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1. I N T R O D U C T I O N  

In this paper we shall prove the existence of solutions of  the reaction-diffusion equation 

-Au(x)  = 2g(x)f(u(x)) for x e NN (1.1) 

0 <_ u(x) _< l (1.2) 

arising in population genetics (see, e.g. Ill). In (1. l) the unknown function u represents 
the relative frequency of  an allele population A 1 which is in competition with another 
allele population A 2 and so we are interested in solutions such that 0 _< u _< 1. The real 
parameter 2 > 0 is the reciprocal of the diffusion coefficient. 

We shall assume throughout that g: R N - ,  [R is a smooth function which takes on both 
positive and negative values, the sign of  the function g indicating whether the A 1 allele is 
advantaged (where g(x) > 0) or disadvantaged (where g(x) < 0) over a rival allele A 2 at 
the point x. 

We also assume throughout that f :  [0, 1] ~ ~ satisfies 

f e C ~ [ O ,  1]; f ( O ) = f ( l ) = O ;  f ( u ) > O  f o r O < u <  1; f ' ( O ) > O .  

These properties of  f correspond to the fact that the fitness of  the gene A1A 2 is 
intermediate between those of  the genes A 1A ~ and A 2 A  2 . Although we are interested only 
in solutions u satisfying 0 _< u _< 1, our arguments will occasionally involve f (u)  with 
u ¢~ [0, 1]. We shall assume throughout t ha t f (u )  - 0 whenever u ~ [0, 1]; with its domain 
of definition so extended f is a nonnegative Lipschitz continuous function on ~. 

It is clear that u - 0 and u - 1 are solutions of  (1.1), (1.2). These solutions correspond 
to the nonoccurrence of  either the A~ or the A 2 allele. Nonconstant solutions, on the other 
hand, correspond to the occurrence of  both alleles in the population. If  either allele has 
a significant overall advantage (which might be measured in terms of  integrals involving 
g or g÷) and diffusion is large, then the dominant allele will diffuse rapidly and wipe out 
its competitor; thus, if one allele has a marked advantage, we would expect nonconstant 
solutions only when diffusion is small, i.e. 2 is large. On the other hand, if neither allele 
has a marked overall advantage, then we may expect nonconstant solutions no matter how 
large the diffusion. Our main results, Theorems 4.5 and 4.6, are consistent with the 
preceding remarks. 
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The existence of  solutions of  (1.1) is well understood in the case where the domain is 
bounded and u satisfies Dirichlet or Neumann boundary conditions (see, e.g. [1, 2]). The 
situation is more complex in the case of  the whole space E:v (see [2-8]). Results were 
obtain in [2] under the hypothesis that g is negative at infinity and it was shown that the 
nature of  the existence results for the case N >_ 3 was different from the case N = 1, 2. 
Some of the solutions obtained correspond to bifurcation from the trivial solution u = 0 
and such bifurcations occur at principal eigenvalues, i.e. eigenvalues corresponding to a 
positive eigenfunction of  the linearized problem 

-Au(x)  = ~.g(x)f'(O)u(x) for x E [~N. (1.3) 

The existence of  positive principal eigenvalues of (1.3) was proved in [4] under the 
hypotheses that 

(i) g is negative and bounded away from zero at infinity, or 
(ii) N _> 3 and [g(x)[ _< K(1 + [x[2) ~x for some constants K > 0 and ct > 1. 

These results were generalized and improved by Allegretto in [3] under the hypothesis that 
N >_ 3 and g+ ~ LN/2(•N), where g+(x) = max[g(x), 0}. 

In this paper we shall prove results about the existence of solutions of  (1.1) in the case 
where N _> 3 and either g or g+ is small at infinity, e.g. in LN/2(~N). Our proofs are based 
on the construction of  appropriate sub and supersolutions some of  which are suggested by 
the ideas introduced by Gamez in [7]. Our results, however, improve those of  Gamez and 
also of  [6] for the case of limlx L ~ +~o u(x) -- 0 and extend those Brown and Stavrakakis [5] 
for the case of  limlx I ~ +~ u(x) = c where 0 < c < 1. 

