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INTRODUCTION 

The International Symposium on Operator Theory was held on the old 
campus of the National Technical University, Athens, Greece, from 26 to 31 
August 1985. The organizing committee consisted of Drs. D. Krawaritis and 
J. Maroulas of the Department of Mathematics of the National Technical 
University. 

The Symposium had vital financial support from the National Technical 
University, The Ministry of Culture and Science, and the Ministry of Youth 
of the Government of Greece, and Olympic Airways. 

The international nature of the meeting was demonstrated by the fact 
that the eleven invited speakers represented ten different countries, while the 
grand total of fifty-three speakers represented no less than twenty-one 
different countries. 

Lists of invited lectures and contributed papers follow, and this report 
concludes with synopses of several contributed papers. 
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INVITED LECTURES 
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Semigroups and evolution equations 

H. BAIT, Erasmus Universiteit, Rotterdam, The Netherlands 

Transfer functions and operator theory 

L. BERG, Wilhelm Pieck Universitiit, Restock, D. R. Germany 

I. General operational calculus 
II. Finite operational calcuIus 

P. HESS, University of Zurich, Switzerland 

I. On the spectrum of elliptic operators with respect to indefinite weights 
II. On the stable solutions of periodic-parabolic boundary value problems 

H. K~NIG, University of Kiel, F. R. Germany 

Eigenvalues of compact operators with applications to integral operators 

T. J. LAFFEY, University College of Dublin, Zreland 

Simultaneous reduction of sets of matrices under similarity 

P. LANCASTER, University of Calgary, Canada 
I. Common eigenvalues, divisors, and multiples of matrix and operator 

polynomials: A review 
II. Generalized invariant subspaces 

V. PT~, Academy of Sciences, Prague, Czechoslovakia 

I. A maximum problem for operators 
II. The infinite companion matrix and Bezoutians 

H. SCHNEIDER, University of Wisconsin, Madison, U.S. A. 

Some interrelations of algebraic, geometric, combinatorial, and analytic 
aspects of Perron-Frobenius theory 

C. P. STEGALL, University of Linz, Austria 

Radon-Nikodym property in Banach spaces 

J. R. L. WEBB, University of Glasgow, Scotland 

Topological degree and A-proper operators 

CONTRIBUTED PAPERS 

In the case of multiple authors, the one presenting the paper at the 
Symposium is marked t. 
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G. A. ANASTASSIOU~ and 0. SHISHA, University o_f Rhode Island, Kingston, 

U.S.A. 
Monotone approximation with linear differential operators 

N. BEBIANO and G. N. DE OLIVEIRA, 1 University of Coinzbra, Portugal 

On a conjecture concerning the determinant of the sum of two normal 
matrices 

J. BENEDETTO, University of Maryland, U.S. A. 

Maximum entropy and a related spectrum estimation technique 

J. BERKOVITS, University of Oulu, Finland 

On the degree theory for mappings of monotone type and applications 

A. BERMAN, Technion, Haifa, Israel 

Pole assignment with holdability and M-matrices 

R. A. BRUALDI, University of Wisconsin, Madison, U.S. A. 

The spectral radius of matrices of O’s and l’s 

L. BURLANDO, University of Genova, Italy 

On two subsets of a Banach algebra that are related to continuity of spectrum 
and spectral radius 

P. J. BUSHELL, University of Sussex, Brighton, England 

The Cayley-Hilbert metric and positive operators 

F. CHRYSSOVERGHI, National Technical University, Athens, Greece 

Nonconvex optimal control of monotone partial differential equations 

C.-H. CHut and N. P. H. JEFFERIES, Goldsmith’s College, University of 

London, England 

On extreme positive linear maps of operator algebras 

G. DASSIOS, University of Patras, Greece 

Degeneracy of partition modes for dissipative systems 

H. R. DowsoN,+ University of Glasgow, Scotland, and D. KOROS, Piraeus, 

Greece 

A model for a scalar-type spectral operator 

I. DRICOJIAS, Institute of Technological Education, Larissa, Greece 

Approximation property for weighted H(P)-spaces 

G. FOURNIER, University of Sherbrooke, Canada 

Periodic solutions of pendulum-like equations 

H. GATESOUPE, University of Nantes, France 

Coherent operators in spaces of periodic evolution 
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A. GIANNOUSIS, University of Pa&as, Greece 

Operator theory in Q-analysis 

N. HADJISAVVAS, Nuclear Research Center “Demokritos,” Athens, Greece 

Properties of metrics on the set of statistical operators 

D. HUYLEBROUCK and J. V. GEEL,~ University of Gent, Belgium 

Diagonalization of idempotent matrices 

E. K. IFANTIS and P. D. SIAFAFXKAS, t University of Patras, Greece 

A functional analytic approach for the study of the zeros of Bessel functions 

H. KAMOWITZ, University of Massachusetts, Boston, U.S. A. 

Compact weighted composition operators 

S. KARANASIOS, National Technical University, Athens, Greece 

Factorization along nest algebra modules 

I. KLUVANEK, Flinders tiniversity, Bedford Park, Australia 

Scalar operators 

D. KRAVVAFUTIS and N. STA WAKAKIS, t National Technical University, 

Athens, Greece 

Measurability of inverses of random operators 

D. KnAvv,knrrrst and N. STAWLAKAKIS, National Technical University, 
Athens, Greece 

Nonlinear maximal monotone random operators in Banach spaces 

J. MAROULAS, National Technical University, Athens, Greece 

A theorem on the factorization of matrix polynomials 

C. MmTINEZ,t M. SANZ, and L. MARCO, University of Valencia, Spain 

I. The Taylor nest of fractional powers of operators 
II. Fractional powers of operators 

K. MA-ITILA, University of Stockholm, Sweden 

Hermitian operators and isometric isomorphisms on dual Banach spaces 

G. MIMINIS,~ Memorial University, St. John’s, Newfoundland, Canada, and 
C. C. PAIGE, McGill University, Montreal, Canada 

Implicitly shifted QR-like algorithms 

F. A. OLIVEIRA, University of Coimbra, Portugal 

Differential equations and interval analysis 

G. N. DE OLIvEIR.4,f University of Coimbra, Portugal, and J. A. DIAS DE 

SILVA, Lisbon, Portugal 

Matrices satisfying certain polynomial identities 
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G. PANTELIDIS~ and V. NASSOPOULOS, National Technical University, Athens, 

Greece 
iiber die Existenz gemeinsame Elemente bester Approximation beziiglich 
zwei Normen 

I. POLY~IS, National Technical University, Athens, Greece 

Strongly exposed points in a base for a cone and characterizations of Z,(I) 

R. PUYSTJENS~ and D. HUYLEBROUCK, University of Gent, Belgium 

Generalized inverses of a sum 

P. ROZSA, Technical University of Budapest, Hungary 

Strict band matrices and semiseparable matrices 

W. RuEss,t University of Essen, F.R. Germany and W. H. SUMMERS, 
Fayetteville, Arkansas U.S. A. 

Asymptotic behavior of solutions to the abstract Cauchy problem 

B. ScrrwAnzt and A. ZAKS, Technion, Haifa, Israel 
Geometry of matrix differential systems 

A. G. SIS~AKIS, University of Illinois, Urbana-Champaign, U.S. A. 

Weighted composition semigroups on Hardy spaces and applications 

G. A. STA VRAKAS, University of Athens, Greece 

Bore1 maps and K-Souslin sets 

H. G. TILLMAN, University of Munster, F.R. Germany 

Stijrungstheorie und Iterationsverfahren bei zerlegbaren Operatoren 

M. TISMENETSKY, IBM Israel Scientific Center, Haifa, Israel 

The determinant of block-Toeplitz band matrices 

F. WILLIAMSON, Paris, France 

Some methods for nonlinear problems in the set valued case 

A. ZAKS~ and B. SCHWARZ, Technion, Haifa, Israel 

Contractions of the matrix unit disk 

INEQUALITIES FOR SPECTRUM ESTIMATION 
by JOHN J. BENEDETTO’ 

1. The Spectrum Estimation Problem 

The spectrum estimation problem is to clarify and quantify the following 
task: find periodicities in a signal x recorded over a fixed time interval 
[ - T, Tl [21. 
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There are several approaches to this problem, the two leading ones being 
windowing methods and high-resolution methods. Uncertainty-principle in- 
equalities play a role with windowing methods, and entropy inequalities play 
a role with the maximum-entropy high-resolution method. Ultimately, I’d like 
to compare methods by comparing inequalities, instead of comparing meth- 
ods by two favorite antipodal means, viz., by means of physical intuition or 
by means of apparent success of algorithms. (I’m going to deal exclusively 
with deterministic results at the autocorrelation level, as opposed to dealing 
first with subtleties involving statistical modeling for data.) 

