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Abstract. We improve some previous existence and nonexistence results for positive principal
eigenvalues of the problem

“Apu = Ag(x)yp(u), zeRN,
lim wu(z) = 0.
|z|—+o00

Also we discuss existence, nonexistence and antimaximum principle questions concerning the per-
turbed problem
—Apu = Ag(@)Pp(u) + f(z), z=€RN.

1. Introduction

In this paper we shall deal with existence, nonexistence and properties of the “first
eigenpair” in IRY, for some quasilinear elliptic eigenvalue problem, containing the
p—Laplacian operator Apu = div (|7 u[P~? 7 u), of the form

(11) A = Mg@)y(n), RV,
(1.2) lim wu(z) = 0,
|| =00
where 1,(u) = |u[P7?u. Also we discuss existence, nonexistence and antimaximum

principle questions concerning the perturbed problem

(1.3) —Apu = Mg(x)p(u) + f(z), xeRN.
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Throughout this work we will assume that 1 < p < N, and that g in (1.1) satisfies
the following hypothesis
(H1) g is a smooth function, at least C'ZOO’Z (IRN) for some v € (0, 1), such that
g€ L‘X’(IRN) and meas{z € RY : g(z) > 0} >0;
(H2) there exist a regular open set Q@ C IR™ and functions g1, ga, g3, g4 in L™ (IRN )
such that g = g1 + g2 — g3 — g4 satisfying
(1) g1 € LN/?(RY),
(2) g2 >0, Suppgz C Q and for some 0 < a < p

lim sup / g2(x —y) |y|Q_N dy = 0,
R=400 2> R, zeQ Jly|<1

(3) g3 > 0 and there is € > 0, R > 0 such that for any = € Q with |z| > R we
have g3 > e,
(4) ga>0.

Remark 1.1. Let § be a function satisfying (H1) and § < g. Then if g satisfies
(H2) it is easy to see that g satisfies (H2) also. If Q = () then we can take g» = g3 = 0.

Example 1.2. To be more clear about the kind of (nonradial) functions g satisfying
conditions (H1) and (H2) we give the following example. For simplicity reasons we
restrict ourselves to the case N = 2. So we consider p € (1,2). Also let Q = ]Ri, i.e.,

0 :={(x1,x2) : x2 > 0}. Consider a function © € C*> (IRQ), such that 0 < ©® <1 and

1, for zo > 0,
@(331,132) =
0, for x5 < —1.
We set
L fi <0
, for xs < 0,
hl(xl, 132) = (1 + x%)ml(l + x%)mg
0, for x5 > 0,
with my > &, mo > § and g1 (21, 22) := [1 — O(21, 22)]h1 (1, 22). Tt is easy to prove

that gy € L™ (IRQ) N LQ/?’(IRQ), g1 is smooth and g1 (x1,x2) > 0 for 9 < —1. Next we

set
1

h2($1,$2) = 1+10g(1+|($1,$2)|),
0, for o < 0,

for zo > 0,

and go(x1,x2) := O(x1,22 — 2)ha(x1,22). Then we have that go is smooth,
g2 € L=(IR*) and Suppg> C Q. Moreover, we have for [z| > R and |y| < 1 that
log(1 + |z — y|) > log R. Therefore

21

1+logR’

sup / gz — )yl 2 dy <
[z|>R J|y|<1
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So the hypothesis (H2) (2) is satisfied for @« = 1 < p. Furthermore, we put

e >0, for 2o > —1 and |2| > R,

hz(x1,x2) =
3(21,22) { 0, elsewhere ,

and g3(z1,22) = O(w1,x2)hs(x1,22), where we have that g3 is smooth and
g3(x1,x2) > € for |z| > R and = € Q. Finally, we put

ga(x1,22) = 0.

Now we take as g := g1 + g2 — g3 — g4- Then g satisfies all hypothesis in conditions
(H1) and (H2).

Problems where the operator —A,, is present arise both from pure mathematics, like
in the theory of quasiregular and quasiconformal mappings (see [19] and the references
therein), as well as from a variety of applications, e.g. non—Newtonian fluids, reac-
tion —diffusion problems, flow through porous media, nonlinear elasticity, glaciology,
petroleum extraction, astronomy, etc (see [4], [5], [11]).

In the case of the eigenvalue problem for bounded domains, under various boundary
conditions, there is quite an extensive literature and the picture for “the principal
eigenpair” seems to be fairly complete. We mention among others, [3], [14], [17], [18].