The plan of  the paper is as follows: in Section 2 we describe the results we require on 
principal eigenvalues and eigenfunctions when g+ is in LN/2(~N); in Section 3 we discuss 
how sub- (super-) solutions can be combined to produce new sub- (super-) solutions 
and in Section 4 we prove our existence results by constructing appropriate sub and 
supersolutions. 

Notation: For simplicity we use the symbol 11. lip for the norm [1. [[Lpt~N). 

2. PRINCIPAL EIGENVALUES AND EIGENFUNCTIONS 

Throughout  this section we shall assume only that g is a bounded measurable function. 
We do so as, although g is assumed smooth in all the other sections, we require in Section 4 
results on the principal eigenvalues and eigenfunctions of  the discontinuous function g.n. 

First, we consider the case where ~ is a bounded region with smooth boundary. It was 
proved by Manes and Micheletti in [9], using a variational approach, that the problem 

-Au(x)  = ~.g(x)u(x) for x e ~;  u(x) = 0 for x e OO 

has a positive principal eigenvalue 21(fl ) and a positive principal eigenfunction ¢1(~). 
In general ~1(~) satisfies the equation only in the weak sense but, if g is smooth 
(i.e. g e C~(O)), then ¢1(~) is a classical solution. Also 21(~) has the variational 
characterisation 
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If  u e n 6 t s , ) ,  

f g+ u 2 dx < _N/2 - -  g +  ld 2 N / N - 2  

LJ f l  

-</dig+ IIL"~(~, Ilvuil~e(a), 
where k is the embedding constant of  H~(f~) into L 2 N / N - 2 ( ~ ' ) )  and is independent of  f~ 
(see [10, p. 443). Hence 21(f~) -> 1/kllg+[[LN/2(~). 

If B R = {X • ~N: Ixl -< R], we shall denote 21(BR) by 21(R). It follows from the 
variational characterisation that 21(R) is a decreasing function of  R. Moreover, if 
g+ • LN/Z(~N), it follows that limR~=Al(R) --> 1/k]lg+llN/2 > O. 

In [3] Allegretto proves that, if g+ e LN/2(~N), then the equation 

-Au(x)  = 2g(x)u(x) for x • RN; lim u(x) = 0 

has a positive principal eigenvalue 2" with corresponding eigenfunction ~ such that 
lim N .®  ¢(x) --- 0. In fact Allegretto assumes that g is smooth but it is straightforward to 
check that all his arguments apply in the case where g is only bounded and measurable 
except that ~ will now be only a weak solution instead of  a classical solution of  the 
equation. In addition we have the variational characterisation of  2",  viz., 

2" = infIf~N [ V u l 2 d x : u • C ~ ( ~ N ) '  l~,~ gu2 dx = 11 

and it follows easily that 2* = limR~+®).l(R). 

3. C O N S T R U C T I O N  OF SUB- (SU PE R- )  S O L U T I O N S  

Let t) C •N be a bounded region with smooth boundary and consider the boundary 
value problem 

-Au(x)  = 2g(x)f(u(x)) for x e f~; u(x) = 0 for x • Of~. (3.1) 

If we fix ;t > 0, we may choose c > 0 such that u ~ 2g(x)f(u) + cu is an increasing 
function for 0 _< u _< 1 for every x • ~.  Let h(x, u) = 2g(x)f(u) + cu; then h(x, O) - 0 
and h(x, 1) -= c. 

We may rewrite (3.1) as 

-Au(x)  + cu(x) = h(x, u(x)) for x • f~; u(x) = 0 for x e Of 2. (3.2) 

It is well known that u is a solution of  (3.2) if and only if u is a solution of  the integral 
equation 

u(x) = ~ t'n G(x, y)h(y,  u(y)) dy, (3.3) 

where G is the Green's function of  - A  + c with Dirichlet boundary conditions. Moreover 
equation (3.3) may be written in operator form as 

u = KN(u), 
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where K:  C(~)  --, C~(~) is the compact linear integral operator with kernel G (see Amann  
[ l i d  and N:  C(~) --, C(~) is the Nemytskii operator associated with h. Since h(x, .) is 
increasing, it follows easily that N is an increasing operator,  i.e. Nu~ >_ Nu2 whenever 

