Perturbations of Maximal Monotone Random Operators

Dimitrios Kravvaritis and Nicolaos Stavrakakis Department of Mathematics National Technical University of Athens Patission 42, Greece

Submitted by Peter Lancaster

ABSTRACT

Let X be a Banach space, X^* its dual, and Ω a measurable space. We study the solvability of nonlinear random equations involving operators of the form L + T, where L is a maximal monotone random operator from $\Omega \times X$ into X^* and $T: \Omega \times X \to X^*$ a random operator of monotone type.

1. INTRODUCTION

Let X be a Banach space, X^* its dual, and Ω a measurable space. Let T be a random operator from $\Omega \times X$ into X^* , and η a measurable mapping from Ω into X^* . The random equation corresponding to the pair $[T, \eta]$ asks for a measurable mapping $\xi: \Omega \to X$ such that for all $\omega \in \Omega$

 $T(\omega)\xi(\omega) = \eta(\omega).$

Nonlinear random equations with operators of monotone type have been studied recently by Kannan and Salehi [10], Itoh [9], and Kravvaritis [11, 12].

It is the purpose of this paper to treat nonlinear random equations that contain operators of the form L+T, where L is a maximal monotone random operator from $\Omega \times X$ into X^* , and $T: \Omega \times X \to X^*$ a random operator of monotone type. More precisely, in Section 3 L is a multivalued maximal monotone random operator and T a pseudomonotone random operator. In Section 4 L is a linear maximal monotone random operator and T a random operator of type (M). Our results extend to the random case

LINEAR ALGEBRA AND ITS APPLICATIONS 84:301-310 (1986) 301

© Elsevier Science Publishing Co., Inc., 1986 52 Vanderbilt Ave., New York, NY 10017 corresponding deterministic theorems proved by Browder [4] and Gupta [6]. In order to obtain random solutions the theorem of Kuratowski and Ryll-Nardzewski concerning the existence of measurable selections for multivalued measurable mappings is effectively used.

2. PRELIMINARIES

Let X be a real reflexive Banach space, X^* its dual, and (x^*, x) the pairing between $x^* \in X^*$ and $x \in X$. Throughout this paper Ω will denote a measurable space with a σ -algebra \mathscr{A} . Ω is called *complete* if there exists a complete σ -finite measure defined on \mathscr{A} . A mapping $F: \Omega \to 2^X$ is said to be measurable (weakly measurable) if for each closed (weakly closed) subset G of X the set $F^{-1}(G) = \{ \omega \in \Omega : F(\omega) \cap G \neq \emptyset \}$ belongs to \mathscr{A} . We denote by $B(\Omega, X)$ the set of all measurable mappings $\xi: \Omega \to X$ such that $\sup\{||\xi(\omega)||,$ $\omega \in \Omega$ $\} < \infty$. The symbols \rightarrow and \rightarrow are used to denote strong and weak convergence, respectively. Let T be an operator from $D \subset X$ into 2^{X^*} . T is said to be: (1) monotone if $(x^* - y^*, x - y) \ge 0$ for all $x, y \in D$ and $x^* \in T(x)$ and $y^* \in T(y)$, and (2) maximal monotone if it is monotone and its graph is not properly contained in the graph of any other monotone operator T_1 from X into 2^{X^*} . If T is single-valued, then T is said to be: (1) demicontinuous if for any sequence $\{x_n\}$ in D with $x_n \to x \in D$, it follows that $Tx_n \to Tx$, and (2) bounded if for each bounded subset B of D, T(B) is a bounded subset of X^* .

Let D be a subset of X, and T an operator from $\Omega \times D$ into 2^{X^*} . T is called *random* if for any $x \in D$, $T(\cdot)x$ is measurable. A random operator T is called *coercive* if there exists a function $c: \mathbb{R}^+ \to \mathbb{R}$ with $\lim_{r \to \infty} c(r) = +\infty$ such that $(x^*, x) \ge c(||x||) ||x||$ for all $\omega \in \Omega$, $x \in D$, and $x^* \in T(\omega)x$. A random operator T is said to be monotone (demicontinuous, etc.) if for each $\omega \in \Omega$, $T(\omega)$ is monotone (demicontinuous, etc.)

3. PERTURBATIONS OF NONLINEAR MONOTONE RANDOM OPERATORS

Let Y and Z be topological spaces. We recall (see e.g. [16]) that a mapping $T: Y \to 2^Z$ is said to be *lower semicontinuous* if the set $\{y \in Y: T(y) \cap G \neq \emptyset\}$ is open for each open subset G of Z.