The eigenvalue problem for unbounded domains in general becomes more complicate.
In the last few years several works dealing with the eigenvalue problem in unbounded
domains have been completed, see [2], [16] and the references therein; see also [12],
where the existence of nontrivial solutions is proved for nonhomogeneous right —hand
sides. Furthermore, in [13] bifurcation technics are used to prove existence results for
the p- Laplacian equation in IRY.

In Section 2, we shall prove the existence of a positive principal eigenvalue for the
problem (1.1) and establish the natural space setting for this problem, which is the
space V,, the completion of C§°(IR™) with respect to the norm ||u|[},. We generalize
here some previous results concerning the case p = 2 [1], [7], [8] or the case p # 2
[16]. In Section 3 we give a necessary condition for existence of positive principal
eigenvalues for the problem (1.1), (1.2). In Section 4, under certain conditions on f,
we prove that there exists € > 0 such that the equation (1.3) has a solution for any
A€ (0,A\1) U (A1, A1 + €). This is done by applying a certain form of the Fredholm
Alternative, i.e., Theorem 4.1. Finally, in Section 5 we discuss nonexistence results for
(1.3) and a weak formulation of the antimaximum principle for unbounded domains,
which seems to be not yet discussed (see [10]).

Notation 1.3. For simplicity we use the symbol || ||, for the norm || - ||, g~ and
DLP for the space DIP (IRN), see (2.2). Bg and Bg(a) will denote the balls in RY,
centered at zero and a respectively, and radius R. By, =: {z € RY : |z| > R}. Also

the Lebesgue measure of a set Q ¢ IRY will be denoted by |Q| or by measQ. Suppyg
is the support of the function g. The end of a proof is marked with a O.
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2. Existence of a principal eigenvalue

In this section we shall first prove the existence of a positive principal eigenvalue
for the problem (1.1). The natural setting for this problem is the space V,,, which is
defined to be the completion of the space C§° (IRN ) with respect to the norm

lally, = [ vaPdssp [ (ot ool do.

Since for all # > 0 the norms || - ||y, are equivalent, we denote these spaces simply
by V and the common norm by || - ||y. By hypothesis (H2) (3) it is easy to see that
for any v € V and Q ¢ RY bounded, we have that v|o € W'?(Q) and

W
(2.1) oy < max {1, £} el
Moreover, ¥V C DYP (IRN) and for any v € V and p > 0 we have
P _ p P
(22) loll sy = [ 19 de < Jolf,

where the space D1? (IRN ) is the closure of C§° (IRN ) with respect to the norm

1/p
il oy = ([, 17 de)

It is known that D? (IRN) = {u € LV (IRN) P Ju € (Lp (IRN))N} and that there
exists K > 0 such that for all u € DV'P (IRN)

(2.3) lull . < Kllullpre

N—p

For more details we refer to [16]. To prove the existence of the principal eigenvalue
we need the following lemmas.

Lemma 2.1. For any i > 0, the mapping u — g;/pu is compact from 'V to LP (IRN).

Proof. By Theorem 2.3 of BERGER and SCHECHTER [6], for any u € V we have

1/p 1/p c
HgQ u‘LP(QﬂB%) < OMay (g2 ’QQBR) ||u||W1vP<QmB%)
< s [ ma—plit N ay
|[z|>R—-1J|y|<1

where

24) My, (gt? QnBS) = - a=N g

(2.4) ap(92" R sup 92(z —y) |yl Y.
zeR

{e—yeanBs, lyl<1}
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Since the limit of the last term is zero as R — +o0, it follows from [6, Theorem 2.4]
that the mapping v — g%/pu is compact from W?(Q) to L?(QN BY). Since it is also
compact from DP (IRN ) to LP(Bg), it follows from (2.1) that it is compact from V

to L (RY). O

Lemma 2.2. For any i > 0, the mapping u — g}/pu is compact from 'V to LP (IRN).

