
journal of differential equations 157, 183�205 (1999)

Existence of a Global Attractor for Semilinear Dissipative
Wave Equations on RN

Nikos I. Karachalios and Nikos M. Stavrakakis

Department of Mathematics, National Technical University,
Zografos Campus, 157 80 Athens, Greece

E-mail: nkaraha�math.ntua.gr, nikolas�central.ntua.gr

Received July 30, 1998

We consider the semilinear hyperbolic problem utt+$ut&,(x) 2u+*f (u)='(x),
x # RN, t>0, with the initial conditions u(x, 0)=u0(x) and ut(x, 0)=u1(x) in the
case where N�3 and (,(x))&1 :=g(x) lies in LN�2(RN). The energy space X0=
D1, 2(RN)_L2

g(RN) is introduced, to overcome the difficulties related with the non-
compactness of operators which arise in unbounded domains. We derive various
estimates to show local existence of solutions and existence of a global attractor
in X0 . The compactness of the embedding D1, 2(RN)/L2

g(R
N) is widely applied.
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1. INTRODUCTION

Our aim is to study the following semilinear hyperbolic initial value
problem

utt+$ut&,(x) 2u+*f (u)='(x), x # RN, t>0, (1.1)

u(x, 0)=u0(x) and ut(x, 0)=u1(x), x # RN, (1.2)

with the initial conditions u0(x), u1(x) in appropriate function spaces.
Models of this type arise mainly in wave phenomena of various areas in
mathematical physics (see [2, 29, 36]) as well as in geophysics and ocean
acoustics, where, for example, the coeficient ,(x) represents the speed of
sound at the point x # RN (see [19]). Throughout the paper we assume
that the functions ,, g, ' : RN � R and f : R � R+ satisfy the following
conditions:
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(G) ,(x)>0, for all x # RN, (,(x))&1 :=g(x) is C0, #(RN)-smooth, for
some # # (0, 1) and g # LN�2(RN) & L�(RN) (for functions , of this type,
e.g., polynomial like, we refer to [36, p. 632]),

(H) ' # L2
g(RN),

(F) f : R � R+ is a smooth function such that f (0)=0. Further-
more, | f (s)|�c* |s| and | f $(s)|�c2 |s| , where c*, c2 are positive constants.

In some cases we shall use an extra condition on f, which is

(F�) f $ is in L�(R).

In the bounded domain case the problem is studied by many researchers,
for an extensive literature we refer to the monographs of A. V. Babin
and M. I. Vishik [3], J. K. Hale [17], O. A. Ladyzenskaha [23] and
R. Temam [35]. For the unbounded domain case there is a recent rapidly
growing interest. Among others we refer to the works of Ph. Brenner [7]
on strong global solutions of some nonlinear hyperbolic equations,
E. Feiresl [12, 13, 14] on asymptotic behaviour and compact attractors
for semilinear damped wave equations on RN, A. I. Komech, and B. R.
Vainberg [21] on asymptotic stability of stationary solutions to nonlinear
wave and Klein�Gordon Equations, and T. Motai [27] on energy decay
problems for wave equations with nonlinear dissipative term in RN.
J. Shatal and M. Struwe in [31, 32, 34] discussed questions of existence
regularity and well-posedness for semilinear wave equations with no damp-
ing. Recently H. A. Levine, S. R. Park, P. Pucci, and J. Serrin in [24, 25,
28] studied global existence and nonexistence of solutions for both the
bounded and unbounded domain case. For existence results concerning
the steady state problem our work is based on the papers [9, 10] and the
references therein.

The paper is organised as follows. In Section 2 we discuss the space set-
ting of the problem and the necessary embeddings for constructing the
evolution triple. In Section 3 by means of the standard Faedo�Galerkin
approximation we prove existence and uniqueness of solutions for the
initial value problem. In Section 4 we prove the existence of a global attrac-
torfor the dynamical system defined from the semigroup generated by the
problem.

Notation. We denote by BR the open ball of RN with center 0 and
radius R. Sometimes for simplicity reasons we use the symbols L p, 1�p��,
D1, 2, respectively, for the spaces L p(RN), D1, 2(RN), respectively; & }&p for
the norm & }&Lp(RN) . By L(V, W ) we denote the space of linear operators
from V to W. Also sometimes differentiation with respect to time is denoted
by a dot over the function. The constants C or c are considered in a generic
sense. The end of the proofs is marked by K.

184 KARACHALIOS AND STAVRAKAKIS



2. SPACE SETTING: FORMULATION OF THE PROBLEM

As we will see the space setting for the initial conditions and the
solutions of our problem is the product space X0=D1, 2(RN)_L2

g(R
N).

By D1, 2(RN) we define the closure of the C �
0 (RN) functions with respect

to the ``energy norm'' &u&D1, 2=: �RN |{u|2 dx. It is well known (see
[22, Proposition 2.4]) that

D1, 2(RN)=[u # L2N�(N&2)(RN) : {u # (L2(RN))N]

and that D1, 2(RN) can be embedded continuously in L2N�(N&2)(RN), i.e.,
there exists k>0 such that

&u&2N�(N&2)�k &u&D1, 2 . (2.1)

The following generalised version of Poincare� 's inequality is essential.