The Fourier transform of f E L’(R) is 

nY) = F(Y) =/_mmf(t)e-2nifYdt, yEl% 

(R = If4 is the real line). The Wiener-Weyl uncertainty-principle inequality in 
terms of variances V is 

(1.1) 

where V(g) = ]]ug(u)]]i and ]]g]]i = jlg(u)12du; and Hirschman’s entropy 

inequality (with an assist from Beckner [l]) in terms of the differential 
entropy E (e.g., Kolmogorov [12]) is 

E( IfI”) + E( lF12) > 1 - log2 > 0, (1.2) 

where ]]f]12 = 1 and E(lgl) = - J]g(u)]log]g(u)]du. The inequality (1.2) is 
not true for the compact-discrete duality; cf. Section 4. Using a result of 
Shannon, Hirschman observed that (1.2) implies (1.1). 

Uncertainty-principle inequalities are used in windowing methods to 
quantify energy loss of estimators; see, e.g., Section 2. Entropy inequalities 
are used in high-resolution methods to find an estimator which maximizes the 

‘University of Maryland, Maryland, USA. Supported by the NSF through the University of 

Maryland Systems Research Center. 
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entropy rate of the process; this maximization is a mathematical guarantee 
that the least number of assumptions has been made regarding the informa- 
tion content of the unmeasured data at It] > T; see, e.g., [15; 7, pp. 94-961 
(J. Edward and M. Fitelson), and cf. Landau’s prediction-theoretic approach 
(Section 3). 

2. Windowing and Energy Loss 
We begin with a special case of the Bell Labs uncertainty principle [6; 10; 

141. 

THEOREM 2.1. Given T, 52 > 0. There is c = c(TQ) E (0,l) such that for 
each T time-limited function f (i.e., supp f c [ - T, T]), 

(2.1) 

c(T!C?)~ is the largest eigenvalue of BA, where Af = fx? and Bg = (Gxn) ” 
( y designates the inverse Fourier transform, and xQ is the characteristic 
function of [ - 9, a]). 

If r(t, a), a real stationary stochastic process, is the statistical model 
associated with our data on [ - T, T] and b is a real even data window for 
which Ilbll, = 1 and supp b c [ - T, T], then 

is the periodogram associated with x and b. The expectation of S, is 

E{S,(w)} =S*B2(u). 

If B2 = B$ is an approximate identity, then S b, is an asymptotically unbiased 
estimator, i.e., E{ SJo)} + S in a weak* topology. 
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If E{ S,} is our estimator for the power spectrum S, then Theorem 2.1 
allows us to compute, for supp S c [ - 9, a], that 

=Il~*~2112=Il~&~ 1127 

where we’ve taken b> 0 on (- T,T), noting b * b(t)< ]lb]li= 1. The 
energy loss occurs for E { S,} or its windowing variants, e.g., S, itself or 
means of S,s, since c(TO) < 1. Thus, in theory, windowing estimators have 
inherent resolution problems exhibited by uncertainty-principle inequalities. 

Having made this criticism of windowing, we must point out that 
windowing algorithms have provided reliable, understandable estimation, 
from Bartlett’s consistent estimator (a mean of periodograms), to the estima- 
tors of Blackman and Tukey, to the more recent resolution of two close peaks 
by Thomson [16]; cf. [2, Example 6.2b]. 

3. Landau’s Maximum-Entropy Point of View (Discrete Data) 
The following result is well known [5, 81. 

THEOREM 3.1. Given c,,..., c,,, E C. Define Cj = c j and the Toeplitz 
matrix R, = (cjk), I+ = c~_~. Assume R, is positive definite. There ,@ a 
unique positive absolutely convergent Fourier series S - Xsje p2nijy, si = S(j), 
such that 

(4 vlil 6 12, si = ci, and 
(l$ for every positively absolutely convergent Fourier series F, for which 

cj = F(j), ljl< n, we can conclude that 

flog F(y) du < ~llog S(y) dv. 
0 

(3.1) 

We outline a proof due to Landau [13] which begins, as do several others 
[5, 81, with SzegS’s approach, but which depends ultimately on the Szegii 
alternative and an intimate knowledge of orthogonality. 

Sze.gZ ‘s appmach. let II, be the space of nthdegree polynomials 
Sn=Cgakzk, a=(a,,..., a,,), with inner product [S,, SD] = Ca jbkcj_k and 
norm IIS,]] = [S, S]l12. Let PO, P,,. . . be an orthogonal basis on { IT, } with 
the orthogonality property [S,, P,] = 0 for each S E III,_ i. It is well known 
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that 

P,(I) = 0 implies ]{] < 1. (3.2) 

Landau’s proof of (3.2) is especially simple and beautiful: Z’,(l) = 0 implies 
Z’,(z) + CS, _ i(z) = zS, _ i( z) for some S, _ i E II no i; and so, by orthogonality 
and taking 1 z I= 1, we compute 

IV” + SLl12 = ll~nl12 + Is1211Ll12 

and 

IIlI~L(4 II2 = llL1112~ 

which combine to yield 1 - 13 ] 2 > 0. 
Given autocorrelation data co, . . . , c, as in Theorem 3.1 and using (3.2), it 

is well known by &ego’s approach [ll, p. 431 that 

s=P, 
IPtI12 ’ 

P,( 2) = &Ii, j, 
0 

is an absolutely convergent Fourier series for which S(j) = cj, ]j( < n. 
Landau’s approach. Landau’s point of view is that the maximum- 

entropy power spectrum S of Theorem 3.1 is really that which produces the 
poorest prediction from the past. 

To see explicitly how prediction plays a role, let p be the power spectrum 
of a process and define 

If we ask how well 1 can be approximated by the span of { eesiky: k < 0} in 
L2(~), i.e., how well the present can be predicted from the past, then we are 
asking to compute I,_,&). The Szegii alternative theorem gives the answer: 

where F is the absolutely continuous part of Z.L and log F is integrable. 
Given the autocorrelation data c,, . . . , c, of Theorem 3.1, Landau elegantly 

showed that Z,(p) < Z,(S) for any positive measure ZA whose Fourier trans- 
form fi satisfies fi( j) = cj, ] j] < n. The verification of this inequality in terms 
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of evaluating polynomials is not so difficult; and Theorem 3.1 follows by 
taking logarithms. 

4. An Alternative for Maximum Entropy (Continuous Data) 
If continuous autocorrelation data are given on [ - T, T], then the maxi- 

mum entropy theorem analogous to Theorem 3.1 is more difficult to for- 
mulate (cf. [9]); and there does not seem to be a smooth transition via 
digitization of analog spectrum estimation problems when dealing with 
maximum entropy. To be more precise, we first ask if the entropy estimator is 
ever preempted in the continuous case. The answer is in the affirmative if the 
difference between possible estimators must belong to a given small subspace 
of power spectra, i.e., such a subspace constraint forces a unique estimator. 
This point of view gives rise to stability problems. If the difference between 
estimators must belong to certain large subspaces of power spectra, then the 
weighted variation (corresponding to entropy integrals) of such differences is 
necessarily great. 

These general remarks are quantified by results such as the following and 
will be exposited elsewhere in greater detail. 

THEOREM 4.1 [4]. Let W > 1 be a continuous weight on k for which 
log W is uniformly continuous. The condition 

/ 

hP(Y) 
1+ya 

dy<cc (4.1) 

is valid if and only if for every E > 0 there is a bounded measure R supported 
by [ - E, E] for which RW E L”(k). This latter multiplier property can be - 
replaced by the condition j Wd ISI < co, R = S, if an invariance condition is 
added to (4.1). 

THEOREM 4.2 [3]. Given (Y E (0,l). There is a computable constant 
C(a)> 0 such that if {f,} is any family of functions satisfying the 
conditions, 

(4 SUPP~, c [ - 6 4, 
@I Ilf,ll, 2 M ’ 0, 

Cc> Ilf,ll,=/I~~~~~~~/~+Iyl”l~y~~ 

for all E > 0, then 
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THE SPECTRAL RADIUS OF MATRICES OF O’S AND 1’S 
by RICHARD A. BRUALD12 

Let 911, be the set of n-by-n matrices of O’s and l’s, and for a square 
matrix A let p(A) be the spectral radius of A. Let 9 be a subset of % “, 
which is assumed to have some structure (i.e. 9 is not to be an arbitrary 

2Department of Mathematics, University of Wisconsin, Madison, WI 53706. 
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subset of 9). Let 

and 

The following general problem was formulated in [2]: Determine ,5 and b (or 
at least an upper bound on P and a lower bound on ,5). The reason for this 
problem is that we will then have upper and lower bounds on the spectral 
radius of each matrix in 9 which may improve on the classical bounds. 

