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Abstract Some abstract ideas on dissipative systems for
dynamical systems are extended to weak dynamical systems.
Applications are given for a linearly damped nonlinear
wave equation and some distributed control problems.
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INTRODUCTION

At the present time, there 1is a rather extensive theory of
dissipative dynamical systems on an infinite dimensional Banach
space. In particular, there are applicable criteria for the existence
of a compact attractor and the determination of the asymptotic
behavior of the solutions. Many of these ideas originated in thc
study of delay equations and have recently found applications in
partial differential equations (for some references, see, for
example, Hale, Magalh@es and Olival® or Halel%),

In the late 1960’s, efforts were being made to apply Lyapunov
theory and the invariance principle to dynamical systems on a

13y, However, due to certain difficulties which

Banach spacc (Hale
appeared in some applications, Slemrod*®2?° introduced the concept

of a weak dynamical system and used this concept for a discussion
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of the wave equation and a nonlincar partial differential equation
similar to the ordinary differential equation of van der Pol.

Ball* showed that the equation for a linearly damped beam
defines a weak dynamical system and he used this fact to show
that the solutions strongly approach equilibrium points. Artstein
and Slemrod!, using ideas from Ball®, prove the existence of orbits
weakly connecting certain equilibrium points in the beam equation.
Lopes and Ceron'® has used the weak topology to show that every
solution of the beam equation with nonlinear damping approaches
an equilibrium point. For a linearly damped wave equation, Ball®
has similar results.

Other situations where convergence in the weak topology plays
an important role is in linear thermoelasticity (Dafermos!!, Slemrod
and Infante??, Lopes!'?), viscoelasticity of the Boltzmann type
(Dafermos® 1Y), the linearized theory of simple fluids (Slemrod?!)
and conservation laws (Lax'®, Dafermos!?).

Ball and Slemrod®” made extensive use of weak dynamical
systems in studying feedback stabilization of distributed semilinear
control systems. This application also will be considered below.

Much of the difficulty in the above problems stems from the
fact that the Lyapunov function is not continuous but only lower
semicontinuous. Ball® (see, also Dafermos'?’) overcame the
difficulties involved and showed that a version of the invariance
principle was valid.

The purpose of the present paper is to extend some of the
abstract ideas on dissipative dynamical systems to weak dynamical
systems and to point out a few applications. More specifically, in
Section 2, we prove the existence of a weak compact attractor with
the basic hypotheses being weak point dissipative and orbits of
bounded sets bounded. In Section 3, we discuss the implications
for a linearly damped nonlinear wave equation considered by Ball®
for which the nonlinearity is not compact. In Section 4, we discuss

the distributed control problems of Ball and Slemrod®’.
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WEAK DYNAMICAL SYSTEMS AND ATTRACTORS

Let X be a reflexive Banach space. We denote by ‘)2 the space X
endowed with the weak topology.
A weak dynamical system on X is a function T: R x X » X with

the following properties:

(i) T(t): x -~ T(t)x is weakly sequentially continuous for fixed
t € R (e, if X, — X, then T(t)x — T(t)x).

(i) T()x:t = T(t)x is continuous from R into X for fixed x € X.

(iii) T(O)x = x for all x ¢ X, and

(iv) T(t + T)x = T(t)T(T)x for all t,T ¢ RT, x ¢ X.

A dynamical system is a function which satisfies (iii), (iv) and (i), (ii)
in the strong topology.
For any set B € X, we define the weak w-limit set E:)(B) of B by

WB) = N [w—cn v T(t)B].
o020 t20

A set J C X is said to be invariant under T, if T()] =J, t 2 0.

A set is maximal w-compact invariant if it is w-compact, invariant
and maximal with respect to these properties. A set J C & is a weak
compact attractor for T(t) in § if J is maximal, w-compact, invariant
and weakly aitracts the bounded sets of &; that is, for any bounded
set B C X and any ¢ > 0, there is a t; = ty(¢,B,J) such that T(t)B C
N (), for t » t, where N (J) is a weak e-neighborhood of J.