Lemma 2.1. Suppose that g # LN�2(RN).Then there exists :>0 such that

|
RN

|{u| 2 dx�: |
RN

gu2 dx, (2.2)

for all u # C �
0 (RN).

Proof. The proof is based on the fact that g # LN�2(RN) (see [9, Lemma
2.1]). It is found that :=k&2 &g&&1

N�2 . K

It can be shown (see [9, Lemma 2.2]) that D1, 2 is a separable Hilbert
space. Next we introduce the weighted Lebesque space L2

g(RN) to be the
closure of C �

0 (RN) functions with respect to the inner product

(u, v)L2
g
=: |

RN
guv dx.

Clearly, L2
g(RN) is a separable Hilbert space. The following lemma is

crucial for the analysis of the problem. The complete proof can be found
in the work [6].

Lemma 2.2. Suppose that g # LN�2 & L�. Then D1, 2 is compactly
embedded in L2

g .

Sketch of the Proof. Let [un] be a bounded sequence in D1, 2(RN).
Then there exists a constant k*>0 such that for all positive integers m, n
and any R>0 we have

|
RN

g(u2
n&u2

m) dx

�k*[&g(un&um)&L2N�(N+2)(RN "BR)+&g(un&um)&L2N�(N+2)(BR)].
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Let =>0 be chosen arbitrarily. Since [un] is a bounded sequence in
D1, 2(RN) and g # LN�2(RN), we may choose R0 sufficiently large, so that by
a diagonalization procedure we have

|
RN

g(u2
n&u2

m) dx

�k*[&g(un&um)&L2N�(N+2)(RN "BR0
)+&g(un&um)&L2N�(N+2)(BR0

)]

�
=
2

+
=
2

==,

for m and n sufficiently large. Therefore [un] is a Cauchy sequence in
L2

g(RN). K

So we are able to construct the necessary evolution triple for the space
setting of our problem, which is

D1, 2(RN)/L2
g(RN)/D&1, 2(RN), (2.3)

where all the embeddings are compact and dense. Next we consider the
equation

&,(x) 2u(x)='(x), x # RN, (2.4)

without boundary condition. It is easy to see that for every u, v in C �
0 (RN)

(&,2u, v)L2
g
=|

RN
{u {v dx. (2.5)

By the definition of the space L2
g(R

N) and (2.5) it is natural to consider
Eq. (2.4) as an operator equation

A0u=', A0 : D(A0)�L2
g(RN) � L2

g(RN), (2.6)

where A0=&,2 with domain of definition D(A0)=C �
0 (RN) and

' # L2
g(R

N). Relation (2.5) implies that the operator A0 is symmetric. Let us
note that the operator A0 is not symmetric in the standard Lebesque space
L2(RN). For comments of the same nature on a similar model in the case
of a bounded weight we refer to [29, pp. 185�187]. From Lemma 2.2 and
Eq. (2.5) we have that

(A0u, u)L2
g
�: &u&2

L2
g
, for all u # D(A0), (2.7)

where :>0 is fixed given in Lemma 2.1, i.e., the operator A0 is strongly
monotone. Therefore the assumptions for the Friedrichs' extension theorem
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(see [37, Theorem 19.C]) are satisfied. By the evolution triple constructed
in (2.3) we may define the energetic scalar product given by (2.5)

(u, v)E=|
RN

{u {v dx

and the energetic space XE is the completion of D(A0) with respect to
(u, v)E , i.e., the energetic space coincides with the homogeneous Sobolev
space D1, 2(RN). The energetic extension AE=&,2 of A0 ,

&,2 : D1, 2(RN) � D&1, 2(RN),

is defined to be the duality mapping of D1, 2(RN) and for every
' # D&1, 2(RN) Eq. (2.4) has a unique solution. All the solutions u of the
equation

AEu=', ' # L2
g(RN),

form the set D(A). The Friedrichs' extension A of A0 is defined as the
restriction of the energetic extension AE to the set D(A). The operator
A is self-adjoint and therefore graph-closed. This implies that the set D(A)
is a Hilbert space with respect to the graph scalar product

(u, v)D(A)=(u, v)L2
g
+(Au, Av)L2

g
, for all u, v # D(A).

The norm induced by the scalar product (u, v)D(A) is

&u&D(A)={|RN
g |u|2 dx+|

RN
, |2u|2 dx=

1�2

,

which is equivalent to the norm

&Au&L2
g
={|RN

,|2u|2 dx=1�2.

The weak formulation for the Eq. (2.4) is

|
RN

{u {v dx=|
RN

g'v dx, for fixed v # D1, 2 and all u # C �
0 .

It follows from the compactness of the embeddings in (2.3) that for the
eigenvalue problem

&,(x) 2u=+u, x # RN, (2.8)
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there exists a complete system of eigensolutions [wn , +n] satisfying the
following relations

{&, 2wj=+ jwj , j=1, 2, ..., w j # D1, 2(RN),
0<+1�+2�..., +j � �, as j � �.

