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1. Introduction

Let us consider an abstract operator equation
Au = ABu, (1.1)

where 1 € R is a spectral parameter and 4, B are operators acting from a certain Banach
space into its dual. In the papers by Idogawa and Otani [9] and Chan et al. [4], the
existence of the first variational and simple eigenvalue A; of Eq. (1.1) is proved if 4
and B are single-valued subdifferentials of certain positive, convex functionals f! and
2, respectively. Under some additional assumptions, they proved that the problem has
a positive solution if and only if 4= /;. They provide examples of quasilinear elliptic
boundary value problems on the bounded domain Q2 C RV, with smooth boundary o9).
In our paper we show that a slight modification of the assumptions in [4] allows us
to extend their results also for problems in unbounded domains (including the case of
Q) =R"). Putting some additional assumptions on 4 and B, which seems to be natural
for a wide class of quasilinear equations, we prove that there is a neighbourhood of
A1, which does not contain any other eigenvalue than /;. Finally, under the assumption
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that 4 and B are the Fréchet derivatives of the functionals f! and f?, respectively, we
prove a global bifurcation result for the operator equation

Au = ABu + F(A,u), (1.2)

where the nonlinear operator F' represents “higher-order” terms.

A special fact that the operators 4 and B need not be odd should be emphasized. In
this spirit our result generalises in an essential way related results for the p-Laplacian
(see [7] and the references therein).

As an example we can provide weak solvability of the nonlinear eigenvalue problem
in RV

—diva(x,u, Vu) + c(x,u, Vu) = Ab(x,u) + g(4,x,u),

where the assumptions on a,b,c and g are specified in Section 4.

Our paper is organized as follows. In Section 2, we reformulate the assumptions
of Chan et al. [4] with the modification which allows us to deal with the unbounded
domain 2. We also prove that 4; is isolated in the above-mentioned sense, if some
extra conditions on the operators 4 and B are required. Section 3 deals with an abstract
bifurcation result based on the change of the value of the degree when A crosses 4;.
In Section 4, we give a typical application.

Notation. We denote by Bg(0) the open ball of RY with center 0 and radius R. (,,.)y
denotes the duality pairing between the spaces V*, V. The symbols L?, ||.|,, 1 < p <
oo and 2", are used in the place of LP(RY), 2"P(RV) and ||. || »@v), respectively.
We denote by — and — the strong and the weak convergence, respectively.

2. The first eigenvalue of abstract elliptic operators

Let QCR"Y be a domain (bounded, unbounded or possibly equal to RY). Let V'
be a real reflexive Banach space with norm ||. |y, with the dual space V* and the
duality pairing (.,.)y. Denote by ®(¥) the family of all lower semicontinuous convex
functionals f from V into (—oo,00], such that D(f):={u € V; f(u) < oo} # (). The
subdifferential 0 f of f at u is defined by

0f(u)y:={h € V" f(v) = f(u) = (h,o —u)y, for any v € D(f)},

with the domain D(3f):={u € V;3f(u) # 0}. Assume that of : V — V* is a
single-valued operator. Note that if f € ®(V) is Fréchet differentiable, then 0 f () is the
Fréchet derivative of f at u. Let 2:=C3°(Q), 27 :={u € Z; u(x) > 0, for all x €
Q}. Let V;, i = 1,2 be real reflexive Banach spaces of functions defined in 2 and
denote

Vi={ueV; ux)>0,aec Q}), i=12.
Assume that

V) 9" =V = VCLL.(),
vH T =r =,
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where the symbol — is used to denote continuous embeddings. Let €,, n € N be a
sequence of bounded subdomains of 2 satisfying the property

() Q,C Q1 CQyyC---C 1, and U:Z] Q,=0. Moreover, for any compact set
K C Q, there exists n € N, such that K C 2,,.

For any n € N, introduce the operator P, : Ll () — Ll (Q), defined by

loc loc
_Jzx) ifxe Q,,
P"Z(x){o if x € Q\Q,

We impose the following hypothesis on f% € ®(V;), i =1,2:

(A1) (1) A=0f", B=0f% B,=0f*(Pu());

(i) D)= Vi i=1,2;

(iii) P, maps V) into V;, for all n € N.

(A2) (i) R(Ju|) < R(u):= f'(w)/f*(u), for all u € Vy;

(D) Ru[ul) < Ry(u):= £ (u)/f*(Pou), for all u € Vi

(ii) fi(u) >0, forallu € V;, i=1,2, and f*(u)=0,

if and only if u = 0;

(iii) there exists w € V;, with w # 0, such that

A1 =Rw) =inf{R(u); u € V,u# 0} < + o0;

(ii1),, there exists w, € V7, with w, # 0, such that

A =Ry(wy) =inf{R,(u); u € Vi,u#0} < + oc.

