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Abstract. We discuss the asymptotic behaviour of solutions of the
semilinear hyperbolic problem

utt + δut − φ(x)∆u = λu|u|β−1, x ∈ RN , t ≥ 0,

with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case
where N ≥ 3, δ ≥ 0 and (φ(x))−1 = g(x), a positive function belonging
to LN/2(RN )∩L∞(RN ). Under certain conditions we prove the global
existence of solutions. Also we examine blow-up in finite time when the
initial data are sufficiently large. The space setting of the problem is
the energy space X0 = D1,2(RN )×L2

g(RN ), where L2
g is an appropriate

weighted Hilbert space; see Section 2.

1. Introduction. In this work we study the following semilinear hy-
perbolic Cauchy problem:

utt + δut − φ(x)∆u = λu|u|β−1, x ∈ RN , t ≥ 0, (1.1)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

with initial conditions u0(x), u1(x) in appropriate function spaces and δ ≥
0. Models of this type are of interest in applications in various areas of
mathematical physics (see [1, 30, 39]), as well as in geophysics and ocean
acoustics, where, for example, the coefficient φ(x) represents the speed of
sound at the point x ∈ RN (see [13]). Throughout the paper we assume that
the functions φ and g : RN −→ R satisfy the following condition:
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(G) φ(x) > 0, for all x ∈ RN , (φ(x))−1 =: g(x) is C0,γ(RN )-smooth, for
some γ ∈ (0, 1) and g ∈ LN/2(RN ) ∩ L∞(RN ) (for functions φ of this type,
e.g. polynomial-like, we refer to [39, p. 632]).

The questions of global existence, nonexistence and blow-up of solutions
of the Cauchy problem for nonlinear wave equations have been treated by
many authors; see [3], [5], [8], [14], [25], [26], [27], [32], etc. We refer also to
the review papers [15], [35] and to the monographs [29], [34] for a survey of
results and a long list of references. In [7] and [9] wave equations involving
nonlinear damping and source terms are discussed. In general, global ex-
istence happens, when the damping terms dominate over the source terms,
while blow-up appears in the opposite situation and under the assumption
that the initial data is sufficiently large (i.e., when initial energy is assumed
to be sufficiently negative). In [9] it is shown that for sufficiently small initial
data global existence can be obtained, even when the influence of the source
term is stronger than that of the damping term. In both works [7] and [9]
the spatial domain is assumed to be bounded. On the other hand, in [22]
the problem is considered in the whole of RN and the method of modified
potential well is used to construct the global solutions. In the papers [7],
[9], and [22] the coefficient φ(x) = 1, which makes possible the treatment of
the equations in the classical Sobolev space setting. In the works [23], [24]
and [41] decay properties of solutions of wave equations, involving weighted
dissipative terms, are discussed. Recently H.A. Levine, S.R. Park, P. Pucci,
J. Serrin and G. Todorova in [16, 17, 18, 28, 36, 37, 38] studied global ex-
istence and nonexistence of solutions for both the bounded and unbounded
domain cases and nonlinear damping. In [17] and [37] nonexistence occurs
for all negative initial energies (and not only sufficiently negative). In [28]
nonexistence results for abstract evolution equations have been obtained,
when the initial data possesses positive initial energy.

In this paper, problem (1.1)–(1.2) is considered in the homogeneous
Sobolev space setting. This choice seems to be effective for the treatment
of the difficulties of noncompactness arising in unbounded domains and the
degeneracy induced by the nonconstant coefficient φ. In the same space
environment, existence of finite-dimensional invariant sets for the problem
(1.1)–(1.2) is discussed in the papers [11], [12]. All these results are presented
in detail in the dissertation [10].

The presentation of this paper goes as follows: In Section 2 we dis-
cuss some useful properties of the homogeneous Sobolev space D1,2(RN )
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and imbedding relations with some weighted Lp spaces. Section 3 is devoted
to the discussion of global solutions for (1.1)–(1.2). In Section 4 we obtain
blow-up results for the solutions of the problem (1.1)–(1.2), for all nega-
tive initial energies. Finally, in Section 5 some global existence and blow-up
results are presented for the solutions of the undamped equation.

Notation: We denote by BR the open ball of RN with center 0 and
radius R. Sometimes for simplicity we use the symbols Lp, 1 ≤ p ≤ ∞ and
D1,2, for the spaces Lp(RN ) and D1,2(RN ), respectively; here || · ||p denotes
the norm || · ||Lp(RN ). Also sometimes differentiation with respect to time is
denoted by a dot over the function. The constants C and c are considered
in a generic sense.