Let X be a separable reflexive Banach space. We note that the dual space X^* endowed with the weak topology satisfies the first axiom of countability [8, p. 64]. As in the proof of [16, Lemma 4], one can show that a mapping

302 .

 $T: X \to 2^{X^*}$ (X* taken with its weak topology) is lower semicontinuous if and only if the relations $x_n \to x$ and $y \in Tx$ imply the existence of a sequence $\{y_n\}$ with $y_n \in Tx_n$ such that $y_n \to y$.

DEFINITION. Let K be a closed convex subset of the reflexive Banach space X, and T an operator from K into X^* . T is called *pseudomonotone* if the following conditions hold:

(i) For each finite-dimensional subspace F of X, the operator T is demicontinuous from $K \cap F$ into X^* .

(ii) For any sequence $\{x_n\}$ in K such that $x_n \rightarrow x$, $Tx_n \rightarrow x^*$, and $\limsup (Tx_n, x_n - x) \le 0$, we have $x^* = Tx$ and $\lim (Tx_n, x_n) = (x^*, x)$.

The concept of pseudomonotone operators was first introduced by Brézis in [1] using filters. For the above definition of pseudomonotonicity and related results we refer to [3]. We note that any demicontinuous monotone operator from X into X^* is pseudomonotone.

We shall need the following lemma.

LEMMA. Let Ω be complete, X a separable reflexive Banach space, and D a subset of X with $0 \in D$. Let $L: \Omega \times D \to 2^{X^*}$ be a monotone random operator such that L is lower semicontinuous $(X^* \text{ taken with its weak}$ topology) and $L(\omega)x$ is a closed subset of X^* for each $\omega \in \Omega$ and $x \in D$. Suppose further that for each $\omega \in \Omega$ there exists $u(\omega) \in L(\omega)0$ such that $\sup\{||u(\omega)||: \omega \in \Omega\} = M_1 < \infty$. Let F be a finite-dimensional subspace of X, and $T: \Omega \times F \to X^*$ be a pseudomonotone, bounded, coercive, and random operator. Then there exists $\xi \in B(\Omega, F)$ such that

$$(v+T(\omega)\xi(\omega), y-\xi(\omega)) \ge 0$$
 for all $\omega \in \Omega$, $y \in F \cap D$
and $v \in L(\omega)y$.

Proof. By [15, p. 118], for each $\omega \in \Omega$, there exists $x \in F$ such that

$$(v+T(\omega)x, y-x) \ge 0$$
 for all $y \in D \cap F$ and $v \in L(\omega)y$.

Setting y = 0 and $v = u(\omega)$ in this inequality, we obtain

$$(T(\omega)x, x) \leq (u(\omega), -x) \leq ||u(\omega)|| ||x|| \leq M_1 ||x||.$$

Since T is coercive, we get $c(||x||)||x|| \leq M_1 ||x||$. It follows from the growth

property of c(r) that there exists M > 0 such that $||x|| \leq M$. Let $B = \{x \in F : ||x|| \leq M\}$. Define a mapping $G : \Omega \to 2^B$ by

$$G(\omega) = \{ x \in B : (v + T(\omega)x, y - x) \ge 0$$

for all $y \in F \cap D$ and $v \in L(\omega)y \}$

Let $\{y_n\}$ be a sequence of points in $F \cap D$ whose union is dense in $F \cap D$. By the lower semicontinuity of L we have

$$G(\omega) = \bigcap_{n=1}^{\infty} \left\{ x \in B : (v + T(\omega)x, y_n - x) \ge 0 \quad \text{for all} \quad v \in L(\omega)y_n \right\}.$$

By [7, Theorem 4.1], in order to prove that G is measurable, it suffices to show that for a given $y \in F \cap D$ the mapping

$$\Gamma(\omega) = \{ x \in B : (v + T(\omega)x, y - x) \ge 0 \quad \text{for all} \quad v \in L(\omega)y \}$$

is measurable. By [7], there exists a sequence $\{v_n(\omega)y\}$ of measurable selectors for L such that $\overline{\{v_n(\omega)y\}} = L(\omega)y$ for all $\omega \in \Omega$. Now, we have

$$\Gamma(\omega) = \bigcap_{n=1}^{\infty} \left\{ x \in B : \left(v_n(\omega) y + T(\omega) x, y - x \right) \ge 0 \right\}.$$