(2.9)

Additional information concerning the asymptotic behaviour of the eigen-
functions of problem (2.8) can be obtained. In fact (see [9, Theorem 3.2])
every solution u of (2.8) is such that

u(x) � 0, as |x| � �. (2.10)

For the positive selfadjoint operator A=&,2 we can define the frac-
tional powers as follows. For every s>0, As is an unbounded selfadjoint
operator in L2

g , with domain D(As) to be a dense subset in L2
g . The

operator As is strictly positive and injective. Also D(As) endowed with the
scalar product (u, v)D(As)=(Asu, Asv)L2

g
becomes a Hilbert space. We write

as usual, V2s=D(As) and we have the following identifications D(A&1�2)=
D&1, 2, D(A0)=L2

g , and D(A1�2)=D1, 2. Moreover, the mapping

As�2 : Vx [ Vx&s (2.11)

is an isomorphism. Furthermore, as a consequence of the relation (2.3) the
injection D(As1)/D(As2) is compact and dense, for every s1 , s2 # R, s1>s2 .
For more, see Henry [18, pp. 24�30].

In the space setting described above, we give the following definition of
weak solution for the problem (1.1)�(1.2).

Definition 2.3. A weak solution of (1.1)�(1.2) is a function u(x, t) such
that

(i) u # L2[0, T; D1, 2(RN)], ut # L2[0, T; L2
g(RN)], utt # L2[0, T;

D&1, 2(RN)],

(ii) for all v # C �
0 ([0, T]_RN), satisfies the generalized formula

|
T

0
(utt({), v({))L2

g
d{+$ |

T

0
(ut({), v({))L2

g
d{

+|
T

0
|

RN
{u({) {v({) dx d{+* |

T

0
( f (u({)), v({))L2

g
d{

=|
T

0
(', v)L2

g(RN) d{, (2.12)
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(iii) satisfies the initial conditions

u(x, 0)=u0(x) # D1, 2(RN), ut(x, 0)=u1(x) # L2
g(RN).

Remark 2.4. We may see by using a density argument, that the
generalized formula (2.12) is satisfied for every v # L2[0, T; D1, 2(RN)]. By
the compactness and density of the embeddings in the evolution triple (2.3)
we have that, for all p # (1, �), the embedding

[u # L p(0, T; D1, 2(RN)), ut # L p$(0, T; D&1, 2(RN))]/C(0, T; L2
g(RN))

is continuous (see, for example, [26, Lemma 2.45]). Therefore the above
Definition 2.3 of the weak solution implies that

u # C[0, T; L2
g(RN)] and ut # C[0, T; D&1, 2(RN)].

3. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section we give existence and uniqueness results for the problem
(1.1)�(1.2) in the space setting established in the previous section.

Lemma 3.1. Let f, g and ' satisfy conditions (F), (G) and (H)
respectively. Suppose that the constants T>0, R>0, $>0 and the initial
conditions

u0 # D1, 2(BR) and u1 # L2
g(BR), (3.1)

are given. Then for the problem (1.1), (1.2), restricted on BR_(0, T) satisfying
the boundary condition u=0 in �BR _(0, T ), there exists a unique (weak)
solution such that

u # C[0, T; D1, 2(BR)] and ut # C[0, T; L2
g(BR)].

Proof. We shall prove existence by means of the classical energy
method (Faedo�Galerkin approximation). We consider the basis of
D1, 2(BR) generated by the eigenfunctions of A and we construct an
approximating sequence of solutions

un(t, x)= :
n

i=1

bin(t) wi ,
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solving the Galerkin system

(un
tt , wj)L2

g(BR)+$(un
t , wj)L2

g(BR)+|
BR

{un {wj dx+*( f (un), wj)L2
g(BR)

=(', wj)L2
g(BR) , (3.2)

un(x, 0)=Pnu0(x), un
t (x, 0)=Pnu1(x), (3.3)

where Pn is the continuous orthogonal projector operator of D1, 2(BR) �
span[wi : i=1, 2, ..., n] and of L2

g(BR) � span[wi : i=1, 2, ..., n]. Multiplying
(3.2) by b4 in(t) and adding from 1 to n, we obtain

1
2

d
dt

&un
t &2

L2
g(BR)+$ &un

t &2
L2

g(BR)+
1
2

d
dt

&un&2
D1, 2(BR)+*( f (un), un

t )L2
g(BR)

=(', un
t )L2

g(BR) . (3.4)

Using hypothesis (F), we have the estimate

} |BR

gf (un) un
t dx }�c* |

BR

g1�2g1�2 |un| |un
t | dx

�c |
BR

g |un|2 dx+c |
BR

g |un
t |2 dx

�c |
BR

|{un|2 dx+c |
BR

g |un
t |2 dx, (3.5)

|
BR

g |'| |un
t | dx�c &'&2

L2
g(BR)+c &un

t &2
L2

g(BR) . (3.6)

So, by relations (3.4)�(3.6) we get the inequality

d
dt

(&un
t &2

L2
g(BR)+&un&2

D1, 2(BR))

�c &'&2
L2

g(RN)+C(&un
t &2

L2
g(BR)+&un&2

D1, 2(BR)). (3.7)

Applying Gronwall's Lemma to the differential inequality (3.7) we get that

&un
t &2

L2
g(BR)+&un&2

D1, 2(BR)�K, (3.8)

where K is indepedent of R, n and depends only on the initial conditions
and T, *, C, &'&2

L2
g(RN) . Now for all v # C �

0 ([0, T]_BR) we have the
inequality
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} |
T