1/1 ~ u2 .  
We say that u e Cz(~) is a subsolution of  (3.2) (or equivalently of  (3.1)) if 

-Au(x )  + cu(x) <_ h(x, u(x)) for x e f~; u(x) <_ 0 for x e Of~ 

and that u e C(~) is a subsolution of (3.3) if 

u(x) <_ ( G(x, y)h(y, u(y)) dy for all x e f~, i.e. u _< KNu . 
J f~ 

Supersolutions are defined in a similar manner.  
It is well known, for both (3.2) and (3.3), that, if u is a subsolution and ~ is a 

supersolution such that _u _< a, then there exists a solution u such that u _< u _< a. In the 
next section we shall make use of  the ideas that the maximum of  subsolutions is a 
subsolution and that the minimum of supersolutions is a supersolution. Although this is 
"well known" ,  we could not find what is required for our purposes in the literature and 
so we now prove the necessary results. 

LEMMA 3.1. Suppose that _u I and u 2 are subsolutions of  (3.2). Then _ul, u 2 and max {_u~, _U2} 
are subsolutions of  (3.3). 

Proof. We have that 

-Au1(x) + c ul(x) _< h(x, g~(x)) for x e f2; g~(x) _< 0 for x e Of L 

Let v(x) = In G(x, y)h(y, u l(y) ) dy. Then 

-Av(x )  + cv(x) = h(x, ul(x)) for x e f~; v(x) = 0 for x ~ Of L 

Thus, by the maximum principle, _Ux(X) -< v(x) for x e ~2, i.e. 

-Ul(X) -< I G(x, y)h(y, ul(y)) dy for x fi 
O fl 

and so u 1 is a subsolution of  (3.3). 
Let u = max{u1, uz}. Then u _> _u~ and so KN_u _> KNu~. But, since _u 1 is a subsolution of  

(3.3), u~ _< KNg I and so u~ _< KNu. A similar argument shows that u 2 _< KNu. Hence 
u = max{u~, Uz} _< KNu and so u is a subsolution of  (3.3). • 

It is easy to see that an analogous result holds for supersolutions, so that the minimum 
of two supersolutions is a supersolution. 

We can also obtain sub and supersolutions of  (3.3) by pasting together sub and 
supersolutions of  (3.2). We will denote by (3.2)R and (3.3)R the equations (3.2) and (3.3) 
when f~ = BR. 
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LEMMA 3.2.  Suppose R 1 < R z. 
(i) I f  _u _> 0 is a subsolut ion  o f  (3.2)R, with _u(x) = 0 when Ix[ = R~ and _u(x) - 0 when 

R1 -< Ixl --- R~, then u is a subsolut ion o f  (3.3)R2. 
(ii) I f  0 _< fi ___ 1 on BR2, a ----- 1 when [xl -< R1 and a is a supersolut ion to (3.2) on 

g l  < Ixl < R2 with t~(x) = 1 when Ixl = e l ,  then a is a supersolut ion o f  (3.3)R2. 

Proof. (i) Let  G(x, y) denote  the Green ' s  funct ion of  - A  + c with Dirichlet b o u n d a r y  
condit ions on Bg2 and define 

(~ 

v(y) = ~ G(x, y)h(y, u_(y)) dy. 
J BR 2 

Clearly v(x) >_ 0 for  all x e BR2 and so _u(x) _< v(x) for  R1 -< Ix[ _< R2. 
Since _u is Lipschitz cont inuous ,  it fol lows that  y --' h(y, u_(y)) lies in C~(BR2). Hence  

v ~ C2+~(BR~) and we have 

But 

- A v ( x )  + cv(x) = h(x, u(x)) 

-A_u(x) + c_u(x) _< h(x, _u(x)) 

f o r x e B R 2 ;  v(x)=O for  Ix[ = R 2 .  

f o r x ~ B R l ;  u ( x ) = 0  for  Ix[ = R ~  

and so it fol lows f rom the m a x i m u m  principle that  u(x) _< v(x) for  [x[ _< R 1 . Hence  _u is 
a subsolut ion for  (3.3)R2. 