The w-dynamical system T(t) is said to be weak point (bounded)
dissipative if there is a bounded set K C §(, which weakly attracts the
points (bounded sets) of X.

A set J is said to be weakly stable if, for any ¢ > 0, there is
a 8(e) > 0 such that

TN () € N, (J), for all t 3 0.

The next lemma consists of a generalization of Ball’s* Theorem

4 and is used in the proof of the theorems below.
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Lemma 2.1, Let X be a separable, reflexive Banach space, T. Rt x X =
X a w-dynamical system and B a bounded subset of X. If ¥*(B) is a
bounded subset of X, then :)(B) is nonempty, w-compact and invariant

and :)(B) w-attracts B. If B is w-connected, then C)(B) is also

w-connected.

Proof: Since X is reflexive and 7y%(B) is bounded, the set A =

w - c2y¥(B) is w-compact. Also, for any ¢ > 0, we have

U TWB C U T(t)B=7y"(B)CA.
t20 t20

Hence
w-cl U T(t)B C A
t20
and
wB)= N [w-—cﬂ V] T(t)B] CA.
020 t20
Thus (B) is nonempty. Since X is separable, by Dafermos’s!®
Prop. 2.2 we have that (T)(B) is w-compact and invariant. The

proof that (T)(B) w-attracts B is the same as for dynamical systems
in the strong topology.

If B is connected and W(B) is not connected in 5(, there exist M,
M,, A, A, with A, A, w-open such that M, N M, = 0, A, N A, = o,
M, CA, M, CA, and

WB) = M, UM,

From the continuity property of T, we conclude that there exist

sequences {tj), (‘Pj) C B, with t; = = as j = « such that
(T(IJ)‘PJ) C A\(Al u Az)
But A\(A, V A,) is w-closed, hence

O&(B) N (A\(A, U Ay)) # 0

which is a contradiction.
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The following theorems give sufficient conditions for the

existence of a weak-compact attractor and its stability.

Theorem 2.2. Let X be a reflexive separable Banach space. Let T: R

~ ~

X = X be a w-dynamical system, which is w-bounded dissipative and let
K be a bounded w-closed set which w-attracts all bounded sets of X. If

= N3, T(OK, then the following statements are true:

(i) J = (T)(K) and J is independent of K.
(ii) J is w-connected.

(iii) J is @ w-compact atttractor.

(iv) Jis w-stable.

Proof (i) Suppose H is a bounded subset of X. Since K w-attracts H,

v*(H) is bounded, w-c2 yT(H) is w-compact and lT)(H) exists. For any
integer n, there is a g, such that T(YH < ﬁlln(K), t > 0. Since

WH) = N w-ed U TOH
n 20 t?cn

it follows that :)(H) C K. Since this is true for an arbitrary bounded
set of X, we have :)(K) C K. From here, it follows that G(K) C T(H)K
for each t 2 0. Hence, (;(K) C N3 T(OK. But obviously N, T(H)K C
G(K). Therefore, :)(K) = N T(HK. If K, is another set in X with

the same properties as K, then
WK ;) € WK) C WKy

i.e., A is independent of K.

To prove that J is w-connected, let J; = co J. Then J, is
connected, bounded w-compact and J attracts J;. Since J is bounded,
7*(]1) is bounded and thus :>(J1) exists, is w-compact, invariant,
connected (by Lemma 2.1) and :)(Jl) C J. But, obviously S(Jl) > G(J)
and since J is invariant :)(J) = J. Thus ;(Jl) = J and J is

w-connected.
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We prove next that J w-attracts bounded sets of X. Since w(K) C
K, (;(K) is w-compact. If :)(K) does not w-attract K, then there is an

€ > 0 such that, for each 6 ¢ R", we can find zg, such that
25 € T()K and zg ¢ N ((K))

ic, 25 = T(B)xg, xg ¢ K and d(zg, WK)) > €. But {zg} C 7H(K) €
(w-c2 yT(K)), which is w-compact. Hence, we can extract a
sequence {z,} with z —>z, and z ¢ ;(K), which is a contradiction.

Thus J = :)(K) w-attracts K. Since K w-attracts bounded sets of
X, it follows that J w-attracts the bounded sets of X.