0
(un

tt({), v({))L2
g(BR) d{ }�$ } |

T

0
(un

t ({), v({))L2
g(BR) d{ }

+ } |
T

0
|

BR

{un({) {v({) dx d{ }
+* } |

T

0
( f (un({)), v({))L2

g(BR) d{ }
+ } |

T

0
(', v({))L2

g(BR) d{ } . (3.9)

Using (3.8) and (3.9) we get the estimate

} |
T

0
(un

tt , v({))L2
g(BR) d{ }

�K1 \|
T

0
&v&2

L2
g(BR) d{+|

T

0
&v&2

D1, 2(BR) d{+ . (3.10)

From estimates (3.8) and (3.10), we may extract a subsequence, still
denoted by un, such that as n � �, we get

un *( u, in L�[0, T; D1, 2(BR)],

un
t

*( z, in L�[0, T; L2
g(BR)],

un
tt ( |, in L2[0, T; D&1, 2(BR)].

Note that, for all v # C �
0 ([0, T]_BR), integration by parts implies

|
T

0
(un

t ({), v({))L2
g(BR) d{=&|

T

0
(un({), vt({))L2

g(BR) d{,

|
T

0
(un

tt({), v({))L2
g(BR) d{=|

T

0
(un({), vtt({))L2

g(BR) d{. (3.11)

Then, as n � �, we get

|
T

0
(z({), v({))L2

g(BR) d{=&|
T

0
(u({), vt({))L2

g(BR) d{,

|
T

0
(|({), v({))L2

g(BR) d{=|
T

0
(u({), vtt({))L2

g(BR) d{, (3.12)
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which implies that ut=z and utt=|. By the compactness of the embed-
dings in the evolution triple (2.3) and the results in [33, Lemma 4(ii)] we
have that

un � u in L2[0, T; L2
g(BR)].

Also the continuity of f implies that

f (un) ( f (u) in L2[0, T; L2
g(BR)].

Summarizing all the above estimates, for all v # C �
0 ([0, T]_BR), as

n � �, we have

|
T

0
(un

tt({), v({))L2
g(BR) d{ � |

T

0
(utt({), v({))L2

g(BR) d{,

$ |
T

0
(un

t ({), v({))L2
g(BR) d{ � $ |

T

0
(ut({), v({))L2

g(BR) d{,

|
T

0
|

BR

{un({) {v({) dx d{ � |
T

0
|

BR

{u({) {v({) dx d{,

* |
T

0
( f (un({)), v({))L2

g(BR) d{ � * |
T

0
( f (u({)), v({))L2

g(BR) d{.

Therefore u is the weak solution of the problem (1.1)�(1.2) restricted
to the ball BR according to the Definition 2.3. The continuity and unique-
ness properties stated in this lemma can be proved as in the following
proposition. K

Proposition 3.2. Let f, g and ' satisfy conditions (F), (G) and (H),
respectively. Suppose that the constants T>0, $>0 and the initial conditions

u0 # C �
0 (RN) and u1 # C �

0 (RN) (3.11)

are given. Then for the problem (1.1)�(1.2) there exists a (weak) solution
such that

u # C[0, T; D1, 2(RN)] and ut # C[0, T; L2
g(RN)].

Furthermore, the (weak) solution is unique if (i) N=3, 4 or (ii) f $ satisfies
(F�) and N�3.

Proof. (a) Existence. Let R0>0 such that supp(u0)/BR0
and

supp(u1)/BR0
. Then, for R�R0 , R # N, we consider the approximating

problem

192 KARACHALIOS AND STAVRAKAKIS



uR
tt+$uR

t &,(x)2uR+*f (uR)='(x), (x, t) # BR_(0, T )

uR(x, t)=0, (x, t) # �BR_(0, T ) (3.12)

uR( } , 0)=u0 # C �
0 (BR), uR

t ( } , 0)=u1 # C �
0 (BR).

By Lemma 3.1, problem (3.12) has a unique (weak) solution uR such that

uR # C[0, T; D1, 2(BR)] and uR
t # C[0, T; L2

g(BR)].

We extend the solution of the problem (3.12) as

u~ R(x, t)=: {uR(x, t),
0,

if |x|�R,
otherwise.

Since f (0)=0, the solution u~ R satisfies the estimates

&u~ R&L�[0, T; D1, 2(RN)]�C, & f (u~ R)&L�[0, T; D1, 2(RN)]�C,
(3.13)

&u~ R
t &L�[0, T; D&1, 2(RN]�C, &u~ R

tt &L2[0, T; L2
g(RN)]�C,

where the constant C is independent of R. Lemma 2.2 and the estimates
(3.13) applied to [33, Lemma 4(ii)] imply that

u~ R is relatively compact in C[0, T; L2
g(RN)]. (3.14)

Next using relations (3.13) and (3.14), the continuity of the embedding
C[0, T; L2

g(RN)]/L2[0, T; L2
g(RN)], and the continuity of f we may

extract a subsequence of u~ R, denoted by u~ Rm, such that as Rm � � we get

u~ Rm *( u~ , in L�[0, T; D1, 2(RN)],

u~ Rm
t

*( z, in L�[0, T; L2
g(RN)],

(3.15)
u~ Rm

tt ( |, in L2[0, T; D&1, 2(RN)],

f (u~ Rm) ( f (u~ ), in L2[0, T; L2
g(RN)].