(ii) Let w(y) = ~BR G(X, y)h(y, ~(y)) dy. 
Then - A w ( x )  + cw(x z) = h(x, a(x)) <_ h(x, 1) _< c for  x ~ BR2 and w(x) = 0 for  Ix[ = R2. 

It fol lows easily f rom the m a x i m u m  principle that  w(x) _< 1 for  all x ~ BR2 and so 
~(x) >_ w(x) for  Ix] _< R 1 . 

By using the m a x i m u m  principle as in (i), it can also be shown that  tT(x) __ w(x) for  
g l  -< [x[ _< R 2. 

Hence  a is a supersolut ion of  (3.3)R2. • 

Finally in this section we show how sub and supersolut ions on a rb i t ra ry  large balls give 
rise to solutions on all o f  R N. 

LEMMA 3.3. Suppose  tha t  u, fi: fR N ~ R are cont inuous  funct ions such that  u(x) _< t2(x) 
for  all x ~ A N and _U[BR, a[BR are, respectively, a subsolut ion and a supersolut ion o f  
(3.3)R for  all large R. Then  there exists a solution o f  

- A u ( x )  = h(x, u(x)) for  x e R N (3.4) 

such that  u(x) _< u(x) <_ a(x) for  all x e ~ ' .  

Proof. Since _u and a provide  sub and supersolut ions for  (3.3)R, there exists a solut ion 
u o f  (3.3)R and hence o f  (3.2)R such that  _u(x) _< u(x) <_ a(x) for  all x e B R . Let  [R,} be a 
sequence such that  l im .~  +.o R~ = oo and  let u,  denote  the solut ion cor responding  to 
(3.2)Rn. Then s tandard  a priori  est imates and a diagonal izat ion a rgumen t  show that  there 
exists a subsequence o f  [u,} which converges  to a solut ion u o f  (3.4) in C 2÷~ on every 
bounded  subset  o f  IR N. Moreover ,  since _u(x) _< u,(x) <_ a(x) for  all x e BR,,  it fol lows 
that  _u(x) _< u(x) <_ a(x) for  all x e ~N. • 
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4. EXISTENCE OF SOLUTIONS 

Throughout  this section we shall assume that g+ ~ LN/E([R N) so that 

2* = lim A I ( R ) > 0 .  
R ~ + a o  

We first prove the existence of  nonconstant solutions of  (1.1), (1.2) satisfying 

lim u(x) = 0 
X~oO 

by constructing appropriate sub and supersolutions. We begin by considering subsolutions. 

LEMMA 4.1. If 2 > 2",  then there exists _u >_ 0 (_u ~ 0) with compact support such that u 
is a subsolution of  

-Au(x)  = Ag(x)f(u(x))  f o r x e B R ;  u(x) = 0 for x e OBR (4.1)R 

for all sufficiently large R; moreover, _u may be chosen arbitrarily small. 

Proof .  We may choose Ro such that ).l(R0) < 2. Consider the eigenvalue problem 

-Au(x)  - 2g(x)f ' (O)u(x) = pu(x)  for x e BR0, 

u(x) = 0 for Ix[ = g o. 

Since 21(Ro) < 2, the above problem has a principal eigenvalue p < 0; we denote the 
corresponding positive principal eigenfunction by ~, where supx ~ nRo ~u(x) = 1. 

We now show that there exists eo > 0 such that e~, is a subsolution of  (4.1)Ro whenever 
0 < e < e  o . 

Since 

-A(e~(x))  = Ag(x)f'(O)e~(x). + pe~,(x) 

and 

)tg(x)f(eq/(x)) = ,1.g(x)e.~(x)f'(~(x)) 

where 0 < ~(x )<  e, it follows that egt(x) is a subsolution of  (4.1)R0 provided that 
p < )tg(x)(f '(~(x)) - f ' (0 ) )  for all x e BR2. Since p < 0 a n d f '  is continuous at 0, clearly 
there exists e0 > 0 such that eq/is a subsolution of  (4.1)Ro whenever 0 < e < e0. 

