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Abstract

Sub and supersolutions are constructed for the semilinear elliptic
equation —Au = Ag(z)f(u) on all of R™ which arises in population
genetics. It is shown that the theory of existence of solutions is very
different in the case n = 1 or 2 and in the case n > 3.

1 Introduction

In this paper we shall discuss the construction of sub- and supersolutions as
well as the existence and nonexistence of solutions of the equation

—Au=Ng(x)f(u), O<u<l, x€R" (1.1)

which arises in population genetics (see [1, 3]). The unknown function u
corresponds to the relative frequency of an allele and is hence constrained to
have values between 0 and 1. The real parameter A > 0 corresponds to the
reciprocal of a diffusion coefficient so that the case of small A considered in
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this paper corresponds to diffusion being large. We assume throughout that
g satisfies

Q) g:R"— R issmooth such that g(xz¢) >0 for some xy, € R"
and there exists Ry > 0 such that g¢g(z) < 0 whenever |z| > R,.
This assumption corresponds to the fact that an allele has an advantage
at some points z in R™ (where g(z) > 0), but is disadvantaged for |z| > Ry.
In the population genetics model f is considered to be the cubic function
fu) = u(l —w)[h(l —u) + (1 — h)ul, for some constant h, 0 < h < 1. We
shall assume throughout that f satisfies the condition

(F) f:]0,1] = R is a smooth function such that f(0) = f(1) =0,
f1(0)>0,f(1) <0, and f(u) >0 forall 0<u<1.

We shall extend and unify existing results on solutions of (1.1), (see
[1, 2, 3, 6, 7]) by constructing some new sub- and supersolutions for the
problem. The results obtained show that the existence theory for solutions
of (1.1), is very different in the case n = 1,2 and the case n > 3. It is easy
to show (see [1]) that sub- and supersolutions always exist for (1.1), when
A is sufficiently large. We shall be interested in constructing such solutions
when A is small and as a means of doing so we first construct numbers
lambda*, A, > 0 such that a supersolution (respectively subsolution) of (1.1),
exists provided that A > \* (respectively A > \,). First we recall how a class
of subsolutions is constructed in [1]. Let R > 0 and let u be defined by

_Joele), it [ <R
(x)_{o, it |2/ >R

where ¢ is a positive solution of

—Ap(z) = Ag(x)fp(z), if |z| <R
p(x) = 0, if |z|=R.

Such a solution ¢ exists provided A > A;(R) where A\ (R) is the principal
eigenvalue of the problem

—AP(x) = Ag(@)f(0)p(x), if || <R
Y(z)= 0, if |z|=R.



Since

fBR | V U(%)Pdm _
S, 9(x) f'(0)u?(z)dx '

where Bp = {z € R": |z| < R}, M (R) is a decreasing function of R and
we define A, = limg_,oo A\ (R). Thus if A > A, we can choose R such that
A > A (R), and then construct a subsolution u(z) as described above. In
particular when A, = 0 we can construct such a subsolution for any A > 0.

We now construct supersolutions which are identically equal to 1 on an
exterior domain in a similar way. If we define

v | 1=p(x) i |z|<R
“(x)—{l if |z| >R

M(R) = inf{ u € Hy(Bg), /

Br

g(x)u*(z)dr > 0}

then u(x) is a supersolution of (1.1), if ¢ is a positive solution of

~Ap(x) = A(2)f(p(x)), if 2| <R
QO(I) = 0, if |l’| =R,

where h(z) = —g(z) and f(u) = f(1 —u) . Note that f'(0) = —f(1) > 0.
Using an argument very similar to that used above, it can be shown that
such a supersolution can be constructed provided that X\ > A\* where
A = limp_,s0 M (R) , and A (R) is the principal eigenvalue of the problem

~AG(@) = M) f(O)b(), i |2 <R
o) = 0, it |a| =R,

and so

Jpp | V ulz)Pdz
g M) f'(0)u?(z)da
If A\ > A\, , it is easy to see that by an appropriate choice of R we

can construct an arbitrarily small subsolution, and if A > A\* that we can
construct a supersolution, which is arbitrarily close to 1. Thus we have

u e HY(Bp), /

M (R) = inf{ ; h(z)u?(z)dz > 0} .

