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Abstract

We prove the existence of a continuum of positive solutions for the
semilinear elliptic equation −∆u(x) = λg(x)f(u(x)), 0 < u < 1 for
x ∈ IRN , lim|x|→+∞ u(x) = 0, which arises in population genetics, un-
der the hypotheses that N ≥ 3 and the weight g changes sign been
negative and away from zero at ∞. After establishing the existence
of a simple positive principal eigenvalue λ1 for the corresponding
linearized problem, we prove the existence of a continuum of solutions
lying in the space IR×H2 extended from λ1 to ∞. To complete this
task we state a new version of the global bifurcation theory for non-
linear Fredholm (noncompact) operators and prove the compactness
of the solution set of the problem.

1 Introduction

In this paper by using local and global bifurcation theory we prove the exis-
tence of a continuum of positive solutions of the following semilinear eigen-
value problem

−∆u(x) = λg(x)f(u(x)), x ∈ IRN , (1.1)λ

0 < u < 1, x ∈ IRN , lim
|x|→+∞

u(x) = 0, (1.2)

where λ ∈ IR and N ≥ 3. Here we state the general hypothesis which will
be assumed throughout the paper:

(G) g is a smooth function, at least C1,α(IRN) for some α ∈ (0, 1), such
that g ∈ L∞(IRN) and g(x) > 0, on Ω+, with measure of Ω+, |Ω+| > 0.
Also there exist R0 large and k > 0 such that g(x) < −k for all |x| > R0.

(F) f : [0, 1] 7−→ IR+ is a smooth function such that f(0) = f(1) = 0,
f ′(0) > 0, f ′(1) < 0, and f(u) > 0 for all 0 < u < 1.

The equation arises in population genetics and ecology (see [18]). The
unknown function u corresponds to the relative frequency of an allele and
is hence constrained to have values between 0 and 1. The real parameter
λ > 0 corresponds to the reciprocal of a diffusion coefficient.
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It is well known that problems where an indefinite weight function is
present arise both from pure mathematics (oscillatory integrals), as well as
from a large variety of applications, e.g. ecology, transport theory, fluid
dynamics, reaction-diffusion processes, electron scattering (see [5, 11, 23]
and the references their in).

There is quite an extensive literature for the problem in the bounded
domain case under various general boundary conditions and a fairly com-
plete bifurcation analysis can be given. For the equation we mention, among
others, the papers [9, 23].

The problem becomes more complicate in the case of unbounded domains
as, in general, the equation does not give rise to compact operators and so it
is not known if the classical spectral theory is applicable. It is also unclear a
priori in which function spaces eigenfunctions of (1.1)λ might lie.

In the special case treated here, we have a noncompact nonlinear operator.
A similar problem is treated by Drabeck and Huang in [16], but there the
case is different because only the linear part is allowed to be noncompact,
while the weight of the nonlinear part is essentially in L

N
2 (which induces

compactness). H Matano in [27], for essentially the same problem, proves
the existence and the L∞-stability of solutions lying between ”strict sub-
and supersolutions”, whenever they exist. To our knowledge the only
paper were a case, quite similar to our, is studied is the work by N Dancer
in [15]. There he studies the one dimensional problem and does the very
crucial remark that one could restrict the noncompact nonlinear operator to a
compact solution-set and get the same results as Rabinowitz’s theorem does.
So here although (maybe) the spectrum is mixed (discrete and continuous)
we get a continuum of solutions for all λ ≥ λ∗ > 0, i.e. we can go through
the (posible) continuous spectrum. Finally, we must notice that operators
studied by Volpert and Volpert [38] are of different nature.

The complementary case, i.e. when g is going “weekly” to zero (in the
sense that g ∈ LN/2(IRN)), is studied in several recent papers, see among
others [10, 11, 12, 13, 20, 37] for the nonlinear Laplacian, in [16, 17, 19] for
the p-Laplacian, and in [34, 35, 36] for the polyharmonic analog.

In order to discuss bifurcation from the zero solution of (1.1)λ it is first
necessary to study the eigenvalues of the corresponding linearized problem

−∆u(x) = λg(x)f ′(0)u(x) for x ∈ IRN

lim|x|→+∞ u(x) = 0.
(1.3)
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The existence of a positive principal eigenvalue (i.e., an eigenvalue, to
which corresponds a positive eigenfunction, so a point at which positive so-
lutions of (1.1)λ may bifurcate from the zero branch) for the above problem
has been proved in ([8, 13]) under the hypotheses that

∫
IRN g(x)dx < 0 and

g(x) < 0 for |x| large and in ([3]) under the hypothesis that N ≥ 3 and
g+ ∈ LN/2(IRN).

In Section 2, we study the space setting of the problem and give some
equivalent norm results to be used later. A generalised version of Poincare’s
inequality plays a crucial role. Some of the ideas developed here appeared
also in a different context in [11]. In Section 3 we discuss the linearised
problem and basic characteristics, as the compactness of the operator, the
simplicity of the positive principal eigenvalue and the H2 nature of the
eigenfunctions, are described. In Section 4 we prove the existence of a local
continuum of positive solutions of the semilinear problem emanating from
the principal eigenvalue λ1 by applying the Crandall and Rabinowitz local
bifurcation theory.

In order to study the global bifurcation behavior of our problem we have
to overcome the lack of compactness of the nonlinear operator associated to
the problem and the fact that the dependence on λ of the linear part of
the operator is quite complicated. To complete this goal, it is necessary to
reformulate some of the standard theorems of bifurcation theory for Fredholm
(noncompact) operators. This is done in Section 5. To apply this global
bifurcation theory for Fredholm operators developed in the previews section
it is necessary to study the solution set of the problem and especially the
compactness of the positive branch, which is the subject of Section 6.

Finally, in Section 7 we complete the study of the problem (1.1)λ, (1.2)
by showing that the continuum of positive solutions bifurcating from (λ1, 0)
cannot cross λ = 0, the solutions are in the interval (0, 1) in the L∞ sense,
and that the continuum must extend to λ = ∞.

Notation: We denote by BR the open ball of IRN with center 0 and
radius R and B∗ =: IRN \ B. For simplicity reasons we use the sym-
bols Lp, Hp, 1 ≤ p ≤ ∞, respectively for the spaces Lp(IRN), Hp(IRN),
respectively; ||.||p for the norm ||.||Lp(IRN ). Sometimes when the domain of

integration is not stated it is assumed to be all of IRN . Equalities introducing
definitions are denoted by “=:”. Embeddings are denoted by ′′ ↪→′′. Denote
by g± =: max{±g, 0}. The end of the proofs is marked by “�”.
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2 Space Setting

In this section we are going to characterize the space Vg (introduced below)
in terms of classical Sobolev spaces, in the case of g been negative and away
from zero at infinity. Since g satisfies (G), by applying Poincare’s inequality
in the ball BR0 , it is easy to see that there exists a constant a > 0 such that∫

IRN
| 5 u|2dx ≥ α

∫
IRN

|g|u2dx. (2.1)

for all u ∈ C∞
0 . So we may introduce a real inner product on C∞

0 (IRN) by

< u, v >=:
∫
IRN

5u 5 v dx− α

2

∫
IRN

guv dx. (2.2)

As in ([11]) we define Vg to be the completion of C∞
0 with respect to the

above inner product and let ||.||g denote the corresponding norm. Although
the space Vg would seem to depend on g, in fact we have the following Sobolev
space characterization of it

Lemma 2.1 Suppose that g satisfies (G). Then Vg = H1.