If  we define 

(e~u(x) for [xl < Ro 
u(x) 

0 for Ix[ _> Ro, 

then by Lemma 3.2 _u is a subsolution of (4.1)R for all R > R o provided that 
0 < e < e 0 .  • 

The next three lemmas show how supersolutions can be constructed under various 
hypotheses. The first is an immediate consequence of  Lemma 3.2 and the fact that 1/r N-2 
is a harmonic function for N _ 3. 
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LEMMA 4.2. Suppose that g is negative at infinity, i.e. there exists Ro > 0 such that 
g(x) < 0 whenever Ixl > no. Then the function 

IloN_2 f°r  Ix[ -< R° 
a(x )  = 

~. IxlN_ 2 for Ixl ----- go 

is a supersolution of  (3.3)R for all R ___ R o. 

If we assume that g+ has appropriate power decay at infinity, we can construct a 
supersolution with power decay. 

LEMMA 4.3. Suppose there exists K > 0 and o~ > 1 such that g+(x) < K/(1 + ]x[2) ~' for all 
x ~ ~N. Then, for all 2 > 0, there exists fi > 0 such that 

-ArT(x) _> 2g(x)f(gl(x)) for all x 6 ~N (4.2) 

and [a(x)[ _< C[x[ -~ where C > 0 is a constant and fl = N - 2 i f N  < 2a and fl = 2a - 2 
if N > 2a. 

Proof. Consider the equation 

-Au(x)  = g+(x) x ~ [~N. (4.3) 

It follows from [12], Lemma 2.3 that equation (4.3) has a solution 4, such that 

l g+(y) , 
~)(X) = C u Ix 7 - ~ - - 2  cly, j ~N 

where CN = [N(N-  2)tONI -~ and WN is the volume of the unit ball in ~N. Since 
[g+(y)[ _< K/[y] z~ at oo, we have [~0(x)[ _< C[x[ -~ where ,8 = N -  2 if N_< 2a and 
/ ~ = 2 c ~ - 2 i f N > 2 a .  

We now show that t7 = kq~ satisfies (4.2) provided that k is chosen sufficiently large. 
Since, for all x e R N, -A(k0(x))  = kg+ (x) and 2g(x)f(kO(x)) <_ 2g+ (x)M where M = 
SUpu ~. 0 f(u(x)), it follows that t~ = k0 satisfies (4.2) provided that k > AM. • 

Finally, using an idea introduced by Gamez in [7], we construct a supersolution in the 
case where g+ ~ L m2. 

LEMMA 4.4. Suppose g+ ~ L m/2. Then, for all 2 > 0, there exists t7 > 0 such that (4.2) 
holds and limx~oo g(x) = 0. 

Proof. We define 

gR+(x) = l;+(x) f o r [ x , > R  

for Ix[ _< R. 

Because of  Lemma 4.2, we need consider only the case where g+n is not identically equal to 
zero. Thus g+R is a bounded measurable function such that JigS[IN/2 ~ 0 as R ~ oo and so, 
by the results of  Section 2, there exists a positive principal eigenvalue y(R) corresponding 
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to gg  and lim R ~ +® ),(R) = 0o.  We denote  by CR the posit ive principal  e igenfunct ion corre-  
sponding to ~,(R) such tha t  m a x  x ~ RN 0R = 1. We shall show that  k0R m a y  be taken  as the 
required funct ion fi provided R and k are chosen sufficiently large. 

Let L -- maXu>o( f (u ) /u )  > 0. We can choose R > 0 such that  ~'R > 2L.  Since 0R is a 
posit ive funct ion on BR, we can choose k > 0 such that  kOR (x) > 1 for  all x ~ BR. Hence  
f (kOR (X)) =-- 0 on B R . Thus ,  if [xl - R,  

-A(k~bR)(x) = ky R gR+(X)~ R (X) = 0 = ) .g(x) f (k~n (x)). 

Moreover ,  if Ix[ >- R,  then 

-A(k~R) (X)  = k),R gR+(X)OR (X) >_ 7n gR+(X) f ( k ~ R  (x)) 
L 

>- ,~gn+(x)f(kOR(x)) >- Ag(x) f (k~R (x)). 

Thus  we m a y  take  t~ = k~R and the p r o o f  is complete .  • 

Using the sub and supersolut ions const ructed above,  we obta in  the fol lowing existence 
result. 