Theorem 1.1 If A > max{\*, \,}, then there exists a solution of (1.1)x. In
particular, if \X* = A\, =0, then (1.1)x has a solution for all A > 0.
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Thus it is of interest to fi nd conditions under which A, =0 or A* =0
. We investigate this problem in Section 2 and the results we obtain depend
heavily on whether n =1,2 or n > 3, as well as on the sign of [, g(z)dz.

In Section 3 we prove some existence and nonexistence results which
are suggested by the results of Section 2. In particular we show that when
n = 1,2, then (1.1), has a solution for all A > 0 when [z, g(x)dz > 0, but
has no solution for sufficiently small A when [, g(z)dz < 0 . In contrast
when n > 3 | g is small at infinity (viz. |g(x)| < k(1 + |z]*)™®) , for some
a > 1land k > 0) and A sufficiently small, then (1.1), has no solution u such
that lim;.ou(z) = 0, but has a solution u such that lim, . u(z) = ¢
for any constant ¢, 0 < ¢ < 1.

2 Sub and supersolutions for small \.

First we consider the case where [p. g(z)dz < 0.

Theorem 2.1 Suppose that [z, g(z)dx < 0. Then
(i) A >0, and
(i1) \* =0, when n =1, 2.

Proof (i) Choose R; > Ry such that B, g(x)dx < 0. By [1] (Lemma
2.7) there exists a constant K > 0 such that
/ | v u(x)Pde > K u?(z)dx
BRI

Br,

for all w € H'(Bg,) which satisfy JBg, g(z)u?(x)dx > 0. Suppose that

R > Ry and u € Hj(Bg) such that [ g(z)u?*(x)dz > 0. Then wu €
H'(Bg,), and since g(z) <0 for R; <|z| <R, fBRl g(z)u?(x)dx > 0.
Hence

I, | 7 u(x)Pde > fBRl | 7 u(z)|*dz
> K [g, u?(z)dr > KK, I, g(z)u?(x)dx,
> KKy [, g(x)u*(z)dx

for a suitable constant K;.Thus

S, | 7 ulz)|*dz
fz ISR > KK, for all u € Hy(Bg) such that . g(z)u?(z)dx > 0,




and so A (R) > KK;. Since this holds for all R > R;, we conclude that
A > KKy > 0.

(ii) We consider the case m = 2. Suppose that ¢ > 0 is arbitrary.
Since  [pn g(z)dz < 0, there exists R > Ry and a constant a > 0, such that
[, Mz)dx > a.

We define a radially symmetric function u as follows

u(r) =1, if r<R
u(r)= —(g/r), it R<r<Z
u(r) = 0, it r>2,

where Z is chosen so that u is continuous. Then u is a decreasing function
for R <r < Z. Since u(r) = — Inr + (3, for some positive constant 3, we
must have that

l=—lR+p8, 0=-<clnZ+p,

and so
e(InZ—-InR)=1.
Then, if r > Z,
Jo, | v u(@)Pde = [y ru}(r)dr = [F(/r)dr
=e*(InZ —InR) =e¢,
and
I, @) f (O ()dr > f(0) [, h(w)u?(x)dx

J'(0) f,, h(@)dz = f'(0)a.

Hence, i f r > Z, then A (r) < ¢/f'(0)a. Since e > 0 is arbitrary, it
follows that \* = 0.

When n = 1 a similar but simpler argument, in which u(r) = —er +  on
its nonconstant part, can be used. <

It does not seem possible to show, by using an argument similar to that
above, that \* = 0 when n > 3; it is however easy to obtain supersolutions



for all A > 0 when n > 3 as for this case, since u(z) = 1/|z|""? satisfies
Au(z) = 0, then

B = (Rof )22, it || >Ry

is always a supersolution.

As the following theorem shows, it is also possible to have \* = 0 for
n = 1,2 and so obtain supersolutions for arbitrarily small A\, without assum-
ing that [r. g(x)dz < 0.

Theorem 2.2 (1) Ifn=1 and limy |2|°g(x) = —oc0, then A\* = 0.
(i) If n=2 and limy s |z*[In(|z])]?g(z) = —o0, then \* = 0.

Proof (i) First we consider the case n = 1. Let € > 0 be arbitrary. Then
there exists R > Ry such that h(z) > 1/e2? if |x] > R. We define a test
function as follows

0, if —o0o <z <R
o g if  Ry<z<R
olx) =4 1, if R<z<2R ,
Sfe—e i  2R<ax <3R- Ry
Then 5
2 _
[ e = 5=
and
/ h(z) ()] 2de > /2R hz)de > - /2R o= b
R<x) ~Jr e Jr 227 2R
Hence

Jr[¢2(2)]*dx < 4eR < 4e
fr hl@) f(0)¢2(@)dw — f/O)(R = Ro) ~ f/(0)
and so A* < 4¢/f'(0). Since £ > 0 is arbitrary, we obtain A* = 0.

