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ABSTRACT 

Let X be a Banach space, X* its dual, and Q a measurable space. We study the 

solvability of nonlinear random equations involving operators of the form L + T, 
where L is a maximal monotone random operator from P X X into X* and 

T: fJ X X --) X* a random operator of monotone type. 

1. INTRODUCTION 

Let X be a Banach space, X * its dual, and 52 a measurable space. Let T 
be a random operator from !J X X into X *, and 1 a measurable mapping 
from Q into X *. The random equation corresponding to the pair [T, q] asks 
for a measurable mapping [: 52 --, X such that for all w E Q 

T(dSb) = +). 

Nonlinear random equations with operators of monotone type have been 
studied recently by Kannan and Salehi [lo], Itoh [9], and Krawaritis [ 11, 121. 

It is the purpose of this paper to treat nonlinear random equations that 
contain operators of the form L + T, where L is a maximal monotone 
random operator from P x X into X *, and T:!dXX-+X* a random 
operator of monotone type. More precisely, in Section 3 L is a multivalued 
maximal monotone random operator and T a pseudomonotone random 
operator. In Section 4 L is a linear maximal monotone random operator and 
T a random operator of type (M). Our results extend to the random case 
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corresponding deterministic theorems proved by Browder [4] and Gupta [6]. 
In order to obtain random solutions the theorem of Kuratowski and Ryll- 
Nardzewski concerning the existence of measurable selections for multivalued 
measurable mappings is effectively used. 

2. PRELIMINARIES 

Let X be a real reflexive Banach space, X* its dual, and (x*, r) the 
pairing between x * E X * and x E X. Throughout this paper &! will denote a 
measurable space with a u-algebra &. Q is called compbte if there exists a 
complete u-finite measure defined on &. A mapping F: 52 + 2’ is said to be 
measurable (weakly measumbb) if for each closed (weakly closed) subset G 
ofXthesetF-‘(G)={wE~:F(w)nGZ0}belongsto~.Wedenoteby 
B(Q, X) the set of all measurable mappings 5: SJ! + X such that sup{ 11&w)]], 
wEQ2) <cc. The symbols + and - are used to denote strong and weak 
convergence, respectively. Let 2’ be an operator from D c X into 2x*. T is 
saidtobe:(l)monotoneif(x*-y*,x-y)>Oforallx,yEDandx*ET(x) 
and y* E T(y), and (2) maximal monotone if it is monotone and its graph is 
not properly contained in the graph of any other monotone operator TI from 
X into 2”. If T is single-valued, then T is said to be: (1) dernicontinzums if 
for any sequence {x”} in D with x, + x E D, it follows that TX, -TX, and 
(2) bounded if for each bounded subset B of D, T(B) is a bounded subset 
of x*. 

Let D be a subset of X, and T an operator from Cl X D into 2”. T is 
called random if for any x E D, T( *)x is measurable. A random operator T is 
called coercive if there exists a function c : R + + R with lim, _ ,c( r) = + cc 
such that (x*,x)>c(]]x]])]]x]] for all oEfi, XE D, and x*~T(w)x. A 
random operator T is said to be monotone (demicontinuous, etc.) if for each 
w E Q, T(w) is monotone (demicontinuous, etc.) 

3. PERTURBATIONS OF NONLINEAR MONOTONE 
RANDOM OPERATORS 

Let Y and Z be topological spaces. We recall (see e.g. [IS]) that a 
mapping T: Y + 2’ is said to be lower semicontinuous if the set { y E 
Y: T(y) n G # 0 } is open for each open subset G of Z. 

Let X be a separable reflexive Banach space. We note that the dual space 
X* endowed with the weak topology satisfies the first axiom of countability 
[8, p. 641. As in the proof of [16, Lemma 41, one can show that a mapping 
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T: X + zx* (X * taken with its weak topology) is lower semicontinuous if 
and only if the relations x, + x and y E TX imply the existence of a sequence 
{y,} with y, E TX,, such that y,, -y. 