Proof Because of density we only compare Vg and H1 norms on C∞
0 (IRN).

(i) For all u ∈ C∞
0 (IRN) we have

||u||2g ≤
∫
| 5 u|2dx+

α

2
||g||∞

∫
u2dx ≤ C(α, ||g||∞)||u||2H1

where C(α, ||g||∞) = max{1, α||g||∞
2

}. Hence we have that H1 ⊂ Vg.

(ii) Let {un} ⊂ C∞
0 (IRN) be a Cauchy sequence in Vg converging in

some u ∈ Vg. Let also B be a ball centered at the origin in IRN such

that
∫

B
g(x)dx < 0 and g(x) ≤ −k, for all x /∈ B. Then we have

∫
B
| 5 (un − u)|2dx −→ 0, and

∫
B
g(x)(un − u)2dx −→ 0 as n→∞.

Suppose that
∫

B
(un − u)2dx 6→ 0. Then if vn =: un−u

||un−u||B
, where by

||.||B we denote the norm in L2(B), we have that limn→∞

∫
B
| 5 vn|2dx =
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lim
n→∞

∫
B
g(x)v2

ndx = 0. Hence {vn} is a bounded sequence in H1(B). So

there is a subsequence, denoted again by {vn}, such that {vn} converges

in L2(B). Since {5vn} converges (to zero) in L2(B), {vn} is a Cauchy

sequence in H1(B). Hence there exists v ∈ H1(B) such that vn → v in

H1(B). On the other hand since 5vn → 5v in (L2(B))N , it implies that

5v = 0 or v = c. But
∫

B
v2dx = 1 hence c 6= 0. However,

0 = lim
n→∞

∫
B
g(x)v2

ndx = c
∫

B
g(x)dx 6= 0,

which is a contradiction. Hence we have∫
B
(un − u)2dx→ 0, as n→∞. (2.3)

Denote by D1 =: {x ∈ B : g(x) > 0}, D2 =: {x ∈ B : g(x) ≤ 0} and

ḡ(x) =:

{
g+(x), x ∈ D1

−g−(x), x ∈ D2.

Then it is not difficult to prove that there exist constants K0, K1 that∫
g+(x)(un − u)2dx ≤ K0||u||2g, and −

∫
g−(x)(un − u)2dx ≤ K1||u||2g.

By adding the two inequalities we get∫
B
ḡ(x)(un − u)2dx+

∫
B∗

(−g−)(x)(un − u)2dx ≤ (K0 +K1)||u||2g

But as n → ∞ we have
∫

B
ḡ(x)(un − u)2dx = Mn

∫
B
(un − u)2dx → 0,

where Mn, given by the intermediate value theorem for integrals, is positive
and finite for all n ∈ IN (g been in L∞). Also we have that

k
∫

B∗
(un − u)2dx ≤

∫
B∗

(−g−)(x)(un − u)2dx ≤ (K0 +K1)||un − u||2g,

which implies that as n→∞∫
B∗

(un − u)2dx→ 0. (2.4)
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Therefore by relations ( 2.3) and ( 2.4) we get
∫

B∗
(un − u)2dx→ 0, as n→

∞. Summarizing we have that un → u, in H1, that is Vg ⊂ H1, for every

g satisfying hypothesis (G), and the proof is completed. �

For any r0 large enough ( r0 ≥ R0), there exists σ0 > 1 such that

g(x) ≤ − k
σ0
, for all |x| ≥ r0. Then we introduce a new smooth function

g2(x) =:

{
g(x), for |x| ≥ r0,
g̃(x), for |x| < r0

where −k ≤ g̃(x) ≤ − k
σ0

and g1(x) =: g(x)− g2(x). Let λ > 0 be chosen

arbitrarily. Then define V2,λ to be the completion of C∞
0 with respect to

the norm
||u||22,λ =:

∫
IRN

| 5 u|2dx− λ
∫
IRN

g2u
2dx. (2.5)

Remark 2.2 It is easy to prove that the norms ||u||2,λ and ||u||2,µ are
equivalent for any positive λ, µ.

Furthermore we have

Theorem 2.3 For all λ > 0 the norms ||.||H1 , ||.||g, ||.||2,λ are equivalent.

Proof First we prove that ||.||g, ||.||2, α
2

are equivalent in C∞
0 (IRN). Indeed

||u||g =
∫
{| 5 u|2 − α

2
gu2}dx ≤

∫
{| 5 u|2 − α

2
g2u

2}dx = ||u||2, α
2

(2.6)

On the other hand, we have∫
g1u

2dx ≤ k
∫
IRN

| 5 u|2dx− kα

2

∫
g1u

2dx− kα

2

∫
g2u

2dx,

or

(1 +
kα

2
)
∫
g1u

2dx ≤ k
∫
| 5 u|2dx− kα

2

∫
g2u

2dx = ||u||2, α
2
,

or

−α
2

∫
g1u

2dx ≥ − kα

2 + kα
||u||2, α

2
.
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Hence

(1− kα

2 + kα
)||u||2, α

2
≤

∫
| 5 u|2dx− α

2

∫
g1u

2dx− α

2

∫
g2u

2dx = ||u||g.

From relation ( 2.6) and the fact that 1 − kα
2+kα

> 0 for any α, k

positive, we get that the norms ||.||g, ||.||2, α
2

are equivalent. Finally, the

proof is completed by Lemma 2.1 and Remark 2.2. �

3 The Linearized Problem

In this section we shall discuss the spectral and uniqueness properties for the
linearization of the problem (1.1)λ, close to the trivial solution u ≡ 0

−∆u = λgu, x ∈ IRN ,

lim|x|→+∞ u(x) = 0,
(3.1)

where without lose of generality we may assume that f ′(0) = 1. Fix λ0 > 0

arbitrary. Since −λg2(x) > 0 for all x ∈ IRN and λ > λ0, the symmetric

operator −∆ − λg2 : C∞
0 (IRN) 7−→ L2(IRN) is essentially selfadjoint (see

[30, Vol II, Theorem X.28]). So the closure L(λ) of this operator, where

L(λ) : D(L(λ)) ⊂ L2(IRN) 7−→ L2(IRN) is selfadjoint. It follows that
D(L(λ)) ⊂ H1(IRN) and

(L(λ)u, v) =:
∫
IRN

(5u 5 v − λg2uv) dx,

for all λ > λ0, u, v ∈ D(L(λ)). Define the bilinear symmetric mapping

aλ : L2(IRN)× L2(IRN) 7−→ IR by aλ(u, v) =: (L(λ)u, v).