(A3) There exists o > 1 such that f*(tu)=t*f(u), for all u € V;, i=1,2, and for all
t>0.

(A4) (i) fluVv o)+ flunv) < fl(u)+ f(v), for all u,v € V;;

(i) fPuV o)+ fPunv) > f2(u)+ f2(v), for all u,v € V,"; where (uV v)(x) =
max{u(x),v(x)}, (uAv)(x)=min{u(x),v(x)}.

(AS) f! is strictly convex.

(A6) If 0 < z < u, with zzu € D(B), then B(z) < B(u) holds in the sense of
distributions.

(A7) (i) Every nonnegative nontrivial solution u of the problem

Au = ABu, (AE),

belongs to C(£2) and satisfies u(x) > 0, for all x € §;
(1), Every nonnegative nontrivial solution u of the approximation problems

Au == ;Lanu, (AE))ﬂ
belongs to L2 (€2), for any n € N.

Under hypotheses (Al)-(A7) we have the following general result from
Chan et al. [4].

Theorem 2.1. The number Ay is the first eigenvalue of (AE),, it is simple and (AE),
has a positive solution if and only if .= A1. The number /] is the first eigenvalue of
problem (AE), for any n € N and (AE),;; has nontrivial nonnegetive solutions with

AN\ A1, as n /oo
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This assertion is proved for a bounded domain €2 in paper [4]. However, inspect-
ing the proof in [4] we also get the same result for unbounded domain € satisfying
hypothesis (£2,).

We shall denote by u; = u;(x) > 0 the eigenfunction associated with A; and we
normalize it as ||ui|y, = 1. For w € ¥y, we set Qf :={x € Q; w(x) >0}, Q;, :={x €
Q; w(x) <0} and wh(x):=(w V 0)(x), w™(x):=(w A 0)(x). We further impose the
following assumptions.

(V1) For any w € V;, we have w™ € V;" and —w~ € V;* for i =1,2. Moreover, for
any fixed number x > 0 and for any sequence {u,} C V;, such that u, — Fu; in V7,
we have meas (Q N B(0)) — 0, where Bi(0):={x € R"; x| < k}.

(A8) There exist ¢y > 0 and ¢; > 0 such that

() (Au,u™)y, > coldu™, u®)y,, for all u € V1;

(il) (Au,u)y, > cil|ullf,, for all u € V.

(B1) f? is weakly sequentially continuous as a functional from V; into R, i.e.,
if u, — uin 7y, then f2(u,) — f2(u).

(B2) For any v € V,, vt # 0, there exists ¢y = cp(v") > 0, such that

(Bu,v" )y, < ()]0,

Moreover, the following implication holds: for any ¢ > 0 there exists 6 > 0 and £ > 0,
such that meas (Q N B,(0)) < J, implies that c,(v") < . Similarly, for v € V>, with

v #0.

Proposition 2.2. The number 1, is an isolated eigenvalue of problem (AE), in the fol-
lowing sense: there exists n > 0, such that the interval (—oo, A +1n) does not contain
any other eigenvalue than A,.

Proof. Assume the contrary, i.e., there exists a sequence {4,} such that 1, — 4, and
uy, € Vy with ||u,||y, =1, satisfying

Au, = A,Bu,. (2.1)

Then 4, > A;, due to Theorem 2.1 and (by passing to a subsequence, if necessary)
we may assume that u, — ug in V7. Note that the functional f!(u):=1/p(0f (u),u)y,
is weakly lower semicontinuous (it is lower semicontinuous and convex). Hence

<Au0,u0>V1 < lim inf(Au,,,u,,)Vl. (22)
n— o0

It follows from (B1) that

A Bty tty) y, — A1 {Bug, uo) v, (2.3)
and from (A8)(ii) we get that

(A, un)y, > cillugly, = c1 > 0. (2.4)
Now, it follows from (2.1)—(2.4) that uy # 0 and

Auy = A Buy,
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i.e., ug is the eigenfunction associated with 4;. We may assume without loss of gen-
erality, that ug =uy, i.e., u, — u; in V. Then it follows from (V1) that, for any fixed
x > 0, we have that

meas (€2, N B(0)) — 0, (2.5)
as n — oo. On the other hand, from (2.1), (A8), (B2) and V; — V, we have that

COcl”“n_H% < <A“m”n_>V| :;°11<B”na”rt_>V1

< cea(uy )y 117, < Geauy, )l [I5- (2.6)