For the rest of the proof we proceed as in [4, Theorem 1.3]. For fixed
R=Rm , let Lm denote the operator of restriction

Lm : [0, T]_RN � [0, T]_BR .

It is clear that the restricted subsequence Lmu~ Rm satisfies the estimates
obtained in Lemma 3.1 (see also (3.13)). Therefore there exists a sub-
sequence u~ Rmj#u~ j, for which it can be shown by following the procedure of
Lemma 3.1, that Lmu~ j converges weakly to a (weak) solution u~ m . We have
that
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|
T

0
(Lmu~ j

tt , v)L2
g(BR) d{+$ |

T

0
(Lm u~ j

t , v)L2
g(BR)d{+

+|
T

0
|

BR

{Lmu~ Rmj {v dx d{+* |
T

0
( f (Lmu~ j), v)L2

g(BR) d{

&|
T

0
(', v)L2

g(BR) d{

=|
T

0
(u~ j

tt , v)L2
g(RN) d{+$ |

T

0
(u~ j

t , v)L2
g(RN) d{+

+|
T

0
|

RN
{u~ j {v dx d{+* |

T

0
( f (u~ j), v)L2

g(RN) d{

&|
T

0
(', v)L2

g(RN) d{, (3.16)

for every v # C �
0 ([0, T]_BR). Passing to the limit in (3.16) as j � �,

we obtain that Lmu~ =u~ m . The equality (3.16) holds for any
v # C �

0 ([0, T]_RN) since the radius R is arbitrarily chosen. Therefore u~ is
the weak solution of the problem (1.1)�(1.2).

(b) Continuity. Following Remark 2.4 we get that u # C[0, T;
L2

g(RN)] and ut # C[0, T; D&1, 2(RN)], so u and ut are weakly continuous
with values in D&1, 2(RN) and L2

g(RN) respectively (for example, see
[30, Lemma 10.9]). Since the solution u is the limit of the sequence of solu-
tions u~ j satisfying inequality (3.7), we integrate (3.7) with respect to time
in the interval (0, t) to obtain

&u~ j (t)&2
D1, 2(RN)+&u~ j

t(t)&2
L2

g(RN)&&u~ j (0)&2
D1, 2(RN)&&u j

t(0)&2
L2

g(RN)

�C |
t

0
[&'&2

L2
g(RN)+&u~ j

t(s)&2
L2

g(RN)+&u~ j (s)&2
D1, 2(RN)] ds. (3.17)

Consider any fixed s # (0, T]. The quantity

sup
t # [0, s]

[&u(t)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN)]

is equivalent to the square of the norm of the space L�[0, s; D1, 2(RN)]_
L�[0, s; L2

g(R
N)]. But balls in this space are weak*-compact, therefore

they are weak*-closed. So we conclude from estimate (3.17) that, at the
limit j � �, we obtain

194 KARACHALIOS AND STAVRAKAKIS



sup
t # [0, s]

[&u(t)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN)]�&u(0)&2

D1, 2(RN)+&ut(0)&2
L2

g(RN)

+lim sup
j � �

C |
t

0
[&'&2

L2
g(RN)+&u j

t(s)&2
L2

g(RN)+&u j (s)&2
D1, 2(RN)] ds.

Letting s � 0, we have that

lim sup
t � 0+

[&u(t)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN)]�&u(0)&2

D1, 2(RN)+&ut(0)&2
L2

g(RN) .

On the other hand, by weak continuity of u(t) and ut(t) we get

lim sup
t � 0+

[&u(t)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN)]�&u(0)&2

D1, 2(RN)+&ut(0)&2
L2

g(RN) .

So &u(t)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN) is right continuous and by the solvability

of the time-reversed problem we get the left continuity. Moreover, since

&u(t)&u(s)&2
D1, 2(RN)+&ut(t)&ut(s)&2

L2
g(RN)

=&u(t)&2
D1, 2(RN)&2(u(t), u(s))D1, 2(RN)

+&u(s)&2
D1, 2(RN)+&ut(t)&2

L2
g(RN)&2(ut(t), ut(s))L2

g(RN)+&ut(s)&2
L2

g(RN) ,

where the right-hand side of the equality tends to zero as t � s, we
complete the proof of the last part of the theorem.

(c) Uniqueness. Assume that u and v are two solutions of (1.1), (1.2)
associated to the initial data u0 , u1 and v0 , v1 , respectively. Let w=u&v.
Then w is a solution of the equation

wtt+dwt&,(x) 2w+*( f (u)& f (v))=0. (3.18)

Following the lines of the proof of Lemma 3.1 and Proposition 3.2(a) we
get that w satisfies the equality

1
2

d
dt

&wt &2
L2

g
+$ &wt&2

L2
g
+

1
2

d
dt

&w&2
D1, 2+* |

RN
g(x)( f (u)& f (v)) wt dx=0.