Then aλ is bounded in H1, since |aλ(u, v)| ≤ c||u||H1||v||H1 , for all u, v ∈
D(L(λ)) and λ > λ0. Also aλ is coersive. Indeed we have

aλ(u, u) = (L(λ)u, u) =
∫
IRN

(| 5 u|2 − λg2u
2) dx

≥
∫
IRN

(| 5 u|2 +
λk

σ0

u2) dx ≥ λk

σ0

||u||22.
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Next we introduce an other bilinear form b(u, v) by

b(u, v) =
∫
IRN

g1uv dx, for all u, v ∈ H1(IRN).

We see that
|b(u, v)| ≤ c||u||H1||v||H1 ,

for some c > 0 and all u, v ∈ H1(IRN). Hence b is a bilinear bounded form

and by Riesz theory we can define a linear operator L1(λ) : D(L1(λ)) ⊂
L2 7−→ L2 such that (L1(λ)u, v) = b(u, v), for all u, v ∈ D(L1(λ)) and

λ > 0. It is easy to see that D(L1(λ)) ⊂ H1(IRN). Furthermore we have

Lemma 3.1 (i) The operator L1(λ) is compact, self-adjoint and there

exists k1(λ) > 0 and ψλ ∈ L2 such that L1(λ)ψλ = k1(λ)ψλ,
(ii) the problem

(L1(λ)ψλ, ψλ) =
1

k1(λ)
b(ψλ, ψλ)

admits a positive principal eigenvalue at some λ = λ1 such that 1
k1(λ1)

= λ1.

The corresponting principal eigenfunction φ = ψλ1 is a positive classical
solution of equation ( 3.1),
(iii) the eigenpair (λ1, φ) is unique, i.e. if (λ, u) is an other solution of

( 3.1) with u(x) > 0 for all x ∈ IRN , then λ = λ1 and there is c > 0 such

that u(x) = cφ(x) for all x ∈ IRN .

Proof (i) The compactness of L1(λ) is a straitforward consequence of the

fact that g1 has compact support, so the imbedding of H1(B) into Lp(B) is

compact for any p ∈ [1, 2N
N−2

) and any ball B. Note that the compactness of
the operator L1(λ) is related to the norm ||.||2,λ. Since L1(λ) is symmetric

and defined on the whole space D(L1(λ)) it is self-adjoint. Hence L1(λ)

has a principal eigenvalue k1(λ) > 0 and a (positive) eigenfunction ψλ ∈ L2

such that L1(λ)ψλ = k1(λ)ψλ (for a similar reasoning see [3]).

(ii) This is proved in [8, Theorem 2.1]. The smoothness of the eigenfunction
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φ is implied by Weyl’s lemma [30, Vol II, p.53] and the strict positivity by

[30, Vol IV, Theorem XII.48].
(iii) The proof follows the same steps as in the paper [11]. Actually, it is
simpler (see also [37]). �

Theorem 3.2 For the operator L(λ) : D(L(λ)) ⊂ L2 7−→ L2, we have that
D(L(λ)) = H2(IRN) for all λ > λ0.

Proof Let u ∈ D(L(λ)) i.e. there exists w ∈ L2 such that L(λ)u = w.
Then by [24, Chapt VI, Theorem 4.6] u ∈ H1(IRN). The proof that u ∈
H2(IRN) follows the spirit of [7, Theorem IX.25]. Denote by

Dhu(x) =
u(x+ h)− u(x)

|h|
.

For all u ∈ H1(IRN) we have∫
(5u 5 v − λg2uv) dx =

∫
w v dx.

Let v = D−h(Dhu). Since u ∈ H1(IRN) then v ∈ H1(IRN) too. So we get∫
| 5Dhu|2 − λg2|Dhu|2 dx =

∫
wD−h(Dhu) dx.

Hence

min {1, λ0k
σ0
}{

∫
| 5Dhu|2 +

∫
| 5Dhu|2}

≤
∫
| 5Dhu|2 − λ

∫
g2|Dhu|2 dx =

∫
wD−h(Dhu) dx.

and
min{1, λ0k

σ0
}||Dhu||2H1 ≤ ||w||2||D−h(Dhu)||2.

But in general ||D−hu||2 ≤ || 5 u||2 for all u ∈ H1(IRN). So that

||Dhu||2H1 ≤ ||w||2||(Dhu)||H1 or ||Dhu||H1 ≤ ||w||2.

In particular we get ||Dh
∂u
∂xi
||2 ≤ ||w||2, i = 1, 2, ..., N. The last inequality

implies that ∂u
∂xi

∈ H1(IRN) (see [7, Prop. IX.3(ii)]). Hence u ∈ H2(IRN).
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Conversely, let u ∈ H2(IRN). Setting −∆u − λg2u = w, we get that

w ∈ L2(IRN). Multiplying by v ∈ C∞
0 (IRN) and integrating we get∫

(5u 5 v − λg2uv) dx,=
∫
w v dx

or
(u, L(λ)v) = (w, v), for all v ∈ C∞

0 (IRN)

Since L(λ) is self-adjoint we obtain L(λ)u = w, i.e. u ∈ D(L(λ)). �

Lemma 3.3 The inverse operator L−1(λ) : L2(IRN) 7−→ L2(IRN) exists, is
linear, continuous and self-adjoint. For each w ∈ L2(IRN) the equation

−∆u− λg2u = w,

has a unique solution u ∈ H2.

Proof The operator L(λ) satisfies all necessary hypothesis for the applica-
tion of Friedrichs’ Theorem (see, for example [41, pg 126]). �

4 The Local Bifurcation Theory

For the proof of the existence of a continuum of positive solutions of the
problem (1.1)λ for λ close to the principal eigenvalue λ1 we shall apply
the local bifurcation theory developed by Crandall and Rabinowitz in [14].
For the rest of the paper we assume that f satisfies the following hypothesis

(F1) f is extended to a new function, denoted again by f : IR 7→ IR,

f ∈ C2(IR), f, f ′, f ′′ ∈ L∞(IR), f(t) < 0 for all t 6∈ [0, 1], and there exists

k∗ > 0 such that, for all t ∈ IR, |f(t)| ≤ k∗|t|.