Proof. By [16, Lemma 2.2] this mapping is compact from D? (IRN) to LP (IRN)
Then the proof follows from (2.2). O

Lemma 2.3. For any p > 0, the problem

(2.5) —Apu+ gz +90) Yp(u) = k(u)(91+g2) Yp(u), z€RY,
(2.6) | llini u(z) = 0,

has a principal eigenvalue.
Proof. We define

k(p) = g VA (g + ga)lul de
Y flRN (91 + g2) |u|Pdx

By Lemmas 2.1 and 2.2, k(u) is well defined and is attained for some u, > 0;

moreover, u,, € C’ll(’;é (IRN) and

~Apuy < (Il + k() [glso [uuP~

Hence u, > 0 in RY by Vézquez’ Maximum Principle [20]. For a more detailed
proof see Theorems 2.4 and 2.6 in [16]. O

Theorem 2.4. If g satisfies (H) then problem (1.1), (1.2) admits a positive principal
eigenvalue.

Proof. It is sufficient to show that for some po we have that k(uo) = po. First, let
ve Cg° (IRN) such that Suppv C {x eRY :g(z) > 0}; then we have

—_ fRN |Vv|pdx—ufRNg|v|pdx
- S~ (91 + g2) JolP dx

Obviously, [r~(g1 + g2) [v[Pdz > [p~ glv[Pdz > 0. So for p — 400, we obtain
that

(2.7) there exists p; > 0 such that k(u1) —p1 < 0.
Now for any uw € V and p € (0,1) we have that

(2.8) /IRN g1l [ul? dz < lgalvyp llullyy vy < Mgrllnp 1ull,
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(N=p)/p
< ||92||oo / (lulN;D/(N—;D)) dr RP
Br

Sl
ey
=}
5
=
3
IS
g
A

2.9
(2.9) < CR? |lgalloo |1l

< CR? |lgalloo |[ul’.

1
|l < obz,(a}.00 B Nl

(2.10) R

< Y (g7 an B v

hS E ap\92 7) Nl

We fix some R > 0 such that

1
CMgm(g;/p,QmB@ < 3

So inequalities (2.8), (2.9) and (2.10) for € (0,1) imply that

1 (1
[ ot alwpae < 2w il + R sl 1l

So there exists some uo small enough, that
p 1 p
l91 + go| [ulPdz < —[[ul[};,
RY H2

therefore

(2.11) k(ua) —p2 > 0.

As in ALLEGRETTO [1], we observe also that k() is locally Lipschitz on IR, since

for h > 0 we have that

g Jmy [V ul”de 4 (u 4 h) [ (93 + ga)lul” da

uey Jr~ (91 + g2) [ulP dz

pth [y v ul”do+ p [ (gs + ga) [ul? do
I Jr~ (91 + g2) |ulP d

(e

k(p+h) =

IN

Since k(u + h) > k(u) we obtain

bt ) = k)] < B < ax E)

1% pnElpu1,muz]

?

so k is continuous. Therefore by (2.7) and (2.11) there exists some pg such that

k(po) = po-

d
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3. A necessary condition for non — existence of positive prin-
cipal eigenvalues

We follow here the ideas developped in [7]. To prove the necessary condition, we
exhibit some particular functions in ¥V and we need the following lemma. First, for
R’ > R > 0 we introduce the following notations

Pd
Snw = {re RV R<|f <R}, &(R) = i JmrlVudr
u€W, P (BR) fRNg|u|de

Lemma 3.1. Let N > p and let g € L™ (IRN) satisfy hypothesis (H1). We assume
that there is Ry > 0 such that g(z) > 0 for all |x| > Ry and

1
lim sup / g(x)dx = +o0.
R—o0 RN-p YR,2R ( )

Then we have limg_, o, 61 (R) = 0.

Proof. We introduce the following auxiliary function

R
0 f < —
, or ol < 2,
_ Nep
R R
* - _2N—p f < <
() ] g slklER
Or2r(z) = 1. for R < |z|] < 2R,

]
0, for |z| > 4R.

r N-—p
2R
eN <_> _QP_N] , for 2R < |z| < 4R,

Then we can easily see that ©ra2r is continuous (we can take cy = 1—5~=p,
cN = 1_2%) and that Ogor € WP (IRN). Moreover, we get that

., RN-P R
(N—p)CNW, for B < |z| < R,
(C) = RN-P
|V R,QR(J/‘M (N—p) CNw, for 2R S |.T/'| S 4R,
0, elsewhere ,

and

R
|17 Oran@ldr = ()" [ (8 —p) RN e gy
IRN

4R
+ (CN)p/ (N — p)P RPN =P) p=P(N=p+1)+N=1 g,
2



162 Math. Nachr. 212 (2000)

So there is a constant C' = C'(N, R) such that

/ 1V Onan(z)[Pdz < CRN7.
IRN

On the other hand for any R > 2Ry we get

Therefore, we finally obtain that

CRN-P
0(4R) < ——— —
fER,QR g(z) dz =
Theorem 3.2. Assume that g satisfies hypothesis of Lemma 3.1 then problem (1.1),
(1.2) has no positive principal eigenvalue.

