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1. Introduction

Let us consider an abstract operator equation

Au= �Bu; (1.1)

where � ∈ R is a spectral parameter and A; B are operators acting from a certain Banach
space into its dual. In the papers by Idogawa and Ôtani [9] and Chan et al. [4], the
existence of the �rst variational and simple eigenvalue �1 of Eq. (1.1) is proved if A
and B are single-valued subdi�erentials of certain positive, convex functionals f1 and
f2, respectively. Under some additional assumptions, they proved that the problem has
a positive solution if and only if �= �1. They provide examples of quasilinear elliptic
boundary value problems on the bounded domain 
⊂RN , with smooth boundary @
.
In our paper we show that a slight modi�cation of the assumptions in [4] allows us
to extend their results also for problems in unbounded domains (including the case of

=RN ). Putting some additional assumptions on A and B, which seems to be natural
for a wide class of quasilinear equations, we prove that there is a neighbourhood of
�1, which does not contain any other eigenvalue than �1. Finally, under the assumption
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that A and B are the Fr�echet derivatives of the functionals f1 and f2, respectively, we
prove a global bifurcation result for the operator equation

Au= �Bu+ F(�; u); (1.2)

where the nonlinear operator F represents “higher-order” terms.
A special fact that the operators A and B need not be odd should be emphasized. In

this spirit our result generalises in an essential way related results for the p-Laplacian
(see [7] and the references therein).
As an example we can provide weak solvability of the nonlinear eigenvalue problem

in RN

− div a(x; u;∇u) + c(x; u;∇u) = �b(x; u) + g(�; x; u);

where the assumptions on a; b; c and g are speci�ed in Section 4.
Our paper is organized as follows. In Section 2, we reformulate the assumptions

of Chan et al. [4] with the modi�cation which allows us to deal with the unbounded
domain 
. We also prove that �1 is isolated in the above-mentioned sense, if some
extra conditions on the operators A and B are required. Section 3 deals with an abstract
bifurcation result based on the change of the value of the degree when � crosses �1.
In Section 4, we give a typical application.
Notation. We denote by BR(0) the open ball of RN with center 0 and radius R. 〈:; :〉V

denotes the duality pairing between the spaces V ∗; V . The symbols Lp; ‖ : ‖p; 1 ≤ p ≤
∞ and D1;p, are used in the place of Lp(RN ); D1;p(RN ) and ‖ : ‖Lp(RN ), respectively.
We denote by → and * the strong and the weak convergence, respectively.

2. The �rst eigenvalue of abstract elliptic operators

Let 
⊂RN be a domain (bounded, unbounded or possibly equal to RN ): Let V
be a real reexive Banach space with norm ‖ : ‖V , with the dual space V ∗ and the
duality pairing 〈:; :〉V . Denote by �(V ) the family of all lower semicontinuous convex
functionals f from V into (−∞;∞], such that D(f) := {u ∈ V ;f(u)¡∞} 6= ∅. The
subdi�erential @f of f at u is de�ned by

@f(u) := {h ∈ V ∗;f(v)− f(u) ≥ 〈h; v− u〉V ; for any v ∈ D(f)};
with the domain D(@f) := {u ∈ V ; @f(u) 6= ∅}: Assume that @f : V → V ∗ is a
single-valued operator. Note that if f ∈ �(V ) is Fr�echet di�erentiable, then @f(u) is the
Fr�echet derivative of f at u. Let D :=C∞

0 (
); D
+ := {u ∈ D; u(x) ≥ 0; for all x ∈


}: Let Vi; i = 1; 2 be real reexive Banach spaces of functions de�ned in 
 and
denote

V+i := {u ∈ Vi; u(x) ≥ 0; a:e: ∈ 
}; i = 1; 2:

Assume that

(Vi) DV1 = V1 ,→ V2⊂L1loc(
);
(V+i ) D+V1 = V+1 ,→ V+2 ;
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where the symbol ,→ is used to denote continuous embeddings. Let 
n; n ∈ N be a
sequence of bounded subdomains of 
 satisfying the property

(
n) 
n ⊂
n+1⊂
n+1⊂ · · ·⊂
; and ⋃∞
n=1 
n=
: Moreover, for any compact set

K ⊂
, there exists n ∈ N, such that K ⊂
n.