2. Preliminary results. For later use, we briefly mention here some
facts, notation and results from our earlier joint paper [11]. The space
setting for the initial conditions and the solutions of the problem (1.1), (1.2)
is the product space X0 = D1,2(RN ) × L2

g(RN ). The space D1,2(RN ) is
defined as the closure of C∞0 (RN ) functions with respect to the “energy
norm” ||u||D1,2 =:

∫
RN | 5 u|2dx. It is well known that

D1,2(RN ) =
{
u ∈ L

2N
N−2 (RN ) : 5u ∈ (L2(RN ))N

}
and that D1,2 is embedded continuously in L

2N
N−2 ; i.e., there exists k > 0

such that

||u|| 2N
N−2
≤ k||u||D1,2 . (2.1)

We shall frequently use the following generalized version of Poincaré’s in-
equality: ∫

RN
| 5 u|2 dx ≥ α

∫
RN

gu2 dx, (2.2)

for all u ∈ C∞0 and g ∈ LN/2, where α =: k−2||g||−1
N/2 (see [6, Lemma 2.1]).

It has been shown that D1,2(RN ) is a separable Hilbert space. The space
L2
g(RN ) is defined to be the closure of C∞0 (RN ) functions with respect to

the inner product

(u, v)L2
g(RN ) =:

∫
RN

guv dx. (2.3)
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Clearly, L2
g(RN ) is a separable Hilbert space. Moreover, we have the follow-

ing:

Lemma 2.1. Let g ∈ LN/2(RN )∩L∞(RN ). Then the embedding D1,2 ⊂ L2
g

is compact.

Proof. For the proof we refer to [11] and [4]. ¤
Hence we are able to construct the evolution triple, which is necessary

for our problem, namely

D1,2(RN ) ⊂ L2
g(RN ) ⊂ D−1,2(RN ), (2.4)

where all the embeddings are compact and dense. We also need the following
four lemmas, which describe embedding relations among weighted Lebesgue
and homogeneous Sobolev spaces.

Lemma 2.2. Let g ∈ L
2N

2N−pN+2p (RN ). Then we have the following contin-
uous embedding: D1,2(RN ) ⊂ Lpg(RN ), for all 1 ≤ p ≤ 2N/N − 2.

Proof. The lemma is a consequence of Hölder’s inequality. In fact,∫
RN

gup dx ≤
(∫

RN
ga dx

) 1
a
(∫

RN
|u|pb dx

) 1
b

≤
(∫

RN
ga dx

) 1
a
(∫

RN
| 5 u|2 dx

) p
2
,

where a = 2N/(2N − pN + 2p) and b = 2N/(N − 2)p.

Remark 2.3. The assumption of Lemma 2.2 is satisfied under hypothesis
(G), if p ≥ 2.

Lemma 2.4. Let g satisfy condition (G). If 1 ≤ q < p < p∗ = 2N/N − 2,
then there exists C0 > 0 such that the weighted inequality

||u||Lpg ≤ C0||u||1−θLqg
||u||θD1,2 (2.5)

is valid for all θ ∈ (0, 1) which satisfy the relation 1/p = (1− θ)/q + θ/p∗.

Proof. We get relation (2.5) by using the weighted interpolation inequality

||u||Lpg ≤ ||u||
1−θ
Lqg
||u||θ

Lp
∗
g

(see [21] or [31]) and inequality (2.1). Here C0 = kθ.
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Lemma 2.5. Assume that g ∈ L1(RN ) ∩ L∞(RN ). Then the continuous
embedding Lpg(RN ) ⊂ Lqg(RN ) is true for any 1 ≤ q ≤ p <∞.
Proof. Using Hölder’s inequality again we get∫

RN
guq dx ≤

(∫
RN

(gσ)a dx
) 1
a
(∫

RN
(gτ |u|q)b dx

) 1
b
,

where a = p/(p − q) and b = p/q. Hence for σ = (p − q)/p and τ =
q/p we obtain the embedding inequality ||u||Lqg ≤ C∗||u||Lpg , where C∗ =

||g||(p−q)/pq1 .

Lemma 2.6. Assume that 1 < a, b, c < ∞, s ∈ [0, c−1) and a−1 + b−1 +
c−1 = 1. Then for every u ∈ Lag , v ∈ Lbg, w ∈ Lcg and every K > 0 we have
the inequality∣∣∣ ∫

RN
guvw dx

∣∣∣ ≤ Ks−c−1 ||w||Lcg
(
||u||aLag + ||v||bLbg +K

)1−s
.

Proof. The proof is a direct application of [17, Lemma 4.1].
In order to deal with (1.1)–(1.2), we need information concerning the

properties of the operator −φ∆. We consider the equation

−φ(x)∆u(x) = η(x), x ∈ RN , (2.6)

without boundary conditions. Since for every u, v in C∞0 (RN )

(−φ∆u, v)L2
g

=
∫
RN
5u5 v dx, (2.7)

and L2
g(RN ) is defined as the closure of C∞0 (RN ) with respect to the inner

product (2.3), we may consider equation (2.6) as an operator equation:

A0u = η, A0 : D(A0) ⊆ L2
g(RN )→ L2

g(RN ), for any η ∈ L2
g(RN ). (2.8)