Proof. Suppose that the theorem is false. So let \; > 0 be a principal eigenvalue
and u be the corresponding positive eigenfunction, i.e., we have

(3.1) —Apu = Mg(x)y(u), =eRN.

By hypothesis (H1), it is easy to see that by choosing B, to be a ball sufficiently
small, on which g > 0, we can make §;(¢) as big as we need. Since the principal
eigenvalue depends continuously on the domain, using Lemma 3.1, we can find some
R such that 01 (R) = A1. If ¢ denotes the corresponding positive eigenfunction on Bg,
we have
(3.2) —App = Mig(x)Yp(¢), = in Br,

¢ =0 on OBg.

Multiplying (3.2) by ¢, (3.1) by ulfl_”l , integrating over Bp and taking the difference
we obtain

(b p (b p—1
/{Iv¢|”+(p—1) (E) |7 ulP — pvo.syu [s7ulP 2 (H) }dx =0,

Br

which implies, by Lemma 3.2 in [16], that there exists a constant ¢ > 0 such that
u = c¢. But this is impossible, since we have that u > 0 in RY. O

Remark 3.3. This estimate is sharp in the following sense. We know by Theorem
2.4 that problem (1.1), (1.2) has a positive principal eigenvalue if g is in LN/? (IRN);
and in this case we have

N—p
N

[ s@ds < gl [ vast < orve.
XR,2R YR,2R
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On the other hand, if g is radially symmetric g(z) = g(|z|) = g(r), g(r) > 0, decaying
for r > Ry and if we have for some ¢ > 0

1

1imsup W/E g(.l?) dr < “+00,
R,2R

R—+00

we can deduce that for r > Ry then g(r) < 5. Therefore g is in LN/P (IRN).

Example 3.4. For g(z) Theorem 3.2 proves the nonexistence of a

_ 1
= (=P
positive principal eigenvalue for m < p; on the other hand for m > p, g is in LN/? (IRN )
and the principal eigenvalue exists.

Remark 3.5. If K is some cone of summit 0 and of infinite volume, then the
condition

. 1
hmsupm/KHERQR g(x) der = +00,

R—o0

also implies the non existence of a positive principal eigenvalue. The details of the
construction of O 2r(x) are left to the reader.

4. Existence results for a perturbation of the p—Laplacian

In this section, under certain conditions on f, we shall prove that there exists € > 0
such that the following perturbation of the p—Laplacian equation

(4.1) —Apu = Ag(@)y(u) + f(z), zeRY,

has a solution for any A € (0,A\1) U (A1, A1 + €). We need the following form of
the Fredholm Alternative for nonlinear operators, obtained from the book of FUCIK,
NECAS, SOUCEK and SOUCEK [15, p. 61].

Theorem 4.1. Let X and Y be two Banach spaces. Let T be an odd (K, L,a)—
homeomorphism of X onto Y, which is an a —homogeneous operator. Let S : X — Y
be an odd completely continuous a —homogeneous operator. Then puT — S is surjective
from X ontoY if and only if u is not an eigenvalue for the couple (T, S).

The previous terminology needs clarification. The operator T is said to be a-—
homogeneous if T'(su) = s*T(u), holds for any s > 0 and allu € X. We call (K, L, a)-
homeomorphism of X onto Y a homeomorphism, for which there exist real numbers
K >0, L >0 and a > 0 such that

Lllul|% < ||IT(w)|ly < K||u|l%, for each ue€ X.
X

 is said to be an eigenvalue for the couple (T, S), if there exists ug € X, ug # 0 such
that pT (ug) — S(ug) = 0.
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Lemma 4.2. Let X =V, Y =V X e RY, A\ >0, T :V — V* defined
by T(u) = —Apu + Ngs + ga)|uP~%u and f € V*. Then T is an (1,2,p — 1) -
homeomorphism and (p — 1) —homogeneous of V onto V*.