For any n ∈ N, introduce the operator Pn : L1loc(
)→ L1loc(
), de�ned by

Pnz(x) =
{

z(x) if x ∈ 
n;
0 if x ∈ 
 \ 
n:

We impose the following hypothesis on fi ∈ �(Vi); i = 1; 2:
(A1) (i) A= @f1; B= @f2; Bn = @f2(Pn(:));
(ii) D(fi) = Vi; i = 1; 2;
(iii) Pn maps V1 into V2; for all n ∈ N:
(A2) (i) R(|u|) ≤ R(u) :=f1(u)=f2(u); for all u ∈ V1;
(i)n Rn(|u|) ≤ Rn(u) :=f1(u)=f2(Pnu); for all u ∈ V1;
(ii) fi(u) ≥ 0; for all u ∈ Vi; i = 1; 2; and f2(u) = 0;
if and only if u= 0;
(iii) there exists w ∈ V1; with w 6= 0; such that
�1 = R(w) = inf{R(u); u ∈ V1; u 6= 0}¡+∞;
(iii)n there exists wn ∈ V1; with wn 6= 0; such that
�n
1 = Rn(wn) = inf{Rn(u); u ∈ V1; u 6= 0}¡+∞:
(A3) There exists �¿ 1 such that fi(tu)=t�fi(u); for all u ∈ Vi; i=1; 2; and for all

t ¿ 0:
(A4) (i) f1(u ∨ v) + f1(u ∧ v) ≤ f1(u) + f1(v); for all u; v ∈ V+1 ;
(ii) f2(u ∨ v) + f2(u ∧ v) ≥ f2(u) + f2(v); for all u; v ∈ V+2 ; where (u ∨ v)(x) =

max{u(x); v(x)}; (u ∧ v)(x) = min{u(x); v(x)}:
(A5) f1 is strictly convex.
(A6) If 0 ≤ z ≤ u; with z; u ∈ D(B); then B(z) ≤ B(u) holds in the sense of

distributions.
(A7) (i) Every nonnegative nontrivial solution u of the problem

Au= �Bu; (AE)�

belongs to C(
) and satis�es u(x)¿ 0, for all x ∈ 
;
(i)n Every nonnegative nontrivial solution u of the approximation problems

Au= �nBnu; (AE)�n

belongs to L∞
loc(
), for any n ∈ N.

Under hypotheses (A1)–(A7) we have the following general result from
Chan et al. [4].

Theorem 2.1. The number �1 is the �rst eigenvalue of (AE)�; it is simple and (AE)�
has a positive solution if and only if �= �1. The number �n

1 is the �rst eigenvalue of
problem (AE)�n ; for any n ∈ N and (AE)�n

1
has nontrivial nonnegetive solutions with

�n
1 ↘ �1; as n ↗ ∞.
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This assertion is proved for a bounded domain 
 in paper [4]. However, inspect-
ing the proof in [4] we also get the same result for unbounded domain 
 satisfying
hypothesis (
n).
We shall denote by u1 = u1(x)¿ 0 the eigenfunction associated with �1 and we

normalize it as ‖u1‖V1 = 1: For w ∈ V1, we set 
+w := {x ∈ 
; w(x)¿ 0}; 
−
w := {x ∈


; w(x)¡ 0} and w+(x) := (w ∨ 0)(x); w−(x) := (w ∧ 0)(x): We further impose the
following assumptions.
(V1) For any w ∈ Vi, we have w+ ∈ V+i and −w− ∈ V+i for i=1; 2. Moreover, for

any �xed number �¿ 0 and for any sequence {un}⊂V1, such that un * ∓u1 in V1,
we have meas (
±

un ∩ Bk(0))→ 0; where Bk(0) := {x ∈ RN ; |x|¡k}:
(A8) There exist c0¿ 0 and c1¿ 0 such that
(i) 〈Au; u±〉V1 ≥ c0〈Au±; u±〉V1 ; for all u ∈ V1;
(ii) 〈Au; u〉V1 ≥ c1‖u‖�V1 ; for all u ∈ V1.
(B1) f2 is weakly sequentially continuous as a functional from V1 into R, i.e.,

if un * u in V1; then f2(un)→ f2(u):
(B2) For any v ∈ V2; v+ 6= 0, there exists c2 = c2(v+)¿ 0, such that

〈Bv; v+〉V2 ≤ c2(v+)‖v+‖�V2 :
Moreover, the following implication holds: for any �¿ 0 there exists �¿ 0 and k ¿ 0,
such that meas (
+v ∩ Bk(0))¡�, implies that c2(v+)¡�: Similarly, for v ∈ V2, with
v− 6= 0:

Proposition 2.2. The number �1 is an isolated eigenvalue of problem (AE)� in the fol-
lowing sense: there exists �¿ 0; such that the interval (−∞; �1+�) does not contain
any other eigenvalue than �1.