Relation (2.7) implies that the operator A0 = −φ∆ with domain of definition
D(A0) = C∞0 (RN ) being symmetric. Let us note that the operator A0

is not symmetric in the standard Lebesgue space L2(RN ), because of the
appearance of φ(x). For comments of the same nature on a similar model
in the case of a bounded weight we refer to [30, pages 185–187]. From (2.2)
and equation (2.7) we have

(A0u, u)L2
g
≥ α||u||2L2

g
, for all u ∈ D(A0). (2.9)
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From (2.7) and (2.9) we conclude that A0 is a symmetric, strongly monotone
operator on L2

g(RN ). Hence, the Friedrichs extension theorem (see [40]) is
applicable. The energy scalar product given by (2.7) is

(u, v)E =
∫
RN
5u5 v dx,

and the energy space is the completion of D(A0) with respect to (u, v)E .
It is obvious that the energy space XE is the homogeneous Sobolev space
D1,2(RN ). The energy extension AE = −φ∆ of A0, namely

−φ∆ : D1,2(RN )→ D−1,2(RN ), (2.10)

is defined to be the duality mapping of D1,2(RN ). For every η ∈ D−1,2(RN )
the equation (2.6) has a unique solution. Define D(A) to be the set of all
solutions of the equation (2.6), for arbitrary η ∈ L2

g(RN ). The Friedrichs
extension A of A0 is the restriction of the energy extension AE to the set
D(A). The operator A is self-adjoint and therefore graph-closed. Its domain,
D(A), is a Hilbert space with respect to the graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A).

The norm induced by the scalar product (u, v)D(A) is

||u||D(A) =
{∫

RN
g|u|2 dx+

∫
RN

φ|∆u|2 dx
} 1

2
,

which is equivalent to the norm ||Au||L2
g

=
{ ∫
RN φ|∆u|2 dx

} 1
2 . A conse-

quence of the compactness of the embeddings in (2.4) is that for the eigen-
value problem

−φ(x)∆u = µu, x ∈ RN , (2.11)

there exists a complete system of eigensolutions {wn, µn} with the following
properties:{

−φ∆wj = µjwj , j = 1, 2, . . . , wj ∈ D1,2(RN ),
0 < µ1 ≤ µ2 ≤ · · · , µj →∞, as j →∞. (2.12)
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It can be shown, as in [6], that every solution of (2.11) is such that

u(x)→ 0, as |x| → ∞ (2.13)

uniformly with respect to x. Finally, we give the definition of weak solutions
for the problem (1.1)–(1.2).

Definition 2.7. A weak solution of (1.1)–(1.2) is a function u(x, t) such
that
(i) u ∈ L2[0, T ;D1,2(RN )], ut ∈ L2[0, T ;L2

g(RN )], utt ∈ L2[0, T ;D−1,2(RN )],
(ii) For all v ∈ C∞0 ([0, T ]× RN ), u satisfies the generalized formula∫ T

0
(utt(τ), v(τ))L2

g
dτ + δ

∫ T

0
(ut(τ), v(τ))L2

g
dτ

+
∫ T

0

∫
RN
5u(τ)5 v(τ) dx dτ − λ

∫ T

0
(f(u(τ)), v(τ))L2

g
dτ = 0, (2.14)

where f(s) = |s|β−1s, and
(iii) u satisfies the initial conditions

u(x, 0) = u0(x) ∈ D1,2(RN ), ut(x, 0) = u1(x) ∈ L2
g(RN ).

Remark 2.8. Using a density argument, we may see that the generalized
formula (2.14) is satisfied for every v ∈ L2[0, T ;D1,2(RN )]. By the compact-
ness and density of the embeddings in the evolution triple (2.4) we see that,
as in [11, Proposition 3.2], the above Definition 2.7 of weak solutions implies
that u ∈ C[0, T ; D1,2(RN )] and ut ∈ C[0, T ; L2

g(RN )].

3. Global existence results. In this section we prove that under cer-
tain assumptions on the initial data, solutions exist globally in the energy
space X0. To this end, in addition to the principal condition (G) in the in-
troduction, we shall use the following additional hypotheses for the function
g and the nonlinearity exponent β: (G1) g ∈ L1(RN ) and 1 < β ≤ N