(ii) A similar argument shows that A* = 0 when n = 2 by replacing the
functions

Z'—Ro and 3R—R0—ZE
R — Ry R—Ry




by the functions

In |z| — In Ry q 3InR —In Ry — In|z|

—————— an

InR —1In Ry InR —1In Ry ’
respectively, and using the ranges Ry < |z| < R, R < |z| < R? and
R* < |z| < R3/Ry. ©

Suppose now that [p. g(z)dx > 0. It is proved in [1] (Lemma 4.4) that
when n = 1,2 and [z, g(x)dx > 0, then A\, = 0. We now discuss the more
delicate case where [p. g(x)dz = 0.

Theorem 2.3 Suppose that [r. g(x)dz = 0. Then A\, =0, if
(i)n=1 and [R(In|z|)?g(x)dx converges, or
(ii)n=2 and [m[In(|In|z|])]?9(x)dz converges.

Proof (i) We consider a test function of the form

1, for lz| < Ry
u(zr) = ¢(—0lnlz|, for Ry <|z| <R ,
0, for lz| > R

where J, ( are constants chosen so that u is a continuous function,
ie, 0=1/(nR—InRy) and (=InR/(InR—InR)) and show that

Jr[ua()]dz

W% T g(a) Oy (wyde
Now
[utapar =2 [ o = 202 - 7 = 2T
and
o) O <>

f(0) { lz|<Ro 9 z)dz + fR0<|a:|<R g(z)(¢( —dn |$|)2d$}

= f(0 { lz|<Ro 9 x)dr + fR0<|m|<Rg( )[CQ —20¢ In |z| + 52(111 |x|)2]dx} .



Hence

g(x) f' (0)u? (z)dx "(0)RR
L [P Lt {(In R —In Ro)? [, 9(x)da

+ Jroctaj<r 9(@) (I R)? = 2In Rin [z] + (In |2])?]dz }

= Jzu((n?)j%?)) {(hl R)? fng g(z)dz 4 (In Ry)? fngO g(w)dzx
+ Jro<to<r(In|z])?g(x)dx — 2In Ry In R [, < g, 9()dx

—2In R [p <p<pIn \x|g(:1:)dq:}

= LM LA (R) + Ay + A3(R) + Au(R) + As(R)}.

Since [z g(x)dx =0, A;(R) > 0, for all R > Ry. Since we are assuming
that [z (In]z])%g(z)dz converges, A3(R) is uniformly bounded. Finally

Ay(R)+ A5(R) = —2InRyInR . Y(z)g(x)de,
z|<R
where

() = 1, for 0<l|z| <Ry
7Y jz|/lnR,,  for  Ry<|¥|<R’

Since [z g(x)dx = 0, it is clear that [ ¢¥(x)g(x)dz < 0 and so
Joj<r ¥(x)g(x)dx  is negative and uniformly bounded away from zero when
R is sufficiently large. Hence limpg ,o(A4(R) + A5(R)) = 00, and so

SN 02 Co)

B T (o) Oy (@)dz

Thus A\, = 0.
(ii)) When n = 2, a similar argument shows that A, = 0 by replacing the
test function (¢ —dln|z| by (—dln(|ln|z|]). ©

These results, that A\, = 0 when [, g(z)dx > 0, cannot be extended
to the case where n > 3 because the nonexistence results in the next section
imply that when n > 3 and g is sufficiently small at infinity then A, > 0, no
matter what the sign of [z, g(x)dz .
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3 Existence and nonexistence of solutions.

We shall first consider the case of n = 1,2 and show how the existence theory
for (1.1), is heavily dependent on the sign of  [r. g(z)dx. The following
results are simple consequences of the sufficient conditions for A, =0, A* =0
obtained in Section 2.

Theorem 3.1 Suppose that n = 1. Then (1.1)y has a solution for all A > 0,
provided that

(1) Jrg(z)dr >0

or
Jz g(x)dx =0 and [5(In|z|)*g(z)dz converges,
and

(1) lmp,|e0 |22g(z) = —00.