We introduce the nonlinear operator T : IR×H2(IRN) 7−→ L2(IRN) by

(T (λ, u), v) =
∫
IRN
{5u 5 v − λgf(u)v} dx, (4.1)

Then by standard procedure we can prove the following preliminary results
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Lemma 4.1 Let N = 3, 4, ..., 8 and f, g satisfy hypothesis (F), (F1) and
(G) respectively. Then
(i) the operator T is well defined and continuous,
(ii) for each λ ∈ IR the operator T (λ, .) : H2(IRN) 7−→ L2(IRN) is Fréchet
differentiable and its Fréchet derivative is defined by

(Tu(λ, u)h, φ) =
∫
IRN
{5h 5 φ− λgf ′(u)hφ} dx, (4.2)

(iii) the derivative Tu : IR×H2(IRN) 7−→ L2(IRN) is continuous,
(iv) the derivatives Tλ, Tuλ exist and are continuous.

Then the local bifurcation result can be phrased as follows

Theorem 4.2 (Local Bifurcation) Let N = 3, 4, ..., 8 and f, g satisfy

hypothesis (F), (F1) and (G) respectively. Then there is a neighborhood U

of (λ1, 0) in IR×H2(IRN), an interval (0, a), and continuous functions

η : (0, a) 7−→ IR, with η(0) = λ1,
ψ : (0, a) 7−→ H2(IRN), with ψ(0) = 0,

such that

T−1(0) ∩ U ⊃ {(η(ε), εφ+ εψ(ε)) : 0 < ε < a} ∪ {(t, 0) : (t, 0) ∈ U}.

Proof By Lemma 3.1 (iii) the null space of Tu(λ1, 0) is spanned by the

corresponding eigenfunction φ. The range R(Tu(λ1, 0)) = {v ∈ H2 :∫
IRN gvφ dx = 0} is of codimension 1. Also Lemma 4.1 implies the nec-

essary differentiability conditions. Finally, for the transversality condition
we observe that

(Tuλ(λ1, 0)φ, φ) =
∫

(−g(x))φ2 dx = −
∫
gφ2 dx = − 1

λ1

∫
| 5 φ|2 dx < 0,

and the proof is completed. �

Remark 4.3 By Theorem 4.2 we get a weak solution uε = εφ+ εψε of

−∆uε − ηεg(x)f(uε) = 0, x ∈ IRN
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where we denote ψ(ε) = ψε. By standard regularity arguments for elliptic

problems (e.g. see [22]) we get that εφ + εψε ∈ C2+α(IRN). So for all

ε ∈ (0, a), ψε ∈ C2+α(IRN).

Finally we prove the positivity of the local branch of nontrivial solutions

Theorem 4.4 Let N = 3, 4, ..., 7 and f, g as in Theorem 4.2. Then

there exists a∗ > 0 small enough such that for all ε ∈ (0, a∗) the function

uε = εφ+ εψ(ε) defined above is a positive solution of the problem

−∆uε − η(ε)g(x)f(uε) = 0, x ∈ IRN

Proof For all y ∈ IRN , the solutions of the equation

−∆u− λg(x)f(u) = 0, x ∈ IRN

satisfies the following Serrin estimates from [33] (also [22, Theorem 8.17])

supBR(y)|u(x)| ≤ c∗{RN/p||u||Lp(B2R(y)) +R
2(q−N)

q ||λgf(u)||q/2}

≤ c∗{RN/2||u||L2(B2R(y)) +R
2(q−N)

q k∗λ||g||∞||u||q/2}

≤ c∗{RN/2 +R
2(q−N)

q k∗λ||g||∞}||u||H2

(4.3)

where the constant c∗ depends only on N and q. By Sobolev embedding

and [22, Theorem 8.17] q must satisfy: q ≥ 2, q > N and 2
q
≥ N−4

2N
. All

these conditions are true for 3 ≤ N ≤ 7. On the other hand, for εφ + εψε

have

ε∆φ+ ε∆ψε = η(ε)g(x)f(εφ+ εψε)

or

ε∆ψε =
η(ε)

ε
g(x)f(εφ+ εψε)− λ1g(x)φ.
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Applying [22, Theorem 8.17] on the last equation, for any y ∈ IRN we get

supBR(y)|ψε(x)| ≤ c∗R
N/2||ψε||L2(B2R(y))

+ c∗R
2(q−N)

q ||g{η(ε)
ε
f(εφ+ εψε)− λ1φ}||q/2

+ η(ε)ψε + ε2
∫ 1

0
(1− τ)f ′′(τε(φ+ ψε))(φ+ ψε)

2 dτ}||q/2

≤ c∗R
N/2||ψε||H2 + c∗R

2(q−N)
q {||g||∞|η(ε)− λ1|||φ||q/2

+ η(ε)||g||∞||ψε||q/2 + εsupτ∈(0,1)||f ′′(τε(φ+ ψε))||∞

× ||g||∞||ε(φ+ ψε)||∞||φ+ ψε||q/2}

≤ c∗R
N/2||ψε||H2 + c∗R

2(q−N)
q {||g||∞|η(ε)− λ1|||φ||H2

+ |η(ε)|||g||∞||ψε||H2 + c∗εsupτ∈(0,1)||f ′′(τε(φ+ ψε))||∞||g||∞

× ||φ+ ψε||H2 [R−N/2 + k∗R
2(q−N)

q η(ε)||g||∞]||ε(φ+ ψε)||H2}

by relation ( 4.3), where again 3 ≤ N ≤ 7 and c∗ depends only on N, q.

Since φ(x) > 0 for all x in the compact set BR0 , it follows that there

exists ε1 > 0 such that φ(x) + ψε(x) > 0, for all |x| ≤ R0 provided that

0 < ε < ε1. For the global positivity we assume that for 0 < ε < ε1 there

exists some x0 ∈ IRN such that uε < 0. Since uε(x) → 0 as x → ∞
it follows that there must be some x1, |x1| > R0 such that uε attains a

negative minimum at x1. But then −∆uε(x1) = λg(x1)f(uε(x1)) > 0, which
is imposible, and the proof is completed. �

5 Abstract Global Bifurcation Theory

In order to study the global bifurcation behavior of our problem we have to
handle two kinds of difficulties. The first one is related to the lack of com-
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pactness of the operator associated to the problem and the second with the
fact that the dependence on λ of the linear part of the operator is quite com-
plicated. To overcome these difficulties, it is necessary to reformulate some
of the standard theorems of bifurcation theory. For the sake of completeness
we recall the notions of admissible (noncompact) operators and their degree.

Let X be a Banach space and B : X 7−→ X be a continuous linear
operator. Then B is said to be admissible if λI−B is a Fredholm operator
for all λ ≥ 1. Let Ω be an open subset of X and F : Ω̄ 7−→ X a (nonlinear)
operator. F is said to be admissible if (i) F is twice continuously (Fréchet-)
differentiable on Ω̄, (ii) I − F is proper (that is (I − F )−1(D) is compact
if D is compact), and (iii) λI −F ′(x) is a Fredholm operator of index zero
for all λ ≥ 1 and x ∈ Ω.

