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Abstract

We prove the existence of positive solutions for the semilinear
elliptic equation −∆u(x) = λg(x)f(u(x)), 0 < u < 1 for x ∈ R,
lim|x|→+∞ u(x) = 0 which arises in population genetics, under the hy-

potheses that N = 3, 4, 5 and g lies in LN/2(IRN ). We establish the
existence of a principal eigenvalue λ1 for the corresponding linearized
problem and, making use of the asymptotic properties of solutions and
local and global bifurcation theory, prove the existence of a continuum
of solutions lying in the space D1,2 extending from λ = λ1 to λ = ∞.

1 Introduction

In this paper we shall discuss the existence of positive solutions of the equa-
tion

−∆u(x) = λg(x)f(u(x)), x ∈ IRN , (1.1)λ
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0 < u < 1, x ∈ IRN , lim
|x|→+∞

u(x) = 0, (1.2)

by using methods of bifurcation theory. The equation arises in popula-
tion genetics (see [6]) where the function g is assumed to change sign and
f : [0, 1] → IR+, with f(0) = f(1) = 0. The unknown function u corresponds
to the relative frequency of an allele and is hence constrained to have values
between 0 and 1. The real parameter λ > 0 corresponds to the reciprocal of
a diffusion coefficient.

The problem is well understood on bounded domains where a fairly com-
plete bifurcation analysis can be given (see [2]). The situation is more com-
plicated in the case of unbounded domains as, in general, the equation does
not give rise to compact operators and so it is unclear that there exist eigen-
values from which bifurcation can occur. It is also unclear apriori in which
function spaces solutions of (1.1)λ might lie.

In order to discuss bifurcation from the zero solution of (1.1)λ it is first
necessary to study the eigenvalues of the corresponding linear problem

−∆u(x) = λg(x)f ′(0)u(x) for x ∈ IRN

lim|x|→+∞ u(x) = 0.
(1.3)

The existence of a positive principal eigenvalue (i.e., an eigenvalue corre-
sponding to a positive eigenfunction and so a point at which positive solu-
tions of (1.1)λ may bifurcate from the zero branch) for the above problem
has been proved in ([3, 4]) under the hypotheses that

∫
IRN g(x)dx < 0 and

g(x) < 0 for |x| large and in ([1]) under the hypothesis that N ≥ 3 and
g+ ∈ LN/2(IRN).

We shall discuss the local and global bifurcation of solutions of (1.1)λ in
the case where N ≥ 3 and g lies in LN/2(IRN). The proof of the existence of
a principal eigenvalue in ([4]) involves constructing an appropriate function
space V with inner product

< u, v >=
∫
IRN

▽u▽ vdx− α

2

∫
IRN

guvdx,

for an appropriate positive constant α.
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In section 2, using the methods of ([4]), we show that, when N ≥ 3
and g lies in LN/2(IRN), a positive principal eigenvalue exists and that the
space V coincides with the standard space D1,2, i.e., the closure of the C∞

0

functions with respect to the norm
∫
IRN | ▽ u|2dx. Bifurcation results are

subsequently obtained in later sections in the setting of the function space V .

In section 3 we discuss the asymptotic properties of the solutions of (1.1)λ
and of (1.3) in D1,2. Our main tools are apriori estimates of ([8]) for the
L∞ norm of the solution of a linear elliptic problem in terms of its Lp norm
over a larger set. We use our results to establish the uniqueness of the prin-
cipal eigenfunction of (1.3).

In section 4 we prove our main bifurcation and existence results. We show
that under the hypothesis g ∈ LN/2(IRN) the local and global bifurcation
theorems of ([5, 10]) hold to give the existence of bifurcating continua of
solutions in D1,2. Since D1,2 does not embed continuously in L∞, it is
not immediately obvious that any solution u on these continua will satisfy
0 < u < 1 (and so be of biological significance and satisfy the original problem
(1.1)λ). In order to prove that solutions are positive we must assume that
g < 0 whenever |x| is sufficiently large. We also discuss the extent of the
continua in the (λ, u) plane; we show that the continuum of positive solutions
bifurcating from (λ1, 0), where λ1 is the principal eigenvalue, cannot cross
λ = 0 and, under the additional hypothesis that g ∈ Lp(IRN) where p < N/2,
that the continuum must extend to λ = ∞.

Finally in this introduction, we state the hypotheses which will be as-
sumed throughout the paper.
(i) N = 3, 4, 5.
(ii) g is a smooth bounded function such that g ∈ LN/2(IRN) and
g(x0) > 0, for some x0 ∈ IRN .
(iii) f : [0, 1] → IR+ is a smooth function such that f(0) = f(1) = 0,
f ′(0) > 0, f ′(1) < 0, and f(u) > 0 for all 0 < u < 1.