N−2 ,

for all N ≥ 3. (G2) N ≥ 3 and N+2
N ≤ β ≤ N

N−2 . (G3) N = 3, 4 and
N+4
N ≤ β ≤ N

N−2 .
Let us note that since g ∈ LN/2(RN ) ∩ L∞(RN ) by hypothesis (G),

then any g satisfying hypothesis (G1) belongs to all spaces Lp(RN ), for
p ∈ [1,+∞). First we give the following local existence result.
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Proposition 3.1. Let g, β,N satisfy conditions (G1) or (G2). Suppose that
the constants δ > 0, λ <∞ and the initial conditions

u0 ∈ D1,2(RN ) and u1 ∈ L2
g(RN ), (3.1)

are given. Then for sufficiently small T > 0 the problem (1.1)–(1.2) ad-
mits a unique (weak) solution such that u ∈ C[0, T ;D1,2(RN )] and ut ∈
C[0, T ;L2

g(RN )].
Proof. (a) Local Existence of the Restricted Problem on BR. First we prove
an existence result for the problem

utt + δut − φ(x)∆u = λu|u|β−1, (x, t) ∈ BR × (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR, (3.2)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

where u0 ∈ D1,2(BR) and u1 ∈ L2
g(BR). Let Z =: {z, zt} ∈ C[0, T ; X0(BR)]

be given. In order to obtain solutions for (3.2) we first consider the following
nonhomogeneous problem:

utt + δut − φ(x)∆u = λ z|z|β−1, (x, t) ∈ BR × (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR, (3.3)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

where u0 ∈ D1,2(BR) and u1 ∈ L2
g(BR). Existence of a unique (weak)

solution for problem (3.3) can be obtained by using Faedo-Galerkin approx-
imations (see [11, Lemma 3.1]).

For Z ∈ C[0, T ; X0(BR)] we define the mapping T : C[0, T ; X0(BR)]→
C[0, T ; X0(BR)] by U = T (Z), where U = {u, ut} is the unique solu-
tion of equation (3.3). It is clear that the map T is well defined. Next,
we show that T maps the ball BM to itself, where BM =: {Ψ ∈ X0,T :
sup0≤t≤T ||Ψ(·, t)|| ≤ M} and the space X0,T is defined by X0,T =: {Ψ ∈
C[0, T ;X0(BR)] : Ψ(0, ·) = {ψ0, ψ1} ∈ X0(BR)}.

For Z ∈ BM , we multiply equation (3.3) by gut and integrate with respect
to time and space on the set (0, t)×BR, for some t ∈ (0, T ], to obtain

1
2
||U(·, t)||2X0(BR) −

1
2
||U(·, 0)||2X0(BR) + δ

∫ t

0
||ut(·, s)||2L2

g(BR) ds

≤ λ

∫ t

0

∫
BR

|g(x)|z|z|β−1ut dx ds. (3.4)
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The positivity of the quantity δ
∫ t

0 ||ut(·, s)||2L2
g(BR) ds implies that

1
2
||U(·, t)||2X0(BR) −

1
2
||U(·, 0)||2X0(BR) ≤ λ

∫ t

0
||Z||βX0(BR)||U ||X0(BR) ds. (3.5)

We use the assumption on Z and relation (3.5) to obtain

||U(·, t)||C[0,T ; X0(BR)] ≤ C||U(·, 0)||C[0,T ; X0(BR)] + C4(λ) MβT.

Choosing T sufficiently small and M sufficiently large, depending on the
norm of the initial data, we have sup0≤t≤T ||U(·, t)||X0(BR) ≤ M ; i.e., U ∈
BM . The next step is to show that T is a contraction. Let Z, Z∗ ∈ X0,T such
that U = T (Z), U∗ = T (Z∗), and consider the difference W =: U − U∗ =
{w, wt} = {u− u∗, ut − u∗t }, which satisfies the equation

wtt + δwt − φ(x)∆w = λ(z|z|β−1 − z∗|z∗|β−1), (x, t) ∈ BR × (0, T ). (3.6)

Following the procedure above, for the right-hand side of equation (3.6), we
get the estimates∣∣∣ ∫

BR

g(x)(z|z|β−1 − z∗|z∗|β−1)(ut − u∗t ) dx
∣∣∣

≤C
∫
BR

|g(x)| |z − z∗|(|z|β−1 + |z∗|β−1)|ut − u∗t | dx

≤C||g||
N−2
2N∞ ||z − z∗|| 2N

N−2
||ut − u∗t ||L2

g(BR)

{
||z||β−1

L
N(β−1)
g (BR)

+ ||z∗||β−1

L
N(β−1)
g (BR)

}
≤ C||z − z∗||D1,2 ||ut − u∗t ||L2

g(BR)

{
||z||β−1

D1,2(BR)
+ ||z∗||β−1

D1,2(BR)

}
. (3.7)

From relations (3.6) and (3.7) we have

||W (·, t)||2X0(BR) ≤ C(λ)
∫ t

0
(||Z||β−1

X0(BR) + ||Z∗||β−1
X0(BR))||W (·, s)||X0

×||Z(·, s)− Z∗(·, s)||X0(BR) ds,

which is equivalent to the inequality

||T (Z)− T (Z∗)||C[0,T ; X0(BR)] ≤ 2C(λ) Mβ−1T ||Z − Z∗||C[0,T ; X0(BR)].