A homotopy H : [a, b]× Ω̄ 7−→ X is said to be admissible if (i) it is twice
continuously differentiable on [a, b]× Ω̄, (ii) I −H is proper on [a, b]× Ω̄,
and (iii) Hu(λ, u) (the partial derivative with respect to u) is admissible of
all (λ, u) ∈ [a, b]× Ω̄.

The set of all admissible operators on Ω is denoted by F(Ω). A point
p ∈ X is a regular value of F if F ′(u) is surjective for all u ∈ F−1(p).

Under these assumptions N. Dancer [15] was able to extend the Leray-
Schauder degree to the class F(Ω) as follows

Definition 5.1 Suppose that Φ = I − F ∈ F(Ω) and p 6∈ Φ(∂Ω). If p
is a regular value of Φ, define the degree of F at u to be

deg(Φ,Ω, u) =
∑

u∈Φ−1(u)

(−1)v(u)

where v(u) is the sum of the multiplicities of the eigenvalues of F ′(u)
in (1,+∞). If p is not a regular value of Φ, choose a sequence of reg-
ular values {pn} such that pn → p in X and defined deg(Φ,Ω, p) =
limn→∞ deg(Φ,Ω, pn).

It is proved that the above introduced generalized degree satisfies all the
properties of Leray-Schauder degree. Moreover, the new definition agrees
with the old one when they both are defined. We refer to [15, 26].

Definition 5.2 Let F ∈ F(Ω) and u0 be an isolated fixed point of F .
Then we define the index of F at u0 as i(F, u0) = deg(I − F,B, u0),
where B is a ball centered at u0, with u0 the only fixed point of F in B.
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If u0 is a fixed point of F such that I − F ′(u0) is invertible, then u0 is
an isolated fixed point of F and

i(F, u0) = deg(I − F,B, u0) = deg(I − F ′(u0), B̂, 0),

where B, B̂ are sufficiently small balls centered at u0, 0 respectively.
Using the above degree we can state a generalized version of Rabinowitz’

global bifurcation theorem, which unifies two earlier adaptations appearing
in [6, 15].

Theorem 5.3 Let X be a Banach space and E = IR × X. Assume that
U is an open subset of E and G : U 7−→ X is a twice continuously
differentiable mapping such that (a) G(λ, 0) = 0, for all (λ, 0) ∈ U , (b)
the partial derivative Gu(λ, 0) is a linear compact operator with positive
principal eigenvalue λ1, such that the operator I−Gu(λ, 0) is invertible for
all 0 < |λ−λ1| < ε, (c) for any (λ, u) ∈ U the linear operator Gu(λ, u) is
admissible, (d) i(G(λ, .)) is constant on (λ1−ε, λ1) and (λ1, λ1+ε), such
that if λ1−ε < λ < λ1 < λ̄ < λ1+ε, then i(G(λ, .), 0) 6= i(G(λ̄, .), 0). Then
there exists a continuum Cλ1, in the λ−u plane of solutions of u = G(λ, u),
such that either
(i) Cλ1 joins (λ1, 0) to (µ, 0), where I −Gu(µ, 0) is not invertible, or
(ii) Cλ1 is not a compact set in E.

Proof Suppose by way of contradiction that Cλ1 is a compact set in E and

Cλ1 ∪ IR× {0} = {(λ1, 0)}. Since G ∈ C2(U) by Sard-Smale theorem there

is an open neighborhood V of Cλ1 (in E) such that V̄ ⊂ U and I −G|V̄
is proper. By [29, lemma1.1] there exist disjoint compact sets K1, K2 in

E such that K1 ∩ IR × {0} = {(λ1, 0)}, Cλ1 ⊂ K1, LU ∩ ∂V ⊂ K2 and

K1 ∪ K2 = LU ∩ V̄ , where LU stands for the closure (in U) of the set

{(λ, u) ∈ U : u 6= 0, u = G(λ, u)}. For the rest of the proof we follow [29],

except that we use the degree defined above and for the last part we use
condition (d). �

Remark 5.4 Here the linearized operator G(λ, 0) can be of the form λK(λ),
where K(λ) is a linear bounded operator of λ for λ ≥ λ0 for some λ0 > 0.
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6 Compactness of the Solution Set

To apply the abstract bifurcation theory developed in section 5 it is necessary
to characterise the solution set of the equation (1.1) λ

SΛ =: {(λ, u) ∈ [λ0,Λ)×H2 : u solution of (1.1)λ,with u ∈ (0, 1), λ0 > 0}.

Some of the ideas applied here were inspired from the papers [4, 20]. To
complete the aim of this section we need the following results

Lemma 6.1 Let ρ ∈ L2(IRN). Then the equation

−∆ψ − g−ψ = ρ, in IRn, (6.1)

admits a unique solution ψ ∈ H1. Moreover, if ρ ≥ 0, ρ 6≡ 0 in IRN , then
ψ(x) > 0 for all x ∈ IRN .

Proof Introduce the functional Ψ : H1 7→ IR defined by Ψ(u) =
∫
IRN ρudx

for all u ∈ H1. Since it is continuous and linear we can apply Riesz’ theory
to get the existence of a unique function ψ ∈ H1(IRN) such that∫

IRN
5ψ5 udx−

∫
IRN

g−ψudx =
∫
IRN

ρudx, for all u ∈ H1.

The positivity of ψ(x) is implied by substituting u by ψ− in the last
relation and then applying the strong maximum principle. �

Let M =: maxt∈[0,1] f(t). If we set ρ = Mg+, then (g+ been of bounded

support, can be considered as an Lp-function, p ≥ 1) we get a unique solution

ψ0 ∈ H1(IRN) of the equation ( 6.1). Since g+ 6≡ 0 then ψ0 > 0 in IRN .

Next lemma gives a “uniform” upper bound for the solutions of the equation

(1.1)λ in (0, 1); note that g+ ≡ g+
1 .

Lemma 6.2 For every solution u ∈ (0, 1) of (1.1)λ we have u < λ(ψ0 +C),
for some positive constant C.
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Proof By [25, lemma 2.3] we get the Newtonian potential formulation of the
solutions of (1.1)λ

u(x) = λ
∫ g(y)f(u)

|x− y|N−2
dy

= λ
∫ g1(y)f(u)

|x− y|N−2
dy + λ

∫ g2(y)f(u)

|x− y|N−2
dy

≤ λM
∫ g+(y)

|x− y|N−2
dy + λ

∫ g2(y)f(u)

|x− y|N−2
dy

(6.2)

The same formulation applied to equation ( 6.1), where ρ = Mg+ implies

ψ0(x) =
∫ g+(y)M + g−(y)ψ0(y)

|x− y|N−2
dy.

from where we obtain

0 < ψ0(x) ≤
∫
IRN

g+(y)M

|x− y|N−2
dy

≤ M ||g+||∞
∫

BR0

rN−1

rN−2
dr =

1

2
M ||g+||∞R2

0.