It is clear from the results in ([3]) that the cases N ≥ 3 and N < 3,
will be significantly different; we impose the restriction N ≤ 5 to ensure the
Frechet differentiability of certain operators and the applicability of apriori
estimates.
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Since u represents a relative frequency in the population genetics model,
it is natural that restrictions should be placed on f on the interval [0, 1]
only. The domain of definition of f , however, can be extended to all of IR
in such a way that f(u) < 0, whenever u < 0 or u > 1 and f, f ′ and f ′′ are
uniformly bounded in IR. We shall assume throughout that f has been so ex-
tended but shall eventually prove the existence of solutions u with 0 ≤ u ≤ 1.

2 Existence of positive principal eigenvalues

In this section we shall discuss the existence of a positive principal eigenvalue
for the problem

−∆u = λg(x)u, x ∈ IRN , (2.1)λ

lim
|x|→+∞

u(x) = 0. (2.2)

As we shall see below the corresponding principal eigenfunction will be in
the space D1,2, i.e., the closure of the C∞

0 functions with respect to the
”energy” norm

∫
IRN | ▽ u|2dx. It can be shown that

D1,2 =
{
u ∈ L

2N
N−2 (IRN) : ▽u ∈ L2(IRN)

}
and that D1,2 can be embedded continuously in L

2N
N−2 (IRN). For more infor-

mation on the properties of this space see [9] and the references therein.
Our approach is based on the following inequality.

Lemma 2.1 Suppose g ∈ LN/2(IRN). Then there exists α > 0 such that∫
IRN

| ▽ u|2dx ≥ α
∫
IRN

|g|u2dx. (2.3)

for all u ∈ C∞
0 .

Proof Since D1,2 can be embedded continuously in L
2N
N−2 (IRN), there exists

k > 0 such that, for all u ∈ C∞
0 ,

||u|| 2N
N−2

≤ k||u||D1,2 .
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Thus, if u ∈ L
2N
N−2 (IRN), we have∫

IRN |g|u2dx ≤ {
∫
IRN |g|N/2dx}2/N {

∫
IRN u

2N
N−2dx}N−2

N

= ||g||N/2 ||u||22N
N−2

and so ∫
IRN

|g|u2dx ≤ k2||g||N/2 ||u||2D1,2

which completes the proof.⋄

Thus, if g ∈ LN/2(IRN) and α > 0 is as in Lemma 2.1, then we can
define an inner product on C∞

0 (IRN) by

< u, v >=
∫
IRN

▽u ▽ v dx− α

2

∫
IRN

guv dx.

As in ([4]) we define V to be the completion of C∞
0 with respect to the

above inner product. The space V would seem to depend on the function g;
we might expect V to grow as |g| becomes smaller at infinity. In fact we
have

Lemma 2.2 Suppose g ∈ LN/2(IRN). Then V = D1,2.

Proof By standard density arguments it suffices to compare the V and D1,2

norms on C∞
0 (IRN). For all u ∈ C∞

0 (IRN) we have

||u||2V =
∫
IRN

| ▽ u|2dx− α

2

∫
IRN

gu2dx.

By Lemma 2.1

|α
2

∫
IRN

g(x)u2dx| ≤ 1

2

∫
IRN

| ▽ u|2dx,

and so we must have

1

2

∫
IRN

| ▽ u|2dx ≤ ||u||2V ≤ 3

2

∫
IRN

| ▽ u|2dx

i.e.
1

2
||u||2D1,2 ≤ ||u||2V ≤ 3

2
||u||2D1,2 .
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Hence it follows that V = D1,2.⋄

Since we assume throughout that g ∈ LN/2(IRN), we shall have that
V = D1,2. Thus we may henceforth suppose that ||.||V , the norm in V ,
coincides with the norm in D1,2 and that the inner product in V is given by

< u, v >=
∫
IRN

▽u▽ vdx.

Proceeding as in ([4]) we define a bilinear form by

β(u, v) =
∫
IRN

guvdx

for all u, v ∈ V . Since V ⊆ L
2N
N−2 (IRN), we have

β(u, v) =
∫
IRN guvdx

≤ ||g||N/2 ||u|| 2N
N−2

||v|| 2N
N−2

≤ k2||g||N/2 ||u||V ||v||V
for all u, v ∈ V and so β is bounded. Hence by the Riesz Representation
Theorem we can define a bounded linear operator L such that

β(u, v) =< Lu, v > for all u, v ∈ V .

It is easy to check that L is selfadjoint.
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Lemma 2.3 L is compact.

Proof Let {un} be a bounded sequence in V. Then for all positive integers
m and n we have

||Lun − Lum||2V = β(un − um, Lun − Lum)

=
∫
IRN g(un − um)(Lun − Lum)dx

≤ ||g(un − um)|| 2N
N+2

||Lun − Lum|| 2N
N−2

≤ k ||g(un − um)|| 2N
N+2

||Lun − Lum||V ,

and so
||Lun − Lum||V ≤ k ||g(un − um)|| 2N

N+2
. (2.4)

Since {un} is a bounded sequence in V , {un} is bounded in H1(BR)
for every ball BR = {x ∈ IRN : ||x|| ≤ R}. Hence {un} has a convergent

subsequence in L2(BR) and so in L
2N
N+2 (BR). Thus by a diagonaliza-

tion procedure we can find a subsequence, for convenience again denoted by

{un}, which converges in L
2N
N+2 (BR) for all R > 0. By using (2.4) we shall

show that {Lun} is a Cauchy sequence in V .
Let ε > 0. Now

||g(un − um)|| 2N
N+2

=
{∫

|x|≤R +
∫
|x|>R |g(un − um)|

2N
N+2 dx

}N+2
2N

≤ ||g(un − um)||
L

2N
N+2 (BR)

+ ||g(un − um)||
L

2N
N+2 (IRN−BR)

.

