0, T0, we consider the
functional

(4.1) H(t) =: ‖u(t)‖2
L2

g
+ δ

∫ t

0
‖u(τ)‖2

L2
g

dτ + δ(T0 − t)‖u0‖2
L2

g
+ γ(t + t0)2,

where γ is a positive constant to be fixed later. We differentiate (4.1) with
respect to t and integrate by parts to obtain

(4.2) H ′(t) = 2(u(t), ut(t))L2
g

+ 2δ

∫ t

0
(u(τ), ut(τ)L2

g
dτ + 2γ(t + t0).

Multiply (1.1) by gu and integrate over RN to get

(4.3)
d

dt
(u(t), ut(t))L2

g
− ‖ut(t)‖2

L2
g

+
δ

2
d

dt
‖u(t)‖2

L2
g

+ ‖u(t)‖2
D1,2 − λ

∫
RN

g(x)|u(t)|β+1 dx = 0.

From (4.2), the definition of energy (3.2) and relation (4.3), we have

(4.4)
1
2

H ′′(t) =
β + 3

2
‖ut(t)‖2

L2
g

+
β − 1

2
‖u(t)‖2

D1,2 − (β + 1)E∗(t) + γ.
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We insert relation (3.3) (for m = 1) and inequality (3.9) to equation (4.4), to get

(4.5)
1
2

H ′′(t) ≥ β + 3
2

‖ut(t)‖2
L2

g
+ δ(β + 1)

∫ t

0
‖ut(τ)‖2

L2
g

dτ

+ (β + 1)
{

β − 1
2(β + 1)C2

g

p2
0 − E∗(0)

}
+ γ.

Next, we choose η =: 2{(β − 1)/(2(β + 1)C2
g )p2

0 − E∗(0)}, which is positive by
assumptions (3.7)–(3.8). Then (4.5) becomes

(4.6) H ′′(t) ≥ (β + 3){‖ut(t)‖2
L2

g
+ η} + 2δ(β + 1)

∫ t

0
‖ut(τ)‖2

L2
g

dτ.

Finally, we check the assumptions of the Concavity Lemma. Since H(0) =
2(u0, u1)L2

g
+ 2ηt0, one may choose t0 sufficiently large so that H ′(0) > 0. From

inequality (4.6) we have that H ′′(t) > 0. This implies that H ′(t) is an increasing
function of t. Therefore H ′(t) > H ′(0) > 0, i.e. H(t) is also an increasing
function of t. From the definition (4.1) we have that H(t) > 0. Consider the
quantities

A = ‖u(t)‖2
L2

g
+

∫ t

0
‖u(τ)‖2

L2
g

dτ + η(t + t0)2,

B =
1
2

H ′(t),

C = ‖ut(t)‖2
L2

g
+ δ

∫ t

0
‖ut(τ)‖2

L2
g

dτ + η.

From (4.1) and (4.6) it holds that A ≤ H(t) and (β + 3)C ≤ H ′′(t) on [0, T0].
The arguments of [25], imply

H(t)H ′′(t) − aH ′(t)2 ≥ 0,

for a = (β + 3)/4, which which shows that solution blows-up in finite time. �

Remark ���� In the case of the linear damping, the global existence and
energy decay results of Theorem 3.3 are also valid under the assumption (G 2).
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