DEFINITION. Let K be a closed convex subset of the reflexive Banach 
space X, and T an operator from K into X*. T is called pseudomonotone if 
the following conditions hold: 

(i) For each finite-dimensional subspace F of X, the operator T is 
demicontinuous from K n F into X*. 

(ii) For any sequence {x”} in K such that x,-x, TX, -x*, and limsup 
(TX,, x, - x) < 0, we have x* = Tx and lim (TX,, xn) = (x*, x). 

The concept of pseudomonotone operators was first introduced by Brezis 
in [l] using filters. For the above definition of pseudomonotonicity and 
related results we refer to [3]. We note that any demicontinuous monotone 
operator from X into X* is pseudomonotone. 

We shall need the following lemma. 

LEMMA. Let Q be compbte, X a separable reflexive Banuch space, and 
D a subset of X with 0 E D. Let L: Q X D + 2** be a monotone random 
operator such that L is lower semicontinuous (X * taken with its weak 

topology) and L( ) o xisaclosedsubsetofX* foreach 0~52 andxED. 
Suppose further that for each w E D there exists u(w) E L(o)0 such that 
sup{ ]]u(w)]]: w E Q} = M, < co. Let F be afinitedimensional subspace of X, 
and T : S’J X F + X * be a pseudomonotone, bounded, coercive, and random 
operator. Then there exists 5 E B(O, F) such that 

and v E L(o)y. 

Proof. By [15, p. 1181, for each o E G, there exists x E F such that 

(v+T(w)x,y-x)>O forall yEDnF and v~L(o)y. 

Setting y = 0 and v = u(w) in this inequality, we obtain 

Since T is coercive, we get c(]]r]])]]x]j < Mrllx]]. It follows from the growth 
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property of c(r) that there exists M > 0 such that ]]x]] Q M. Let B = {x E 
F: llxll < M}. Define a mapping G: CJ + 2B by 

G(o)= {x~B:(u+T(w)x,y-x)20 

forall IJEFITD and only}. 

Let { y, ) be a sequence of points in F n D whose union is dense in F IT D. .-.., 
By the lower sem&ontinuity of L we have 

G(w)= fi {r~B:(u+T(w)r,y,-x)>,O 
n=l 

By [7, Theorem 4.11, in order to prove that G 
show that for a given y E F n D the mapping 

I(w)= {xEB:(o+T(w)x,y-r)>O 

for all 2) E L(w)y,}. 

is measurable, it suffices to 

forall uEL(w)y} 

is measurable. By [7], there exists a sequence { u,(o)y} of measurable 
selectors for L such that { u,,(w)y } = L(w)y for all w E Q. Now, we have 

For each n E WI, the mapping f, : Q X B + R defined by fn(o, x) = (v,(w)y 
+ T(w)x, y - x) is measurable with respect to w and continuous with respect 
to x. Thus the mapping 

r”(o)= {xEB:(u,(w)y+T(w)x,y-x)>O) 

is measurable [7]. Therefore, the same holds for P. Then G is measurable, 
and by [13] it admits a measurable selection 5, i.e., there exists a measurable 
mapping 5: D + B such that 

(o+T(w)t(w),y-t(w))>0 forall WEQ, YEFnD, and 

II E L(w)y. n 

The deterministic case corresponding to the following theorem was 
obtained by Pascali and Sburlan [15, p. 1201 and Browder [4, Theorem 7.81. 
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THEOREM 1. Let il be complete, X a separable reflexive Banach space, 
and D a subset of X with OED. Let L:fi2D+2’* be a maximal 
monotone random operator such that L is lower semicontinuous (X * taken 
with its weak topology). Suppose that for each o E 52 there exists u(w) E 
L(w)0 such that sup{ ]]u(w)]]: w~Q}=M~<co. Let T:QXX+X* bea 
pseudomonotone, bounded, coercive random operator. Then for each 9 E 
B(Q, X*) there exists 6 E B(Q, X) such that 

~(w)EL(~)~(w)+T(w)[(u) forall WEQ. 