(6.3)

and

0 ≤ −
∫ g−(y)ψ0(y)

|x− y|N−2
dy ≤

∫ g+(y)M

|x− y|N−2
dy ≤ 1

2
M ||g+||∞R2

0.

Hence from equation ( 6.2), ( 6.3) we get the estimate

u(x) ≤ λψ0(x)− λ
∫ g−(y)ψ0(y)

|x− y|N−2
dy + λ

∫ g2(y)f(u)

|x− y|N−2
dy

≤ λψ0(x)− λ
∫ g−(y)ψ0(y)

|x− y|N−2
dy

≤ λψ0(x) + 1
2
λM ||g+||∞R2

0 ≡ λ(ψ0(x) + C). �

We also have the following a priori estimate for the H2-norm of all solutions
of (1.1)λ lying in (0, 1).
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Lemma 6.3 There exist Λ0 > 0 such that for all solutions (λ, u) of (1.1)λ

lying in (0, 1) with λ > Λ0, we have

||u||H2 ≤ {λ2(k∗)2||g||2∞ + 1}λ2M
∫
IRN

g+(x)(ψ0(x) + C)dx. (6.4)

Proof First we prove that there exists l < 1 such that 0 < u(x) < l for

all x ∈ IRN . Indeed, by (G) we have that −∆u = λg(x)f(u) ≤ 0 for all

|x| > R0, i.e. u is subharmonic for |x| > R0. The Hadamard’s three circles

theorem [28, pg 131] implies that sup{u(y) : |y| = r} ≤ sup{u(y) : |y| = R0}
for all r > R0. Hence u(x) ≤ sup{u(y) : |y| = R0} =: l for all x ∈ IRN .

Therefore there exists Λ0 such that for all (λ, u) solutions of (1.1)λ with

0 < u(x) < 1, f satisfies the condition u ≤ Λ0
k
σ0
f(u) i.e. u ≤ −λg2f(u),

where λ > Λ0 Then we have that

||u||H1 = λ
∫
g1f(u)udx+

∫
{λg2f(u) + u}udx

≤ λ2M
∫
g+(x)(ψ0(x) + C)dx.

Therefore for the H2-norm we get

||u||H2 ≤ λ2
∫
g2f 2(u)dx+ ||u||H1

≤ λ2(k∗)2||g||2∞
∫
|u|2dx+ ||u||H1 ≤ {λ2(k∗)2||g||2∞ + 1}||u||H1

≤ {λ2(k∗)2||g||2∞ + 1}λ2M
∫
g+(x)(ψ0(x) + C)dx. �

Theorem 6.4 SΛ is a compact subset of [λ0,Λ]×H2(IRN).

Proof Relation ( 6.4) implies that for all (λ, u) ∈ SΛ

||u||H2 ≤ {Λ2(k∗)2||g||2∞ + 1}Λ2M
∫
IRN

g+(x)(ψ0(x) + C)dx =: K∗. (6.5)

So SΛ is bounded in [λ0,Λ]×H2(IRN). Hence for any sequence {λn, un}
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of SΛ, there is a subsequence, denoted again by {λn, un}, such that un ⇀
u, in H2(IRN) and λn → λ in IR. Sobolev embeddings imply that

un ⇀ u, in Lp(IRN) for all p ≥ 1 (6.6)

Also the embedding H2(IRN) ↪→ Lp(Br0), p ≥ 1 is compact, so we have

||un − u||Lp(Br0 ) → 0, as n→∞. (6.7)

Then using Theorem 2.3 we obtain

||un − u||H2 ≤ ||∆un −∆u||2 + c ||un − u||2,λ

≤ |λ2
n − λ2|

∫
g2f 2(un)dx+ λ2

∫
g2|f 2(un)− f 2(u)|dx

+
∫
|g1un(λnf(un)− λf(u))|dx

+ λ
∫
|g1f(u)(un − u)|dx+ |λn − λ|

∫
|g2f(un)un|dx

+ λ
∫
|g2f(u)(un − u)|dx+

∫
|g2un(f(un)− f(u))|dx

+ λ
∫
|g2un(un − u)|dx+ λ

∫
|g2u(un − u)|dx

So relations ( 6.5), ( 6.6), ( 6.7) imply

||un − u||H2 ≤ 2Λ(k∗)2K∗||g||2∞|λn − λ|+ Λ2k∗||g||∞
∫
|un − u|ψ0dx

+ Λ2k∗||g||∞C
∫
|un − u|dx

+ ||g1||∞
∫

Br0

(ψ0 + C)|λnf(un)− λf(u)|dx

+ Λ2k∗||g1||∞
∫

Br0

(ψ0 + C)|un − u|dx

+ |λn − λ|k∗K∗||g||∞ + c1Λ
2||g||∞

∫
(ψ0 + C)|un − u|dx→ 0

and the proof is completed. �

21



7 The Global Continuation

In this section we prove that the branch of positive solutions of (1.1)λ ob-
tained in Section 4 can be continued for all λ > λ1. For the rest of this
section we assume that f satisfies the additional hypothesis

(F2) there exists a smooth function f1 : IR 7−→ IR such that f(u) =

u + f1(u), where f1 satisfies the following conditions f1(0) = f ′1(0) = 0,

f ′1, f
′′
1, f

′′′
1 ∈ L∞(IR) and there is k1 > 0 such that |f ′1(u)| ≤ k1|u|.

Define the operator G : E =: [λ0,+∞)×H2(IRN) 7−→ H2(IRN) by

G(λ, u) =: λL−1(λ)g1(x)u+ λL−1(λ)g(x)f1(u)

Then equation (1.1)λ can be written

u = G(λ, u) ≡ K(λ)u+R(λ, u)

where K(λ) =: λL−1(λ)g1(x) and R(λ, u) =: λL−1(λ)g(x)f1(u) the lin-

ear and nonlinear part of the operator G(λ, u) respectively. Next lemma

describes the properties of the operator G.

Lemma 7.1 Let N = 3, 4, 5 and f, g satisfy hypothesis (F), (F1),
F2) and (G) respectively. Then (i) G is twice continuously differentiable
with G(λ, 0) = 0 and Ru(λ, 0) = 0, for all λ, (ii) the partial derivative
Gu(λ, 0) is a linear compact operator with positive principal eigenvalue λ1

and there exists ε > 0 such that the operator I −Gu(λ, 0) is invertible, if
0 < |λ1 − λ| < ε.