Proof. Assume the contrary, i.e., there exists a sequence {�n} such that �n → �1 and
un ∈ V1 with ‖un‖V1 = 1, satisfying

Aun = �nBun: (2.1)

Then �n ¿�1, due to Theorem 2.1 and (by passing to a subsequence, if necessary)
we may assume that un * u0 in V1. Note that the functional f1(u) := 1=p〈@f1(u); u〉V1
is weakly lower semicontinuous (it is lower semicontinuous and convex). Hence

〈Au0; u0〉V1 ≤ lim infn→∞ 〈Aun; un〉V1 : (2.2)

It follows from (B1) that

�n〈Bun; un〉V1 → �1〈Bu0; u0〉V1 ; (2.3)

and from (A8)(ii) we get that

〈Aun; un〉V1 ≥ c1‖un‖�V1 = c1¿ 0: (2.4)

Now, it follows from (2.1)–(2.4) that u0 6= 0 and
Au0 = �1Bu0;



P. Dr�abek, N.M. Stavrakakis / Nonlinear Analysis 42 (2000) 561–572 565

i.e., u0 is the eigenfunction associated with �1. We may assume without loss of gen-
erality, that u0 = u1; i.e., un * u1 in V1. Then it follows from (V1) that, for any �xed
�¿ 0, we have that

meas (
−
un ∩ B�(0))→ 0; (2.5)

as n → ∞. On the other hand, from (2.1), (A8), (B2) and V1 ,→ V2 we have that

c0c1‖u−n ‖�V1 ≤ 〈Aun; u−n 〉V1 = �n〈Bun; u−n 〉V1
≤ c̃c2(u−n )‖u−n ‖�V2 ≤ ĉc2(u−n ) ‖u−n ‖�V1 : (2.6)

Since 
−
un 6= ∅ by Theorem 2.1, relation (2.6) implies that c2(u−n ) ≥ const¿ 0, for

any n ∈ N. But this contradicts relation (2.5) and condition (B2).

3. Bifurcation from the �rst eigenvalue for abstract elliptic operators

We shall consider an abstract bifurcation problem of the form

Au= �Bu+ F(�; u); (3.1)

where A; B are the operators studied above and F(�; :) represents “higher-order” terms
with respect to A and B. Our main tool will be the degree theory for generalized mono-
tone mappings satisfying condition (S+) (see, e.g., [3,11,14]) and the global bifurcation
result of Rabinowitz [10]. In order to apply the degree theory, we have to strengthen
the assumptions on A and B in the following sense:
(A, B) f1 and f2 are Fr�echet di�erentiable in V1 and V2, respectively; @f1 : V1 →

V ∗
1 is bounded and demicontinuous, @f

2 : V2 → V ∗
2 is compact.

(A9) f1 is uniformly convex in the sense that the following implication holds: for
any �¿ 0 there exists �¿ 0 such that, for any u; v ∈ V1 with f1(u) ≤ 1; f1(v) ≤ 1;
and ‖u− v‖V1 ≥ �, it implies that

f1( 12 (u+ v)) ≤ 1
2 (f

1(u) + f1(v))− �:

(F) For any �xed � ∈ R, the operator F(�; :) : V1 → V ∗
1 is compact and

lim
‖u‖V1→∞

F(�; u)

‖u‖�−1V1

= 0;

holds uniformly for � in bounded intervals of R.

Remark 3.1. Remind that the Fr�echet di�erentiability of fi; i = 1; 2, implies that
A = @f1 and B = @f2 are the corresponding Fr�echet derivatives. In particular, the
compactness of @f2 implies (B1) (see [13, Corollary 41.9]).