THEOREM 4.5. Suppose  tha t  g+ ~ L N/2 and 3. > limR-~oo AI(R). 
(i) There  exists a noncons tan t  solut ion u o f  (1.1), (1.2) such tha t  limlx b_. +~ u(x) = O. 

(ii) I f  g÷(x) <_ K/(1  + Ix12) ~ for  some constants  K > 0 and ct > 1, then there exists a 
noncons tan t  solut ion u of  (1.1), (1.2) such tha t  lu(x)l <- CIx] -~ for  Ix[ large where  C is a 
posit ive cons tant  and  fi = N - 2 if  N _< 2o~ and fl = 2a  - 2 if  N > 2~. 

Proof .  Suppose  tha t  t7 and u are the sub and  supersolut ions const ructed in L e m m a s  4.1 
and 4.4. Clearly u - 1 is a supersolut ion for  (3.2)R and so for  (3.3)R for  all R > 0. Hence ,  
if O = rain{l ,  fi}, ~ is also a supersolut ion o f  (3.3)R for  all R > 0 with 0 < ~7(x) _< 1 for  all 
x e ~N and limjxj ~ ÷~o O(x) -- 0. Since u has compac t  suppor t  and can be chosen with 
arbi t rar i ly  small sup-norm,  we m a y  choose u so that  u _< ~. Hence  by L e m m a  3.3 there 
exists a solut ion u o f  (1.1) such that  u _< u _ ~. 

(ii) can be p roved  similarly by using L e m m a  4.3. • 

The  noncons tan t  solut ion whose existence is p roved  in the previous  theorem occurs in 
the s i tuat ion where  the A 1 allele is d i sadvantaged  at infinity (since limlx I_. +~o u(x) = O) 
and has only l imited advan tage  at other  points  (because of  the smallness assumpt ions  
on g÷). Thus  it can be expected that  such solutions can occur  only  when dif fus ion is 
sufficiently small,  i.e. only for  2 sufficiently large. In fact it is p roved  in [5] that ,  if 
[g(x)l <_K/(1 + Ix[2) ~, then there exists A 0 > 0 such tha t  (1.1), (1.2) has no noncons tan t  
solutions u such tha t  limlx I _~ +oo u(x) -- 0 when 0 < ). < A 0 . Our  final t heorem shows that ,  
if  neither A 1 nor  A 2 is comple te ly  dominan t  at infinity and have only l imited advan tage  
at o ther  points ,  then noncons tan t  solutions can exist no ma t t e r  how large the di f fus ion is. 

THEOREM 4.6. Suppose  tha t  Ig(x)l - K/(1  + Ix[Z) '~ for  constants  K > 0 and  a > 1 and c 
is any cons tant  such that  0 < c < 1. Then  there exists a noncons tan t  solut ion u o f  (1.1), 
(1.2) such tha t  limlx I _~ +~ u(x) = c. 
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P r o o f .  Let  M = m a x u z o f ( U ) .  As  in the p r o o f  o f  L e m m a  4.3,  the re  exists  a pos i t ive  

s o l u t i o n  0 o f  

- A u ( x )  = 2 M g + ( x )  fo r  all x e []~N, 

Le t  t~ = c + O. T h e n  

-Az2(x)  = - A O ( x )  = 2Mg+(x )  > 2 g ( x ) f ( a )  

l im u(x)  = O. 
Ixf ~ +~ 

fo r  all x e ~?U. 

H e n c e  t~ is a s u p e r s o l u t i o n  o f  (3.1)R fo r  all r > 0 and  so z7 = m i n { l ,  zi] is a s u p e r s o l u t i o n  

o f  (3.3) R fo r  all R > 0. S imi la r ly ,  i f  g_(x )  = min{g(x) ,  0], q / i s  the  nega t i ve  so lu t i on  o f  

- A u  = 2 M g _ ( x )  fo r  a l l x e ~ N ;  l im u(x) = 0 
Ixl ~ +oo 

a n d  u = c + ~', t h e n  _v = max{0 ,  _u] is a s u b s o l u t i o n  o f  (3.3)R for  all  R > 0. T h e  resul t  

n o w  fo l l ows  f r o m  L e m m a  3.3. • 
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