Proof. First we prove that T : V + V*. For any u, v, € V we have
(T(u),vn) = / |V ulP~2 7 u - Jop dx—l—)\/ (95 + 94) |ulP"*uv, dz .
IRN IRN

Let v, — v in V then [/ v, [P 7 v, — [V 0[P"2 7 v in (LP)Y (RY). Moreover, we
have that

[ aran i 2ue, s < { [ o+ |u|p’}#{ [ o anlon - v|p}%

So T'(u) € V*. The functional

1 1
D(u) =: ]—)||U||§’;—<f,U> > ]—)||U||§’;—||f| v-|lullv,

is weakly semicontinuous, strictly convex and coercive for any f € V*; hence T is
surjective. Similarly, we prove that T is continuous. Indeed, if u,, — u in V then

1V unlP 2V U — |VulP2yu, i (Z” (RV)™, and
1 L . ’
(g5 +92)7 |unlP 2un — (g3+9g4)7 [u[r~2u in L (RV).

Obviously T is (p — 1) —homogeneous. Moreover,

fIRN (|7 ulP~2 7 u- v+ Ags + g4) |u|P~?uv] do
px = sup

[T (w)]
vEV, v#£0 l[v]lv

?

SO

-1 _
(4.2) lully " < Ty < 2|l

T is (1,2,p — 1) ~homeomorphism if we can prove that the operator T~ ! is contin-
uous. Indeed, let f,, — f in V*. Setting u,, = T~1(f,), u=T"1(f) we have

(T(un) = T(uw), up —u)

(43) = /IRNHV 'U:nlp_Q V Up — |V ’U,|p_2 V u] . (Vun _ Vu) d$

+ )\/ (93 + 94) [Junl?2un — |uP~?u] (up — u) dz.
IRN

Using the following well known algebraic relation

e—¢p < offler2e - g€ e E{ e + e} T
for all ¢, ¢ eRY,
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where a =2 if p > 2, a = pif 1 < p <2 and Holder’s inequality, we obtain

/ 19 tn — Tul?] de
IRN

< C{/ [V unl? >V tn — [ ulP > 7 1] - (Vua — V) dx}
IRN

S {/RNnvunmdx+/RN[|vu|p1dx}2_Ta .

Similarly, we obtain

A / (g3 + ga) |tn — ulP dz
IRN

vl

< o{a [ (ot g a2~ ), — ) e

2—«a
=
< {r [ (ot gl + fup] s}
So from relations (4. 2) and (4.3) and the fact that || f,||y+ is bounded, we deduce
ltn =l < C"{(T (un) = T(w),un — )} < |\ fo = FII50 [lun — ull
i.e., up — win V and T~ is continuous. O

Lemma 4.3. Assume that g satisfies (H2) and let S; : V — V* be defined by
Si(u) = gi(x) [ulP~2u, i = 1,2. Then Sy, Sa are completely continuous and (p — 1) -
homogeneous.

Proof. Let {u,} be a bounded sequence in V. Without loss of generality, we
may assume that u, — wu in this space. Moreover, {u,} is a bounded sequence in
N N
L% (IRN), because of the continuous embedding V C D'P (IRN) C LV (IRN). For

Sy it is sufficient to prove that Sy(u,) — Si(u) in L9 (IRN) with ¢ = %, since

L1 (IRN) c Dt (IRN) C V*. For any € > 0 there is Ry large enough such that for
any R > Ry, n € IN we have

/| @ el = ]
x>

29 / lg1]? [|un|(p—1)q + |u|(10—1)<1] dz
|z|>R

IN

(p—1)(N—p)

2
NooNTr Np Np—N+p
C / lg1|N/P dx X / |tn | V=7 dx
|z|>R |z|>R

(p—1)(N—p)

N Np—N+p
+ / (|5 da
|z|>R

€.

IN

IN
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Let R be as above. Then Vg, is compactly embedded in L?(Bg); so there is
a subsequence of {u,}, denoted again by {u,} such that v, — w in LP(Bg) and
[un P2, — |u|P~2u strongly in L7 (Bg). Since 55 >qand g € L= (RYN), we
deduce that

lim |g1(2) [|unlP ™ up — |u|p_2u]|qu =0,

=0 Jiz|<R
and therefore S (u,) — S1(u) in L? (IRN ) By uniqueness of the limit, we have proved
that Sp is completely continuous. Moreover, it is obviously (p — 1) —homogeneous.