The basic assertion is the following:

Lemma 3.2. The operator V1 → V ∗
1 , de�ned by

u 7→ Au− �Bu− F(�; u); (3.2)

satis�es condition (S+).
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Proof. It is well known (see, e.g., [14]) that, every compact perturbation of an operator
satisfying condition (S+) satis�es also condition (S+). So due to assumptions (A; B)
and (F), it is su�cient to prove that A satis�es condition (S+). Let as assume that
un * u in V1, and

lim sup
n→∞

〈Aun; un − u〉V1 ≤ 0: (3.3)

Since f1(un)− f1(u) ≤ 〈Aun; un − u〉V1 we get from inequality (3.3) that

lim sup
n→∞

f1(un) ≤ f1(u): (3.4)

On the other hand, the weak lower semicontinuity of f1 yields

lim inf
n→∞ f1(un) ≥ f1(u): (3.5)

Hence we get from relations (3.4) and (3.5) that

lim
n→∞f1(un) = f1(u): (3.6)

Let us denote by �n :=max{f1(un); f1(u)}. Then due to relation (3.4) we get that
�n → f1(u), as n → ∞. Set

vn :=
un

(�n)1=�
; v :=

u
(f1(u))1=�

;

i.e., vn * v in V1, and

f1(v) ≤ lim inf
n→∞ f1( 12 (v+ vn)): (3.7)

The homogeneity of f1 implies that f1(v) = 1; f1(vn) ≤ 1, and the convexity of f1

yields that

f1( 12 (v+ vn)) ≤ 1
2 (f

1(v) + f1(vn)): (3.8)

Then relations (3.7) and (3.8) imply that

f1( 12 (v+ vn))→ 1;

which together with condition (A9) yields vn → v in V1. But from here we directly
get that un → u in V1.

It follows from the previous Lemma 3:2 that the degree of the mapping (3.2) with
respect to a bounded set D⊂V1 and 0 ∈ V ∗

1 , i.e.,

Deg [A− �B− F(�; :); D; 0]

is well de�ned if Au − �Bu − F(�; u) 6= 0, for any u ∈ @D (see e.g., [3,11]). The
following assertion allows us to apply the global bifurcation results of Rabinowitz’s
type.

Proposition 3.3. Let �1 be as in Proposition 2:2. Then there exists �¿ 0 and �¿ 0
such that; for the ball B�(0) := {u ∈ V1; ‖u‖V1 ¡�} we have

Deg [A− �B− F(�; :); B�(0); 0] = 1 if �¡�1; (3.9)
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and

Deg [A− �B− F(�; :); B�(0); 0] =−1 if � ∈ (�1; �1 + �): (3.10)

Proof. Due to the assumption (F) we have

Deg [A− �B− F(�; :); B�(0); 0] = Deg [A− �B; B�(0); 0];

when �¿ 0 is small enough and � belongs to a bounded interval. So it su�ces to
prove that

Deg [A− �B; B�(0); 0] = 1 if �¡�1 (3.11)

and

Deg [A− �B; B�(0); 0] =−1 if � ∈ (�1; �1 + �): (3.12)

To prove (3.11) and (3.12) we adapt the method developed in [5–7]. Consider the
functional �� : V1 → R de�ned by

��(u) :=f1(u)− �f2(u) =
1
p
〈Au; u〉V1 −

�
p
〈Bu; u〉V1 :

The variational characterization of �1 (see hypothesis (A2) (iii)) implies that, for
�¡�1, we have

〈�′
�(u); u〉V1 ¿ 0 for all u ∈ V1; u 6= 0;

from where we get (see e.g., [11])

Deg [�′
�; B�(0); 0] = 1 for any �¿ 0:

Hence assertion (3.11) is proved. Let us consider now a real nonnegative C1−function
 : R→ R, de�ned by

 (t) =




0 for t ≤ K;

strictly convex for t ∈ (K; 3K);
2�
�1
(t − 2K) for t ≥ 3K;

for K ¿ 0 large enough, to be de�ned later (see (3.19)). Fix � ∈ (�1; �1 + �) and set

	�(u) :=��(u) +  (f1(u)):

Then 〈	′
�(u); v〉V1 = 0, for any v ∈ V1, if and only if

〈Au; v〉V1 −
�

1 +  ′(f1(u))
〈Bu; v〉V1 = 0 for any v ∈ V1: (3.13)

Assume that 	′
�(u) = 0 in V ∗

1 . Due to the de�nition of  we have

�
1 +  ′(f1(u))

¡�1 + �: (3.14)

Then assumption 	′
�(u) = 0 in V ∗

1 and Proposition 2.2 imply that either u= 0 or it
follows from relations (3.13) and (3.14) that

�
1 +  ′(f1(u))