We have that

||g(un − um)||
L

2N
N+2 (IRN−BR)

≤ ||g||
L

N
2 (IRN−BR)

||(un − um)||
L

2N
N−2 (IRN−BR)

.

Since {un} is a bounded sequence in V and so in L
2N
N−2 (IRN),

||(un − um)||
L

2N
N−2 (IRN−BR)

is uniformly bounded. Also, as g ∈ LN/2(IRN),

we can make ||g||LN/2(IRN−BR) as small as we please by choosing R suffi-
ciently large. Thus there exists R0 > 0 such that
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||g(un − um)||
L

2N
N+2 (IRN−BR)

< ε for all m,n if R ≥ R0.

But g is bounded on BR0 and {un} is convergent on L2(BR0) and so in

L
2N
N+2 (BR0). Since

||g(un − um)||
L

2N
N+2 (BR0

)
≤ ||g||L∞(BR0

) ||(un − um)||
L

2N
N+2 (BR0

)
,

we have that ||g(un − um)||
L

2N
N+2 (BR0

)
< ε provided that m and n are suffi-

ciently large.
Thus {Lun} is a Cauchy sequence in V and the proof is complete.⋄

We can now prove the existence of a positive principal eigenvalue.

Theorem 2.4 Suppose that g ∈ L
N
2 (IRN) and there exists x0 ∈ IRN such

that g(x0) > 0. Then L has a positive principal eigenvalue.

Proof Since L is compact and selfadjoint, the largest eigenvalue µ1 of L is
given by

µ1 = supu∈V
< Lu, u >

< u, u >
= supu∈V

∫
IRN gu2dx∫

IRN | ▽ u|2dx
.

Suppose g is positive on an open set G containing x0. Then we can find
ψ ∈ V with support in G. Hence

µ1 ≥
∫
IRN gψ2dx∫

IRN | ▽ ψ|2dx
> 0.

A positive eigenfunction ϕ corresponding to µ1 can be constructed as in ([3])
and so µ1 is a positive principal eigenvalue of L.⋄

Clearly ϕ is a weak solution of (2.1)λ with λ = λ1 = 1/µ1 and stan-
dard regularity results show that ϕ is also a classical solution of (2.1)λ1 . The
results of the next section will show that ϕ also satisfies (2.2).
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3 Asymptotic properties of solutions

In this section we shall derive asymptotic properties of the solutions in D1,2

of the nonlinear problem (1.1)λ - (1.2) and the linear eigenvalue problem
(2.1)λ - (2.2).

We note first that it follows from standard regularity results that any weak
solution in D1,2 of (1.1)λ or (2.1)λ is also a classical solution. Our results will
be based on the following apriori estimates which are simple consequences
of Theorem 8.17 in ([8]).

Theorem 3.1 Let q : IRN → IR be a smooth bounded function and let h ∈
Ls(IRN) be a smooth function with s > N . Suppose R > 0 and p > 1. Then
there exists C > 0 ( C depends only on N,R, p and ||q||∞) such that for
all solutions u ∈ W 1,2

loc of

−∆u(x) + q(x)u(x) = h(x), x ∈ IRN , (3.1)

we have

sup
y∈BR(x)

|u(y)| ≤ C{R−N/p||u||Lp(B2R(x)) +R2δ||h||s/2},

for all y ∈ IRN where δ = 1− (N/s).

First we prove that solutions must tend to zero as |x| → ∞.

Theorem 3.2 Suppose that u ∈ D1,2 is a solution of (1.1)λ or (2.1)λ. Then
lim|x|→∞ |u(x)| = 0.

Proof Suppose that u ∈ D1,2 is a solution of (1.1)λ - a similar, simpler
proof holds when u is a solution of (2.1)λ. Then u is a solution of (3.1) with

h(x) = 0 and q(x) = λg(x)f(u(x))
u(x)

so that q is smooth and bounded.

Hence choosing p = 2N
N−2

and R = 1 in Theorem 3.1, there exists C > 0
such that

|u(x)| ≤ sup
y∈B1(x)

|u(y)| ≤ C||u||Lp(B2(x)), (3.2)
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where C depends on N and ||q||∞. Since u ∈ D1,2, u ∈ L
2N
N−2 (IRN) and

so lim|x|→∞ |u(x)| = 0.⋄

The next lemma is needed to deal with the boundary terms which arise
when we integrate by parts.