(3.19)

(i) For the last integral in Eq. (3.19), we obtain

} |RN
g(x)( f (u)& f (v)) wt dx }�|

RN
g1�2 g1�2 | f (u)& f (v)| |wt | dx

�C |
RN

g | f (u)& f (v)| 2 dx

+C |
RN

g |wt | 2 dx. (3.20)
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For some � # [0, 1] we have that

|
RN

g | f (u)& f (v)|2 dx�c2
2 |

RN
g |�u+(1&�) v| 2 |u&v|2 dx

�C |
RN

(g1�2|u+v| )2 |u&v|2 dx

�C &g1�2(u+v)&2
N &u&v&2

2N�(N&2) . (3.21)

Since N=3, 4, by interpolation we have the inequality

&g1�2(u+v)&2
N�&g1�2(u+v)&2%

2 &g1�2(u+v)&2(1&%)
2N�(N&2)

=&u+v&2%
L2

g
&g1�2(u+v)&2(1&%)

2N�(N&2) . (3.22)

Moreover, we have that

&g1�2(u+v)&2
2N�(N&2)�&g&� &u+v&2

2N�(N&2) . (3.23)

Therefore, by using (3.20)�(3.23) and relations (2.1), (2.2) we obtain that

|RN g | f (u)& f (v)|2 dx�C &g&1&%
� &u+v&2

D1, 2 &u&v&2
D1, 2 . (3.24)

Finally, by (3.19) and (3.24) we have the inequality

d
dt

(&wt &2
L2

g
+&w&2

D1, 2)�C(&wt &2
L2

g
+&w&2

D1, 2). (3.25)

Once more the application of Gronwall's Lemma gives the result.

(ii) If (F�) is satisfied, instead of the estimate (3.21) we have that

|
RN

g | f (u)& f (v)| 2 dx�C |
RN

g |u&v|2 dx, (3.26)

which is valid for any N�3. From (3.19), (3.20), and (3.26) we again
obtain (3.25) and the proof is completed. K

We associate with the problem (1.1), (1.2) the mapping T(t) : C �
0 (RN)

_C �
0 (RN) [ X0 by

T(t) : [u0 , u1] [ [u(t), ut(t)].

Then Proposition 3.2 has an immediate consequence
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Theorem 3.3. We may associate to the problem (1.1), (1.2) a nonlinear
Lipschitz continuous semigroup S(t) : X [ X0 , t�0, such that for
.=: [u0 , u1] # X0 , S(t) .=[u(t), ut(t)] is the weak solution of the problem
(1.1), (1.2).

Proof. It is clear from Proposition 3.2(c), that the mapping T(t) is
Lipschitz continuous from C �

0 (RN)_C �
0 (RN) endowed with the norm of

X0 into C[0, T; X0]. By the density of C �
0 (RN)_C �

0 (RN) into X0 there
exists a unique Lipschitz continuous extension T� (t) from X0 into
C[0, T; X0] such that

T� (t) .=T(t) ., for every . # C �
0 (RN)_C �

0 (RN).

Then, we define the mapping

S(t) : X0 [ X0 , t�0 by S(t) . :=T� (t) ..

The semigroup S(t), t�0 defines a dynamical system on X0 . From
inequality (3.25) we have that for ., .~ in X0

&S(t) .&S(t) .~ &X0
�C &.&.~ &X0

.

i.e., it is clear that S is a Lipschitz continuous semigroup. K

4. EXISTENCE OF A GLOBAL ATTRACTOR

In this section we shall prove that the dynamical system generated by the
semigroup S(t) posseses a global attractor. In order to obtain this result
we need a series of lemmas. The first lemma is related to the existence of
an absorbing set in X0 .

Lemma 4.1. Let f, g and ' satisfy conditions (F), (G), and (H),
respectively. Then for

*<min \:1�2$
4c*

, \:+1

8 +
1�2 1

c*+ (4.1)

there exists an absorbing set for the semigroup S associated to the problem
(1.1)�(1.2).

Proof. Let 0�=�=0 , where =0=min($�4, +1 �2$). Note that

+1=inf {&u&2
D1, 2

&u&2
L2

g

: u # D1, 2==inf {�RN |{u|2 dx
�RN gu2 dx

: u # D1, 2= .
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We set v=ut+=u and multiply the Galerkin Eqs. (3.2) by b4 n
j (t)+=bn

j (t).
By following the same arguments as in Proposition 3.2 and Theorem 3.3 we
get that u, v satisfy the ``energy relation''

1
2

d
dt

[&u&2
D1, 2+&v&2

L2
g
]+= &u&2

D1, 2

+($&=) &v&2
L2

g
&=($&=) |

RN
guv dx+* |

RN
gf (u) v dx

=|
RN

g'v dx. (4.2)

We observe that

(u, v)L2
g
=|

RN
guv dx

�\|RN
gu2 dx+

1�2

\|RN
gv2 dx+

1�2

�
1

+1
1�2 &u&D1, 2 &v&L2

g
.