Proof. We may assume that g(o) = 0 for all w E CL Let {X,} be an 
increasing sequence of finitedimensional subspaces of X such that U,X, is 
dense in X and U,(D n X,) is dense in D. By Lemma, for each n, there 
exists 5, E B(!J, X,) such that 

(0 + T(d&,b), Y - t,(d) 2 0 (1) 

for all w E &?, y E D n X,, and u E L(o)y. Setting y = 0 and 0 = u(w) in 
this inequality, we get 

By the coercivity of T we conclude that there exists M > 0 such that 

j]&(m) ]I G M for all wEGandnEN.SincetheballB,={x~X:]lx]]<M} 
is a metrizable separable space in the weak topology, the mappings I,(w) = 
weakcl{ t,(w): i > n} are weakly measurable [7, p. 621. Then the mapping 
l?(w) = fl,I,(o) is also weakly measurable [7]. By [13], I admits a weakly 
measurable selection 5: G + B, that is also measurable [5, p. 1491. For a 
fixed w E a, there is a subsequence { tk(a)} of {E,(o)} such that &(w) - 
E(o). Since T is bounded, we may assume that T( w)tk( w) - zx *( w). From (1) 
we have 

for all y E D n X, and v E L(w)y. We assert that 

limsup(T(w)5k(w),5k(W)) d (x*(a), Y)+(u? Y -t(a)) (3) 

for all y E U,(D n X,) and u E L(w)y. Indeed, let y be any element of 
U,(D n X,). Then y lies in D n X, for some m, and since {D n X,} 
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increases with k, y E D CT X, for all k > m. Thus (2) holds for all k >, m, 
which in turn implies (3). Since c1,( D n X,) is dense in D, and L is lower 
semicontinuous, we conclude that (3) holds for all y E D and c E L(w)y. The 
rest of the proof proceeds as in the proof of [15, p. 1191. Finally, we have 
- T(w)S(w) E Uw)Mw), i.e., 0 E L(w)&w)+ T(w)&w), which completes 
the proof. n 

A basic consequence of Theorem 1 is the following result, which extends 
to the multivalued case a result proved in [ 121. 

THEOREM 2. Let fl! be complete, X a separable reflexive Banuch space, 
and D a subset of X with 0 E D. Let L: Q x X + 2’. be a coercive, m&mu1 
monotone random operator such that L is lower semicontinuous (X * taken 
with its weak topology). Suppose that for each w E Q there exists u(w) E 
L(w)0 such that sup{]]u(w)]]: WEQ} <cc. Then for each ~EB(G,X*) 
there exists 5 E B(Q, X) such that 

Proof. We may assume that q(w) = 0 for all w E Qt. Let J be the duality 
mapping defined by Jr = {x* E X*:(x*,x) = ]]x]]‘, ]]x]] = ]]x*]]}. By a result 
of Trojan& [17] we may assume that X and X * are locahy uniformly 
convex. Thus the mapping I is single-valued, demicontinuous, and monotone. 
It then follows that J is pseudomonotone [3, Proposition 81. By Theorem 1, 
for each E> 0, there exists 6,~ B(64, X) and uJw) E L(w)[,(w) such that 

We have 

which implies that c(]].$Jw)]]) Q 0. So there exists M > 0 such that ]][Jw)]] Q 
M for all E > 0 and w E Q. Let {E”} be a sequence of positive numbers such 
that E, + 0. For each n, we set t,(w) = E,,(w) and u,(w) = u,,<w). As in the 
proof of Theorem 1, there exists 4 E B(G, X) such that for a fixed w E Q, 
there is a subsequence { Ek(w)} of {E,(w)} such that &(w) - 5(w). Let 
[x, x*] be any element of G( L(w)). By the monotonicity of L we have 

(z+(w) - x*,&&d> -x) 2 0, 
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or 

Letting k + cc, we get 

(x*, x - &y 0)) > 0. 

Since ~5 is maximal monotone, we conclude that 0 E L( a)[( w), and the proof 
is complete. n 

4. PERTURBATIONS OF LINEAR MONOTONE 
RANDOM OPERATORS 

We shall need the following proposition, 

PROPOSITION. Let X be a separable Ban&a space, and D a dense linear 
subspace of X. Let L: ii X D + X be a closed linear random operator such 
that for each w E a, L(w) is one to one and onto. Then the operator 
S: !A x X+X defined by S(w)x = L(w)-% (w E Q, x E X) is random. 