Now define a 9 as follows. Let r and r’ be nonnegative integers with 
r + r’ = n2. Let 9 be the set of n-by-n matrices of O’s and l’s with exactly r 
l’s-equivalently, exactly r’ 0’s. This 9 is denoted by both %Jr) and 
%k( r’) depending on whether the number of l’s or O’s is emphasized. The 
rest of this discussion refers to these kinds of 9’ ‘s, and we report on work of 
Brualdi and Hoffman [l], Friedland [4], and Brualdi and Solheid [3]. First we 
note that a theorem of B. Schwarz [S] implies that P is attained by matrices 
in a,(r) of the form 

(i.e., the l’s precede the O’s in both rows and columns), while 6 is attained by 
matrices of the form 

(i.e. the l’s precede the O’s in the rows but follow the 0 ‘s in the columns). In 
both cases equality may be attained by other matrices (even after permu- 
tation similarity). 

From Schur’s inequality one obtains [l] that for ST = k2, p = k; moreover 
for A E %J r = k2), p(A) = k if and only if A is permutation-similar to a 
matrix in )21,(r) with its leading k-by-k principal submatrix equal to a matrix 
of all 1’s. 

For r = k2 + 1, we have [l]: ,Z = k, and for A E )21”(r = k2 + l), p(A) = k 
if and only if A satisfies the property above, or k = 1 and A is permutation- 
similar to the matrix in IlI,(r = 2) whose leading %by-2 principal submatrix 
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equals 

0 1 
[ 1 1 0’ 

or k = 2 and A is permutation-similar to the matrix in %,J r = 5) whose 
leading 3-by-3 principal submatrix equals 0 1 1 

I 1 10 0. 
1 0 0 

Friedland [4] obtained the following asymptotic result. Consider !Xln(r = 
k2 + Z) where 2 >, 2. Then there exists an integer M(Z) such that for k > M(Z), 
ii equals the spectral radius of the matrix A in % ,J T = k2 + 2) whose leading 
(k + l)-by-( k + 1) submatrix equals 

all l’s 

1 . . . 1 0 ... 0 

1 

; 
0 

0 

7 
j 

1 LJ 2 

When 1= 2k, the above matrix A always satisfies p(A) = 6. When 1= 2k - 3, 
fi is the spectral radius of the matrix in % ,,( r = k2 + 2 k - 3) whose leading 
(k + l)-by-( k + 1) principal submatrix equals 

all l’s L I 0 0 
0 0 

We now turn to some recent results [3] on 5. Now we need to know the 
number of l’s or of O’s as a function of n. For if the number of l’s is small 
compared to n, then j5 = 0. We now use the notation %A( r’), where 7’ 
denotes the number of 0’s. There are two easy cases. When 

7’2 n+l ! 1 2 ’ 
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,G = 0, since there is then a matrix in % ,J 7’) with O’s on and above the main 
diagonal. When 

then fi > 0, hence ,Z > 1, and thus ,6 = 1, since there is a matrix in %L(r’) 
with O’s above the main diagonal. This leaves 

roughly, less than half the entries are 0’s. When less than one-quarter of the 
entries are O’s, we have the following [3]: Let 

Then 

Moreover, for AE %k(r’), p(A)=6 f i and only if there are nonnegative 
integers r and s with n = T + s such that A is permutation-similar to 

Now suppose 1 G k Q n, and write n = qk + 1 where q >, 1 and 0 < 1~ k. 
Let r’= rL,k, where 

r; k = q(q - l) 
2 

k2 + qkl. 

Thus r,‘, k is the number of O’s in the matrix 

where .lk and J, are k-by-k and l-by-l matrices, respectively, of all 1’s. Clearly 
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p(A,,,) = k, and indeed we have [3] 6 = k. Necessary and sufficient condi- 
tions for a matrix A E a;(~,‘,~) to satisfy p(A) = fi = k are described in [3]. 
As a corollary, for any r’ the minimum spectra! radius can be bounded 
between two consecutive integers. More precisely, let 

and determine k between 1 and n - 1 such that 

Then [3], the minimal spectral radius for !X L( 7’) satisfies k < j5 < k + 1. 
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DEGENERACY OF PARTITION MODES FOR DISSIPATIVE SYSTEMS 
by GEORGE DASSIOS3 

The problem of propagation of thermoelastic waves in an isotropic and 
homogeneous infinite medium is mathematically formulated as a Cauchy 
problem for a coupled system of three hyperbolic and one parabolic linear 
partial differential equations of the second order. The parabolic nature of the 
heat equation imposes on the system a dissipative character which describes 
the mechanism of gradual transferring of energy from the mechanical to the 
irreversable thermal form, during each wave cycle. 

“Department of Mathematics, University of Patras, Patras, Greece 
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The mathematical problem consists in determining the functions 

u:R3x[0,+00)43, u E C’2’ 

and 

0:Rsx[o,+co)+R3, 0 E c’s’ 

which satisfy the differential equations 

14Au+ 
h+P 

P 
pv(vu) - Utt = iv@, (1) 

A+=nvu, (2) 

and the Cauchy data 

u(x,o) = UJX), (3) 

ut(x,O) = ur(x), (4 

@(x,0) = O,(x), (5) 

where p, X, p, y, k, n are physical constants and u ,,, u 1, 0, are sufficiently 
smooth functions with compact support in R3. Let R > 0 be such that 

[suppu,] U [suppu,] u [suppo,] = B(O; R). (6) 

Three kinds of energy norms are connected with this problem: the kinetic 
energy 

(7) 

the strain energy 

w(t)= ~~~[allvu~z,t~l12+(X+p)jO_u(x,t),%J d3x, (8) 
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and the thermal energy 

P(t) = 1/.,“‘yp 10(x,t)12d3X (9) 

where E is a dimensionless coupling constant taking values in the interval 
[0,6& - 10). Th e a b ove energy-norms satisfy the fundamental energy equa- 
tion 

~[K(t)+w(t)+P(t)]+X,(t)=O, (10) 

where 

x,(t) = $y31vo(x, t) 12d3x 01) 

is the dissipation function and A,, T, are also constants of physical interest. 
Define the n th directional moment of f in the direction a by 

Mf”)(a) = 2~~3/2~z[a.f(x)](a.x)nd3r, (12) 

where ulna= {0,1,2,... }. Also define the order of symmetry of f by 

2, = min{ m E N,]3a, E R3: M,(“)(a,) # 0, M,(“)(a) = 0, 

VaER3, n=0,1,2 )..., m-l}. (13) 

In [4] we proved that, after we eliminate the solenoidal part of the solution 
which gives rise to the transverse wave, then as t + + 00, 

K(t) = 1+ 1 Iym+3+ o(t-‘“‘3), 
i 1 (14) E 

w(t) = r,+ ‘r, t-w+!)+ @‘“‘3), 
i i E 

t-(m+3+ o(t-‘“+3), (16) 

where rr and Ia are some known constants that depend on the initial data 
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and 

112=min{v,+l,v,,ve}, (17) 

oO, or, ve being the orders of symmetry for ua, ur, and O,, respectively. 
We introduce the vector 

(K,,W,,P,)= 1+f r,,r,+fr,.~r,+r,) ii i E 
i, (18) 

which is a constant vector for each given set of Cauchy data. The vector 
c = (c,, ca, ca) E R3 is called a partition vector whenever it belongs to the 
orthogonal complement of the vector subspace spanned by (K,, W,, P,). 

The following theorems are simple consequences of the above relations: 

THEOREM 1. In the generic case, where the orders of symmetry of the 
initial data are arbitrary, there exists exactly one partition vector given by 
(1 - E, - 1, E). 

THEOREM 2. In the nongeneric cases where 

vO + 1= m, m < vl, m < vo, 
v1 = m, m < vO + 1, m < vo, 

(iii) vo = m, m < vO + 1, m < vI, 

besides the partition vector (1 - E, - 1, E) of Theorem 1 there exists a second 
linearly independent partition vector which is given by 

-1, -1 

(ii’) (1, - 1, - 1) 
,+; 

respectively. 

THEOREM 3. In the nongeneric cases where 

(9 v@ = vO + 1= m, m < vl, 

K!?) 
v8 = v1 = m, m < vO + 1, 
vr = vO + 1 = m, m < vo, 

the only partition vector that exists is the one given in Theorem 1. 

As a result of the above theorems we observe that in the cases of Theorem 
1 and Theorem 3 there is only one mode of partition of energy, which is 
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described by 

w, = (1- e)K, + EP,, 0% 

and it states that as t --) + co the strain energy is partitioned into a convex 
combination of the kinetic and the thermal energy. 

In the particular nongeneric cases given by Theorem 2, there are in- 
finitely many modes of partition of energy, exhibiting the structure of a 
two-dimensional vector space. In these cases any linear combination of the 
vector (1 - E, - 1, E) and the vector given by (i’), (ii’), or (iii’) is also a 
partition vector. In other words, there exists a partition degeneracy which is 
characteristic of the dissipative system of thermoelasticity. 