Lemma 3.3 Suppose that u ∈ D1,2 is a solution of (1.1)λ or (2.1)λ. Then
limR→∞

∫
∂BR

u∂u
∂n
dS = 0.

Proof Suppose that u is a solution of (2.1)λ. Multiplying both sides of
(2.1)λ by u and integrating over BR, we obtain∫

BR

| ▽ u|2dx−
∫
∂BR

u
∂u

∂n
dS = λ

∫
BR

gu2 dx.

Since | ▽ u| ∈ L2(IRN) and gu2 ∈ L1((IRN), it follows that
limR→∞

∫
∂BR

u∂u
∂n
dS exists. Also

|
∫
∂BR

u
∂u

∂n
dS|2 ≤ (

1

R

∫
∂BR

u2dS) (R
∫
∂BR

| ▽ u|2 dS). (3.3)

Since | ▽ u| ∈ L2(IRN) and u ∈ L2N/(N−2)((IRN), the integral∫ ∞

0
{
∫
∂BR

[| ▽ u|2 + u2N/(N−2)]dS} dR converges

and so we can find a sequence {Rn}, with Rn → ∞ as n→ ∞, such that

lim
n→∞

Rn

∫
∂BRn

| ▽ u|2 dS = 0 = lim
n→∞

Rn

∫
∂BRn

u2N/(N−2) dS.

Then
1

Rn

∫
∂BRn

u2dS ≤ 1

Rn

{
∫
∂BRn

u2N/(N−2) dS}
N−2
N {

∫
∂BRn

dS}
2
N

≤ kR−1
n (RN−1

n )
2
N {

∫
∂BRn

u2N/(N−2)dS}
N−2
N (for some constant k)

= k{Rn

∫
∂BRn

u2N/(N−2)dS}1−
2
N → 0 as n→ ∞.

Hence by (3.3), limn→∞
∫
∂BRn

u∂u
∂n
dS = 0 and so limR→∞

∫
∂BR

u∂u
∂n
dS = 0.

A similar argument applies if u satisfies (1.1)λ.⋄

Finally in this section we show that the principal eigenvalue of (2.1)λ and
(2.2) is unique and is of multiplicity 1.
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Theorem 3.4 Suppose that ϕ is a positive eigenfunction of (2.1)λ1 corre-
sponding to the principal eigenvalue λ1 and that u ∈ D1,2 is also a positive
eigenfunction of (2.1)λ corresponding to an eigenvalue λ > 0. Then λ = λ1
and u = cϕ, for some constant c > 0.

Proof Multiplying both sides of (2.1)λ1 by ϕ and integrating over BR, we
obtain ∫

BR

| ▽ ϕ|2 dx−
∫
∂BR

ϕ
∂ϕ

∂n
dS = λ1

∫
BR

gϕ2 dx. (3.4)

Letting R → ∞ and using Lemma 3.3 we get∫
IRN

| ▽ ϕ|2 dx = λ1

∫
IRN

gϕ2 dx > 0. (3.5)

Multiplying by ϕ2

u
the equation (2.1)λ satisfied by u and integrating over BR,

we obtain

2
∫
BR

ϕ

u
▽ϕ▽u dx−

∫
BR

ϕ2

u2
|▽u|2 dx −

∫
∂BR

ϕ2

u

∂u

∂n
dS = λ

∫
BR

gϕ2 dx. (3.6)

Subtracting (3.6) from (3.4) we get∫
BR

| ▽ ϕ −ϕ
u
▽ u|2 dx−

∫
∂BR

ϕ∂ϕ
∂n
dS

+
∫
∂BR

ϕ2

u
∂u
∂n
dS = (λ1 − λ)

∫
BR
gϕ2 dx.

(3.7)

Letting R → ∞ in (3.7), using (3.5) and the fact that λ1 is the smallest
positive eigenvalue of (2.1)λ so that λ1 ≤ λ, we obtain that

lim
R→∞

{
∫
BR

| ▽ ϕ− ϕ

u
▽ u|2 dx+

∫
∂BR

ϕ2

u

∂u

∂n
dS}

exists and is nonpositive.

We shall prove that limR→∞{
∫
∂BR

ϕ2

u
∂u
∂n
dS} = 0. Let

p(R) =
∫
∂BR

ϕ2

u

∂u

∂n
dS.
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Since
∫
BR

|▽ϕ− ϕ
u
▽ u|2 dx is a nondecreasing function of R, it follows that

either limR→∞ p(R) exists and limR→∞ p(R) < 0 or that p(R) → −∞ as
R → ∞.