For T < C−1(λ) M1−β the map T is a contraction. Then the result of exis-
tence for (3.2) is a direct consequence of the contraction mapping theorem.
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(b) Extension of Solutions to RN . For R ≥ R0, R ∈ N, with {u0, u1} ∈
C∞0 (BR) × C∞0 (BR) such that supp(u0) ⊂ BR0 and supp(u1) ⊂ BR0 , we
consider the approximating problem

uRtt + δuRt − φ(x)∆uR = λ f(uR), (x, t) ∈ BR × (0, T ),
uR(x, 0) = u0(x), uRt (x, 0) = u1(x), x ∈ BR, (3.8)

uR(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

with f(s) = s|s|β−1. The existence result in (a) holds for (3.8). We get that
uR is bounded in C[0, T ; D1,2(BR)] and uRt is bounded in C[0, T ; L2

g(BR)],
independent of R. Since, for any Banach space X, the following continuous
embedding C[0, T ; X] ⊂ Lp[0, T ; X] is valid, for all 1 ≤ p < ∞, we have
that uR, uRt remain bounded in L2[0, T ; D1,2(BR)] and in L2[0, T ; L2

g(BR)],
respectively. We extend uR, as

ũR(x, t) =:

{
uR(x, t), if |x| ≤ R,
0, otherwise.

So that ũR, ũRt remain bounded in the above spaces with BR replaced by
RN . Using the assumptions on β, we may easily check that f(uR) is bounded
in L2[0, T ; L2

g(RN )]. From the relations (2.10) and (3.8) we obtain (as in [19,
Remark 8.2, page 265]), that uRtt is bounded in L2[0, T ; D−1,2(BR)]. Lemma
2.1 applied to [33, Lemma 4 (ii)] implies that ũR is relatively compact in
C[0, T ; L2

g(RN )]. Therefore we get ũR → ũ, in L2[0, T ;L2
g(RN )]. Hence we

may extract a subsequence of ũR, denoted by ũRm , such that

ũRm ⇀ ũ, in L2[0, T ; D1,2(RN )],
ũRmt ⇀ ũt, in L2[0, T ; L2

g(RN )],
ũRmtt ⇀ ũtt, in L2[0, T ; D−1,2(RN )],
f(ũRm) ⇀ f(ũ), in L2[0, T ; L2

g(RN )].

(3.9)

Following the arguments in [11, Proposition 3.2 and Theorem 3.3] we may
see that ũ defines a unique weak solution of (1.1)–(1.2) with initial data
satisfying (3.1).

To obtain global existence, we adapt the method of modified potential
well, as developed by Payne and Sattinger ([27]) and generalized to all of
RN by Nakao and Ono in [22]. To this end we consider the potential well

W =: Int
{
u ∈ D1,2(RN ) : K(u) =: ||u||2D1,2 − λ||u||β+1

Lβ+1
g
≥ 0
}
,
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where Int B denotes the interior of set B. It is easily seen that 0 is in W.
Indeed, from Lemma 2.4, the Poincaré inequality (2.2) and hypothesis (G1)
we have

||u||β+1

Lβ+1
g

≤ C||u||(1−θ)(β+1)
L2
g

||u||θ(β+1)
D1,2

≤ C||u||(1−θ)(β+1)
L2
g

||u||θ(β+1)−2
D1,2 ||u||2D1,2 ≤

C0

α
||u||β−1

D1,2 ||u||2D1,2 .

Therefore, for any λ ∈ R+, we obtain

K(u) ≥
(
1− λC0

α
||u||β−1

D1,2

)
||u||2D1,2 .

It is obvious that, if ||u||D1,2 is sufficiently small, then K(u) ≥ 0 and 0 is in
W. Also consider the functional

J (u) =:
1
2
||u||2D1,2 −

λ

β + 1

∫
RN

g(x)|u(t)|β+1 dx. (3.10)

By the definition of W we have that

J (u) ≥ β − 1
2(β + 1)

||u||2D1,2 , for every u ∈ W. (3.11)

Multiply equation (1.1) by gut and integrate over RN to obtain

1
2
d

dt
||ut(t)||2L2

g
+ δ||ut(t)||2L2

g
+

1
2
d

dt
||u(t)||2D1,2

=
λ

β + 1
d

dt

∫
RN

g(x)|u(t)|β+1 dx. (3.12)

The energy of the problem is defined as

E∗(u(t), ut(t)) = E∗(t) =:
1
2
||ut(t)||2L2

g
+

1
2
||u(t)||2D1,2

− λ

β + 1

∫
RN

g(x)|u(t)|β+1 dx. (3.13)

Let us note that E∗(u, ut) ≥ 0 if u ∈ W̄ and u /∈ W̄ if E∗(u, ut) < 0.
Lemma 2.2 and Proposition 3.1 imply that the functional E∗(t) is well de-
fined. From equation (3.12) and definition (3.13), it is easy to obtain that
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Ė∗(t) = −δ||ut(t)||2L2
g
≤ 0. Therefore, E∗(t) is a nonincreasing function of t;

i.e.,

E∗(t) ≤ E∗(0), for every t ∈ [0, T ). (3.14)