Since , # () by Theorem 2.1, relation (2.6) implies that ¢y(u, ) > const > 0, for
any n € N. But this contradicts relation (2.5) and condition (B2). [J

3. Bifurcation from the first eigenvalue for abstract elliptic operators

We shall consider an abstract bifurcation problem of the form
Au = ABu + F(4,u), (3.1)

where A, B are the operators studied above and F(4,.) represents “higher-order” terms
with respect to 4 and B. Our main tool will be the degree theory for generalized mono-
tone mappings satisfying condition (S ) (see, e.g., [3,11,14]) and the global bifurcation
result of Rabinowitz [10]. In order to apply the degree theory, we have to strengthen
the assumptions on 4 and B in the following sense:

(A, B) ! and f? are Fréchet differentiable in ¥; and V5, respectively; o' : V; —
V¥ is bounded and demicontinuous, £ : ¥, — V5 is compact.

(A9) £ is uniformly convex in the sense that the following implication holds: for
any ¢ > 0 there exists d > 0 such that, for any u,v € V; with fl(u) <1, fl(v) <1,
and |ju — v||y, > &, it implies that

[1Gu+0) < 50 @)+ () = 6.
(F) For any fixed A € R, the operator F'(4,.): V; — V{* is compact and
F(Zu) _

El

lullyy =00 [Juel| !
holds uniformly for 4 in bounded intervals of R.
Remark 3.1. Remind that the Fréchet differentiability of f7, i = 1,2, implies that

A=20f" and B = 0f? are the corresponding Fréchet derivatives. In particular, the
compactness of df? implies (B1) (see [13, Corollary 41.9]).

The basic assertion is the following:

Lemma 3.2. The operator V; — V¥, defined by
u v+ Au — JBu — F(A,u), (3.2)

satisfies condition (S,).
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Proof. It is well known (see, e.g., [14]) that, every compact perturbation of an operator
satisfying condition (S, ) satisfies also condition (S;). So due to assumptions (4, B)
and (F), it is sufficient to prove that A satisfies condition (S.). Let as assume that
u, — u in Vq, and

lim sup{Au,, u, — u)y, <O0. (3.3)
Since f(u,) — f'(u) < (Aun,u, — u)y, we get from inequality (3.3) that

limsup f'(u,) < f(w). (3.4)

n—oo

On the other hand, the weak lower semicontinuity of f! yields

liminf f'(u,) > f(u). (3.5)
Hence we get from relations (3.4) and (3.5) that
lim £ (u,) = £ (u). (3.6)

Let us denote by w, :=max{f'(u,), f'(u)}. Then due to relation (3.4) we get that
w, — fl(u), as n — oo. Set

L Uy L u
T U G AT O Ik

ie., v, —vin V;, and
£l(v) <liminf £'(3(v + vy)). (3.7)

The homogeneity of f! implies that f'(v) =1, f'(v,) < 1, and the convexity of f!
yields that

TG +0)) <310 + £ (). (3.8)
Then relations (3.7) and (3.8) imply that

f1G+u))—1,
which together with condition (A9) yields v, — v in V;. But from here we directly
get that u, — u in V7. [

It follows from the previous Lemma 3.2 that the degree of the mapping (3.2) with

respect to a bounded set DC V; and 0 € V', ie.,

Degld4 — /B — F(4,.); D, 0]

is well defined if Au — ABu — F(A,u) # 0, for any u € 0D (see e.g., [3,11]). The
following assertion allows us to apply the global bifurcation results of Rabinowitz’s

type.

Proposition 3.3. Let /; be as in Proposition 2.2. Then there exists 1 > 0 and p >0
such that, for the ball B,(0):={u € Vi; |lully, < p} we have

Deg[d — /B — F(J,.); B,(0), 0]=1 if A <Ay, (3.9)
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and

Deg[4 — 4B — F(J,.); B,(0), 01=—1 if i€ (b, +1). (3.10)

Proof. Due to the assumption (F) we have
Deg[4 — 7B — F(4,.); B,(0), 0] =Deg[A — iB; B,(0), 01,

when p > 0 is small enough and 4 belongs to a bounded interval. So it suffices to
prove that

Deg[d4 — AB; B,(0), 0]=1 if A</ (3.11)
and
Deg[4 — AB; B,(0), 0]=—1 if A€ (4,21 +1). (3.12)

To prove (3.11) and (3.12) we adapt the method developed in [5—7]. Consider the
functional ®; : V; — R defined by