A similar result holds when n = 2 and the hypotheses that
Jr(In|z])?g(x)dz  converges and limy, o |2[?g(2) = —00  are replaced by
Jr2[In(] In || |)]2g(x)dz  converges and limy o |2]*[In(|z|)]?g(z) = —o0.

The [z g(z)dx > 0 case of Theorem 3.1 was proved in [1] by constructing
a supersolution, using phase plane analysis.

The hypotheses of Theorem 3.1 can be satisfied provided ¢ is small, but
not too small at infinity, e.g. g(z) ~ 1/2% when n = 1, and g(x) ~
1/2*(Inx)®, when n = 2, where 1 < a < 2.

It was shown in Section 2 that, when [5. g(z)dx < 0, then A\* = 0 but
A > 0. It is still possible a priori that some other form of subsolution can
be constructed or that solutions of (1.1), exist for A < A,. The following
result shows, however, that solutions cannot exist for arbitrarily small A > 0.

Theorem 3.2 Suppose that n = 1,2,  [p.g(x)dx < 0 and f satisfies
2f(u) —uf'(u) > 0 for 0 < uw < 1. Then there exists \g > 0 such that
(1.1)x has no solution u whenever 0 < XA < A.

Proof  We shall prove the result for the case n = 2; a similar but sim-
pler proof holds when n = 1. Suppose that u is a solution of (1.1),. It
is shown in [7] (Lemma 3.2, Lemma 3.3) that syu € L*(R?), gf(u) €
LY (R?) and limp o fyp, u(z)] v u(z)| dS = 0. Firstly we shall show that
Jr2 g(z)u?(z)dx > 0. Let w = (u?/f(u)). Since u is subharmonic whenever
|z| > Ry, it follows from the Hadamard Three Circles Theorem ([5], p.130)
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that  supp,_pu(r) is a decreasing function of R# and so there exists a
constant k* such that wu(z) < k* <1 for all z € R?. Hence w is a smooth
bounded function on R?. Thus

limp oo A Jp, g(x)u?(z)dz
= lmp 00 A [, 9(2) f(Wwdr = limp_00 [5, (—Au)wdz
= limg_00 {— Jon, (Ou/On)wdS + [p, 7u 7 wdx}

= limp_00 {— Jon, (Ou/On)u(f(u)/u)dS
+ i | 7 wPul2f () = uf ()] [f 2 ()}

Since

Ou flu) f ()

| dS|§|/ |7 w2 dS| = 0 as R — oo,
aBr ON U OBR

u

and 2f(u) —uf'(u) > 0 for 0 < u < 1, it follows that [z2 g(z)u*(z)dz > 0.

Now choose a ball B such that [z g(z)dr <0 and g¢(z) <0 whenever
r & B. By [1]( Lemma 2.7) there exists K > 0 such that [z g(z)v?*(z)dz >
K [gv*(z)dz for all v € HY(B) such that [z g(z)v?(z)dr > 0. Clearly we
have [z g(z)u*(z)dz >0 and so

Jrz | Vul@)Pde > [p] v u(@)Pde > K [pu?(z)da

> KK* [pg(x) f(u)u(z)dr = 7 [z g(x) f(w)u(r)dz,

where K* is chosen so that g¢(z)f(u) < u/K* forallz € Band 0 < u < 1
and 7 = KK* depends only on f and g, but is independent of w. On the
other hand multiplying (1.1), by w and integrating gives that

/732 | v U(x)|2dx — lim guuds = g(z) f(u)u(z)d.

R—oo JOBR ON R2

Thus we must have A\ > + and so the proof is complete.&>
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The hypothesis  2f(u) —uf’'(u) >0 is a weak concavity condition and
is satisfied by the cubic function f arising in the population genetics model,
viz., f(u) =u(l—u)[h(1—u)+(1—h)u]. A more precise nonexistence result
is obtained in [7]( Theorem 4.3), but under more restrictive assumptions on
f than those used here.

The above theorem implies that, when n = 1,2, there exist examples
of functions ¢g decaying arbitrarily fast at infinity such that no solution of
(1.1), exists if A is sufficiently small. Moreover, at least in the radial case,
the solutions obtained under the hypotheses of Theorem 3.1 will approach 0
as |x| tends to infinity (see [2]). We now consider the case where n > 3 and
g is small at infinity and show that completely different results hold.

We shall assume that the function ¢ is small in the following sense

(G1) |g(@)| < k(1 + |2/ for some constants k >0, and a > 1.