= �1 (3.15)
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and u is an eigenfunction associated to �1. Due to the fact that 0¡ ′(f1(u))¡�=�1,
we get f1(u)∈ (K; 3K). Since f1 is homogeneous and �1 is simple, there exists t1¿ 0
and t2¡ 0 such that either u = t1u1 or u = t2u1. (Note that in the case of an even
function f1, then we have t1 =−t2.) Hence the only possible critical points of 	� are
0; t1u1; t2u1. On the other hand, 	� is a weakly lower semicontinuous functional – this
follows from the convexity and continuity of f1(:) +  (f1(:)) and weak continuity of
f2. Let us prove that 	� is coercive, i.e.,

lim
‖u‖V1→∞

	�(u) =∞

and bounded from below. Indeed, using the variational characterization of �1 (see (A2)
(iii)), we have

	�(u) =f1(u)− �f2(u) +  (f1(u))

=f1(u)− �1f2(u) + (�1 − �)f2(u) +  (f1(u))

≥ �1 − �
�1

f1(u) +
2�
�1
(f1(u)− 2K)→ ∞ as ‖u‖V1 → ∞;

due to (A8)(ii). Hence 	� achieves its global minimum on V1. Clearly, this minimum
must be negative (since �1¡�). But f1(t1u1)=�1f2(t1u1); f1(t2u1)=�1f2(t2u1) and
f1(t1u1) = f1(t2u1) (due to (3.15) and the strong monotonicity of  ). Hence also
f2(t1u1) = f2(t2u1), so t1u1; t2u1 are the points where the global minimum of 	� is
achieved. Note that both t1u1 and t2u1 are isolated critical points of 	�. Therefore (see
e.g., [11]), for �¿ 0 small enough we have

Deg [	′
�; B�(t1u1); 0] = Deg [	′

�; B�(t2u1); 0] = 1; (3.16)

where B�(tiu1) := {u ∈ V1: ‖u− tiu1‖V1 ¡�}; i = 1; 2: On the other hand, we have

〈	′
�(u); u〉V1 =p[f1(u)− �f2(u) +  ′(f1(u))f1(u)]

=p
[
f1(u)− �1f2(u) +  ′(f1(u))

(
f1(u)− �− �1

 ′(f1(u))
f2(u)

)]

≥ 2�p
�1

(
f1(u)− �1

2
f2(u)

)
→ ∞ as ‖u‖V1 → ∞;

due to (A2)(iii) and (A8)(ii). Hence, taking R¿ 0 large enough we have

Deg [	′
�; BR(0); 0] = 1: (3.17)

Now the additivity property of the degree and relations (3.16), (3.17) yield that, by
taking �¿ 0 small enough, we get

Deg [	′
�; B�(0); 0] =−1: (3.18)

Due to the de�nition of  for �¿ 0 small enough, so that �¡K; we have

	′
�(u) = �

′
�(u); (3.19)

for any u ∈ B�(0). Then (3.12) follows from (3.18) and (3.19).
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Let us de�ne the space E := R× V1 equipped with the norm

‖ (�; u) ‖E =(|�|2 + ‖u‖V1 )1=2 for (�; u) ∈ E: (3.20)

Let C be a connected set in E with respect to the topology induced by norm (3.20)
and C ⊂{(�; u) ∈ E; (�; u) solves (3:1)}. Then C is called a continuum of nontrivial
solutions of (3.1). We say that �1 ∈ R is a global bifurcation point of (3.1) in the
sense of Rabinowitz, if there is a continuum C of nontrivial solutions of (3.1) such
that (�1; 0) ∈ C (closure of C in E) and C is either unbounded in E or there is an
eigenvalue �0 of Au= �Bu such that �0¿�1 and (�0; 0) ∈ C.

Theorem 3.4. Let �1 be as in Proposition 2:2. Then �1 is a global bifurcation point
of (3:1) in the sense of Rabinowitz.

Proof. The proof relies on the jump of the Leray–Schauder dergee when � crosses
�1 as proved in Proposition 3.3. Then we can implement the proof of the original
Rabinowitz’s result from [10].

Remark 3.5. Let us emphasize that the essential ingredients for the proof of Proposi-
tion 3.3 (and Theorem 3.4) are the following properties of �1:

• �1 is the �rst variational eigenvalue of Au= �Bu;
• �1 is simple, and
• �1 is isolated (in the sense of Proposition 2.2).

Due to these facts the assertion of Theorem 3.4 holds true also for some operators
B= @f2, for which f2 might change sign. However, in this case the above properties
of �1 can be derived using other tools than Theorem 2.1 (see, e.g. [7, Chapters 3
and 4]).