Suppose limR→∞ p(R) exists and limR→∞ p(R) < 0. It follows that
limR→∞

∫
BR

|▽ ϕ− ϕ
u
▽ u|2 dx must exist and so, since ▽ϕ ∈ L2(IRN), that

limR→∞
∫
BR

ϕ2

u2 | ▽ u|2dx exists. Hence, if

q(R) =
∫
BR

ϕ2

u2
| ▽ u|2dx

there exists R1 > 0 and θ ∈ (0, 1) such that

−p(R) ≥ θq(R), for all R ≥ R1. (3.8)

Suppose now that p(R) → −∞ asR → ∞. Then limR→∞
∫
BR

|▽ϕ−ϕ
u
▽u|2dx

does not exist and so we must have that q(R) → ∞ as R → ∞. Hence
(3.8) also holds in this case.
Suppose now that limR→∞ p(R) ̸= 0 so that (3.8) holds; we shall obtain a
contradiction. Let

H(R) =
∫
∂BR

ϕ2dS.

Then we have the following

−p(R) ≤
∫
∂BR

ϕ2

u
| ▽ u| dS

≤ {
∫
∂BR

ϕ2 dS}1/2{
∫
∂BR

ϕ2

u2 | ▽ u|2 dS}1/2

and so

−p(R) ≤ {H(R)}1/2{
∫
∂BR

ϕ2

u2
| ▽ u|2 dS}1/2. (3.9)

Now

q(R) =
∫ R

0
{
∫
∂Br

ϕ2

u2
| ▽ u|2 dS} dr

and so by (3.9)

q′(R) =
∫
∂BR

ϕ2

u2 | ▽ u|2 dS

≥ [p(R)]2

H(R)
≥ θ2 [q(R)]2

H(R)
for all R ≥ R1.
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Hence
d

dR
{ 1

q(R)
}+ θ2

H(R)
≤ 0

which implies

1

q(R)
− 1

q(R1)
+ θ2

∫ R

R1

dr

H(r)
≤ 0 for all R ≥ R1.

Thus we have a contradiction provided we can prove that
∫∞
R1

dr
H(r)

is
divergent. A straightforward argument used in proof of Lemma 3.3 shows
that there exists a constant k > 0 such that for any smooth function u we
have ∫

∂BR

u2 dS ≤ kR2− 2
N {

∫
∂BR

u
2N
N−2 dS}1−

2
N .

Since ϕ ∈ L
2N
N−2 (IRN),

∫∞{
∫
∂Br

ϕ
2N
N−2 dS} dr converges and so

H(r) ≤ kr2−
2
N {I(r)}1−

2
N .

where I(r) =
∫
∂Br

ϕ2N/(N−2)dS, i.e.
∫∞ I(r)dr <∞. Thus

1

H(r)
≥ 1

k
r

2
N
−2 {I(r)}

2
N
−1.

But

∞ =
∫ ∞ dr

r
=

∫ ∞
I(r)α

1

r
I(r)−α dr

≤ {
∫ ∞

I(r)αp dr}
1
p {

∫ ∞
r−q I(r)−αq dr}

1
q

for any α, p, q such that α > 0 and 1
p
+ 1

q
= 1. Now by choosing q =

2− 2
N
, p = 2N−2

N−2
and α = N−2

2N−2
we obtain

{
∫ ∞

I(r) dr}
1
p {

∫ ∞
r

2
N
−2 [I(r)]

2
N
−1 dr}

1
q = ∞.

Hence
∫∞ r

2
N
−2[I(r)]

2
N
−1 dr = ∞ and so

∫∞
R1

dr
H(r)

is divergent. Thus we
have obtained a contradiction.
Therefore limR→∞ p(R) = 0, i.e., limR→∞{

∫
∂BR

ϕ2

u
∂u
∂n
dS} = 0. Hence

limR→∞
∫
BR

| ▽ ϕ − ϕ
u
▽ u|2 dx = 0 and so ▽ϕ − ϕ

u
▽ u = 0 on IRN ,

i.e., u▽ ϕ − ϕ▽ u = 0 on IRN . Thus ▽(ϕ
u
) ≡ 0 and so u = cϕ for some

constant c. Finally, letting R → ∞ in (3.7), we see that λ = λ1 and the
proof is complete.⋄
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4 Bifurcation Results

In this section we shall obtain results on the existence of solutions for the
nonlinear problem (1.1)λ, (1.2), by considering bifurcation of solutions from
the zero solution.
We define the nonlinear operator T : IR× V → V through the relation

< T (λ, u), ϕ >=
∫
IRN

▽u▽ ϕ dx− λ
∫
IRN

gf(u)ϕ dx, (4.1)

for all ϕ ∈ V , where <,> denotes the inner product in V , i.e. in D1,2.

Lemma 4.1 The operator T is well defined by (4.1).