The global existence result is given in the following theorem.
Theorem 3.2. Let condition (G3) be satisfied and u0 ∈ W . Assume that
the initial data satisfy (3.1) and they are sufficiently small in the sense that

E∗(0) ≤
( 1
C0λµ

p1
0

) 1
p2 , (3.15)

where p1 = 2(β+1)−N(β−1)
2 and p2 = Nβ−N−4

4 . Then the (weak) solution of
(1.1)–(1.2) is such that u ∈ C([0,∞);D1,2(RN )) and ut ∈ C([0,∞);L2

g(RN )).
Proof. We shall show that the local solution given by Proposition 3.1 is
in the modified potential well W, as long as it exists. We argue by contra-
diction. Assume that there exists some time T ∗ > 0, such that u(t) ∈ W,
where 0 ≤ t < T ∗ and u(T ∗) ∈ ∂W. Then K(u(T ∗)) = 0 and u(T ∗) 6= 0. We
multiply equation (1.1) by gu and integrate over RN , to get the equation

d

dt
(u(t), ut(t))L2

g
− ||ut(t)||2L2

g
+
δ

2
d

dt
||u(t)||2L2

g

+ ||u||2D1,2 − λ
∫
RN

g(x)|u(t)|β+1 dx = 0. (3.16)

We integrate over [0, t], for some t ∈ [0, T ), to get the inequality

δ||u(t)||2L2
g
≤ δ||u(0)||2L2

g
+ 2|(u(t), ut(t))L2

g
|+ 2(u0, u1)L2

g
+ 2
∫ t

0
||ut(s)||2L2

g
ds

≤ δ||u(0)||2L2
g

+ 2
(
δ

4
||u(t)||2L2

g
+

1
δ
||ut(t)||2L2

g

)
+ 2(u0, u1)L2

g
+ 2

∫ t

0
||ut(s)||2L2

g
ds, (3.17)

by applying Young’s inequality for ε = δ/2. Since u(t) is inW, we have from
(3.11) and (3.12)

1
2
||ut(s)||2L2

g
+ δ

∫ t

0
||ut(s)||2L2

g
ds ≤ E∗(0). (3.18)
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Then from (3.17) and (3.18) we get the estimate

||u(t)||2L2
g
≤ 2
δ

{
δ||u(0)||2L2

g
+ 2(u0, u1)L2

g
+

4
δ
E∗(0)

}
=: µ2

0. (3.19)

Using Lemma 2.4 and relation (3.19) we obtain the inequality

||u(t)||β+1

Lβ+1
g

≤ C0µ
(β+1)(1−θ)
0 ||u(t)||(β+1)θ

D1,2

≤ C0µ
(β+1)(1−θ)
0 J (u(t))

(β+1)θ
2
−1||u(t)||2D1,2

≤ C0µ
(β+1)(1−θ)
0 E∗(0)

(β+1)θ
2
−1||u(t)||2D1,2 , (3.20)

where θ = N(β−1)
2(β+1) according to Lemma 2.4, p1 = (β+1)(1−θ), p2 = (β+1)θ

2 −
1 and p1, p2 are positive by hypothesis (G3). Setting δ1 = C0µ

p2
0 E∗(0)p1 ,

inequality (3.20) implies, for t = T ∗, that

K(u(T ∗)) ≥ (1− λδ1)||u(T ∗)||2D1,2 > 0, (3.21)

under the assumption that λ < 1
δ1

(which is equivalent to the relation (3.15)),
and the contradiction is achieved.

4. Blow-up of solutions. In this section we prove that solutions of
the problem (1.1)–(1.2) blow up in finite time if we consider negative initial
energy. As in [27] we have the following lemma.

Lemma 4.1. Let the mapping t→ ρ(t) =: ||u(·, t)||2L2
g
, where u is the weak

solution of the problem (1.1)–(1.2). Then ρ̇(t) is Lipschitz and ρ̈(t) exists,
for almost all t ∈ [0, T ].

Proof. ¿From the weak formulation of the problem (1.1)–(1.2), we have

(ut, v)L2
g
|t2t1 =

∫ t2

t1

{
(ut, vt)L2

g
−
∫
RN
5u5 v dx

− δ(ut, v)L2
g

+ λ

∫
RN

g(x)u|u|β−1v dx

}
ds,

for all v ∈ D1,2(RN ). Next we introduce the function

R(t, s) =:
∫
RN

g(x)u(x, t)u(x, s) dx.
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We have

ρ̇(t) =
( ∂
∂t
R(t, s) +

∂

∂s
R(t, s)

)
t=s

= 2
∫
RN

gutu dx.