Other physically interesting dissipative systems such as the generalized 
thermoelasticity, the magnetoelasticity in a conducting medium, and the 
coupled magnetothermoelasticity are possible areas for further investigation 
of the asymptotic behavior of the energy norms. 
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A FUNCTIONAL-ANALYTIC APPROACH FOR THE STUDY OF THE 
ZEROS OF BESSEL FUNCTIONS 
by E. K. IFANTIS and P. D. SIAFARIKAS4 

1. Introduction 

The singular differential equation 

where h(z) = C~=rhnz”-l is analytic in some neighborhood of zero, has 
been the subject of several investigations and generalizations [l, 21. If h(z) 

4 Department of Mathematics, University of Patras, Patras, Greece 
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belong to the Hardy-Lebesgue space H,(A), i.e., the Hilbert space of 
functions y(z) = X~=i~~z~-; which are analytic in A = {z: ]z] < l} and 
satisfy the condition Xz= i]r~,,]~ -C + cc, then a necessary and sufficient condi- 
tion for Equation (1) to have solutions in H,(A) is the following [3]: 

n;l( - l)n-lci;-l hn 
q a1 + n - 1) = 

0, (Y() z 0. (1.2) 

It is easy to see that for 0~~ = - p/2, cyi = p + 1, and 

h(z)= -fexp( -fz) [hn=&(E)n], 
the left-hand side of Equation (1.2) is the ordinary Bessel function J,(p). 
Thus it follows from the above result that p # 0 is a zero of the Bessel 
function J,(z) if and only if the equation 

z2y’(z) + (-i+(p+l)z)y(z)= -iexp[-f3), y(0) = 1. 

has a solution in H,(A). 
On the other hand it is well known [4] that the study of Equation (1.1) in 

H,(A) is equivalent to the study of an operator equation in an abstract 
Hilbert space H with an orthonormal basis {e, }E= i. This equation has the 
form (V + K )f = h, h E H, where V is the shift operator (Ve, = e,, i, 
n = 1,2,. . , ) and K is compact. In the case of Bessel functions the above 
equation can be transformed to an eigenvalue equation of the form L,TOg = 
(2/p)g, g f H, where L, is the diagonal operator 

1 
Lpen = -e 

n+p n’ 
n=1,2 ,..., nf -p, 

and T, = V + V * (V * is the adjoint of V). In case p > - 1 the operator LPTo 
is similar to the compact self-adjoint operator S, = L~‘“ToL~‘2, where Lb’” is 
the diagonal operator 

1 
L’12e = -e 

P n Jntiu IT’ 
n = 1,2 ,... . 



CONFERENCE REPORT 393 

More precisely we have the following: 

THEOREM 1.1 [3]. p # 0 is a zero of the Bessel function J,(z) if and only 

if 2/p is an eigenvalue of the operator LaTo or the operator T,L. 

COROLLARY 1.1 [3]. For p > - 1, p # 0 is a zero of J,(z) if and only if 
2/p is an eigenvalue of the compact and self-adjoint operator S,. 

Theorem 1.1 and Corollary 1.1 lead us to an operator approach in an 
abstract separable Hilbert space for the study of the zeros of the Bessel 
function J,(z). In section 2 we give some results concerning the real and 
complex zeros of the Bessel function J,(z). 

2. Main Results 

I. Using some properties of the operators LPTO and S,, we are led easily 
to some alternative proofs of well-known properties of zeros of Bessel 
functions (Lommel-Hurwitz theorem, Rayleigh’s formula, Burget’s hypothesis 
[5]) and some results which are not presented as new although we were 
unable to find them in the literature. These results are the following [3]. 

(1) For every real p there exists a sequence of real numbers p n, 1~,,] + 
+co, such that J,Jp)=O, n=1,2 ,.... 

(2) If p is nonreal then the function J,(Z) has no real zeros,. . . . 

(3) If p=pi+ips, ps#O, p=pi+ip,, ,++O,and J,(p)=O,then 

ZZ. Let J,(z) and J,(Z) be ordinary Bessel functions of order p and v 
respectively. Based on the results of Theorem 1.1 and Corollary 1.1 and using 
different functional-analytic techniques, we have proved an inequality which 
relates the first positive zero of the ordinary Bessel function J,(z) and the 
absolute value of the real part of any zero of J,(z). More precisely, we have 
proved the following: 

THEOREM 2.1 [6]. For v>Rep> -1, ALEC, any zero p=Rep+ 
i Im p z 0 of l,(z) satisfies the inequality 

l+Rep 
IRePI > ~,,ll_tv’ (2.1) 

where P,,~ is the first positive zero of J,(z). 
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Some lower bounds for the absolute value of the complex zeros of J,(z) 
follow easily from the proof of Theorem 2.1. These lower bounds are the 
following: 

If I ’ P".l for Rep> v, (2.2) 

IPI >~[(1+Rep)P+(Imp)2]1’2 for -l<Rep<v, (2.3) 

for p=-k-e, O<e<l, k=1,2 ,.... (2.4) 

From (2.1) or (2.3) it follows that if ~1 is real and v > ~1 > - 1, then the first 
positive zeros of J,(z) and J,(z) satisfy the inequality 

PP 1 1+/J 
A>- 

P u,l 1+v’ (2.5) 

A number of simple lower and upper bounds for the first positive zero of 
J,(Z) follow immediately from the inequality (2.5). These bounds are better 
than many well-known lower and upper bounds found recently by several 
authors (see the references of [6]). 

III. In Ref. [7] was proved the following. 

THEOREM 3.1 [7]. For v > - 1 every zero p(v) # 0 ofJ,(z) satisfies the 
differential equation 

dPW 
- = P(Vw$+)~ 44), 

dv 
v> -1, (3.1) 

where x(v) is a normulized element of H. 

A principal result which follows easily from (3.1) is the following: 

COROLLARY 3.1 [7]. Every positive zero p(v) of J,(z) satisfies the 
inequality 

dp(v) > 1 

dv ’ 
-l<rv<fco. (3.2) 
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The differential inequality (3.2) has attracted recently the attention of 
many authors. McCann and Love [8], in order to prove the inequality 

P U.1 ’ PO,1 + JJ> o<v<+co, (3.3) 

have proved (3.2) in the interval 0 < v < 0.05. More recently Elbert, Gatteshi, 
and Laforgia [9] have defined a function jy,k for every k > 0, which for 
k=12 , >... is the function P”,~, and proved that the inequality 

djv,k > 1 

dv 
(3.4 

holds in the intervals ( - 1, - f),( - $,O),(O, co) under several assumptions 
which require the knowledge of lower bounds on j,, k. In all the above, p,, k 
means the kth positive zero of J,(z). From (3.2) it follows immediately that 

&,k-v’Pp,k-b v>p> -1. (3.5) 

This relation unifies and improves a number of lower and upper bounds given 
for the positive zeros of J,(z). In fact, for p = 0 in (3.5) we have 

&,k’PO,k+Vy O<v<+co. (3.6) 

This is a well-known lower bound. For k = 1 it was proved by McCann 
and Love [8], and for k >, 1 by Laforgia and Muldoon [lo]. Also, for p = $ in 
(3.5) we have 

pu,k > km - $ + v, ~<v<+cKl. (3.7) 

In general the lower bound (3.7) is better than (3.6). In particular, for k = 1 
we have 

P v,l > 2.64159+ v > po,r + v, V>$. (3.8) 

Note that the lower bound P,,~ > p. 1 + v is better than a number of lower 
bounds found recently by many authors (see p. 261 of Ref. [6]). 
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Finally, from Theorem 3.1 one obtains easily the following 

COROLLARY 3.2 [7]. For every positive zero p,, k of .I,,( z) the function 

Pv,k 
1+v 

is a strictly decreasing function in - 1 < v < + 00. 

This means that 

* > Pv.k 

1+c1 1+v 

For v = 0, (3.10) gives the inequality 

v>pL>. - 

(3.9) 

1. (3.10) 

-l</lL<O, (3.11) 

which for k = 1 is the well-known lower bound p,,, > pO r(l + /.L), - 1 < p < 0, 
given by Laforgia and Muldoon [lo]. Also, for v = i in’ (3.10) we have 

Pp,k’$k7T(1+d -l</.F+. (3.12) 

For k = 1 in (3.12) we obtain the lower bound pP,l > !$(l+ p), - 1 < p < i, 
which in the interval (0, i) is better than the well-known lower bound 

P/L,1 ’ PO.1 + v* 
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WEIGHTED COMPOSITION OPERATORS 

by HERBERT KAMOWITZ5 

We present a brief summary of some properties of a class of bounded 
linear operators on Banach function spaces. Let X denote a locally compact 
space or a measure space, B a Banach space or Banach algebra of 
complex-valued functions on X, cp a function X -+ X, and u an element of B. 
If C, : f(x) + f( q(x)) maps B into B, then Cp’ is called a composition 
operator on B, and if UC,: f(x) + u(x)f(cp(.r)) maps B into B, then UC, is 
called a weighted composition operator on B. 