Proof (i) The proof follows a standard procedure which is omitted.

(ii) We have that the operator

Gu(λ, 0) ≡ λL−1(λ)g1 : H2(IRN) 7−→ H2(IRN)

is linear with eigenvalue 1 at λ = λ1 by lemma 3.1. Hence there exists

ε > 0 sufficiently small such that Gu(λ, 0) has no other eigenvalue for
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0 < |λ1 − λ| < ε i.e. the operator I − Gu(λ, 0) is invertible. As far as

the compactness of Gu(λ, 0) is concerned, let {un} be a bounded sequence

in H2(IRN). By Rellich - Kontrachov Theorem (see [1]) for any R > 0 and

any N ≥ 1 the embedding H2(IRN) ↪→ L2(BR) is compact. Hence there

is a subsequence denoted again by {un} converging in L2(BR). Choose R

large enough so that supp(g1) ⊂ BR. Then we have

||Gu(λ, 0)un −Gu(λ, 0)um||H2 = λ||L−1(λ)g1un − L−1(λ)g1um||H2

≤ λ||L−1(λ)|| ||g1(un − um)||L2(BR)

≤ λ||L−1(λ)|| ||g1||∞ ||un − um||L2(BR)

and the compactness of Gu(λ, 0) is proved. �

The following notation is going to be used next. Let r∗ > 0 (to be fixed
later). Then we define

g∗(x) =:

{
g(x), for |x| ≤ r∗
0, otherwise

and g∞ =: g(x)− g∗(x).

Lemma 7.2 Let N ≥ 1 and f, g satisfy conditions of Lemma 7.1. Then
µI−Gu(λ, u) is a linear Fredholm operator of index zero for all (λ, u) ∈ E
and µ ≥ 1.

Proof Let r∗ > 0 (to be defined later). Then we have the following operator
decomposition

µI −Gu(λ, u) = µI − λL−1(λ)g1(x)− λL−1(λ)g(x)f1
′(u)

= µI − λL−1(λ)g1(x)− λL−1(λ)g∗(x)f1
′(u)

− λL−1(λ)g∞(x)f1
′(u) ≡ F (µ, λ, u) +N(λ, u)

where
F (µ, λ, u) =: µI − λL−1(λ)g1(x)− λL−1(λ)g∗(x)f1

′(u),
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and
N(λ, u) =: λL−1(λ)g∞(x)f1

′(u).

Following similar ideas as in Lemma 7.1 (ii) we can prove that the operator

F1(λ, u) =: −λL−1(λ)g∗(x)f1
′(u),

is compact on U . Hence the operator F (µ, λ, u) is Fredholm of index zero

for all µ ≥ 1 and (λ, u) ∈ U (see [40, pg 368]). According to [32, Theorems
3.1,3.2], to complete the proof we must show that

||N(λ, u)||H2 < 1.

Indeed, we have

||N(λ, u)||H2 = inf ||v||H2=1 ||λL−1(λ)g∞(x)f1
′(u)v||H2

≤ inf ||v||H2=1 λ||L−1(λ)|| ||g∞(x)f1
′(u)v||L2

= inf ||v||H2=1 λ ||L−1(λ)|| ||g∞(x)f1
′(u)v||L2(B∗

r∗ )

≤ inf ||v||H2=1 λ k1 ||L−1(λ)|| ||g∞||L∞(B∗
r∗ )
||uv||L2(B∗

r∗ )

By Hölder inequality we have that

||uv||L2(B∗
r∗ )
≤ ||u||Lσ(B∗

r∗ )
||v||Lρ(B∗

r∗ )
,

where σ, ρ ≥ 1 and 1
2

= 1
σ

+ 1
ρ
. The embedding H2(IRN) ↪→ Lq(IRN), is

continuous for 1 ≤ q < +∞, if N ≤ 4 and for 1 ≤ q < 2N
N−4

, if N ≥ 5.

Then by choosing ρ ∈ [1, 2) and σ ≥ 1 so that 1
2

= 1
σ

+ 1
ρ

we have that

H2(IRN) ↪→ Lσ(IRN), H2(IRN) ↪→ Lρ(IRN). Hence

||uv||L2(B∗
r∗ )
≤ ||u||H2(B∗

r∗ )
||v||H2(B∗

r∗ )
.

Therefore we get

||N(λ, u)||H2 ≤ λ k1 ||L−1(λ)|| ||g∞||L∞(B∗
r∗ )
||u||H2(B∗

r∗ )
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where for any λ > 0, ||L−1(λ)|| is bounded by Lemma 3.3. Hence for all
λ > 0 we can find r∗ large enough so that

||N(λ, u)||H2 ≤ 1

and the proof is completed. �

Theorem 7.3 Let N = 3, 4, 5 and f, g satisfy conditions of Lemma 7.1.
Then there exists a continuum of solutions Cλ1 of (1.1)λ in the (λ, u) -
plane emanating from (λ1, 0) such that either
(i) Cλ1 joins (λ1, 0) to (µ, 0), where I −Gu(µ, 0) is not invertible, or
(ii) Cλ1 is not a compact set in E.

Proof Since λ1 is a principal eigenvalue of K(λ) = Gu(λ, 0), there is

an ε > 0 such that λ1 is the only eigenvalue of K(λ) in the interval

(λ1−ε, λ1+ε) which in addition is simple. Hence for any t1 ∈ (λ1−ε, λ1+ε)

and t2 ∈ (λ1 − ε, λ1 + ε) we can easily see that

1 = i(G(t1, .), 0) 6= i(G(t2, .), 0) = −1.

Combining this fact along with the results of lemmas 7.1, 7.2, we have
that all hypothesis of the global bifurcation theorem 5.3 are satisfied. Thus
there exists a continuum Cλ1 of nonzero solutions of (1.1)λ in E satisfying
one of the alternatives (i) or (ii). �

Cλ1 has a connected subset C+
λ1
⊂ Cλ1 − {(η(ε), uε) : −ε0 ≤ ε ≤ 0} for

some ε0 > 0 such that C+
λ1

also satisfies one of the above alternatives.

Finally, it is clear that close to the bifurcation point (λ1, 0), C+
λ1

consists

of the curve ε→ (η(ε), uε), 0 < ε ≤ ε0.

We now investigate the nature of solutions lying on C+
λ1

. First, we show

that solutions uλ of (1.1)λ on the branch C+
λ1

remain strictly in the

open interval (0, 1) in the L∞ - norm for all λ > λ1. For this it is

necessary to prove that solutions which are close in IR×H2 are also close

in IR× L∞(IRN); since H2(IRN) does not embed in L∞(IRN), for N > 4,

this is not immediately obvious.
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Lemma 7.4 Let N = 3, 4, ..., 7 and f, g satisfy conditions of Lemma 7.1.
Suppose that uλ ∈ H2 is a solution of (1.1)λ. Then there exist constants
K1 and K2 such that

|uλ(x)− uµ(x)| ≤ K1 ||uλ − uµ||H2 + K2|λ− µ| for all x ∈ IRN

whenever µ is close to λ and uµ ∈ H2(IRN) is a solution of (1.1)µ.