For each $n \in \mathbb{N}$, the mapping $f_n: \Omega \times B \to \mathbb{R}$ defined by $f_n(\omega, x) = (v_n(\omega)y + T(\omega)x, y - x)$ is measurable with respect to ω and continuous with respect to x. Thus the mapping

$$\Gamma_n(\omega) = \{ x \in B : (v_n(\omega)y + T(\omega)x, y - x) \ge 0 \}$$

is measurable [7]. Therefore, the same holds for Γ . Then G is measurable, and by [13] it admits a measurable selection ξ , i.e., there exists a measurable mapping $\xi: \Omega \to B$ such that

$$(v+T(\omega)\xi(\omega), y-\xi(\omega)) \ge 0$$
 for all $\omega \in \Omega$, $y \in F \cap D$, and
 $v \in L(\omega)y$.

The deterministic case corresponding to the following theorem was obtained by Pascali and Sburlan [15, p. 120] and Browder [4, Theorem 7.8].

MAXIMAL MONOTONE RANDOM OPERATORS

THEOREM 1. Let Ω be complete, X a separable reflexive Banach space, and D a subset of X with $0 \in D$. Let $L: \Omega \times D \to 2^{X^*}$ be a maximal monotone random operator such that L is lower semicontinuous $(X^* \text{ taken}$ with its weak topology). Suppose that for each $\omega \in \Omega$ there exists $u(\omega) \in$ $L(\omega)0$ such that $\sup\{||u(\omega)||: \omega \in \Omega\} = M_1 < \infty$. Let $T: \Omega \times X \to X^*$ be a pseudomonotone, bounded, coercive random operator. Then for each $\eta \in$ $B(\Omega, X^*)$ there exists $\xi \in B(\Omega, X)$ such that

$$\eta(\omega) \in L(\omega)\xi(\omega) + T(\omega)\xi(\omega)$$
 for all $\omega \in \Omega$.

Proof. We may assume that $\eta(\omega) = 0$ for all $\omega \in \Omega$. Let $\{X_n\}$ be an increasing sequence of finite-dimensional subspaces of X such that $\bigcup_n X_n$ is dense in X and $\bigcup_n (D \cap X_n)$ is dense in D. By Lemma, for each n, there exists $\xi_n \in B(\Omega, X_n)$ such that

$$\left(v + T(\omega)\xi_n(\omega), y - \xi_n(\omega)\right) \ge 0 \tag{1}$$

for all $\omega \in \Omega$, $y \in D \cap X_n$, and $v \in L(\omega)y$. Setting y = 0 and $v = u(\omega)$ in this inequality, we get

$$(T(\omega)\xi_n(\omega),\xi_n(\omega)) \leq (u(\omega),-\xi_n(\omega)) \leq M_1 \|\xi_n(\omega)\|.$$

By the coercivity of T we conclude that there exists M > 0 such that $\|\xi_n(\omega)\| \leq M$ for all $\omega \in \Omega$ and $n \in \mathbb{N}$. Since the ball $B_M = \{x \in X : \|x\| \leq M\}$ is a metrizable separable space in the weak topology, the mappings $\Gamma_n(\omega) =$ weakcl $\{\xi_i(\omega): i \geq n\}$ are weakly measurable [7, p. 62]. Then the mapping $\Gamma(\omega) = \bigcap_n \Gamma_n(\omega)$ is also weakly measurable [7]. By [13], Γ admits a weakly measurable selection $\xi: \Omega \to B_M$ that is also measurable [5, p. 149]. For a fixed $\omega \in \Omega$, there is a subsequence $\{\xi_k(\omega)\}$ of $\{\xi_n(\omega)\}$ such that $\xi_k(\omega) \to \xi(\omega)$. Since T is bounded, we may assume that $T(\omega)\xi_k(\omega) \to x^*(\omega)$. From (1) we have

$$(T(\omega)\xi_k(\omega),\xi_k(\omega)) \leq (T(\omega)\xi_k(\omega),y) + (v,y - \xi_k(\omega))$$
(2)

for all $y \in D \cap X_k$ and $v \in L(\omega)y$. We assert that

$$\limsup(T(\omega)\xi_k(\omega),\xi_k(\omega)) \leq (x^*(\omega),y) + (v,y-\xi(\omega))$$
(3)

for all $y \in \bigcup_k (D \cap X_k)$ and $v \in L(\omega)y$. Indeed, let y be any element of $\bigcup_k (D \cap X_k)$. Then y lies in $D \cap X_m$ for some m, and since $\{D \cap X_k\}$

increases with k, $y \in D \cap X_k$ for all $k \ge m$. Thus (2) holds for all $k \ge m$, which in turn implies (3). Since $\bigcup_k (D \cap X_k)$ is dense in D, and L is lower semicontinuous, we conclude that (3) holds for all $y \in D$ and $v \in L(\omega)y$. The rest of the proof proceeds as in the proof of [15, p. 119]. Finally, we have $-T(\omega)\xi(\omega) \in L(\omega)\xi(\omega)$, i.e., $0 \in L(\omega)\xi(\omega) + T(\omega)\xi(\omega)$, which completes the proof.