The set J is invariant. In fact, since J = N T(HK = :)(K) it is
obvious that T(t)J = J, Vt 2 0.

To show that J is maximal, suppose B is a bounded invariant.
Since J w-attracts B and T(t)B = B, t 2 0, it follows that B C &E(J)
for any ¢ > 0. Hence, B CJ. This completes the proof of part (iii) of
the theorem.

To prove part (iv), suppose J is not w-stable. Then there
exists € > 0 such that, for each & > 0, there exists a t; = ty(5,¢)
for which T(t)Ng(J) ¢ N (J). This implies that therc exists a
sequence (yj) with ¥; — vy ¢ J and (nj} C N, with n; = < as i
such that T(nj)yj € N.(J) and T(nj+1) ¥ ¢ N .(J). The set (yj,y) is
w-compact, and hence, bounded in X. Since J w-attracts bounded
sets of X, it follows that (T)((yj,y}) C J. Thus, we may assume
without loss of generality that T(nj)yj — 2z € J as j—=. Since z €
u)((yj,y)) C J and T(t) is w-continuous, we have T(nj)yj — z € ]
and T(l)z ¢ N (J), which is a contradiction. This completes the

proof of the theorem.

Thearem 2.3, Let X be a separable reflexive Banach space, T: Rt x X =
X be a w-dynamical system which is w-point dissipative. Also, assume
that y*(B) is a bounded set of X for each bounded set B C X. Then

T is w-bounded dissipative.
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Proof: 1If B is a bounded set in X which w-attracts points of X,
then the set H = w-c# B, is w-compact and w-attracts points of X.
By Lemma 2.1, the set J = :)(H) is nonempty, w-compact, invariant
and J we-attracts H. Thus, J w-attracts B. In particular, J
w-attracts points of X.

There exists a w-neighborhood V of J in ﬁ for which y™(V) is
bounded. Indeed, if this is not true, there exist sequences (xj} cV

and intcgers kj with kj ~ «3as j = @ such that

lim inf {d(x;y), y €J} =0
J-»eo

and

X*(T(kpxpl ==, asj~=. .0

Since J is w-compact, we can assume X; — z ¢ J. Take K = {xj,z; j 2
1). Since K is w-compact, it is bounded and y*(K) is bounded. This
contradicts (2.1), Hence there is a w-neighborhood V of J such that
7H(V) is bounded. Since J w-attracts points of X, for each x e X,
there is a weak neighborhood 0, and an integer n, such that

T(n)0, € yH(V), for n 2 n,

For ecach bounded set H C X, the set w-c2 H is w-compact; that is,
there exists a finite covering of H by w-neighborhoods of finite many
points of w-c2 H and a w-open neighborhood H, of w-c2 H such that
7H(V) w-attracts H,. Hence y*(V) w-attracts H. This completes the

proof of the lemma.

Corollary 24. Let X be a separable reflexive Banach space, T: Rt x
X = X be a w-dynamical system with T(t,-) w-point dissipative. Also
assume that yY(B) is bounded, when B is a bounded subset of X.
Then

a. There exists a w-compact attractor J.

b. Jis w-stable and w-connected.
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The following theorems are useful in some particular applications.

Theorem 2.5, Let X be a reflexive, separable Banach space. Let

-~

TRt x X - X be a w-dynamical system. Suppose that orbits of
bounded sets are bounded in X and that there exists a w-compact,
invariant and w-stable subset J of X, which w-attracts points of X. Then

J is the w-attractor in X under T.