Proof For fixed u ∈ D1,2 consider the functional

F (ϕ) =
∫
IRN

▽u▽ ϕ dx− λ
∫
IRN

gf(u)ϕ dx

for ϕ ∈ D1,2. Since |f(u)| ≤ K|u| for some constant K, f(u) ∈ L
2N
N−2 (IRN)

and so

|F (ϕ)| ≤ || ▽ u||2 || ▽ ϕ||2 + |λ| ||g||N/2 ||f(u)|| 2N
N−2

||ϕ|| 2N
N−2

≤ K1(|| ▽ u||2 + |λ| ||g||N/2 ||f(u)|| 2N
N−2

) ||ϕ||V

for some constant K1 and so F is a bounded linear functional. Hence by the
Riesz Representation Theorem we may define T as in (4.1). ⋄

It is straightforward to check that T is a continuous function and, using
the fact that N = 3, 4, 5, that T is Frechet differentiable with continuous
Frechet derivatives given by

< Tu(λ, u)ϕ, ψ > =
∫
IRN

▽ϕ▽ ψ dx− λ
∫
IRN

gf ′(u)ϕψ dx,

< Tλ(λ, u), ϕ > = −
∫
IRN

gf(u)ϕ dx,

< Tλu(λ, u)ϕ, ψ > = −
∫
IRN

gf ′(u)ϕψ dx

for all ϕ, ψ ∈ D1,2.
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To simplify notation but without loss of generality we shall assume that
f ′(0) = 1 so that (2.1)λ becomes exactly the linearisation of (1.1)λ. Consider
the linear operator Tu(λ1, 0) where λ1 is the principal eigenvalue of (2.1)λ.
It is easy to check that Tu(λ1, 0) is a bounded selfadjoint operator and
that Tu(λ1, 0)ϕ = 0 if and only if ϕ ∈ V is a solution of (2.1)λ1 . Thus
N(Tu(λ1, 0)) = [ϕ] where ϕ is the principal eigenfunction of (2.1)λ1 . Since
Tu(λ1, 0) is selfadjoint, R(Tu(λ1, 0)) = [ϕ]⊥, i.e., ψ ∈ R(Tu(λ1, 0)) if and
only if < ψ, ϕ >= 0. Since, using (3.5),

< Tλu(λ1, 0)ϕ, ϕ >= −
∫
IRN

g ϕ2dx < 0,

we have that T satisfies all the hypotheses for the theorem on bifurca-
tion from a simple eigenvalue (see [5]) and so the following result on local
bifurcation holds.

Theorem 4.2 There exists ϵ0 > 0 and continuous functions η : (−ϵ0, ϵ0) →
IR and ψ : (−ϵ0, ϵ0) → [ϕ]⊥ such that η(0) = λ1, ψ(0) = 0 and every
nontrivial solution of T (λ, u) = 0 in a small neighbourhood of (λ1, 0) is of
the form (λϵ, uϵ) = (η(ϵ), ϵϕ+ ϵψ(ϵ)).

In order that a solution u of T (λ, u) = 0 is also a solution of (1.1)λ,
(1.2) it is necessary to ensure that 0 < u(x) < 1 for all x ∈ IRN . By (3.2)
we have

|uϵ(x)| ≤ C ||uϵ||
L

2N
N−2 (B2(x))

≤ K ||uϵ||V

for all x ∈ IRN where K is independent of ϵ. Thus, as ||uϵ||V → 0 as
ϵ → 0, it follows that |uϵ(x)| < 1 for all x ∈ IRN provided ϵ is sufficiently
small.

It seems harder to establish the positivity of solutions; in order to do so
we must assume that g satisfies the condition

(G−)
g(x0) > 0 for some x0 ∈ IRn and there exists R0 > 0 such that
g(x) < 0 whenever |x| > R0.
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Theorem 4.3 Suppose that g satisfies condition (G−). Then there exists
ϵ1 > 0 such that uϵ(x) > 0 for all x ∈ IRN whenever 0 < ϵ < ϵ1.

Proof Since uϵ = ϵϕ+ ϵψ(ϵ) satisfies (1.1)λ where λ = η(ϵ), we have

−∆ψ(ϵ) = η(ϵ)g
f(ϵϕ+ ϵψ(ϵ))

ϵ
− λ1gϕ.

A straightforward computation yields

−∆ψ(ϵ)− q(x)ψ(ϵ) = (η(ϵ)− λ1)gϕ+
1

2
η(ϵ)gϕf ′′(ξ(ϵ, x))uϵ

where q(x) = η(ϵ)g[1+ 1
2
f ′′(ξ(ϵ, x))uϵ] and ξ(ϵ, x) lies between 0 and uϵ(x).

For sufficiently small ϵ > 0 we have that |uϵ(x)| ≤ 1 for all x and so ||q||∞
is uniformly bounded. Moreover

||gϕ|| 2N
N−2

≤ ||g||∞ ||ϕ|| 2N
N−2

≤ ||g||∞ ||ϕ||V

and

||gϕuϵ|| 2N
N−2

≤ ||g||∞ ||ϕ||∞ ||uϵ|| 2N
N−2

≤ ||g||∞ ||ϕ||∞ ||uϵ||V .

If N = 3, 4, 5 and s
2
= 2N

N−2
, then s > N . Hence by Theorem 3.1 with

p = s
2
= 2N

N−2
, there exists a constant K > 0 (independent of ϵ) such that

sup
|x|≤R0

|ψ(ϵ)(x)| ≤ K ||g||∞ {(η(ϵ)− λ1) ||ϕ||V + ||ϕ||∞ ||uϵ||V}.

