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ABSTRACT

Let X be a Banach space, X* its dual, and £ a measurable space. We study the
solvability of nonlinear random equations involving operators of the form L+ T,
where L is a maximal monotone random operator from £ X X into X* and
T:Q X X - X* a random operator of monotone type.

1. INTRODUCTION

Let X be a Banach space, X* its dual, and £ a measurable space. Let T
be a random operator from @ X X into X*, and n a measurable mapping
from @ into X*. The random equation corresponding to the pair [T, ] asks
for a measurable mapping £: £ — X such that for all w € @

T(w)¢(w) = n(w).

Nonlinear random equations with operators of monotone type have been
studied recently by Kannan and Salehi [10], Itoh [9], and Kravvaritis [11, 12].

It is the purpose of this paper to treat nonlinear random equations that
contain operators of the form L+ T, where L is a maximal monotone
random operator from X X into X*, and T:2X X — X* a random
operator of monotone type. More precisely, in Section 3 L is a multivalued
maximal monotone random operator and T a pseudomonotone random
operator. In Section 4 L is a linear maximal monotone random operator and
T a random operator of type (M). Our results extend to the random case
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corresponding deterministic theorems proved by Browder [4] and Gupta [6].
In order to obtain random solutions the theorem of Kuratowski and Ryll-
Nardzewski concerning the existence of measurable selections for multivalued
measurable mappings is effectively used.

2. PRELIMINARIES

Let X be a real reflexive Banach space, X* its dual, and (x*, x) the
pairing between x* € X* and x € X. Throughout this paper @ will denote a
measurable space with a c-algebra . © is called complete if there exists a
complete o-finite measure defined on /. A mapping F: Q — 2% is said to be
measurable (weakly measurable) if for each closed (weakly closed) subset G
of X the set F~Y(G)={w € Q: F(w)N G # &} belongs to «/. We denote by
B(£2, X) the set of all measurable mappings &: £ — X such that sup{||£(w)||,
® € R} <oo. The symbols — and - are used to denote strong and weak
convergence, respectively. Let T be an operator from D C X into 2%*. T is
said to be: (1) monotone if (x* —y*,x —y) > Oforall x,y € D and x* € T(x)
and y* € T(y), and (2) maximal monotone if it is monotone and its graph is
not properly contained in the graph of any other monotone operator T; from
X into 2%, If T is single-valued, then T is said to be: (1) demicontinuous if
for any sequence {x,} in D with x, > x € D, it follows that Tx,_, —Tx, and
(2) bounded if for each bounded subset B of D, T(B) is a bounded subset
of X*.

Let D be a subset of X, and T an operator from £ X D into 2X*. T is
called random if for any x € D, T(-)x is measurable. A random operator T is
called coercive if there exists a function ¢:R* — R with lim, _, c(r)=+
such that (x*, x) > c(|lxDllx|| for all w€, x€ D, and x*<T(w)x. A
random operator T is said to be monotone (demicontinuous, etc.) if for each
w €, T(w) is monotone (demicontinuous, etc.)

3. PERTURBATIONS OF NONLINEAR MONOTONE
RANDOM OPERATORS

Let Y and Z be topological spaces. We recall (see e.g. [16]) that a
mapping T:Y — 2% is said to be lower semicontinuous if the set {y <
Y:T(y)N G #@} is open for each open subset G of Z.

Let X be a separable reflexive Banach space. We note that the dual space
X* endowed with the weak topology satisfies the first axiom of countability
[8, p. 64]. As in the proof of [16, Lemma 4], one can show that a mapping
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T: X - 2%" (X* taken with its weak topology) is lower semicontinuous if
and only if the relations x, — x and y € Tx imply the existence of a sequence
{y,} with y, € Tx,, such that y, —y.

DeriniTioN. Let K be a closed convex subset of the reflexive Banach
space X, and T an operator from K into X*. T is called pseudomonotone if
the following conditions hold:

(i) For each finite-dimensional subspace F of X, the operator T is
demicontinuous from KN F into X *.

(ii) For any sequence {x,} in K such that x,, —x, Tx, —x*, and limsup
(Tx,, x, —x) <0, we have *=Tx and lim (Tx,, x,)) = (x*, x).