Proof: Since J is w-stable, for every ¢, > 0, there exists 8; > 0 such
that

TOEE) CN (1) for all 130,
Thus

7N () < N (). 2.2)

Since T(t) is w-continuous and J w-attracts points of X, for any €, > 0
and any x € X, therc exists B, = By(€,%) > 0 and t, = t,(x,J,¢,;) such
that

TN () N, () CyHN, (J) forall tzt,. (2.3)
52 €, €, 0

Now, if B is a bounded subset of X, then w-cf B = ﬁ is a
w-compact set in X. Therefore there exists an integer k, such that
“ k «
B CBC U Ng(x)
i=1 2

w

where x; ¢ B for i = 1, ..,k. If we take ¢, = 8,, relations (2.2), (2.3)
imply that
w k - -
T(t)B € T(t)B € T(t) [,ul st(xi)] c 7+(N€2(J))
i=
= 7+(§5‘(J)) c ﬁEI(J), for all t 2 t,,
where

t, = i:linf‘.x t(x,,J, 8;) = t,(B,J,5,).
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Hence, for any €, > 0, there exists a 8, (= €,) such that, for all

bounded subsets B of X, there exists t, = t,(B,1,8,) such that

T(B CN,. (J) forall t3t
61 1

ie, J w-attracts bounded subsets of X. Therefore Theorem 2.2 implies
that the set

J=n T{)J
t20 ®

is the w-attractor in X under T.

Let us make some remarks about the meaning of the above
results for linear Co-scmigroups. Suppose T(t):X—X is a linear
w-dynamical system on a reflexive separable Banach space X. If
{0} is stable in X and, for every x € X, T(t)x— 0 as t—=, we
claim that {0} is the w-compact attractor. In fact, the stability
property implies that Y7(B) is bounded in X if B is bounded in X.
Thus, Corollary 2.4 implies that there is a w-compact attractor A,
and A is w-stable. If A # {0}, then there is an x € A, x # 0.
Since T(t) is linear, it follows that C2{aT(t)x, t20} is w-compact
and invariant. Thus, ax € A for any « € R. Thus, A is not
compact, which is a contraction.

It is not known if a corresponding result holds in the
nonlinear  case. More  precisely, suppose T(t):X—X is a
w-dynamical system on a reflexive separable Banach space X. Also
suppose that y™(B) is bounded in X if B is bounded in X.
Suppose J is a w-compact invariant set which w-attracts points of
X and 7J is stable in X. Is J weakly stable? If so, then Theorem

2.5 implies that J is the x-compact attractor.




15:09 15 May 2011

[ HEAL- Li nk Consortiun] At:

Downl oaded By:

280 J. K. HALE AND N. STAVRAKAKIS

APPLICATION TO A LINEARLY DAMPED WAVE EQUATION

Let 0 be a bounded domain in R® with smooth boundary 80, A be the
Laplacian, g ¢ L% Q), f ¢ CYRR) and suppose there are positive

constants 8, ¢ such that:
I '@l € c(ul® + 1) G.1)

|1i|_m f(u)/u € 0. (3.2)
ul=
Consider the wave equation

U, + 2Bu, —Au=f(u)—g in Q
(3.3)
u=0 in 30

Theorem 3.1. If X = Hé(n) x L), then problem (3.3) defines a weak
dynamical system on X. Furthermore, there is a w-compact attractor J in

X, J is w-connected and w-stable.

Proof: 1If wy = (ugvy) € X, let (u(t), ult)) ¢ X be the solution of
(3.3) through w, and let W(t,wy) = (u(t), u,(t)). The function W: RT x
X - X is defined for t 2 0 and is a dynamical system of X (see Babin
and Vishik?3, Ball®, Lopes and Ceron'®). Furthermore, the map W(t,-):
X = X is bounded dissipative (see Babin and Vishik3, Lopes and

Ceronl'®).

Since W is a dynamical system on X, the conditions (ii), (iii), (iv)
of the definition of weak dynamical systems is satisfied. To show (i)
is satisfied, observe that f: HL®) - L*Q) is weakly sequentially
continuous; that is,

u! L?
u, L2~ 33 flu) — f(u).
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Since the map h(v) = 2Bv, h: L? » L? is also weakly sequentially
continuous, it follows from Ball and Slemrod’s® Theorem 2.3 that (i) is
satisfied and W is a weak dynamical system on X,

Since W(t,-) is bounded dissipative, there is a bounded set B in X
such that B attracts (in the topology of X) bounded sets of X. Since
7t(B) is relatively compact in the weak topology, S(B) exists and
w-attracts B. Therefore, (:‘)(B) w-attracts any bounded set in X and in
particular W(t,-) is w-point dissipative. The proof of the theorem is

completed by applying Corollary 2.4.