Our proofs shall make use of various properties of Newtonian potentials,
which are proved in [4].

Theorem 3.3 Suppose that n >3 and g satisfies (G1). Then there exists
Ao > 0 such that , whenever 0 < A\ < \g, there does not exist a solution u of
(1.1)x with lim ;|00 u(z) = 0.

Proof Suppose that u is a solution of (1.1), such that limyg_ u(x) = 0. It
follows from [4] (Lemma 2.3) that u satisfies

9() f(u(y))

tre o=yt

u(z) =c dy, (3.1)
where ¢, = [n(n — 2)w,]”™? and w, is the volume of the unit ball in
R". Since |g(y)f(u(y)| < ki]y| 2% at oo, we have |u(x)| < ky|x|7?, where
f=n—2if 2a > n and f = 2 — 2« if 2a < n. Since f(u(y)) < Fu(y),
for some constant ¢*, it can be proved by using a bootstrapping argument
that u(z) < kq|z|?>™", for some constant ky. Moreover it can be shown, by
differentiating (3.1) and using arguments similar to those used above, that
|V u@)] < ksl

Since g satisfies (G), g lies L™%(R"). By the estimates on u obtained
above we have yu € L*(R"), w € LY(R"™), where ¢ = 2n/(n — 2).
Hence there exists a sequence {ug} C C{°(R"™), such that Jur — Vu
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in L2(R") and up — u in LY(R™). Thus u? — u? in L"("=2(R") and so
limg oo [n |g|ui dz = [5a |g|u® dz. By Hardy’s inequality there exists d > 0
such that

2
2. / v*(z)
/72n v v(@)fide = d re 1+ \x|2dﬂlj

for all v € C§°(R"). Hence

Jrn |7 u(@)Pdx
= limy oo frn | V wr(2)Pd 2 d frn ui(2) /(1 + |2[*)dx

> (d/k) limy o0 Jrn |9(2) |ui(2)de = (d/k) [rn |g(2)u*(z)dz.
But multiplying (1.1), by u and integrating gives

/Rn | v u<$)|2d;£ — lim guudS =)\ g(z) f(u)u(z)dz.

R—o0 JoBR ON R

Since the integral over the boundary tends to 0, it follows that

Jrn | 7 u(@)Pde < Ae* [rn |g(x)|u?(z)de,
for all 0 < u < 1. This is impossible if A¢* < d/k, i.e., if X < h(d/c*k)
and so the proof is complete. &

Finally we prove, for arbitrarily small A\, the existence of solutions of
(1.1), which approach nonzero constants as |z| — oo.

Theorem 3.4 Suppose that n > 3 and g satisfies (Gy). Let ¢ be given
constant such that 0 < ¢ < 1. If X is sufficiently small, there exists a solution
u of (1.1)x satisfying Lm0 u(x) = c.

Proof 1t is easy to check that u is a solution of (1.1)y, with lim,_. u(z) = ¢
if and only if v = u — ¢ is a solution of
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—Av = Mg(z)f(v), reR"
lim‘x|4)+oo U($) =0.
where f(v) = f(v+¢). Thus f(0) >0, f(1—¢)=0 and f(v) >0 for
0 < v < 1—c. We prove the existence of a solution of (3.2) by constructing
appropriate sub and supersolutions. Clearly the function

(3.2)

5(z) = 1—e¢, for 0<|z| <Ry
YT (1= o) {Ro/|z[}" 2, otherwise

defines a positive supersolution.
Suppose g = g +g_ where g, and g_ denote the positive and negative
parts of g. Then the equation —A¢ = g_(z) has a negative solution

ola) = co | %dy,

Rn | —
such that lim, 4 ¢(x) = 0. Since ¢(x) is bounded we can find € > 0
such that ep(z) +¢ > 0 and so f(ep(z)) > 0, for all z € R™. Let
v(z)) = ep(x); we shall show that v(z)) is a subsolution of (3.2) provided A
is sufficiently small.

If z € R" and g(x) > 0, then

—Av(z)=€g_(2) =0< )\g(x)f@@))a
whereas if g(z) < 0

—Au(z) = egla), and Ag(e) f(u(@)) > Mg(x),

where g is such that f(u) < p for all 0 < w < 1. Thus v is a subsolution
provided that eg(z) < Aug(x) whenever g(x) < 0, i.e., provided that A < ¢/
and so the proof is complete. <
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