A basic consequence of Theorem 1 is the following result, which extends to the multivalued case a result proved in [12].

THEOREM 2. Let Ω be complete, X a separable reflexive Banach space, and D a subset of X with $0 \in D$. Let $L: \Omega \times X \to 2^{X^*}$ be a coercive, maximal monotone random operator such that L is lower semicontinuous $(X^* \text{ taken}$ with its weak topology). Suppose that for each $\omega \in \Omega$ there exists $u(\omega) \in$ $L(\omega)0$ such that $\sup\{||u(\omega)||: \omega \in \Omega\} < \infty$. Then for each $\eta \in B(\Omega, X^*)$ there exists $\xi \in B(\Omega, X)$ such that

$$\eta(\omega) \in L(\omega)\xi(\omega) \quad \text{for all} \quad \omega \in \Omega.$$

Proof. We may assume that $\eta(\omega) = 0$ for all $\omega \in \Omega$. Let J be the duality mapping defined by $Jx = \{x^* \in X^* : (x^*, x) = ||x||^2, ||x|| = ||x^*||\}$. By a result of Trojanski [17] we may assume that X and X^* are locally uniformly convex. Thus the mapping J is single-valued, demicontinuous, and monotone. It then follows that J is pseudomonotone [3, Proposition 8]. By Theorem 1, for each $\varepsilon > 0$, there exists $\xi_{\varepsilon} \in B(\Omega, X)$ and $u_{\varepsilon}(\omega) \in L(\omega)\xi_{\varepsilon}(\omega)$ such that

$$0 = u_{\varepsilon}(\omega) + \varepsilon J \xi_{\varepsilon}(\omega).$$

We have

$$0 = (u_{\varepsilon}(\omega) + \varepsilon J \xi_{\varepsilon}(\omega), \xi_{\varepsilon}(\omega)) \ge c (\|\xi_{\varepsilon}(\omega)\|) \|\xi_{\varepsilon}(\omega)\| + \varepsilon \|\xi_{\varepsilon}(\omega)\|^{2},$$

which implies that $c(||\xi_{\epsilon}(\omega)||) \leq 0$. So there exists M > 0 such that $||\xi_{\epsilon}(\omega)|| \leq M$ for all $\epsilon > 0$ and $\omega \in \Omega$. Let $\{\varepsilon_n\}$ be a sequence of positive numbers such that $\varepsilon_n \to 0$. For each *n*, we set $\xi_n(\omega) = \xi_{\epsilon_n}(\omega)$ and $u_n(\omega) = u_{\epsilon_n}(\omega)$. As in the proof of Theorem 1, there exists $\xi \in B(\Omega, X)$ such that for a fixed $\omega \in \Omega$, there is a subsequence $\{\xi_k(\omega)\}$ of $\{\xi_n(\omega)\}$ such that $\xi_k(\omega) - \xi(\omega)$. Let $[x, x^*]$ be any element of $G(L(\omega))$. By the monotonicity of L we have

$$(u_k(\omega)-x^*,\xi_k(\omega)-x) \ge 0,$$

or

$$(-\epsilon_k J\xi_k(\omega)-x^*,\xi_k(\omega)-x) \ge 0.$$

Letting $k \to \infty$, we get

$$(x^*, x-\xi(\omega)) \ge 0.$$

Since L is maximal monotone, we conclude that $0 \in L(\omega)\xi(\omega)$, and the proof is complete.

4. PERTURBATIONS OF LINEAR MONOTONE RANDOM OPERATORS

We shall need the following proposition.

PROPOSITION. Let X be a separable Banach space, and D a dense linear subspace of X. Let $L: \Omega \times D \to X$ be a closed linear random operator such that for each $\omega \in \Omega$, $L(\omega)$ is one to one and onto. Then the operator $S: \Omega \times X \to X$ defined by $S(\omega)x = L(\omega)^{-1}x$ ($\omega \in \Omega$, $x \in X$) is random.