Varying B or ‘p leads to widely studied classes of operators such as 
multipliers (if ‘p = identity), weighted shift operators on sequence spaces, or 
composition operators on HP(Q), where G is a region in Q= or C”. 

The aim here is twofold: to state some background results of ours and to 
give references to related results. 

Our interest in this type of problem arose in a Banach-algebra setting. In 
[4] we showed that if T is a nonperiodic automorphism of a commutative 
semisimple Banach algebra, then the spectrum of T, a(T), is a connected set 
containing the unit circle. This is a problem of the type under consideration, 
since every nonzero endomorphism T of a commutative semisimple Banach 
algebra B induces ,a continuous function ‘p on the maximal ideal space JY, 
of B such that Tf (x)=f(q(x)) for all x E A,. The result in [4] led to 
considering the spectra of other endomorphisms such as endomorphisms of 
algebras of analytic functions on disks and annuli, and we obtained complete 
results when the fixed point of the inducing map cp is in the interior of the 
region [5, 71. From here we turned to looking at the spectra of composition 
operators on HP of the unit disk and again obtained complete results when 

‘University of Massachusetts, Boston 
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the fixed point of q is in the interior of the disk [6]. Much more extensive 
results in general may be found in a very comprehensive paper by C. Cowen 

PI- 
Regarding weighted composition operators (on Banach algebras, weighted 

endomorphisms), there are results on the spectra of weighted endomorphisms 
of the disk algebra A when the map ‘p is a Mijbius function [8]. In this case 
the spectrum of UC, depends on the behavior of u at the fixed points of q. 
The type of transformation-parabolic, hyperbolic, or elliptic-enters into 
the proofs. The result is that if ‘p is nonperiodic, then a(&,) is either an 
annulus, a circle, or a disk. Further, in [9] we characterized compact 
weighted endomorphisms on A. 

If X is a compact set, ‘p: X + X, and u E C(X), then UC, is a compact 
weighted endomorphism on C(X) if, and only if, for each connected compo- 
nent C of { x 1 u(x) # 0} there is an open set V 3 C on which v is constant 
[lo]. If X = Z = [0, 11, say, and ‘p is differentiable, then the last condition can 
be written ucp’ = 0. Recently we have extended this to weighted composition 
operators on W,, p [ I], a Sobolev space, and to C’“)( I “), the Banach algebra 
of functions on I” which have continuous partial derivatives through order 
m. For W,,_, again, UC, is compact if, and only if, UT’ = 0 [ll], and for 
C(“)(Z”), a weighted endomorphism UC,, is compact if and only if UV~, = 0 
for each i = 1,2 ,..., n [12]. 

We close by giving several references. 

(1) Antonevic [l] discusses the spectra of uCq on W,, p[ I] when cp is a 
homeomorphism of I. 

(2) Kitover [ 131 has results on weighted endomorphisms of uniform 
algebras. 

(3) Gorin [3] also has results on the spectra of weighted endomorphisms 
of uniform algebras, with particular attention to the disk algebra and the case 
where ‘p is a linear fractional transformation. 

Finally, for the most comprehensive results on HP we again refer to [2]. 
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SCALAR OPERATORS 
by IGOR KLUVANEK6 

Let E be a Banach space, L(E) the space of all bounded linear operators 
on E, and Z the identity operator on E. 

An operator T E L(E) is of scalar type in the sense of Dunford if there 
exists a space Q, a a-algebra Y of subsets of a, a multiplicative set function 
P : 9 + L(E) which is u-additive in the strong operator topology such that 
P(G) = I, and a P-integrable function f such that 

T= fdP 
/ (1) 
cl 

-equivalently, if there exists a u-complete Boolean algebra ~4 of bounded 
projections on E such that T belongs to the closed linear span of ~4 in L(E). 

For short, we shall call such operators u-scalar, departing thus to some 
extent from the established terminology. 

The theory of u-scalar operators is beautiful, rich, and fruitful. The 
monograph [l] is of course an indispensable reference. 

However, the requirement that 9’ be a u-algebra and P be strongly 
u-additive or, alternatively, that the Boolean algebra .& be acomplete, 

“School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park, 
S.A. 5042, Australia. 
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excludes many operators of interest from the class of u-scalar operators. 
Moreover, this requirement may be considered extraneous in some sense; it 
seems that many results of the theory could be obtained without it. For, if the 
integral (1) exists, then there exist 9simple functions fi, j = 1,2,. . . , such 
that 

the equality 

f(4 = f +-d 
j=l 

holds for every w E S-I for which 

and 

(3) 

So the integral (1) can be defined purely in terms of the operator-norm 
convergence. This well-known fact leads us to the following definitions. 

An operator T E L(E) is called a scalar operator if there exists a Boolean 
algebra SST of bounded projections on E such that T belongs to the 
operator-norm closed linear span of .a2 in L(E). 

Let W be an algebra of subsets of a space S?. An additive set function 
P : .9? + L(E) is called very additive if 

E j$dP=O 
j=l 

for any .G%simple functions 4, j = 1,2,. . . , satisfying the condition (2) such 
that 

for every w E &? for which the inequality (4) holds. 
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Let P: 9 + L(E) be a very additive set function. A scalar-valued func- 
tion f on D is said to be P-integrable if there exist Wsimple functions 4, 
j = 1,2 ,..., satisfying the condition (2) such that the equality (3) holds for 
every w E Q for which the inequality (4) d oes. The integral of the function f 
is then defined by (5). The definition of integral is unambiguous because P is 
very additive. 

Then the Beppo Levi theorem for the so-defined integral holds. That is to 
say, if 4, j = 1,2,. . . , are P-integrable functions, satisf,ying the condition (2), 
and f is a function on Q such that the equality (3) holds for every o E Q for 
which the inequality (4) does, then the function f is P-integrable and the 
equality (5) holds. 

Now it turns out that an operator T E L(E) is scalar if and only if there 
exist a space Q, and algebra 9% of subsets of 52, a very additive and 
multiplicative set function P: 3’ -+ L(E) such that P(Q) = I, and a P-inte- 
grable function f on !G? such that the equality (1) holds. 

An interesting class of scalar operators which are not u-scalar are the 
translations in LP spaces and some other LP-multiplier operators, 1 < p < cc, 
p # 2. The failure of translations to be u-scalar is illuminated in [2]. 

Assume that 1 < p < 00. Let .%’ be the family of all sets in a= Iw whose 
characteristic functions are LP-multipliers. For each set X E 9, let P(X) be 
the multiplier operator generated by the characteristic function of the set X. 
That is to say, if 1 < p < 2 and cp E Lp(R), then P(X)(p = 4, where 4 is the 
element of LP(R) whose Fourier transform is the Fourier transform of QJ 
multiplied by the characteristic function of X. If 2 < p < 00, then P(X) is the 
adjoint of the similarly defined operator in Lq(R), where p-’ + q- ’ = 1. 

Because the multiplier operator generated by a bounded measurable 
function f is the zero operator if and only if f vanishes almost everywhere 
(with respect to the Lebesgue measure), it is easy to see that the set function 
P : 9 + L(X) is very additive. Obviously, it is multiplicative and P(R) = I. 

The domain, .G%‘, of P is rather rich. It is known to contain all intervals 
and all sets of the form X,,, = { w:exp(itw) E J}, where t E Iw and J is a 
connected subset of the unit circle T = { z E C : 1.~1 = l}. What is more, there 
exists a constant cp such that IIP(X)ll <cp for each interval X CR, and 
IIP(X, ,)I1 < cp for each t and J. Of course, 9 contains a.ll sets belonging to 
the algebra generated by intervals and the sets X, ,. And still more sets 
belong to 9. 

These facts then imply, via the Beppo Levi theorem, that every function 
of finite variation is P-integrable. Similarly, every periodic function with 
finite variation in a period is P-integrable. In particular, if s E Iw and 
f(w) = exp(isw), for w E Iw, then the function f is P-integrable. The multi- 
plier operator generated by f is of course the translation by s. There are also 
many P-integrable functions which neither have finite /&variation, p > 1, nor 



402 D. KRAWARITIS, P. LANCASTER, AND J. MAROULAS 

are periodic and have finite /&rriation in a period, nor are a Lipschitzian of 
any order LY < 1. 
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THE INFINITE COMPANION MATRIX 
by VLASTIMIL PTAK7 

The infinite companion matrix of a polynomial was introduced by the 
author [l] in the course of his investigation of the maximum problem, which 
was discussed in the lecture [S]. The notion of the infinite companion turned 
out to be useful also on a number of other occasions-see e.g. the notes [3,4]. 

Here we limit ourselves to listing its most important properties. For the 
proofs we refer the reader to the papers [l, 2, 3, 41. A systematic account is 
being prepared. 