O (u):= f1(u) = 212 (w) = %@4"»”)1/] - %(Bu’ Uy,
The variational characterization of 4; (see hypothesis (A2) (iii)) implies that, for
A < A1, we have
(@ (u),u)y, >0 forallueVy, u#0,
from where we get (see e.g., [11])
Deg [®); B,(0), 0]=1 for any p > 0.
Hence assertion (3.11) is proved. Let us consider now a real nonnegative C' —function
V¥ : R — R, defined by
0 for ¢t <K,
W(t) = strictly convex  for ¢ € (K,3K),

2
Tn(t ~2K)  for ¢>3K,
‘1

for K > 0 large enough, to be defined later (see (3.19)). Fix 4 € (41,41 + 1) and set
Wi () 1= @;(u) + (S ().
Then (¥(u),v)y, =0, for any v € V3, if and only if
A
(W)
Assume that ¥/ (1) =0 in V;*. Due to the definition of y we have
A
L+ y/(f(u))
Then assumption W/ (x) =0 in V;* and Proposition 2.2 imply that either u =0 or it
follows from relations (3.13) and (3.14) that
A B
Ly (Y w)

(Au, vy, (Bu,v)y, =0 for any v € V7. (3.13)

<+ (3.14)

A (3.15)
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and u is an eigenfunction associated to A;. Due to the fact that 0 < /(f!(u)) < n/i1,
we get f1(u) € (K,3K). Since f! is homogeneous and 4, is simple, there exists #; > 0
and # < 0 such that either u = tju; or u = t,u;. (Note that in the case of an even
function f', then we have t; = —#,.) Hence the only possible critical points of U, are
0, tjuy, tru;. On the other hand, ¥, is a weakly lower semicontinuous functional — this
follows from the convexity and continuity of f'(.)+ y(f'(.)) and weak continuity of
f 2 Let us prove that ¥, is coercive, i.e.,

lim Y,(u)=

llllyy —o0

and bounded from below. Indeed, using the variational characterization of 4; (see (A2)
(iii)), we have

W)= f1(u) = 2f2w) + ()
= 1) = 202 ) + (= 2) 2 )+ p(f(w))

> A Py 2 )~ 2K) o0 as uly, — oc.
Sl

due to (A8)(ii). Hence W, achieves its global minimum on V. Clearly, this minimum
must be negative (since A; < 1). But f'(tju;) =21 f2(tyuy), f'(tau1)=71 f*(t2u;) and
Y (tiuy) = f'(tuy) (due to (3.15) and the strong monotonicity of ). Hence also
f2(tuy) = fA(tyuy), so tiuy, tu; are the points where the global minimum of ¥, is
achieved. Note that both #;u; and #u; are isolated critical points of ¥,. Therefore (see
e.g., [11]), for k > 0 small enough we have

Deg [V} Bi(tiuy), 01 =Deg[V}; B(tur), 0]=1, (3.16)
where By(tiuy):={u € Vi: ||lu — tiuy||ly, < k}, i =1,2. On the other hand, we have

(W) uyy, = pLf ) = 22@) + ' (S @) £ ()]

_ 1oy 2 1ol u 2
p{f (u) = A f(u) +y'(f (u)) (f( )— lﬁ’(f( ))f( )ﬂ

2’“’ <f( ) — U%)) — o0 as ully, — oo,

due to (A2)(iii) and (A8)(11). Hence, taking R > 0 large enough we have
Deg[¥); Br(0), 0]=1. (3.17)

Now the additivity property of the degree and relations (3.16), (3.17) yield that, by
taking p > 0 small enough, we get

Deg[¥); B,(0), 0]=—1. (3.18)
Due to the definition of i/ for p > 0 small enough, so that p < K, we have

W (u) = (1), (3.19)
for any u € B,(0). Then (3.12) follows from (3.18) and (3.19). [J
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Let us define the space £ := R x V} equipped with the norm
| (%u) [|& =2 + [[ully)? for (Zu) € E. (3.20)

Let C be a connected set in £ with respect to the topology induced by norm (3.20)
and C C{(4u) € E;(Lu) solves (3.1)}. Then C is called a continuum of nontrivial
solutions of (3.1). We say that 1y € R is a global bifurcation point of (3.1) in the
sense of Rabinowitz, if there is a continuum C of nontrivial solutions of (3.1) such
that (4;,0) € C (closure of C in E) and C is either unbounded in E or there is an
eigenvalue Ao of Au = /Bu such that oy > A; and (4,0) € C.

Theorem 3.4. Let Ay be as in Proposition 2.2. Then Ay is a global bifurcation point
of (3.1) in the sense of Rabinowitz.