The concept of pseudomonotone operators was first introduced by Brézis
in [1] using filters. For the above definition of pseudomonotonicity and
related results we refer to [3]. We note that any demicontinuous monotone
operator from X into X* is pseudomonotone.

We shall need the following lemma.

LemMma. Let Q be complete, X a separable reflexive Banach space, and
D a subset of X with 0€ D. Let L: QX D — 2% be a monotone random
operator such that L is lower semicontinuous (X* taken with its weak
topology) and L(w)x is a closed subset of X* for each w € and x € D.
Suppose further that for each w €Q there exists u(w) € L(w)0 such that
sup{|lu(w)||: w €Q} = M, <co. Let F be a finite-dimensional subspace of X,
and T: 2 X F - X* be a pseudomonotone, bounded, coercive, and random
operator. Then there exists £ € B(R, F) such that

(0+T(w)é(w),y—&w))=0  forall weQ, yeFND

and ve L(w)y.
Proof. By [15, p. 118], for each w € R, there exists x € F such that
(v+T(w)x,y—x)>0 forall yeDNF and vEL(w)y.
Setting y = 0 and v = u(w) in this inequality, we obtain
(T(w)x,x) < (u(w), —x) <[ule) il < Myix|.

Since T is coercive, we get c(||x|)||x|| < M,|ix|. It follows from the growth
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property of c(r) that there exists M > 0 such that ||x|| <M. Let B= {x €
F:||x|| < M }. Define a mapping G: 2 — 28 by

G(w)={x€B:(v+T(w)x,y—x)>0
foral yeFND and veL(w)y}.

Let {y,} be a sequence of points in F N D whose union is dense in F N D.
By the lower semicontinuity of L we have

G(w) = ﬁ {xeB:(v+T(w)x,y,—x)>0 foral veL(w)y,}.

n=1

By [7, Theorem 4.1], in order to prove that G is measurable, it suffices to
show that for a given y € F N D the mapping

MNw)={x€B:(v+T(w)x,y—x)>0 forall veL(w)y)}

is measurable. By [7], there exists a sequence {v,(w)y} of measurable
selectors for L such that {v,(w)y } = L(w)y for all w € 2. Now, we have

T(w) = fjl (x€B:(v,(w)y + T(0)x,y —x) > 0.

For each n €N, the mapping f,: 2 X B— R defined by f(w, x)=(v,(w)y
+ T(w)x, y — x) is measurable with respect to » and continuous with respect
to x. Thus the mapping

I (w)={xeB:(v(w)y+T(w)x,y—x)>0}
is measurable [7]. Therefore, the same holds for I'. Then G is measurable,

and by [13] it admits a measurable selection £, i.e., there exists a measurable
mapping £:  — B such that

(v+T(w)t(w),y—&w))=0 foral wef, yeFND, and
veL(w)y. [ |

The deterministic case corresponding to the following theorem was
obtained by Pascali and Sburlan [15, p. 120] and Browder [4, Theorem 7.8).
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THEOREM 1. Let @ be complete, X a separable reflexive Banach space,
and D a subset of X with 0€D. Let L: QX D — 2X" be a maximal
monotone random operator such that L is lower semicontinuous (X* taken
with its weak topology). Suppose that for each w € Q there exists u(w) €
L(w)0 such that sup{||uw(w)|: w €Q} =M, <c0. Let T: @ XX > X* be a
pseudomonotone, bounded, coercive random operator. Then for each n €
B(R, X *) there exists ¢ € B(Q, X) such that

Nw)e L(w)f(w)+T(w)é(w) foradl wel.

Proof. We may assume that n(w)=0 for all w € Q. Let {X,} be an
increasing sequence of finite-dimensional subspaces of X such that U, X, is
dense in X and U, (DN X,) is dense in D. By Lemma, for each n, there
exists £, € B(%, X,,) such that

(0+T(w)é,(0),y—£.(w)) >0 ()

forall we®, ye DNX,, and v € L(w)y. Setting y =0 and v = u(w) in
this inequality, we get

(T(w)é(w), £(0)) < (u(w), = £,(w)) <M £(e)].