Proof Introduce the operator Λ : IR 7−→ H2(IRN) by Λ(λ) =: uλ. Then we
have that

−∆(uλ − uµ) = g{λf(uλ)− µf(uµ)} =: h.

By Sobolev imbeddings h ∈ Lp for all p ≥ 1. So by [22, Theorem 8.17] for

any x ∈ IRN there exists C = C(p,N, ||g||∞) > 0 such that

|Λ(λ)− Λ(µ)| = |uλ(x)− uµ(x)| ≤ supy∈B1(x) |uλ(y)− uµ(y)|

≤ C {||uλ − uµ||Lq(B2(x)) + ||g [λf(uλ)− µf(uµ) ]||q}.
(7.1)

where we take p = q/2 > 1 and q > N . For the last term of the relation

( 7.1) we have the following estimate

||g [λf(uλ)− µf(uµ) ]||q/2 ≤

≤ |λ− µ|||gf(uµ)||q/2 + ||λg[f(uλ)− f(uµ)]||q/2 ≤

≤ λ supτ∈(0,1) ||f ′(τuλ + (1− τ)uµ)||∞||g||∞||uλ − uµ||H2+

+ |λ− µ|k∗||g||∞||uµ||H2 ≤

≤ K1 ||uλ − uµ||H2 + K2|λ− µ|

(7.2)

where K1 and K2 depend on k∗, f ′, λ, ||g||∞, ||uµ||H2 This relation is true

for N−4
2N

≤ 2
q

and q
2
≤ 1. It is easy to see that all the above restrictions on

q are satisfied for N < 8. So from relations ( 7.1), ( 7.2) we have

supy∈B1(x) |uλ(y)− uµ(y)| ≤ K1 ||uλ − uµ||H2 + K2|λ− µ| (7.3)

Therefore the operator Λ is continuous in L∞(IRN), which completes the

proof of the lemma. �
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Theorem 7.5 Suppose f, g satisfy conditions of Lemma 7.1. Then 0 <
u(x) < 1 for all x ∈ IRN whenever (λ, u) ∈ C+

λ1
.

Proof For the proof we follow the ideas developed in [11, Theorem 4.6].

Suppose that there exists (λ, u) ∈ C+
λ1

such that u(x0) < 0 for some x0 ∈ IRN .

By Theorem 4.4, u(x) > 0 for all x ∈ IRN whenever (λ, u) ∈ C+
λ1

is close to

(λ1, 0). Moreover, by Lemma 7.4 points in C+
λ1

which are close in IR×H2

must also be close in IR × L∞(IRN). Hence there must exist (λ0, u0) ∈ C+
λ1

such that u0(x) ≥ 0 for all x ∈ IRN but u0(x0) = 0 for some x0 ∈ IRN and in

any neighbourhood of (λ0, u0) we can find a point (λ̂, û) ∈ C+
λ1

with û(x) < 0

for some x ∈ IRN . Let B denote any open ball containing x0. Then

−∆u0(x)− λg(x)
f(u0(x))

u0(x)
u0(x) = 0 on B and u0(x) ≥ 0 on ∂B

It follows from the Serrin Maximum principle (see [21]) that u0 ≡ 0 on B.

Hence u0 ≡ 0 on IRN . Thus we can construct a sequence {(λn, un)} ⊆ C+
λ1

such that un(x) > 0 for all n ∈ N and x ∈ IRN , un → 0 in H2 and

λn → λ0. Let vn = un

||un||H2
. Since un = K(λn)(un) +R(λn, un), then

vn = K(λn)(vn) +
R(λn, un)

||un||H2

.

Since K(λ) is compact, there exists a subsequence of {vn}, again denote

by {vn}, such that {K(λn)(vn)} is convergent. Since limn→∞
R(λn,un)
||un||V

= 0,

{vn} is convergent to v0, say, and v0 = K(λ0)(v0). Since vn ≥ 0 for all

n ∈ N , v0 ≥ 0. Since by lemma 3.1 λ1 is the only positive eigenvalue

corresponding to a positive eigenfunction, it follows that λ1 = λ0. Thus

(λ0, u0) = (λ1, 0) and this contradicts the fact that every neighbourhood

of (λ0, u0) must contain a solution (λ̂, û) ∈ C+
λ1

with û(x) < 0, for some
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x ∈ IRN . Hence u(x) > 0 for all x ∈ IRN whenever (λ, u) ∈ C+
λ1

.

In a similar way we can prove that u(x) < 1 for all x ∈ IRN whenever

(λ, u) ∈ C+
λ1

(we work with the function v0 = 1 − u0) and so the proof is
complete. �

Following arguments very similar to the ones developed above we have
the next result.

Corollary 7.6 C+
λ1

contains no points of the form (λ, 0), where λ 6= λ1, i.e.
C+

λ1
must connect (λ1, 0) to ∞ in IR×H2.

Next we show that C+
λ1

is bounded below in λ.

Lemma 7.7 There exists λ∗ > 0 such that λ > λ∗ whenever (λ, u) ∈ C+
λ1

.

Proof Suppose u ∈ H2 is a solution of (1.1)λ, (1.2). Multiplying equation

(1.1)λ by u, and integrating over IRN we get∫
IRN

| 5 u|2dx = λ
∫
IRN

gf(u)udx ≤ |λ|k∗||g||∞ ||u||22,≤ |λ|K1||g||∞ ||u||2H2 ,

where K1 is a constant. If λ = 0 then || 5 u||2 = 0 which combined with

the fact that lim|x|→∞ u = 0 implies that u ≡ 0, which contradicts with

lemma 7.5. Negative λ are excluded because of lemma 7.4 and the proof
is completed. �

As an immediate consequence of the previous results we can give the
following complete description of the continuum C+

λ1
.

Theorem 7.8 Suppose that N = 3, 4, 5 and g, f as in Lemma 7.1.
Then there exists a continuum C+

λ1
⊆ IR ×H2 of solutions of (1.1)λ, (1.2)

bifurcating at (λ1, 0) such that
(i) if (λ, u) ∈ C+

λ1
then λ > 0 and 0 < u(x) < 1 for all x ∈ IRN ,

(ii) {λ : (λ, u) ∈ C+
λ1

for some u ∈ H2} ⊇ (λ1,∞]. In particular, (1.1)λ,
(1.2) has a nontrivial solution u ∈ H2 such that 0 < u(x) < 1 for all
x ∈ IRN whenever λ > λ1.
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