With the assumptions on = and the above inequality, we get that

= &u&2
D1, 2+($&=) &v&2

L2
g
&=($&=)(u, v)L2

g
�

=
2

&u&D1, 2+
$
2

&v&L2
g
. (4.3)

By hypothesis F and the assumption for '(x) we get that

2* |
RN

g | f (u)| |v| dx�2*c* |
RN

g |u| |v| dx

�2*c* &u&L2
g
&v&L2

g

�
2*c*
:1�2 &u&D1, 2 &v&L2

g

�
=
2

&u&2
D1, 2+# &v&2

L2
g
, (4.4)

2 |
RN

g'v dx�
$
2

&v&2
L2

g
+

2
$

&'&2
L2

g
, (4.5)
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where #=: 2*2c*2�:=. The requirement $>2# justifies assumption (4.1).
Setting \=: min(=�2, ($&2#)�2) we get from (4.2)�(4.5), that

d
dt

H(t)+\H(t)�B,

where B=: 2$&1&'&2
L2

g
and H(t)=&u(t)&2

D1, 2+&v(t)&2
L2

g
. By application of

Gronwall's lemma we get

H(t)�H(0) e&\t+
1&e&\t

\
B.

Clearly, limt � � H(t)�+2
0 , where +2

0=: B�\. We get +0*>+0 fixed and we
assume that H(0)�K. Then there exists time t�t0(K, +$0) such that
H(t)�+0*. Moreover, we have the inequality

&u(t)&2
D1, 2+&ut(t)&2

L2
g
�L(=, *)(&u(t)&2

D1, 2+&v(t)&2
L2

g
)

�LH(t)�L+0*.

Therefore summarizing we see that for any B bounded subset of X0=
D1, 2(RN)_L2

g(RN) we obtain

K=sup
,� # B

[&,0 &2
D1, 2+&,0+=,1&2

L2
g
]<�,

where ,� =[,0 , ,1]. Setting _0=: L+0* we easily see that the ball B0=
B(0, _0) is an absorbing set in X0 for the semigroup S(t), i.e., for any
bounded set B of X0 we have that S(t) B/B0 , for t�t0 . K

Remark 4.2 (Global Existence). From Lemma 4.1 we may see that
solutions of problem (1.1), (1.2) (given by Theorem 3.2) belong to the
space Cb(R+ , X0) of bounded continuous functions from R+ to X0 , that is,
it is proved that if *, :, $, &g&N�2 , c*, +1 , satisfy condition (4.1), solutions
exist globally in time.

Remark 4.3 (Pseudocoercivity Hypothesis). In the absence of an exter-
nal force '(x), the existence of an absorbing set in X0 may be shown for all
*>0, if the functions g, f satisfy the following pseudocoercivity hypothesis

lim inf
&,&D1, 2 � �

�RN g(x) F(,) dx
&,&2

D1, 2

�0,

lim inf
&,&D1, 2 � �

�RN g(x) f (,) , dx&C0 �RN g(x) F(,) dx
&,&2

D1, 2

�0,

for some C0>0, where F(s)=�s
0 f (s) ds.
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In the rest of the paper we show that the |-limit set of the absorbing set
is a compact attractor. To this end, we need to decompose the semigroup
S(t) in the form S(t)=S1(t)+S2(t), where for any bounded set B/X0 ,
the semigroups S1(t), S2(t) satisfy the following properties,

(S1) S1(t) is uniformly compact for t large, i.e., �t�t0
S1(t) B is

relatively compact in X0 ,

(S2) sup, # B &S2(t) ,&X0
� 0, as t � �.

For this, we need some additional results concerning the linear equation,
given in the following lemmas.

Lemma 4.4. The linear homogeneous initial value problem

utt+$ut&,(x) 2u=0, x # RN, t # [0, T],

u( } , 0)=u0 # D1, 2(RN), (4.6)

ut( } , 0)=u1 # L2
g(RN),

admits a unique solution such that

u # Cb[R+ , D1, 2(RN)] and ut # Cb[R+ , L2
g(RN)].

Moreover, this solution decays exponentially as t � �.

Proof. We proceed as in the Proposition 3.2 and the Lemma 4.1 to
obtain the estimate

&u(t)&2
D1, 2+&ut(t)+=u(t)&2

L2
g
�[&u0&2

D1, 2+&u1+=u0&2
L2

g
] e&Ct

with C>0. The last estimate apart of giving the existence and uniqueness
results for problem (4.6) (as in Proposition 3.2), implies also the exponential
decay of solutions by letting t � �. K

This lemma implies that the semigroup associated with the problem
(4.6), satisfy the property (S2). Concerning semigroups satisfying property
(S1) we need to prove the following lemmas.

Lemma 4.5. Consider the linear nonhomogeneous initial value problem

u~ tt+$u~ t&,(x) 2u~ +*f (u)='(x), x # RN, t # [0, T],

u~ (x, 0)=u~ 0 # D1, 2(RN), (4.7)

u~ t(x, 0)=u~ 1 # L2
g(RN),
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where u denotes the solution of the original problem given by Theorem 3.3.
Then problem (4.7) possesses a unique solution such that

u~ # Cb[R+ , D1, 2(RN)] and u~ t # Cb[R+ , L2
g(RN)].

Proof. Working as in Lemmas 4.1 and 4.4 we obtain the inequality

1
2

d
dt

[&u~ &2
D1, 2+&v~ &2

L2
g
]+

=
2

&u~ &D1, 2+
$
2

&v~ &L2
g

�* |
RN

g | f (u)| |v~ | dx+|
RN

g |'| |v~ | dx.