By the coercivity of T we conclude that there exists M >0 such that
|€.(@) ]| < M forall w € Q and n €N. Since the ball B, = {x € X: ||x|| < M}
is a metrizable separable space in the weak topology, the mappings I’ (w) =
weakcl{£,(w): i > n} are weakly measurable [7, p. 62]. Then the mapping
I'(w)=N,T,(w) is also weakly measurable [7]. By [13], I admits a weakly
measurable selection £:Q — B,, that is also measurable [5, p. 149]. For a
fixed w € Q, there is a subsequence {£,(w)} of {£,.(w)} such that £ (w)—~
&(w). Since T is bounded, we may assume that T(w)§,(w) — x*(w). From (1)
we have

(T(w)gk(w)’gk(w))<(T(w)ék(w)’y)-i_(v’y_gk(“’)) 2)
for all y€ DN X, and v € L(w)y. We assert that
limsup(T(w)£x(w), é(w)) < (x*(w), y) + (v, y — £(w)) 3)

for all yeU(DNX,) and v € L(w)y. Indeed, let y be any element of
U (DN X,). Then y lies in DN X,, for some m, and since {DN X, }
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increases with k, y€ DN X, for all k> m. Thus (2) holds for all k> m,
which in turn implies (3). Since U(D N X;) is dense in D, and L is lower
semicontinuous, we conclude that (3) holds for all y € D and v € L(w)y. The
rest of the proof proceeds as in the proof of [15, p. 119]. Finally, we have
—T(w){(w) € L(w)é(w), ie., 0 € L(w){(w)+ T(w){(w), which completes
the proof. [ ]

A basic consequence of Theorem 1 is the following result, which extends
to the multivalued case a result proved in [12].

TaEOREM 2. Let Q be complete, X a separable reflexive Banach space,
and D a subset of X with 0 € D. Let L: 2 X X - 2X” be a coercive, maximal
monotone random operator such that L is lower semicontinuous (X* taken
with its weak topology). Suppose that for each w € Q there exists u(w) €
L(w)0 such that sup{||w(w)|: w€QR} <o0. Then for each n< B(2, X*)
there exists £ € B(Q, X) such that

Nw)eL(w)é(w) forall wel.

Proof. We may assume that n(w) =0 for all w € Q. Let J be the duality
mapping defined by Jx = {x* € X *:(x*, x) =||x||% ||x]| = ||x*||}. By a result
of Trojanski [17] we may assume that X and X* are locally uniformly
convex. Thus the mapping J is single-valued, demicontinuous, and monotone.
It then follows that J is pseudomonotone [3, Proposition 8]. By Theorem 1,
for each &> 0, there exists £, € B(2, X) and u(w) € L(w){(w) such that

0= ue(w) + e]££(w).
We have

2
’

0=(u(w)+elt(w).£()) > c([£ () )EL) [ + ell£(0)

which implies that (]| (w)|]) < 0. So there exists M > 0 such that ||§ (w)|| <
M for all £> 0 and w € Q. Let {¢,} be a sequence of positive numbers such
that e, — 0. For each n, we set £,(w)=§, (w) and u,(w) =y, (). As in the
proof of Theorem 1, there exists § € B(2, X) such that for a fixed w €L,
there is a subsequence {£(w)} of {£.(w)} such that & (w)—§(w). Let
[x, x*] be any element of G(L(w)). By the monotonicity of L we have

(@) —x*, &(w) —x) >0,
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or
(— e dé(w) —x*, &(w) —x) > 0.
Letting k — o0, we get
(x*,x—¢(w)) = 0.

Since L is maximal monotone, we conclude that 0 € L(w)£(w), and the proof
is complete. |

4. PERTURBATIONS OF LINEAR MONOTONE
RANDOM OPERATORS

We shall need the following proposition.

ProrosiTioN. Let X be a separable Banach space, and D a dense linear
subspace of X. Let L: Q@ X D — X be a closed linear random operator such
that for each we§, L(w) is one to one and onto. Then the operator
$: Q X X - X defined by S(w)x = L(0) x (w €8, x € X) is random.