4. An application

Consider the following boundary value problem:

−div{a1(x)|∇u+|p−2∇u+ + a2(x)|∇u−|p−2∇u−}

=�{b1(x)|u+|p−2u+ + b2(x)|u−|p−2u−}; x ∈ RN (4.1)

lim
|x|→∞

u(x) = 0; u(x)¿ 0; x ∈ RN : (4.2)

Boundary value problems, where quasilinear elliptic operators, like the p-Laplacian
−�pu := div(|∇u|p−2∇u); are present, arise both from pure mathematics, e.g., in
the theory of quasiregular and quasiconformal mappings (see [12] and the references
therein), as well as from a variety of applications, e.g. steady ows of non-Newtonian
uids, reaction–di�usion problems, ow through porous media, fracture at bimaterial
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interface, nonlinear elasticity, glaceology, petroleum extraction, astronomy, etc. (see
[1,2]).
In problem (4.1), (4.2) we have that 
 = RN and take the approximating sets as


n := Bn(0) = {x ∈ R; |x|¡n}. Let N ¿p¿ 1. We assume that

V1 =D1;p(RN ) = C∞‖∇u‖p

0 ; V2 = Lp∗
(RN ) withp∗ =

Np
N − p

:

Moreover, we suppose that ai; bi ∈L∞(RN ); bi ∈LN=p(RN ); and ai(x)≥�¿0; bi(x) ≥
�¿ 0, for some �¿ 0; i = 1; 2. Then we may consider as

f1(u) :=
1
p

∫
RN
[a1(x)|∇u+|p + a2(x)|∇u−|p] dx;

f2(u) :=
1
p

∫
RN
[b1(x)|u+|p + b2(x)|u−|p] dx:

So the weak formulation of problem (4.1), (4.2) is of the following type:

Au= �Bu in V ∗
1 ;

where the operators A and B are de�ned by

〈Au; v〉V1 :=
∫
RN
[a1(x)|∇u+|p−2∇u+∇v+ a2(x)|∇u−|p−2∇u−∇v] dx;

〈Bu; v〉V1 :=
∫
RN
[b1(x)|u+|p−2u+v+ b2(x)|u−|p−2u−v] dx;

for all v in V1. It follows from Theorem 2.1, Proposition 2.2 and standard compactness
argument that problem (4.1), (4.2) has the �rst eigenvalue �1¿ 0, which is simple,
isolated with

�1 = min
u∈D1;p; u 6=0

f1(u)
f2(u)

(4.3)

and the minimum in (4.3) is achieved at some strictly positive function u ∈ D1;p(RN ).
We may notice that the veri�cation of all assumptions follows the same reasoning as
that in Section 4:1 of paper [9]. The decay of u follows from Serrin’s estimate (see
[7, Theorem 1.10] or [8, Theorem 2.4]).
Let us consider a function f :R×
×R→ R satisfying Carath�eodory’s conditions,

i.e., f(:; x; :) is continuous, for a.e. x ∈ 
 and f(�; :; s) is measurable, for all (�; s) ∈
R2. Assume that there is a constant  with p¡¡p∗ and a function �(x) ≥ 0; � ∈
L1 (R) ∩ L∞(RN ), with

1 =
p∗

p∗ − (+ 1) =
Np

Np− (+ 1)(N − p)

such that

|f(�; x; s)| ≤ ��(x) |s|−1;
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for any s ∈ R, a.e. x ∈ 
 and � from a certain interval I (here � = �(I)). Then the
Nemytskij operator F(�; :) generated by f, i.e.,

〈F(�; u); v〉V1 =
∫
RN

f(�; x; u)v dx;

de�nes a compact map from D1;p(RN ) into D−1;p∗
(RN ) which satis�es

lim
‖u‖

D1;p→∞

F(�; u)
‖ u ‖p

D1;p

= 0:

So, from Theorem 3.4 we get a global bifurcation result for the nonlinear problem
in RN :

−div{a1(x)|∇u+|p−2∇u+ + a2(x)|∇u−|p−2∇u−}

=�{b1(x)|u+|p−2u+ + b2(x)|u−|p−2u−}+ f(�; x; u); x ∈ RN ;

lim
|x|→∞

u(x) = 0; u(x)¿ 0; x ∈ RN : (4.4)

Using the bootstraping argument (see e.g. [7, Proposition 4.1]) we may even show
that u ∈ Lr(RN ); p∗ ≤ r ≤ +∞, where u is any nontrivial solution to the problem
(4.4). Then the regularity result of Tolksdorf [12] implies that u ∈ C1loc(RN ).
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