Note that

* |
RN

g | f (u)| |v~ | dx�*c* |
RN

g |u| |v~ | dx

�*c* &u&L2
g
&v~ &L2

g

�
*c*
:1�2 &u&D1, 2 &v~ &L2

g

�
\1

4
&v~ &2

L2
g
+

1
\1

M 2 &u&2
D1, 2 , (4.8)

|
RN

g |'| |v~ | dx�
\1

4
&v~ &2

L2
g
+

1
\1

&'&2
L2

g
, (4.9)

where M=*c*�:1�2 and \1=min(=�2, $�2). Since u is the solution of the
original problem, the last term of the right-hand side of (4.8) is bounded.
Finally we get the inequality

d
dt

[&u~ &2
D1, 2+&v~ &2

L2
g
]+\1[&u~ &2

D1, 2+&v~ &2
L2

g
]�C�

and by Gronwall's lemma we get

&u~ (t)&2
D1, 2+&u~ t(t)+=u~ (t)&2

L2
g

�[&u~ 0&2
D1, 2+&u~ 1+=u~ 0&2

L2
g
] e&\1t+C� (1&e&\1t).

Leting t � � we obtain the result. K

This lemma gives the existence of the semigroup S1(t). To prove uniform
compactness for t large, i.e., property (S1) we need the next two lemmas
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Lemma 4.6. Let f satisfy (F�). Then there exists =>0, such that for
every , in D1, 2(RN) the functional f $(,) # L(L2

g , V=&1), and for every R>0

sup
&,&D1, 2�R

| f $(,)|L(L2
g , V=&1)<�.

Proof. We define the operator T : L2
g [ V=&1 , such that

T%= f $(,) %, for every % # L2
g .

Since hypothesis (G) and (F) are satisfied f $(,) # L�(RN), for every
, # D1, 2(RN). Since for any = # (0, 1) the embedding L2

g(RN)#V0 /V=&1 is
compact, we have

& f $(,) %&V=&1
�C & f $(,) %&L2

g
�C & f $(,)&L� &%&L2

g
,

and the proof is completed. K

The last lemma shows that semigroup S1(t) satisfies property (S1) and
so the decomposition of the semigroup S(t) is achieved.

Lemma 4.7. The semigroup S1(t) satisfies the property (S1).

Proof. We write the solution of the problem (1.1), (1.2) as u=w+u~ ,
where w is the solution of the problem (4.6) and u~ =u&w is the solution
of the problem (4.7), with initial conditions u~ (x, 0)=0 and u~ t(x, 0)=0. The
semigroup S2(t) associated with solution w has the property (S2). We shall
show that S1(t)=S(t)&S2(t) is uniformly compact. Let [u0 , u1] be in a
bounded set B of X0 , then Lemma 4.1 implies that for all t�t0 , [u, ut] is
in B0 and

&u(t)&2
D1, 2+&ut(t)&2

L2
g
�_2

0 , for all t�t0 . (4.10)

We differentiate Eq. (4.7) with respect to time. Then U=u~ t , is the solution
of the problem

Utt+$Ut&, 2U=&*f $(u) ut

U(x, 0)=0, (4.11)

Ut(x, 0)=&*f (u0).

For the rest of the proof we follow ideas developed in [15]. By Theorem
3.2 and Lemma 4.5, U # Cb(R+ , V0), Ut # Cb(R+ , V&1) (see also Remark
2.4) and by Lemma 4.6, f $(u) ut # Cb(R+ , V=&1). So applying the operator

202 KARACHALIOS AND STAVRAKAKIS



A(=&1)�2 to the Eq. (4.11) and setting �=A(=&1)�2U and !=A(=&1)�2

(& f $(u) ut) we get

�tt+$�t+A�=*!, t # R+ . (4.12)

From the properties of the operators As and relation (2.11) we have that

A(=&1)�2 : V=&1 [ V0 ,

A(=&1)�2 : V0 [ V1&= ,

A(=&1)�2 : V&1 [ V&= ,

are isomorphisms. Therefore [�, �t] # Cb(R+, V1&=_V&=). Since ! # Cb

(R+, V0), by Lemma 4.5 we obtain that [�, �t] # Cb(R+, V1 _ V0) (see
[15; 35, p. 182]). Furthermore the isomorphisms

A(1&=)�2 : V1 [ V= ,

A(1&=)�2 : V0 [ V=&1 ,

imply that the following relations are true

[u~ t , u~ tt]=[U, Ut]=A(1&=)�2[�, �t] # Cb(R+, V=_V=&1). (4.13)

But f (u) # V=&1 so by (4.13) we obtain that &,2u~ =&u~ tt&du~ t&*g(x)
f (u) # V=&1 and using again (2.11) we have the isomorphism

(&,2)&1=A&2�2 : V=&1 [ V=+1 .

Therefore

[u~ , u~ t]=[A&1u~ , u~ t] # Cb(R+, V=+1_V=),

that is, �t�t0
S1(t) B is in a bounded set of V=+1_V= . So the compact

embeddings V=+1/V1 and V=/V0 imply that, the set �t�t0
S1(t) B is

relatively compact in X0 . K

Summarizing the previous lemmas we may state the main result

Theorem 4.8. Let g satisfying (G), ' satisfies (H) and f satisfying (F)
and (F�). Then the dynamical system associated to the problem (1.1), (1.2),
possesses a global attractor A=|(B0), which is compact, connected and
maximal among the functional invariant sets in X0 .
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