Let p be a polynomial of degree n, 

p(x) = a, + a,x + . . . + U,X”, 

with a, = 1. We denote by C(p) the companion matrix of the polynomial p, 

i 

0 1 0 . . . 0 \ 

C(p)= “0 ; ; ::: y . 
-a, -a, --a2 0.. -a,_, 

The infinite companion matrix Cm(p) corresponding to the polynomial p 
has n columns numbered 0 1 , ,*.., n - 1 and an infinite number of rows 
0,1,2 ).... 

‘Institute of Mathematics, Czechoslovak Academy of Sciences, btn6 25, 115 67 Praha 1, 
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(1) The entries in the rth row 

are defined as follows. If m,(X) is the remainder obtained upon dividing X’ 
by P(X), then 

n-l 

m,(h) = C t,, jhj. 
j=O 

The notation C(p) and P(p) will be abbreviated to C and C” unless 
there is a danger of a misunderstanding. 

(2) The jth column cj of Cm(p) is the solution of the recursive relation 

a,x, + a,x,+, + . . . + UnXrin = 0 

with the initial conditions 

xj = 1 

and xk = 0 for all 0 < k < n - 1 different from j. 
(3) It follows from (1) that, given any linear operator A for which 

p(A) = 0 and any nonnegative r, then 

n-l 

A*= 1 trkAk. 
k=O 

(4) Given any r=0,1,2 ,.,., the matrix consisting of the n consecutive 
rows of Cm(p) starting with the row of index r equals C( P)~. 

(5) In terms of the roots of p, the entries may be described as follows: if 
(~i,. . . , a, are the roots of p then 

trj = ( _ l)“-j-lc de~,...p%) 
i 

-1 

n-j-1 i 

a;, . . . a$, 

the summation ranging over all n-tuples of nonnegative integers e,, . . . , e,, 
such that Ce = r - j, while q(e,,..., e,) stands for the number of those e 
which are positive. 
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The next property of the infinite companion is formulated in terms of the 
generating function. Accordingly we shall assume that all roots of p are less 
than one in modulus. 

(6) If F(z, y) is the function 

then 

F(& Y) = i&J-&) 
=-g-(1-~) 

1 

=im 
n_l P(W) - P(Y) 

l/z-y ’ 

where p, is the reciprocal polynomial 

PI(Z) = z"p 1 i 1 2 . 

The generating function F(z, y) of the matrix C” is closely related to the 
kernel of a projection (or interpolation) operator in the Hardy space H2, the 
Hilbert space of all functions holomorphic in the open unit disk such that 
their Taylor coefficients a, satisfy Cla ,,I2 < co. 

The space H2 may be decomposed into the direct sum of the set P, of all 
polynomials of degree < n - 1 and the subspace M(p) of all multiples of the 
polynomial p. 

(7) Denote by R the projection operator onto P, corresponding to this 
decomposition. Then, for any m E H2, 
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In this manner F appears as an interpolation operator: indeed, Rm is a 
polynomial of degree < n - 1 which coincides with m at each root (Y of p; 
this, of course, including multiplicities, so that Rm and m coincide at (Y 
together with their derivatives up to order k - 1 if p is divisible by (z - a)k. 

(8) If o is an arbitrary positive integer, we denote by CqW the matrix 
consisting of the first 4 rows of C”, that is, the rows with indices 0, 1,. . . , 
q - 1. Also, we denote by ‘s”p the q-by-infinity matrix 

then 

‘0 1 0 0 ... 0 0 0 ... 
0 0 1 0 ... 0 0 0 ... 
0 0 0 1 ... 0 0 0 ... 

..*......................... 
\o 0 0 0 ... 0 1 0 ... 

In a similar manner 

YC” = C”C 

if 9 is the infinite analog of Yb. 
(9) Explicit formulas for the solution of Lyapunov-type equations may be 

obtained using the intertwining relation of item (8). Given two manic 
polynomials p, and p, of degree ni and n2 respectively, we are looking for 
an n,-by-n, matrix X such that 

X- C(P~)*XC(P~) = E(ns,nr), 

where E(n,, n,) is the w-by-n, matrix 

If E stands for the infinite analog of these matrices, E( . , .), we note that 
1 - Y*Y = E. Setting Ni = C”(nl), Ns = C”(T)& we have 

N,*N, - C,*N,*N,C, = N,*N, - Ns*Y*YN, = N,*(l- Y*sP)N, 
=N,*EN,=E(n,,n,). 

It follows that N,*N, is the explicit solution. 
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NONLINEAR RANDOM EQUATIONS IN BANACH SPACES 
by DIMITRIOS KRAWARITIS and NICOS STAVRAKAKIS’ 

Let X, Y be Banach spaces and s2 a measurable space. Let T : Q x X + Y 
be a random operator (i.e., for each x E X, T( .)x is measurable) and 
17 : 52 + Y a measurable mapping. The random equation corresponding to the 
double [T, q] asks for a measurable mapping 5 : G! + X such that 

w4S(4 = 17(4 forall 0EQ. 

The systematic study of random equations as initiated by Sparek [19] and 
Hans’ [7,8]. They proved random fixed-point theorems for contraction map- 
pings. Later various results on random fixed-point theorems for single-valued 
or multivalued mappings were given by Bharucha-Reid [l], Itoh [9, 11, 121, 
and Engl [4, 5, 61. Recently, Kannan and Salehi [13] studied random 
Hammerstein equations with monotone operators. Their method of proving 
the measurability of solutions was based on the uniqueness of solutions of 
these equations. In [lo] Itoh proved the existence of solutions of random 
equations with monotone operators. He used the theory of measurable 
selections of measurable multifunctions to obtain random solutions (not 
necessarily unique). 

We state now some definitions from nonlinear functional analysis and 
random-operator theory. 

Let X be a reflexive Banach space, X * its dual space, and (r *, x) the 
pairing between x* E X * and x E X. Let D be a subset of X, and L an 

‘Department of Mathematics, National Technical University of Athens, Patission 42, 
Greece. 
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operator from D into X *. Then L is said to be: (1) monotone if 

(Lx-Ly,x-y)>O forall x,yED, (*> 

(2) maximal monotone if it is monotone and there is no proper extension of L 
that is also a monotone operator, (3) strictly monotone if the equality in ( * ) 
implies that x = y, (4) of type M if for any sequence {x,,} in D for which 
x,+x in X, Lx,+x* in X*, and limsup(Lx,,, x, - x) Q 0, we have 
x * = Lx, (5) demicontinuous if for any sequence { x,, } in D with xn + x E D, 
it follows that Lx, --, Lx. 

In the following Cl will denote a measurable space with a u-algebra s?. !G! 
is called complete if there exists a complete u-finite measure defined on &. 
We denote by B( at, X) the set of all measurable mappings E: Q + X such 
that su~{llS(~)ll: w~O}<co.ArandomoperatorT:S?XD-+X* issaidto 
be coercive if there exists a function c : W ’ + R with lim, _ m C(T) = + 00, 
such that (T(w)x, x) 2 c(]]x]])]]x]] for all w E D and x E D. A random oper- 
ator T is said to be monotone (demicontinuous, etc.) if for each w E a, T(w) 
is monotone (demicontinuous, etc.). 

We present now some existence theorems for nonlinear random equations 
with operators of monotone type. The measurability of solutions depends 
mainly on the selection theorem of Kuratowski and Ryll-Nardzewski [ 161. For 
corresponding deterministic results we refer to Browder [3], Brezis [2], and 
Pascali and Sburlan [18]. 

The next existence theorem for random equations with maximal mono- 
tone operators was proved in [ 151. 

THEOREM 1. Let Q be complete, X be a separable reflexive Banach 
space, and D be a subset of X with OED. Let T:QXD+X* be a 
coercive, demicontinuous muximul monotone random operator such that 
sup{ lIT(w)O w E Q} <co. Then for each 17 E B(G, X*) there exists [E 
B(Q, X) such that 

The proof of this result is based on the Debrunner-Flor lemma for 
monotone random operators, given also in [ 151. Itoh [lo] has proved an 
existence theorem for maximal monotone random operators T: 52 x D -+ X *, 
where G is a measurable space, not necessarily complete, and D a dense 
linear subspace of X. 

The following existence theorem for nonlinear random equations with 
densely defined operators of type (M) was obtained in [ld]. 
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THEOREM 2. Let X be a separable reflexive Banach space and D be a 
subset of X. Let T: G? X D + X * be a bounded, coercive random operator of 
type (M). Suppose that there exists a dense linear subspace X, of X which is 
contained in D such that for each finitedimensional subspace F of X,, the 
random operator T:QxF-+X* is demicontinuous. Then for each -TV E 
B(Q, X *) there exists [ E B(Q, X) such that 

In [14] there is also studied a random Hammerstein equation involving a 
linear monotone operator and an operator of type (M), as well as nonlinear 
random inequalities. 