Remark 3.2, If in addition to the hypotheses of Theorem 3.1, it is
assumed that the equilibrium points of (3.3) are isolated, then
Ball’s® Theorem 5.16 (p. 261) has shown that the wlimit set of any
point in X (in the topology of X) is an equilibrium point. If E is
the set of equilibrium points and all equilibrium points are
hyperbolic and E; (E,) is the set of stable (unstable) equilibrium
points, E = E, U E,, then cach (¢,0) ¢ E; is w-connected by an
orbit to a point in E,. This follows from the w-connectedness of

the attractor J.

APPLICATION TO DISTRIBUTED PARAMETER CONTROL
PROBLEMS

Ball and Slemrod®7

have given some nice results on the
w-stabilization of distributed parameter problems. The purpose of
this section is to show that their proofs together with the general
results of Section 2 on w-compact attractors yield stronger results.

Consider the abstract evolutionary equation
u, = Au + f(u) 4.1

where A is the infinitesimal generator of a C%-semigroup et on a real
Hilbert space H with inner product <, > and f: H - H is a given
function. Let T(t)u, be the solution of (4.1) through u, if it exists.
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Theorem 4.1. Suppose

() eAt s dissipative; that is, fleAtl € 1, ¢t 2 0,
(ii) f: H - H is locally Lipschitz,
(i) u, —u 3 f(u) = f(u),

(iv) <f(¢),9> €0 for all ¢ € H.

Then T(t: H-H is a C°-semigroup on H and T(t)x is a weak dynamical
system on H. If the set M defined by

M = (9 ¢ H: <T(t)o, £(T(t)g)> = 0, t e R}

is bounded, then there is a w-compact attractor J for (4.1), J is
w-connected and w-stable. For each ¢ € H, :)(q;) M
Finally, if M = (0}, then J = {0).

Proof; Ball and Slemrod’s® Theorem 2.4 and the proof of that
theorem shows that T(t)x is a dynamical system on H, orbits of
bounded sets are bounded, T(t)x is a weak dynamical system on H
and :)(cp) C M for all ¢ ¢ H. The existence and properties of the
w-attractor J follows from Corollary 2.4. If M is w-stable, then
J = {0} from Theorem 2.5.

We remark that, if M = {0}, then the proof of Theorem 2.4 in Ball
and Slemrod® imply that {0} is stable. We do not know if this implies
{0} is w-stable so that the w-compact attractor would be (0}.

The stabilization problem is defined in Ball and Slemrod® as
follows: Suppose e¢A' is a contraction semigroup on H such that
<A@ P> € 0 for all ¢ € D(A) and B is a (possibly nonlinear)
operator from H to H, suppose v(t) is a real valued function for

t » 0 and consider the system

u, = Au + v(t)Bu. (4.2)

The system (4.2) is said to be stabilizable (weakly stabilizable) if there
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exists a continuous feedback control v: H = R with v(t) = v(u(t)), such

that the equation

u, = Au + v{u)B(u(t)) (4.3)

satisfies the following properties:

(i) for each uw, ¢ H, there is a unique solution u(t,uy) of (4.3)
defined for all t € RT,

(ii) {0} is a stable equilibrium of (4.3),

(iti) u(t,uy) >0 (—0) as t = « for all u, ¢ H.

~

Theorem 4.2. If B: H ~ H is sequentially continuous and

M = {9 ¢ H: <ePtq, B(eA)> = 0 for all t ¢ R}

is bounded, then there is a w-compact attractor ¥ for (4.3) with v(u) =
-<u,B(u)>. If, in addition, M = {Q), then (4.2) is weakly stabilizable
with this feedback control. If M={0} and is w-stable, then {0} is the
w-compact attractor.

The proof of this theorem follows from the proof in Ball and
Slemrod’s® Theorem 3.1 making use of Theorem 4.1.