Proof. For a fixed oa E Q, let Xi be the subspace D endowed with the 

norm llxlii = IlL(~o)41. m is norm is equivalent to the graph norm 1(x (( + 
IIL(wO)xII, and with it X, becomes a separable Banach space. By the 
closed-graph theorem, L(w)L-‘(w,) is a bounded linear operator for every 
w, wi E 52. Hence, for each o E &I, x + IIL(w)xll defines a norm on D which 
is equivalent to the norm ]]x]]i. So, for each w, L(w) is a bounded linear 
operator from X, onto X. By [14], for each x E X, S( .)r : Q + X, is a 
random operator. Since the injection of Xi into X is continuous, S( *)x is also 
random as an operator from !2 into X. n 

DEFINITION 2. Let X be a reflexive Banach space, and T an operator 
from X into X *. T is said to be of type (M) if the following conditions hold: 

(i) T is continuous from finite-dimensional subspaces of X to X * en- 
dowed with weak topology. 

(ii) For any sequence {xn} in X such that rfi -x, TX, -x*, and 
limsup(Tjr,, x, - x) < 0, we have x* = TX. 
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The concept of operators of type (M) was introduced by Brezis in [l], 
using filters. For the above definition and related properties we refer to [15]. 

Now, we generalize Theorem 1 in [6] as follows. 

THEOREMS. Let !J be a measurable space, Ha se-parable Hilbert space, 
and D a dense linear subspace of H. Let L: !J x D + H be a linear maximal 
monotone random operator, and T: &I X H + H a random operator that is 
bounded, of type (M), and coercive. Then for each 7 E B(Q, H) there exists 
.$ E B(O, H) such that 

Proof. We may assume that q(w) = 0 for all w E CL For each w E Q, let 
L,(w) be the Yosida approximants of L(w) defined by L,(w)x = E- ‘[I - 
JJ(w)]x, where .Z,(o)x = [I + EL(o)]-~x (see [2, p. 1021). By Proposition, _Z, is 
a random operator, and so the same holds for L,. Moreover, L, is monotone 
(cf. [2, Proposition VII.21). Now, the operator L, + T is random, bounded, 
coercive, and of type (M) [l, Proposition 181. By [ll], there exists [, E 
B(!& H) such that 

L,b)S,(d+ Tb)+) = 0. (4) 

We have 

which implies that 

(T(w)S,b), t,(o)) d 0. 

By the coercivity of T, there exists M > 0 such that ]][E(w)]] < M for all E > 0 
and w E C4. Setting u,(w) = [I + EL(w)]-~~~(w), we have 

By (4), the boundedness of T, and the fact that LJo)[Jo) = L(w)uJw), 
we conclude that there exists Ml(w) > 0 such that ~~L(w)u~(o)~I Q M,(w) for 
all E > 0. Let {E,,} be a sequence of positive numbers such that E, + 0. We 
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set &,(a) = 5,,(w), v,(w) = u,,(a). A s in the proof of Theorem 1, there exists 
5 E B(Q, H) such that for a fixed w E Q, there is a subsequence of { E, } 
(which we denote again by { E, }) such that 

L(4 - GJ>, u,,(+u(w), and L(w)u,,(w)-U(W). 

We have ,$‘Jw) = u,(w)+ sL(o)u,(w). Letting E+ 0, we get 5(w) = U(O). 
Since L is a weakly closed operator, E(w) E D and L(o)&o) = u(o). 

By the monotonicity of L, we have 

or 

( - w-+t,(4 - LWS(4> u4 - W) 2 0. (5) 

By [2, Proposition VII.21, we have IlL,(w)&w)ll < IIL(w)5(w)ll. Then from 
(5) we get limsup(T(o)&(w), E,(w) - 5(w)) < 0. Since T(w)&(w) - - u(w) 
and T is of type (M), we conclude that T(w)Qw) = - u(w). Thus, 
0 = L(w)<(w) + T( 0)&w), and the proof is complete. n 
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