Since ϕ(x) > 0 for all x in the compact set BR0 = {x ∈ IRN : |x| ≤ R0}, it
follows that there exists ϵ1 > 0 such that ϕ(x)+ψ(ϵ)(x) > 0 for all x ≤ R0

provided that 0 < ϵ < ϵ1.

Suppose 0 < ϵ < ϵ1 and that uϵ(x0) < 0 for some x0 ∈ IRN . Since
lim|x|→∞ uϵ(x) = 0, it follows that there must exist x1, |x1| > R, such that
uϵ attains a negative minimum at x1. But then

−∆uϵ(x1) = λg(x1)f(uϵ(x1)) > 0

which is impossible. Hence uϵ(x) > 0 for all x ∈ IRN whenever 0 < ϵ < ϵ1.⋄
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We now discuss the global nature of the continuum of solutions bifurcating
from (λ1, 0). It is easy to see that we can write the operator T as T (λ, u) =
u− λS(u) where

< S(u), ϕ >=
∫
IRN

g(x)f(u(x))ϕ(x) dx for all ϕ ∈ V .

Also we have that
S(u) = Lu+H(u)

where L denotes the same linear operator as in section 2, i.e.,

< Lu, v >=
∫
IRN

guv dx for all u, v ∈ V

and H(u) = O(||u||2V) as ||u||V → 0. We showed in section 2 that λ1 is
an eigenvalue of L and by Theorem 3.4 the eigenspace associated with λ1
has algebraic multiplicity 1. Also, as f is a Lipschitz function, it can be
proved by modifying slightly the proof of Lemma 2.3 that S is a compact
operator.

Thus we can apply the classical result of Rabinowitz (see [10]) on global
bifurcation to obtain the existence of a continuum C of nonzero solutions of
(1.1)λ, (1.2) bifurcating from (λ1, 0) which is either unbounded or contains a
point (λ, 0), where λ ̸= λ1 is an eigenvalue of L, i.e., λ is an eigenvalue of
(2.1)λ, (2.2). In addition C has a connected subset C+ ⊂ C − {(η(ϵ), uϵ) :
−ϵ0 ≤ ϵ ≤ 0} for some ϵ0 > 0 such that C+ also satisfies one of the above
alternatives. Clearly, close to the bifurcation point (λ1, 0), C+ consists of
the curve ϵ → (η(ϵ), uϵ), 0 < ϵ ≤ ϵ0. We now investigate the nature of
solutions lying on C+. First we show that C+ is bounded below in λ.

Theorem 4.4 There exists λ∗ > 0 such that λ > λ∗ whenever (λ, u) ∈ C+.

Proof Suppose u ∈ V is a solution of (1.1)λ, (1.2). Multiplying equation
(1.1)λ by u, integrating over IRN and using Lemma 3.3 gives

||u||2V =
∫
IRN | ▽ u|2dx = λ

∫
IRN gf(u)udx

≤ λK||g||N/2 ||u||22N
N−2

, where |f(u)| ≤ Ku for all u,

≤ λK1||g||N/2 ||u||2V
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where K1 is a constant and the result follows.⋄

In order to proceed further we must first prove that solutions which are
close in IR × V are also close in IR × L∞(IRN); since V does not embed
in L∞(IRN), this is not immediately obvious.

Lemma 4.5 Suppose that uλ ∈ V is a solution of (1.1)λ, (1.2). Then there
exist constants K1 and K2 such that

|uλ(x)− uµ(x)| ≤ K1 |λ− µ|+K2 ||uλ − uµ||V for all x ∈ IRN

whenever µ is close to λ and uµ ∈ V is a solution of (1.1)µ.

Proof It is easy to see that

−∆(uλ − uµ) = g{λf(uλ)− µf(uµ)}.

Hence by Theorem 3.1 there exists C > 0 such that

|uλ(x)− uµ(x)| ≤ supy∈B1(x) |uλ(y)− uµ(y)|

≤ C {||uλ − uµ||Lp(B2(x)) + ||g [λf(uλ)− µf(uµ) ]||p}

(where p = 2N
N−2

and so 2p = 4N
N−2

> N for N = 3, 4, 5)

≤ C1 ||uλ − uµ||V + C ||g||∞ {||(λ− µ)f(uλ)||p + ||µ[f(uλ)− f(uµ)]||p}

≤ C1 ||uλ − uµ||V + C2 |λ− µ| ||g||∞ ||uλ||V + C3 |µ| ||g||∞ ||uλ − uµ||V

where C1, C2 and C3 are constants and the result follows.⋄

Theorem 4.6 Suppose g satisfies condition (G−). Then 0 < u(x) < 1
for all x ∈ IRN whenever (λ, u) ∈ C+.