Proof. For a fixed w, € Q, let X, be the subspace D endowed with the
norm [{x[|; = {|L{wy)x|. This norm is equivalent to the graph norm |[[x|+
|L(wy)x)l, and with it X; becomes a separable Banach space. By the
closed-graph theorem, L(w)L™(w,) is a bounded linear operator for every
w, w, € Q. Hence, for each w € @, x — ||L(w)x|| defines a norm on D which
is equivalent to the norm |[jx|[;. So, for each w, L(w) is a bounded linear
operator from X, onto X. By [14], for each x€ X, S(-)x: 2> X, is a
random operator. Since the injection of X, into X is continuous, S(-)x is also
random as an operator from § into X. [ |

Derinrrion 2. Let X be a reflexive Banach space, and T an operator
from X into X *. T is said to be of type (M) if the following conditions hold:

(i) T is continuous from finite-dimensional subspaces of X to X* en-
dowed with weak topology.

(ii) For any sequence {x,} in X such that x,—-=x, Tx,—~x* and
limsup(Tx,,, x,, — x) < 0, we have x* = Tx.
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The concept of operators of type (M) was introduced by Brézis in [1],
using filters. For the above definition and related properties we refer to [15].
Now, we generalize Theorem 1 in [6] as follows.

THEOREM 3. Let Q be a measurable space, H a separable Hilbert space,
and D a dense linear subspace of H. Let L:Q X D — H be a linear maximal
monotone random operator, and T:Q X H— H a random operator that is
bounded, of type (M), and coercive. Then for each n € B(, H) there exists
¢ € B(Q, H) such that

L(w)f(w)+ T(w)é(w)=7(w) forall weQ.
Proof. We may assume that n(w) =0 for all @ € Q. For each w € 2, let
L (w) be the Yosida approximants of L(w) defined by L(w)x=¢ ![I—
J(w)]x, where J(w)x =[I + eL(w)] 'x (see [2, p. 102]). By Proposition, J, is
a random operator, and so the same holds for L,. Moreover, L_ is monotone

(cf. [2, Proposition VIL2]). Now, the operator L,+ T is random, bounded,

coercive, and of type (M) [1, Proposition 18]. By [11], there exists £, €
B(Q, H) such that

L(w)é(w)+T(w)é(w)=0. (4)
We have
0=(L(w){(w)+T(w)§(w),£(w))
= (L (0)§(), £(0)) +(T(0)é(0), £(v)),
which implies that
(T(w)é(0), (w)) <O.

By the coercivity of T, there exists M > 0 such that {|{(w)|| <M for all >0
and w € Q. Setting v(w)=[I + eL(w)] £ (w), we have

lodw) <€) | < M.

By (4), the boundedness of T, and the fact that L (w){(w) = L(w)v{w),
we conclude that there exists M (w) > 0 such that ||L{w)v(w)|| < M(w) for
all e> 0. Let {¢,} be a sequence of positive numbers such that ¢, — 0. We
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set §,(w)=§,(w), v,(w)=1,(w). As in the proof of Theorem 1, there exists
£ € B(Q, H) such that for a fixed w € Q, there is a subsequence of {e,}
(which we denote again by {¢,}) such that

£(0) ~£(0),  o0)-o(w), and L(e)o,(w)—u(e).

We have §(w)= v (w)+el(w)v(w). Letting e >0, we get {(w)=0v(w).
Since L is a weakly closed operator, §(w) € D and L(w)$(w) = u(w).
By the monotonicity of L, we have

(Lu(@)é,(@) - L(0)§(w), £.(w) —£(w)) >0,

(—T(0)éu(w) - L(0)(w), £.(w) —&(w)) > 0. (5)

By [2, Proposition VIL2], we have ||L (w)§(w)]| < || L(w)§(w)|. Then from
(5) we get limsup(T(w)£ (@), €,(w) — £(w)) < 0. Since T(w)§,(w) = — u(w)
and T is of type (M), we conclude that T(w){(w)= — u(w). Thus,
0= L(w)¢(w)+ T(w)é(w), and the proof is complete. |
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