As an application of the previous results, we consider with Ball
and Slemrod® the following hyperbolic equation. Let V be a real
Hilbert space with inner product <, >,. Let P be a densely defined
positive definite self-adjoint linear operator on V such that P! is
everywhere defined and compact. If V12 = D(PY/?), then V/? is a

Hilbert space under the inner product
_ .pl/2 1/2
<W1’w2>vl/2 = <Pw PV w o>y,

Suppose v(t) is a real valued control and consider the wave equation

Yy + Py + v(t)y = 0. (4.5)
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This equation can be written as a special case of (4.3) with

H=VY2xyVy
y 0 1 0 0

u = , A= , B= (4.6)
z -P 0 -1 0

The operator A is skew adjoint on D(A) = D(P) x VY/2 and B: H ~ H

is compact.

Choose the feedback control
v(u) = = <u,Bury = — <z,y>y = <y(t), y (D> 4.7

From Theorem 4.2, we have that (4.5) is weakly stabilizable with
feedback control (4.7). If M = {0} and is w-stabilizable, then (0) is the
w-compact attractor.

Ball and Slemrod’s® Theorem 4.1 shows that M = {0} with A and B
in (4.6) if and only if the eigenvalues of P are simple. These results
are directly applicable to the wave equation (P = —A on a bounded
domain) with Dirichlet boundary conditions if the eigenvalues of —A

are simple. They also apply to the beam equation (P = +y on 0 <

o
x < 1) with clamped ends (y = y, = 0, at x = 0,1) or simply supported
ends (y =y, = 0, at x = 0,1). Condition (iii) of Theorem 4.1 prevents
the application of the previous results to certain types of control
problems.

Further results have been given by Ball and Slemrod” for the

hyperbolic problem
Vi + Py + <C(y),y>Cly) = 0 (4.8)

where P: D(P) € V = V is the same as in (4.5) and C: VY% = V is
locally Lipschitz.

Equation (4.8) is equivalent to a system



15:09 15 May 2011

[ HEAL- Li nk Consortiun] At:

Downl oaded By:

COMPACT ATTRACTORS 285

u, = Au + f(u)

y 0 I 0
u = , A= , f(u) =
z P 0 —<C(y),z>yC(y)

which defines a C%semigroup T(t) on H = V¥/2 x V for which orbits
of bounded sets are bounded. Let us now make the following

hypotheses:
U: Rt x H = H, (t,u) —> T(t)u is a weak dynamical system.

For any ¢ ¢ H, the weak w-limit set (3(<p) exists. Furthermore, if
E(9) = llol% and u(t) = T(t)g, then

E(u(t) = E(¢) = -[* <C(u(s)), u,(s)>%ds.
0

If ¢ ¢ ;(q)) and u(t,) — ¥, where t, ~  as n - =, then Ball and
Slemrod’s” Lemma 3.1 prove that u(t + t) — eA'y.  Since E(eAt) =
E(¥), E(u(t) =~ E¥), E(u(t+t)) = E(e'“d.l), it follows that

t
Lim J‘o <Cu(s + t)), u(s + t)>3 =0, t20.
Let N be the set in H such that

N ={4 ¢ H:3p ¢ H and a sequence t, »~asn ~> = (4.9)

such that T(t )¢ — ¢ as n = «and
t

lim j‘o <C(T(s + t)¢), T(s + t)¢> = 0, t 2 0).
n—®

Using Corollary 2.4, we can then state the following generalization of
Theorem 4.1,
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Theorem 4.3, If the system (4.8) defines a weak dynamical system on
H = VY2 x V and the set N in (4.9) is bounded, then there is a
w-compact attractor J in H and I is w-stable. Furthermore, if N = {0}
and is w-stable, then J = {0).

To show that N = {0} is very difficult and is the main essence of
the paper of Ball and Slemrod”. They have given conditions on the
operator C to ensure that this is the case and these conditions are

sufficiently general to apply to the beam equation
u,, + A%y + <Au, u,>yAu = 0, in Q
u=4Au=0,in o0

where © is a bounded domain, V = H%¥Q) n Hé(ﬁ) and the eigenvalues
of -A with Dirichlet boundary conditions on 3Q are considered to be
simple. Condition (iii) in Theorem 4.1 is not satisfied in this case.

Many other interesting examples also are contained in Ball and
Stemrod”.
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