To prove that S5 is completely continuous, we split it in two parts Sy = SQ7BR+SQ7B%
where S g, (u) =: goXB,|ulP~?u and 5'273%(10 =: g2X3%|u|p_2 u, where x4 denotes
the function which is equal to 1 in A and 0 elsewhere. Let ¢ in V, then we have

/ |92 [un [P~ 1| dz
B%

{/ |g2||un|pdx} {/ |g2||¢|pdx} |
Be BS,

R

|(S2.55,(un), )]

IN

IN

Applying [6, Theorem 2.3] of BERGER and SCHECHTER, we have

1
o'

1/p c)
rlorag) S OV (700 BR) Il )

where M, (g;/p, Qn BJC%) is given by (2.4) and we have

Mop(at/ 00 BR) < keo = s [ g =gl Yy,
[z|>R-1J|y|<1
Hence

1
||92/pu,n||Lp (QHB%) < Ckpr_1 ||’U,n||% .
Using the same estimates on ¢ € V, we obtain

S < n/)y -
qp Bl o e

S c
2.2 )| BEV, §£0 lollv

V*

Therefore, by hypothesis (H2) (3) for any ¢ > 0 there is some Rg such that for any
R > Rg we have

(4.4) 12, Be, (un) — Sa, e ()]

For such an R and any ¢ € V we have

< €.

V*

/| e =2l o
x|<

< lgalloo 18l Lo(sr) [[Tunl?=? un = ul? =2l s i, -
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Since V is compactly embedded in LP(Bg) then |u,|[P~2u, converges strongly to
|ulP~2u in LP (Bg). So for some n > ng we have

1

|||un|p_2un - |u|p_2u||L7"(BR) = me.

Hence using the same embedding for ¢ € V we get

||S2, B (un) — S2,B5 (u)]

1% SG,

which together with relation (4.4) proves that S is completely continuous. O

Theorem 4.4. Let g satisfies hypothesis (H1) and (H2). Then there exists € > 0
such that Equation (4.1) has a solution u € V, for any X\ € (0, A1) U (A1, A1 +€) and
fev.

Proof. We use the above form of Fredholm Alternative, i.e., Theorem 4.1 and
Lemmas 4.2, 4.3. Since A\; > 0 is the smallest positive eigenvalue of (—Ap) and is
isolated [13], then 1 is not an eigenvalue for the couple (1,51 + S2). So T — S is
surjective and problem (4.1) has a nontrivial solutions for A € (0, \1)U (A1, A1 +¢€) and
the proof is complete. O

5.  An anti—maximum principle
In this section, we consider the perturbation of the p— Laplacian equation
(5.1) —Apu = pg()py(u) + f(z), =eRY.

We have the following nonexistence result

Theorem 5.1. Assume that f € L=, f >0, f#0. Then
(i) Equation (5.1) has no solution in D“’(IRN) for = MA1.
(ii) Equation (5.1) has no solution u > 0 in DVP(RY) for u > .

Proof. (i) First we prove that any solution of (5.1) for u = Ay satisfies u > 0.
Multiplying (5.1) by v~ =: max(—u, 0) we obtain

[ valar = -x [ g@aes [ @],
RN RN RN

Hence
—)\1/ g(x) |[u”|Pdx < / V4 u_|pdx < )\1/ g(x) |[u~|Pde.
RN RN RN

The functional v — — [~ |V 0|” dz — Ay [~ g(2) |0|P dz reaches its minimum (say
0) at v = u™; hence its gradient vanishes for v = «~; which implies that u™; is an
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eigenvalue associated to A\; and by simplicity of A\;, v~ = c¢¢1. Then by (5.1) we get
that ¢ = 0.

(ii) Now we consider a solution u of equation (5.1) in D'» (IRN) for p > A1 satisfying
u > 0. Since f € L* then u € L* and Tolksdorf’ estimates imply that u € C’ll(’;é (IRN ).

Moreover by Vazquez’ Maximum Principle we obtain that w > 0 in all RY. Next, to
prove the nonexistence we multiply by ¢1 the equation

—Appr = Mg(@)y(61), ze€RY,
1|

and by Lﬁ(u) the equation (5.1); integrating on Bg and substracting, we obtain

_o 01 |p1]P
O(R) — vl o—d R) = —

which is nonpositive for R > R since fBR g|é1|P > 0. Here

p Pt
@(R) _. /B {|v¢1|p+(p—1)(¢l> |V’U/|p_pv¢1'vulvulp_2(%> }dx

u

+(A1—u>/B 91617,

and

¢]1) _5 0u
ﬁ R) =: / ulP —ds.
(R) - | ul an

up~1
Arguing as in the proof of [16, Theorem 3.4], we prove that limg_.. B(R) = 0 and

therefore limp_.oc ©(R) = 0. Then [16, Lemma 3.2] implies that u = c¢¢; for some
positive ¢. Substituting u by c¢; in (5.1) we obtain a contradiction, since f £ 0. O

In the case of p = 2 we have the following weak formulation of the antimaximum
principle for unbounded domains. This result can be considered as an extension of the
antimaximum principle [9] to the unbounded domain.