Now we present two new existence theorems for nonlinear random 
equations. The key to our results is the next 

LEMMA. Let X be a separable Banach space and Y be a Banach space. 
Let T: G? x X --, Y be a continuous random operator such that for each w E F2, 
T(w) is invertible and its inverse T(o)-’ is demicontinuous. Then the 
operator S: CZ x Y---f X defined by S(o)y = T(o)-‘y (w E 52, y E Y) is ran- 
dom. 

This lemma extends a result in [17], where both operators T and S were 
assumed to be continuous. 

We give an existence theorem for nonlinear random Hammerstein equa- 
tions involving monotone and noncoercive operators. 

THEOREM 3. Let X be a separable reflexive Banach space. Let K : Q, x 
X * --, X be a linear monotone random operator and A : 52 x X + X * a 
continuous, strictly monotone random operator. Suppose that the operator 
[I + K( w )A( w )] _ r is bounded. Then for each measurable mapping q : Q -+ X 
there exists a unique measurable mapping t: G -+ X such that 

@w)+K(o)A(o)[(o)=q(w) forall WEO. 

We consider a random equation which contains operators of the form 
L + T, where L is an unbounded linear monotone random operator and T a 
random operator of type (M). 

THEOREM 4. Let X be a separable reflexive Banach space and D be a 
dense linear subspace of X. Let L : !J X D + X * be a linear maximal mono- 
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tone random operator, such that for each w E a, L(w) is one-to-one and 

onto. Let T: 2 X X + X * be a random operator which is bounded, coercive, 
and of type (M). Then fw each 71 E B(& X *) there exists 5 E B(!& X) such 

that 

L(o)S(w)+T(w)S(o)=q(w) firall WEO. 

In proving this theorem we apply an approximation procedure by consid- 
ering, for each w E 0, the Yosida approximants L,(w) (E > 0) of L(o) (cf. 
Pascali and Sburlan [18]). 
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WEAK* CONTINUITY OF HERMITIAN OPERATORS AND 
ISOMETRIC ISOMORPHISMS ON DUAL BANACH SPACES 
by KIRSTI MATTILAg 

Introduction 

In the first part of this paper we will consider weak* continuity of the 
Hermitian operators in the decomposition T * = H + iK on the dual space of 
a Banach space (See Problem 1 below). In the second part we will consider 
Banach spaces X such that the canonical projection of X either is Hermitian 
or satisfies some weaker condition. We will then obtain results on weak* 
continuity of the Hermitian operators on X * (Theorem 5) and on weak* 
continuity of certain isometric isomorphisms (Theorems 4 and 6). 

Let X and Y be complex Banach spaces. The dual space of X will be 
denoted by X *. Further, B(X, Y) will be the space of all bounded linear 
operators from X to Y, and B(X) = B(X, X). It is well known that an 
operator S E B(Y *, X *) is continuous in the weak * topology if and only if S 
is the adjoint of an operator T E B( X, Y ). The adjoint of T will be denoted 
by T*. 

An operator T E B(X) is called Hermitian if ]]eitT]] = 1 for all real 
numbers t. It is easy to see that T is Hermitian if and only if T * is 

Hermitian. Moreover, T is Hermitian if and only if the numerical range 
V(T) = { f(Tx): x E X, f~ X*, (1xII = llf\l= f(x) = 1) is a subset of the real 
numbers. An account of numerical ranges and Hermitian opreators is given in 
[3] and [4]. 

“Department of Mathematics, University of Stockholm, Box 6701, S-113 85 Stockholm, 

SWedl?lL 
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1, The Decomposition H + iK 

PROBLEM 1. If H and K are Hermitian operators on X * and if the operator 
H + iK is weak* continuous, are H and K weak* continuous? 

This question was asked by E. Behrends in [2], where he also proved that 
this is true if T* = H + iK is normal (i.e. if HK = KH). For the following 
Banach spaces the answer is affirmative. 

THEOREM 1. Assume that either 

(i) X is the range of a projection of norm one on X * * (in particular, X 

may be a dual space), or 

(ii) X is a C*-algebra with unit. 

Then, if T E B(X) and T * = H + iK for some Hermitian operators H and K, 

it follows that H and K are weak* continuous. 

On the other hand, Theorem 2 below will give an affirmative answer to 
Problem 1 for a class of operators including the normal operators. 

DEFINITION 1. An operator T E B(X) is called *-hyponormal if T = H + 

iK for some Hermitian operators H and K and the inequality 

J\e”Te-“TI) d 1, 

where T = H - iK, holds for all complex numbers z. 

It was proved in [l] that subnormal operators on a Hilbert space have the 
property ( * ). Normal operators on a Banach space are obviously *-hyponor- 
mal. It can be shown that *-hyponormal operators are hyponormal [i.e., they 
satisfy the condition V(i(HK - KH)) c {t E !I&’ : t >, O}]. 

THEOREM 2. Let T be an operator on X such that 

(i) T* is *-hyponormal (let T * = H + iK) and 

(ii) the operator HK - KH is weakly compact. 

Then H and K are weak * continuous. 
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In proving Theorem 2 we also prove the following generalization of 
Fuglede’s theorem: 

THEOREM 3. Let T be a *-hyporwrmul operator on Y, and U a *-h_ypo- 
normal operator on X, where X and Y are Banach spaces. Zf TS = SU for 
some S E B(X, Y), then !6 = SU. (For the notation T see Definition 1.) 

The proofs of Theorems 1, 2, and 3 are given in Reference [lo]. 

2. The Canonical Projection, Hermitian Operators, and Isometric 
Zsomorphisms 

Let i, denote the canonical embedding of X into X **, and let X be the 
range of ix. The canonical projection of X is the operator P,?,, 0 i$. It is 
well known that Px is a projection on X ** * whose range is (x*) and whose 
kernel is the annihilator of X in X ***. Clearly I] P,& = 1. 

DEFINITION 2. A Banach space X is said to have the property 

(H) if every Hermitian operator on X * is weak * continuous; 
(I) if every isometric isomorphism on X * is weak * continuous; 
(UP) (we also say that X is the unique predual of X *) if whenever Y is a 

Banach space such that Y * is isometrically isomorphic to X *, then every 
isometric isomorphism of Y * onto X * is weak * continuous. 

We have the implications (UP) * (I) j (H). 
The results of Harmand and Lima in [8] showed that the canonical 

projection and the properties in Definition 2 are related. By [8], the Banach 
space X is an M-ideal in X ** if and only if Px is an L-projection. If X is an 
M-ideal in X **, then by [8, Proposition 4.21 X and X * have the property (I). 
It follows from [9, Theorem 2.61 and [6, Theorems 15 and 181 or from 
Theorem 6 that X * is even the unique predual of its dual. An L-projection is 
a Hermitian operator. There are Banach spaces where the canonical projec- 
tion is Hermitian, but not an L-projection. Such are for example the spaces 

and the $-sum 

(Cc,),, for P>l- 
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PROBLEM 2. Which of the properties (H) and (I) does X have if 

(i) Px is Hermitian, or 
(ii) I - 2P, is an isometric isomorphism, or 
(iii) )IZ - Pxll = l? 

It is easy to see that (i) *(ii) *(iii). For the cases (i) and (ii) we can 
prove the following theorems: 

THEOREM 4. Assume that Px is Hermitian. 

(i) Zf Y is a Banuch space such that I - 2P, is an isometric isomorphism 
and if T is an isometric isomovhism of Y * onto X*, then T is weak* 
continuous. 

(ii) X has the property (I). 

THEOREM 5. Zf Z - 2P, is an isometric isumorphism, then X has the 

PFPMY (W 

Finally, the following results for X and the dual space of X are obtained 
from [S, Proposition 2 and Theorem] and [6, Theorems 15 and 181. 

THEOREM 6. Zf [IZ- Pxll = 1, then X d I, and X* has the property 

(UP>. 

The proofs of Theorems and 4 and 5 will be given elsewhere. 
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BAND MATRICES AND SEMI-SEPARABLE MATRICESlO 
by P. R6ZSA” 

Sparse matrices, in particular band matrices, play an important role both 
in theoretical and in practical problems. Band matrices are characterized by 
the property that their nonzero elements are to be found in a certain 
neighborhood of the main diagonal only. It is known that the inverse of a 
tridiagonal matrix with nonzero super- and subdiagonal elements is a one-pair 
matrix [3]. It is not obvious, however, what happens when the matrix is 
slowly “filled up,” i.e. how the elements of the inverse behave when the 
width of the band grows. By making use of the theory of linear difference 
equations, T. Oohashi has dealt with this problem in [4]. W. W. Barrett and 
Ph. J. Feinsilver in [2] related the vanishing of a certain set of minors in a 
matrix to the vanishing of a corresponding set of minors in the inverse. As a 
corollary they obtained the first theorem of E. Asplund [l]. 