Therefore,

ρ̇(t1)− ρ̇(t2) = 2
∫ t2

t1

{
||ut||2L2

g
− δ(ut, u)L2

g
− ||u||2D1,2

+λ
∫
RN

g(x)|u|β+1 dx

}
ds. (4.1)

Since u is a weak solution of the problem (1.1)–(1.2) the integrant in (4.1)
is bounded. Hence ρ̇(t) is Lipschitz continuous. Furthermore, we get

ρ̈(t) = 2
{
||ut||2L2

g
− δ(ut, u)L2

g
− ||u||2D1,2 + λ

∫
RN

g(x)|u|β+1 dx

}
(4.2)

almost everywhere in [0, T ], and the proof is completed.
The main result is contained in the following theorem.

Theorem 4.2. Let condition (G1) hold. Moreover, we assume that 0 < δ,
λ <∞ and

E∗(0) < 0. (4.3)

Then (weak) solutions of (1.1)–(1.2) blow up in finite time.
Proof. We shall use here the energy E(t) = −E∗(t). Condition (4.3) implies
that the initial data are chosen such that 0 < E(0). From equation (3.12)
and definition (3.13) we see that E(t) is a nondecreasing function of t. Using
(3.12) and (4.3) we obtain the inequality

0 < E(0) ≤ E(t) ≤ λ

β + 1
||u(t)||β+1

Lβ+1
g

. (4.4)

As in [17] (see also [7]) we shall use the functional

F(t) =: µE(t)1−α + ρ̇(t) (4.5)

where µ, a are positive constants to be fixed later. Using relations (3.13),
(4.2) and (4.5) we observe that

Ḟ(t) = µ(1− α)E(t)−αĖ(t) + 4||ut(t)||2L2
g

+ 4E(t)

+
2λ(β − 1)
β + 1

∫
RN

g(x)|u|β+1 dx− 2δ
∫
RN

g(x)u(t)ut(t) dx. (4.6)
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Applying Lemma 2.6 for u, v = ut, w = ε for some ε > 0 and a = β+1, b =
2, c = 2(β + 1)/(β − 1), s = 0, K = E(t) and using inequality (4.4), we
obtain for the last term of relation (4.6) the following estimate:

δ
∣∣ ∫
RN

g(x)u(t)ut(t) dx
∣∣ ≤ εδE(t)

1−β
2(β+1) ||g||

β−1
2(β+1)

1 ×

×
{
||u(t)||β+1

Lβ+1
g

+ ||ut(t)||2L2
g

+ E(t)
}

≤ εδE(0)
1−β

2(β+1) ||g||
β−1

2(β+1)

1 ×
{
||u(t)||β+1

Lβ+1
g

+ ||ut(t)||2L2
g

+ E(t)
}
. (4.7)

By relation (4.4) the quantity µ(1 − α)E−α(t)Ė(t) is nonnegative. Then
relations (4.6) and (4.7) imply that

Ḟ(t) ≥ 2
{λ(β − 1)

β + 1
− εδE(0)

1−β
2(β+1) ||g||

β−1
2(β+1)

1

}
||u(t)||β+1

Lβ+1
g

(4.8)

+2
{

2− εδE(0)
1−β

2(β+1) ||g||
β−1

2(β+1)

1

}
||ut(t)||2L2

g
+2
{

2−εδE(0)
1−β

2(β+1) ||g||
β−1

2(β+1)

1

}
E(t).

We require

K1 =
λ(β − 1)
β + 1

− εδE(0)
1−β

2(β+1) ||g||
β−1

2(β+1)

1 > 0 and

K2 = 2− εδE(0)
1−β

2(β+1) ||g||
β−1

2(β+1)

1 > 0.

For the above requirements to be satisfied, we choose

ε < min
{E(0)

β−1
2(β+1)λ(β − 1)

δ(β + 1)||g||
β−1

2(β+1)

1

,
2E(0)

β−1
2(β+1)

δ||g||
β−1

2(β+1)

1

}
.

Then we get the inequality

Ḟ(t) ≥ K3

{
||ut(t)||2L2

g
+ E(t) + ||u||β+1

Lβ+1
g

}
> 0, K3 = min{K1, K2}. (4.9)

Moreover, by choosing µ sufficiently large (i.e., µ > −ρ̇(0)E(0)α−1 if ρ̇(0) <
0) we obtain from (4.4) and (4.5) that F(t) > F(0) > 0; i.e., F is a strictly
increasing function of t. Finally, we shall show, for some constants C > 0
and γ > 1, that

Ḟ(t) ≥ CFγ(t). (4.10)
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Set γ = 1/(1 − α). We again apply Lemma 2.6, but for s = α (instead of
s = 0 as above) to get the inequality

|ρ̇(t)| ≤ 2E(t)α−
β−1

2(β+1) ||g||
β−1

2(β+1)

1

{
||u(t)||β+1

Lβ+1
g

+ ||ut(t)||2L2
g

+ E(t)
} 1
γ
. (4.11)

Clearly for every α ∈ (0, (β − 1)/2(β + 1)), we obtain from (4.4) and (4.11)
that

|ρ̇(t)|γ ≤ K4

{
||ut(t)||2L2

g
+ E(t) + ||u||β+1

Lβ+1
g

}
, (4.12)

where K4 = {2E(0)α−
β−1

2(β+1) ||g||
β−1

2(β+1)

1 }γ . Then from (4.12), we get

Fγ(t) ≤ 2γ−1
(
µγ−1E(t) + |ρ̇(t)|γ

)
≤ K5

{
||ut(t)||2L2

g
+ E(t) + ||u||β+1

Lβ+1
g

}
≤ K5

K3
Ḟ(t), K5 = max{(2µ)γ−1, (2µ)γ−1K4}, (4.13)

which implies (4.10). Then the result is obtained by applying the classical
blow-up argument of [3, Theorem 4.2].