Theorem 5.2. Assume that p =2 and that f € L, f >0, f # 0. Then for any
R > 0 there exists 6 = §(f, R) such that for any A1 < p < X\ + 6, any solution u of

—Au = pg(x)u+ f(z), zeRY,
satisfies u < 0 in Br.

Proof. By contradiction, we assume that there exists R, ar N\, \i, 7k € By and
ug, satisfying uy (zr) > 0 and

(5.2) —Auy, = apg(z)ug + f(z), zeRY.

First, we remark that limy_ o ||uk]||cc = +00. If not, i.e., |lugllee < C for some
positive C' and we have uniform estimate of wug in DLQ(IRN ); passing to the limit
in (5.2), we obtain a solution of (5.1) which is impossible by Theorem 5.1. Setting
Uk, = [, we see that vy, converges to some v # 0 in D2 (RY) and in all C*(Bg).
Because of the uniform estimates vy, satisfies

f(z) reRN.

(5.3) —Avg = agg(x)vg + ,
k] loo
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So passing to the limit as k — 400 we have
—Av = Mg(z)v, zeRV.

Hence v = c¢y with ¢ # 0. Multiplying (5.3) by ¢; and integrating on IR we
obtain

A1 /IRN g(x)prvpdr = (—Ad1,vr) = (—Avg, é1)

- f@)
= Ozk/IRNg(J?)(bl’dex—l-/RN ||Uk||00 qbldx

(ak_)\l)/IRN g(x)prvp der = —/IR /(@) ¢r1dx < 0,

N |[ul]oo

Hence

which implies that [~ g(z)dp1vpdz < 0. So passing to the limit we obtain that
S~ 9(@)eg? dz <0, i.e., ¢ < 0. But then up — c¢; uniformly on Bg, which contra-
dicts the existence of the sequence xj. O

When g(x) < 0 at infinity then the preceding result can be improved.

Theorem 5.3. Assume that there exists Ry > 0 such that for all |x| > Ry we have
g(x) <0. Then for any 1 < p < 400, Theorem 5.2 remains valid for the equation

~Agu = pgla),(u) + fa), @ eRY.

Proof. As in Theorem 5.2, vy, = Mﬁ converges to some v # 0 in D“’(IRN) and,

because of Tolksdorf’s estimates [19], in all C(Bg). If ¢ > 0, for any k > ko we have
that v (z) > 0 for any = € Bg,. We multiply the equation

f(z)

zeRY
gl B ’

(5.4) —Apu = arg(z)Yp(vr) +
by v, and obtain

/'wwmxs%/gmMWM=%/ g(z) [o [P dz < 0,
RN RrRY B¢

Ro

since g(x) < 0 on Bf, . Hence v, > 0 and Equation (5.4) can be written as

~Apv, = agg(@)Yy(v) + hy(z), xRN,

with hj > 0, which contradicts to the Theorem 5.2. Therefore, ¢ < 0 and the conclu-
sion follows. O

Corollary 5.4. Assume that there exists Ro > 0 such that for all |x| > Ry we have
g(x) <0 and 1 < p < +oo. Then for any f € L™, f >0, f # 0 and such that



170 Math. Nachr. 212 (2000)

f(x) =0 for any |xz| > Ry the following conclusion holds: There exists 6 = 6(f) such
that for any A1 < p < A\ + 9, any solution u of

—Apu = pg(x)y(u) + f(z), @=eRY,
satisfies u < 0 in RY.

Proof. By Theorem 5.3, vy converges to some c¢; ¢ < 0 in Dlvp(IRN) and in all
CY(BRr). So for any k > ko we have that vi(z) < 0 for any € Bg,. Multiplying
Equation (5.4) by v;” we obtain

/ Vol P de = ozk/ g(z) v [P dz < 0.
RrY RrY

Hence vg(x) < 0 and applying Vazquez’ Maximum Principle in Bf we get that
vr(z) < 0 in Bf ; and the proof is completed. O
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