Proof. For a fixed $\omega_0 \in \Omega$, let X_1 be the subspace D endowed with the norm $||x||_1 = ||L(\omega_0)x||$. This norm is equivalent to the graph norm $||x|| + ||L(\omega_0)x||$, and with it X_1 becomes a separable Banach space. By the closed-graph theorem, $L(\omega)L^{-1}(\omega_1)$ is a bounded linear operator for every ω , $\omega_1 \in \Omega$. Hence, for each $\omega \in \Omega$, $x \to ||L(\omega)x||$ defines a norm on D which is equivalent to the norm $||x||_1$. So, for each ω , $L(\omega)$ is a bounded linear operator for every operator from X_1 onto X. By [14], for each $x \in X$, $S(\cdot)x: \Omega \to X_1$ is a random operator. Since the injection of X_1 into X is continuous, $S(\cdot)x$ is also random as an operator from Ω into X.

DEFINITION 2. Let X be a reflexive Banach space, and T an operator from X into X^* . T is said to be of type (M) if the following conditions hold:

(i) T is continuous from finite-dimensional subspaces of X to X^* endowed with weak topology.

(ii) For any sequence $\{x_n\}$ in X such that $x_n - x$, $Tx_n - x^*$, and $\limsup(Tx_n, x_n - x) \leq 0$, we have $x^* = Tx$.

The concept of operators of type (M) was introduced by Brézis in [1], using filters. For the above definition and related properties we refer to [15]. Now, we generalize Theorem 1 in [6] as follows.

THEOREM 3. Let Ω be a measurable space, H a separable Hilbert space, and D a dense linear subspace of H. Let $L: \Omega \times D \to H$ be a linear maximal monotone random operator, and $T: \Omega \times H \to H$ a random operator that is bounded, of type (M), and coercive. Then for each $\eta \in B(\Omega, H)$ there exists $\xi \in B(\Omega, H)$ such that

$$L(\omega)\xi(\omega) + T(\omega)\xi(\omega) = \eta(\omega)$$
 for all $\omega \in \Omega$.

Proof. We may assume that $\eta(\omega) = 0$ for all $\omega \in \Omega$. For each $\omega \in \Omega$, let $L_{\varepsilon}(\omega)$ be the Yosida approximants of $L(\omega)$ defined by $L_{\varepsilon}(\omega)x = \varepsilon^{-1}[I - J_{\varepsilon}(\omega)]x$, where $J_{\varepsilon}(\omega)x = [I + \varepsilon L(\omega)]^{-1}x$ (see [2, p. 102]). By Proposition, J_{ε} is a random operator, and so the same holds for L_{ε} . Moreover, L_{ε} is monotone (cf. [2, Proposition VII.2]). Now, the operator $L_{\varepsilon} + T$ is random, bounded, coercive, and of type (M) [1, Proposition 18]. By [11], there exists $\xi_{\varepsilon} \in B(\Omega, H)$ such that

$$L_{\mathfrak{s}}(\omega)\xi_{\mathfrak{s}}(\omega) + T(\omega)\xi_{\mathfrak{s}}(\omega) = 0. \tag{4}$$

We have

$$0 = (L_{\varepsilon}(\omega)\xi_{\varepsilon}(\omega) + T(\omega)\xi_{\varepsilon}(\omega), \xi_{\varepsilon}(\omega))$$
$$= (L_{\varepsilon}(\omega)\xi_{\varepsilon}(\omega), \xi_{\varepsilon}(\omega)) + (T(\omega)\xi_{\varepsilon}(\omega), \xi_{\varepsilon}(\omega)),$$

which implies that

$$(T(\omega)\xi_{\epsilon}(\omega),\xi_{\epsilon}(\omega)) \leq 0.$$

By the coercivity of T, there exists M > 0 such that $||\xi_{\epsilon}(\omega)|| \leq M$ for all $\epsilon > 0$ and $\omega \in \Omega$. Setting $v_{\epsilon}(\omega) = [I + \epsilon L(\omega)]^{-1}\xi_{\epsilon}(\omega)$, we have