Proof Suppose that there exists (λ, u) ∈ C+ such that u(x0) < 0 for
some x0 ∈ IRN . By Theorem 4.3, u(x) > 0 for all x ∈ IRN whenever
(λ, u) ∈ C+ is close to (λ1, 0). Moreover by Lemma 4.5 points in C+ which
are close in IR × V must also be close in IR × L∞(IRN). Hence there must
exist (λ0, u0) ∈ C+ such that u0(x) ≥ 0 for all x ∈ IRN but u0(x0) = 0
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for some x0 ∈ IRN and in any neighbourhood of (λ0, u0) we can find a point
(λ̂, û) ∈ C+ with û(x) < 0 for some x ∈ IRN . Let B denote any open ball
containing x0. Then

−∆u0(x)− λg(x)
f(u0(x))

u0(x)
u0(x) = 0 on B and u0(x) ≥ 0 on ∂B

It follows from the Serrin Maximum principle (see [7]) that u0 ≡ 0 on B.
Hence u0 ≡ 0 on IRN .

Thus we can construct a sequence {(λn, un)} ⊆ C+ such that un(x) > 0
for all n ∈ N and x ∈ IRN , un → 0 in V and λn → λ0. Let vn = un

||un||V
. Since

un = λnL(un) + λnH(un)

we have

vn = λnL(vn) + λn
H(un)

||un||V
.

Since L is compact, there exists a subsequence of {vn} (which we again

denote by {vn}) such that {L(vn)} is convergent. Since limn→∞
H(un)
||un||V

= 0,

{vn} is convergent to v0, say, and v0 = λ0L(v0). Since vn ≥ 0 for all
n ∈ N , v0 ≥ 0. Since by Theorem 3.4 λ1 is the only positive eigenvalue
corresponding to a positive eigenfunction, it follows that λ1 = λ0. Thus
(λ0, u0) = (λ1, 0) and this contradicts the fact that every neighbourhood
of (λ0, u0) must contain a solution (λ̂, û) ∈ C+ with û(x) < 0, for some
x ∈ IRN . Hence u(x) > 0 for all x ∈ IRN whenever (λ, u) ∈ C+.

Suppose that there exists (λ, u) ∈ C+ with u(x1) > 1 for some
x1 ∈ IRN . Then there must exist (λ0, u0) ∈ C+ such that u0(x) ≤ 1 for
all x ∈ IRN and u0(x0) = 1 for some x0 ∈ IRN . If v0 = 1 − u0, then
v0(x) ≥ 0 for all x ∈ IRN , v0(x0) = 0 and

−∆v0 = λĝ(x)f̂(v0(x))

where ĝ(x) = −g(x) and f̂(v) = f(1 − v). The same maximum principle
argument as used above shows that v0 ≡ 0 and so u0 ≡ 1 on IRN . But as
u0 ∈ V this is impossible and so the proof is complete.⋄
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The following result is a consequence of an argument very similar to that
used in the first part of the proof above.

Corollary 4.7 C+ contains no points of the form (λ, 0), where λ ̸= λ1.

Thus C+ must connect (λ1, 0) to ∞ in IR × V . The next theorem
shows that C+ cannot become unbounded at a finite value of λ; in order to
prove the result we must strengthen slightly the hypothesis on g.

Theorem 4.8 Suppose g satisfies the hypotheses of Theorem 4.6 and g ∈
Lp(IRN), where p < N

2
. Then there exists a continuous function K : IR+ →

IR+ such that ||u||V ≤ K(λ) whenever (λ, u) ∈ C+.

Proof As in the proof of Theorem 4.4 we obtain that if u satisfies (1.1)λ,
(1.2), then

||u||2V = λ
∫
IRN gf(u)udx

≤ λK
∫
IRN |g|u2dx.

Let q be such that 1
p
+ 1

q
= 1. Then as p < N

2
, q > N

N−2
and so we can choose

β, 0 < β < 2, such that βq = 2N
N−2

. Hence

||u||2V ≤ λ K ||u||2−β
∞

∫
IRN |g|uβdx

≤ λ K ||u||2−β
∞ ||g||p {

∫
IRN uβqdx}1/q

≤ λ K ||g||p ||u||
2N

q(N−2)
2N
N−2

≤ λ K1 ||g||p ||u||βV .

for some constant K1 where we have used the fact that |u(x)| < 1 for all
x ∈ IRN and so the proof is complete.⋄

As an immediate consequence of the previous results we can give the
following description of the continuum C+.

Theorem 4.9 Suppose that g ∈ Lp(IRN), where 1 < p < N
2

and satisfies
condition (G−). Then there exists a continuum C+ ⊆ IR × V of solutions
bifurcating from the zero solution at (λ1, 0) such that
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(i) if (λ, u) ∈ C+ then λ > 0 and 0 < u(x) < 1 for all x ∈ IRN ,
(ii) {λ : (λ, u) ∈ C+ for some u ∈ V} ⊇ (λ1,∞].
In particular (1.1)λ, (1.2) has a nontrivial solution u ∈ V such that 0 <
u(x) < 1 for all x ∈ IRN whenever λ > λ1.
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