Proof. The proof relies on the jump of the Leray—Schauder dergee when 1 crosses
/1 as proved in Proposition 3.3. Then we can implement the proof of the original
Rabinowitz’s result from [10]. [J

Remark 3.5. Let us emphasize that the essential ingredients for the proof of Proposi-
tion 3.3 (and Theorem 3.4) are the following properties of 1;:

e /; is the first variational eigenvalue of Au = ABu,

e /; is simple, and
e /; is isolated (in the sense of Proposition 2.2).

Due to these facts the assertion of Theorem 3.4 holds true also for some operators
B =0/, for which f? might change sign. However, in this case the above properties
of A, can be derived using other tools than Theorem 2.1 (see, e.g. [7, Chapters 3
and 4]).

4. An application

Consider the following boundary value problem:

—div{a,(x)|Vu"|P72Vu" + ay(x)|Vu~ |P2Vu"}

=2{b1 ()PPt + by()u [P Pu}, x € RY 4.1)
‘ llirn u(x)=0, u(x)>0, xcR". (4.2)

Boundary value problems, where quasilinear elliptic operators, like the p-Laplacian
—Au := div(|Vu|P~2Vu), are present, arise both from pure mathematics, e.g., in
the theory of quasiregular and quasiconformal mappings (see [12] and the references
therein), as well as from a variety of applications, e.g. steady flows of non-Newtonian
fluids, reaction—diffusion problems, flow through porous media, fracture at bimaterial
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interface, nonlinear elasticity, glaceology, petroleum extraction, astronomy, etc. (see
[1,2]).

In problem (4.1), (4.2) we have that Q = RV and take the approximating sets as
Q, := B,(0) = {x € R;|x| <n}. Let N > p > 1. We assume that

oo||Vu * . N
V= QI,P(RN) _ C() (v Hp’ Vv, —L? (RN) with p* — I P )
- P

Moreover, we suppose that a;, b; € L¥(R"), b; € LNP(RV), and a;(x)>p > 0,b;(x) >
p >0, for some p >0, i =1,2. Then we may consider as

) =+ / @) Vi |? + ax(0)| V- |P] dx,
P Jry

P = [ @l 7+ bl P
P Jry
So the weak formulation of problem (4.1), (4.2) is of the following type:
Au=/Bu in V],
where the operators 4 and B are defined by

(Au,v)y, ::/ [a)(x)|VuT |P2Vut Vo + ay(x)|Vu~ |[P72Vu~ Vo] dx,
RV

(Bu,v)y, ::/ [b1()|ut |P2ut v + by(x)|u™ |P2u v] dx,
RY

for all v in V. It follows from Theorem 2.1, Proposition 2.2 and standard compactness
argument that problem (4.1), (4.2) has the first eigenvalue 4; > 0, which is simple,
isolated with

j S

= min
uetr,u0 f2(u)

(4.3)

and the minimum in (4.3) is achieved at some strictly positive function u € Z"?(RV).
We may notice that the verification of all assumptions follows the same reasoning as
that in Section 4.1 of paper [9]. The decay of u follows from Serrin’s estimate (see
[7, Theorem 1.10] or [8, Theorem 2.4]).

Let us consider a function f:R x 2 x R — R satisfying Carathéodory’s conditions,
ie., f(.,x,.) is continuous, for a.e. x € Q and f(4,.,5) is measurable, for all (4,s) €
R2. Assume that there is a constant y with p <y < p* and a function p(x) > 0,p €
L'(R)N L>®(RY), with

P _ Np
pr=O+1) Np—@+DW-p)

Y1 =
such that

|f(Zx,8)] < Ap(x)|s|"~ 1,
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for any s € R, a.e. x € 2 and 1 from a certain interval / (here A = A(Z)). Then the
Nemytskij operator F(/,.) generated by f, i.e.,

(F(A,u),v)y, :/RN f(Ax,u)vdx,

defines a compact map from Z"?(RY) into 27" (R") which satisfies

F(Z,u)
— 5 =0.

m
([P 7 e

So, from Theorem 3.4 we get a global bifurcation result for the nonlinear problem
in RV:

—div{a;(x)|Vu" |P2Vu" + ay(x)|Vu~ |P72Vu"}
=D [P72u" + by ()™ [P + f(Axu), x €RY,

lim u(x)=0, u(x) >0, x<c R". (4.4)

x| —o0

Using the bootstraping argument (see e.g. [7, Proposition 4.1]) we may even show
that u € L"(RY), p* < r < 400, where u is any nontrivial solution to the problem
(4.4). Then the regularity result of Tolksdorf [12] implies that u € C\ .(RV).
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