$$\|v_{\epsilon}(\omega)\| \leq \|\xi_{\epsilon}(\omega)\| \leq M.$$

By (4), the boundedness of T, and the fact that $L_{\epsilon}(\omega)\xi_{\epsilon}(\omega) = L(\omega)v_{\epsilon}(\omega)$, we conclude that there exists $M_{I}(\omega) > 0$ such that $||L(\omega)v_{\epsilon}(\omega)|| \leq M_{I}(\omega)$ for all $\epsilon > 0$. Let $\{\varepsilon_{n}\}$ be a sequence of positive numbers such that $\varepsilon_{n} \to 0$. We set $\xi_n(\omega) = \xi_{\varepsilon_n}(\omega)$, $v_n(\omega) = v_{\varepsilon_n}(\omega)$. As in the proof of Theorem 1, there exists $\xi \in B(\Omega, H)$ such that for a fixed $\omega \in \Omega$, there is a subsequence of $\{\varepsilon_n\}$ (which we denote again by $\{\varepsilon_n\}$) such that

$$\xi_n(\omega) \rightarrow \xi(\omega), \quad v_n(\omega) \rightarrow v(\omega), \text{ and } L(\omega)v_n(\omega) \rightarrow u(\omega).$$

We have $\xi_{\epsilon}(\omega) = v_{\epsilon}(\omega) + \epsilon L(\omega)v_{\epsilon}(\omega)$. Letting $\epsilon \to 0$, we get $\xi(\omega) = v(\omega)$. Since L is a weakly closed operator, $\xi(\omega) \in D$ and $L(\omega)\xi(\omega) = u(\omega)$.

By the monotonicity of L_n we have

$$(L_n(\omega)\xi_n(\omega) - L_n(\omega)\xi(\omega), \xi_n(\omega) - \xi(\omega)) \ge 0,$$

or

$$\left(-T(\omega)\xi_n(\omega)-L_n(\omega)\xi(\omega),\,\xi_n(\omega)-\xi(\omega)\right) \ge 0.$$
(5)

By [2, Proposition VII.2], we have $||L_n(\omega)\xi(\omega)|| \le ||L(\omega)\xi(\omega)||$. Then from (5) we get $\limsup(T(\omega)\xi_n(\omega), \xi_n(\omega) - \xi(\omega)) \le 0$. Since $T(\omega)\xi_n(\omega) \to -u(\omega)$ and T is of type (M), we conclude that $T(\omega)\xi(\omega) = -u(\omega)$. Thus, $0 = L(\omega)\xi(\omega) + T(\omega)\xi(\omega)$, and the proof is complete.

REFERENCES

- H. Brézis, Equations et inequations non-lineaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18:115-175 (1968).
- 2 H. Brézis, Analyse Fonctionelle, Théorie et Applications, Masson, Paris, 1983.
- 3 F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal. 11:251-294 (1972).
- 4 F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, *Proc. Sympos. Pure Math.*, 18, Part II, 1976.
- 5 N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958.
- 6 C. P. Gupta, On compact perturbations of certain nonlinear equations in Banach spaces, J. Math. Anal. Appl. 45:497-505 (1974).
- 7 C. J. Himmelberg, Measurable relations, Fund. Math. 87:53-72 (1975).
- 8 F. Hirzerbruch and W. Scharlau, Einführung in die Funktionalanalysis, Hochschultaschenbücher Verlag, Mannheim, 1971.
- 9 S. Itoh, Nonlinear random equations with monotone operators in Banach spaces, Math. Ann. 236:133-146 (1978).
- 10 R. Kannan and H. Salehi, Random nonlinear equations and monotonic nonlinearities, J. Math. Anal. Appl. 57:234-256 (1977).
- D. Kravvaritis, Nonlinear random operators of monotone type in Banach spaces, J. Math. Anal. Appl. 78:488-496 (1980).

310 DIMITRIOS KRAVVARITIS AND NICOLAOS STAVRAKAKIS

- 12 D. Kravvaritis, Nonlinear random equations with maximal monotone operators in Banach spaces, *Math. Proc. Cambridge Philos. Soc.*, 98:529–532 (1985).
- 13 K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 13:397-403 (1965).
- 14 M. Z. Nashed and H. Salehi, Measurability of generalized inverses of random linear operators, SIAM J. Appl. Math., 25:681-692 (1973).
- 15 D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiei, București, 1978.
- 16 I. Singer, On set-valued metric projections, in *Proceedings of the Colloquium on Linear Operators and Approximation*, Oberwolfach, Aug. 1971.
- 17 S. L. Trojanski, On locally uniformly convex and differential norms in certain non-separable Banach spaces, *Studia Math.* 37:173-180 (1971).

Received 29 October 1985; revised 1 February 1986