5. The equation without damping. In this section we treat the fol-
lowing problem without dissipation (δ = 0):

utt(x, t)− φ(x)∆u(x, t) = λu(x, t)|u(x, t)|β−1, x ∈ RN , t ≥ 0 (5.1)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN . (5.2)

With the properties of the space setting described above, we show that an
analogue of [3, Theorem 4.1] holds. The energy for the problem is given by
(3.13), and we consider again the mapping ρ(t) = ||u(t)||2L2

g
.

Theorem 5.1. Let g, β, and N satisfy conditions (G1) or (G2). Suppose
that 0 < λ <∞ and that initial conditions

u0(x) ∈ D1,2(RN ) and u1(x) ∈ L2
g(RN ) (5.3)

are given. Then for sufficiently small T > 0 the problem (5.1)–(5.2) ad-
mits a unique (weak) solution such that u ∈ C[0, T ;D1,2(RN )] and ut ∈
C[0, T ;L2

g(RN )]. Furthermore, assume that the initial data satisfy E∗(0) < 0,
ρ̇(0) > 0 and condition (G1) holds. Then the solution of (5.1)–(5.2) blows up
in finite time.
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Proof. The existence result can be obtained as in Proposition 3.1. For the
rest, it is not hard to see that if u is a solution of (5.1)–(5.2), then

E∗(t) = E∗(0). (5.4)

Using the approximation argument of the previous section we have

ρ̈(t) = 2
{
||ut||2L2

g
− ||u||2D1,2 + λ

∫
RN

g(x)|u|β+1 dx
}
. (5.5)

From Lemma 2.5 we obtain∫
RN

g(x)|u(t)|β+1dx ≥ ||g||
1−β

2
1 ρ(t)

β+1
2 . (5.6)

Therefore, from (3.13), (5.4) and (5.6) we get the inequality

ρ̈(t) ≥ 2λ(β − 1)
β + 1

∫
RN

g(x)|u(t)|β+1 dx− 4E∗(0) ≥ c1ρ(t)
β+1

2 − 4E∗(0), (5.7)

where c1 = β+1
2λ(β−1) ||g||

1−β
2

1 . Since E∗(0) < 0, relation (5.7) implies that
ρ̇(t), ρ(t) are nondecreasing (positive) functions of t. We multiply (5.7) by
ρ̇ and integrate to get the inequality 1

2 ρ̇
2(t) ≥ 2C1

β+3ρ
β+3

2 (t) + C, which is

equivalent to
∫ ρ(t)
ρ(0)

1√
σ(t)
≥ t, for all t ∈ [0, T ], where σ(t) = C+ 2C1

β+3ρ
β+3

2 (t).

Then following the argument in [3, Theorem 4.2] we get the result.
Theorem 5.2. Assume that condition (G3) is satisfied. Moreover, assume
that u0 ∈ W and that the initial data satisfy conditions (5.3) and are suffi-
ciently small in the sense that

E∗(0) < { 1
λ
}

4
4β+N(β−1)

{ β − 1
2(β + 1)||g||N/2κ2

}2
N+2−β(N−2)
4β+N(β−1) . (5.8)

Then the unique (weak) solution of (5.1)–(5.2) is such that

u ∈ C([0,∞); D1,2(RN )) and ut ∈ C([0,∞); L2
g(RN )).

Proof. We argue as in Theorem 3.2. For 0 ≤ t < T ∗, we write (5.4) as

1
2
||ut(t)||2L2

g
+ J (u(t)) = E∗(0). (5.9)
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From (2.2) and (3.11) we obtain the estimate

||u(t)||2L2
g
≤ 2(β + 1)
α(β − 1)

E∗(0) =: µ̂0
2. (5.10)

We replace µ0 with µ̂0 in (3.20) and get the inequality

||u(t)||β+1

Lβ+1
g
≤ δ̂1||u(t)||2D1,2 ,

where δ̂1 =
{2(β+1)||g||N/2κ2

β−1

}N+2−β(N−2)
2 E∗(0)

4β+N(β−1)
4 . Therefore under the

assumption λ <
{ β−1

2(β+1)||g||N/2κ2

}N+2−β(N−2)
2

{
1
E∗(0)

} 4β+N(β−1)
4 (equivalent to

(5.8)), we again get a contradiction.
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