Let us recall some basic definitions and theorems from [l]. 

DEFINITION 1. A band matrix of grade p is a square matrix [a i j] whose 
elements satisfy aij = 0 for j > i + p. 

DEFINITION 2. A Green’s matrix of grade p is a square matrix [aij] 
whose submatrices have rank < p if their elements belong to the part of a i j 
for which j + p > i. 

‘“To appear in Integral Equations and Operatur Theory. 
“Department of Mathematics, Faculty of Electrical Engineering, Technical University 

Budapest, Budapest, Stoczek u. 2-4, Hungary-1111. 



CONFERENCE REPORT 415 

THEOREM 1 (Asplund). A nonsingular square matrix is a band matrix of 

grade p if and only if its inverse is a Green’s matrix of grade p. 

THEOREM 2 (Asplund). A rum-singular square matrix is a band matrix of 

grade p with rwnvanishing elements in the p th diagonal above the main 

diagonal if and only if its inverse is the sum of a matrix of rank p and a band 

matrix of grade - p (and hence also a Green’s matrix of grade p). 

Definitions 1 and 2 can be extended: 

DEFINITION 3. A square matrix is called a strict band matrix of grade p 
if it is a band matrix of grade p with nonvanishing elements in the pth 
diagonal above the main diagonal. 

DEFINITION 4. A square matrix is called a strict band matrix of grades 
P 

1) 
q if it is a strict band matrix of grade p and its transpose is a strict band 

matrix of grade q. 

DEFINITION 5. A square matrix is called a Green’s matrix of grades 
P 

r i 
q 

if it is a Green’s matrix of grade p and its transpose is a Green’s matrix of 
grade q. 

As an example, let us consider the tridiagonal matrices with nonzero 

super- and subdiagonal elements, i.e. the strict band matrices of grades 
1 

1 I 1 . 
The inverse of a symmetrical strict tridiagonal matrix is a one-pair matrix (see 

[3, p. 901) or separable matrix, with elements rij defined as 

i 

ujvj for i < j, 
rij = 

ViUj for i> j. 

Obviously this is a Green’s matrix of grades 1 
1 i 

I , since each submatrix above 

the subdiagonal and below the superdiagonal has rank 1. In other words, 
since [ ui vj] is a one-rank matrix, we may say that a one-pair matrix can be 
obtained from a one-rank matrix by cutting it in two halves and reflecting it 
across the main diagonal. 
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More generally, the elements of a Green’s matrix of grades 1 
i 1 

I whose 

inverse has nonzero super- and subdiagonal elements can be written as 

UiVj for i < j 
Tij = 

ziwj 1 for i2 j ’ 
uivi = ziwi 

i.e., [T,~] can be considered as the half of a one-rank matrix [ui vj] above the 
main diagonal and the half of [ zi wj] below the main diagonal. Thus we may 

say that such a Green’s matrix of grades 
1 

: i 1 
can be regarded as two 

semi-pair matrices: one above and one below the main diagonal. 
Inspired by the relation between the semipair matrices and the strict 

1 band matrices of grades I 
i i 

, the question can be raised whether there exists 

a similar relation between an arbitrary strict band matrix of grades 
P 

1 i 9 
and 

a certain number of semipair matrices. In order to answer this question let us 
introduce the following definition. 

DEFINITION 6. The matrix R = [ ri j] with 

I for i < j + p, 

Tij = 
4 

C .2~p)w~p’ for i > j - q 
/L=l 

is called a 

= 0 for -p<j-i<q, 

#O for j-i= -p and j-i=q. 

(la) 

(lb) 

Making use of this definition, the main result can be formulated in the 
following theorem. 
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THEOREM 3. A nonsingular square matrix is a strict band matrix of 

if and only if its inverse is a semiseparable matrix. 

Z wish to thank Dr. G. Golub and Dr. 1. Gohberg for helpful suggestions. 
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BOREL MAPS AND X-SOUSLIN SETS 

by G. A. STAVFL4KAS’2 

1. Zntroduction 
In this note we are concerned with topological spectra, in relation with 

Xanalytic sets and in particular with Lusin and Souslin sets (see below for 
definitions). Also, we examine properties of spaces which are images of 
.ZSouslin topological vector spaces under a continuous injective linear map. 

Let E and F be topological algebras. By a topological algebra (respec- 
tively, locally convex) we mean an algebra E equipped with a Hausdorff 
topology such that the (underlying) vector space is a topological (respectively, 
locally convex) vector space and the multiplication in E is separately 
continuous (considered as a bilinear map of E X E into E). 

Let .A(E, F) be the generalized spectrum of E (for given F) (i.e. the set 
of nonzero continuous algebra homomorphisms of E into F) topologized as a 
subset of YS(E, F), the space of continuous linear maps between the 
topological vector spaces E and F, equipped with the topology of simple 
convergence in E. If E and F are unital algebras, then the elements of 
A( E, F) are assumed to be identity-preserving [18]. 

Xanalytic sets or XSouslin sets (every *analytic set is XSouslin) 
constitute a class of sets larger than Bore1 sets, with important properties in 
their applications to integration and Radon measure theory. We know that 
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every Lusin or Souslin space (they belong to the class of SSouslin spaces) is 
a Radon space, i.e., on these spaces every finite Bore1 measure is a Radon 
measure. Also, we note that the measurability on these spaces is obtained on 
spaces which are not locally compact. This is very useful, because some of the 
function spaces in probability theory are not locally compact. For basic 
definitions and theorems on _%Souslin sets see [l, Chapter 31, [3, Chapter 
IX], 14, II, [I5, III, [I7, Append% 15, Chapter 81, PI, 161, PI. 

A topological space is said to be polish if it is separable, if there is a 
distance on the space compatible with the topology, and if the space is 
complete. Let Xc,] be a Hausdorff topological space. Xi,, is said to be 
Souslin (L&n) if it is the continuous (injective) image of a polish space. 

2. On Spaces with Separable Model 

DEFINITION 2.1 [13]. Let V be a metrizable topological vector space. A 
(topological vector) Frechet space E is said to be a model of V if V = ‘p(E), 
where ‘p is a continuous injective linear map. Equivalently, we say that V has 
a model if there is a Frechet space E and a continuous isomorphism of E 
onto V. If the model E of V is separable, we have the definition of a 
separable model. 

PROPOSITION 2.2 [2, p. 193; 14, p. 84; 15, p. 1101. Let V be a metrizable 
topological vector space with separable model E. Then the closed unit balls of 
the weak* duals of E and V are polish sets. 

Now, we describe necessary conditions such that sets of Bore1 linear maps 
coincide with sets of continuous linear functions. We introduce the following 
symbolisms. If V, W are topological vector spaces J?a( V, W) is the set of 
surjective linear continuous maps. .S?a(V, W) is the set of surjective linear 
Bore1 maps and E&V, W) is the set of surjective linear maps with Bore1 
graph. We state the following: 

LEMMA. Let E, F be locally convex spaces. Furthermore, let E be a 
So&in and Baire space. lf the linear map f: E + F is Bore& then f is a 
linear continuous map. 

Proof. See [ 10, p. 801, [17, p. 5551. n 

PROPOSITION 2.3. Let V, W be locally convex spaces with separable 
models. Furthermore, suppose that V is a Baire space. Then 
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Proof. By the Lemma and [15, Lemmas 12, 131. 
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3. On Topological Algebras 
The Gel ‘fund transform of XE is the map 

2:_A!(E,V)+V:h+f(h)=h(x), 

and the generalized Gel ‘fund map is the (algebraic) morphism G which is 
defined by the relation 

G:E+C,(.A(E,V),V):x+G(x)=i 

The image of E under the Gel’fand map is said to be the Gel’fand transform 
of E, and we symbolize it with 

E” = G(E) c C@‘(E)) 

if V=C. 

COROLLARY 3.1. Let V be a metrisable topological algebra of a separable 
model E. Then, the Gel ‘fund transform algebra Z? is a Souslin space and 
there is a Bore1 map between the spaces V and C,( A( E)). 

Proof. See [3, Chapter IX, $6, Lemma 71 and [12, p. 1531. n 

PROPOSITION 3.2 [6, p. 66; 71. Zf E(C) is a unitary separable commuta- 
tive Banach algebra with separable spectrum, the space C,(.A(E), R) is 
So&in. 

THEOREM 3.3. Let X be a locally compact and C,(X) be a separable 
metrizable topological algebra. Then X is a polish space, and if E is a unitary 
closed subalgebra of C,(X), its spectrum A’(E) is a Lusin space. 

Proof. [ll, pp. 312, 185, 1671, [15, II], [18]. n 

PROPOSITION 3.4. Zf E is an arbitray subalgebra of C(X), there are 
Lusin subsets in its spectrum. 
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