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1 Introduction

After Jones’s construction of the classical by now Jones polynomial for knots in
S3 using Ocneanu’s Markov trace on the associated Hecke algebras of type A,
arised questions about similar constructions on other Hecke algebras as well as
in other 3-manifolds.

In [12] is established that knot isotopy in a 3-manifold may be interpreted
in terms of Markov braid equivalence and, also, that the braids related to the
3-manifold form algebraic structures. Moreover, the sets of braids related to
the solid torus or to the lens spaces L(p, 1) form groups, which are in fact the
Artin braid groups of type B. As a consequence, in [12, 13] appeared the first
construction of a Jones-type invariant using Hecke algebras of type B, and this
had a natural interpretation as an isotopy invariant for oriented knots in a solid
torus. In a further ‘horizontal’ development and using a different technique we
constructed in [8] all such solid torus knot invariants derived from the Hecke
algebras of type B. Furthermore, in [7] all Markov traces related to the Hecke
algebras of type D were consequently constructed.

In this paper we consider all possible generalizations of the B-type Hecke
algebras, namely the cyclotomic and what we call ’generalized’, and we construct
Markov traces on each of them, so as to obtain all possible different levels of
homfly-pt analogues in the solid torus related to the (Hecke) algebras of B-type.
Our strategy is based on the one in [13], which in turn followed [11]. So, in this
sense, the construction in [12, 13] is incorporated here as the most basic level.

In more detail: It is well-understood from Jones’s construction of the homfly-
pt (2-variable Jones) polynomial, PL, in [11], that Hn(q), the Iwahori-Hecke al-
gebra of An-type, is a quotient of the braid group algebra Z [q±1]Bn by factoring
out the quadratic relations

σ2
i = (q − 1)σi + q

and that these relations reflect precisely the skein property of PL:
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where L+ is a regular projection of an oriented link containing a specified posi-
tive crossing, L− the same projection with a negative crossing instead, and L0

yet the same projection with no crossing.

We do now analogous considerations for the solid torus, which we denote by
ST . Let us consider the following Dynkin diagram.
The symbols t, σ1, . . . , σn−1 labelling the nodes correspond to the generators of
the Artin braid group of type Bn, which we denote by B1,n. B1,n is defined
therefore by the relations

σ1tσ1t = tσ1tσ1

tσi = σit if i > 1
σiσj = σjσi if |i− j| > 1

σiσi+1σi = σi+1σiσi+1 if 1 ≤ i ≤ n− 2

Relations of these types will be called braid relations.
B1,n may be seen as the subgroup of Bn+1, the classical braid group on n+1

strands, the elements of which keep the first strand fixed (this is the reason for
having chosen the symbol B1,n). This allows for a geometric interpretation of
the elements of B1,n as mixed braids in S3. Below we illustrate the generators
σi, t and the element t′i = σi . . . σ1tσ

−1
1 . . . σ−1

i in B1,n, which plays a crucial
role in this work.
Note that the inverses of σi, t are represented by the same geometric pictures,
but with the opposite crossings.
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As shown in [12, 13], we can represent oriented knots and links inside ST
by elements of the groups B1,n, where the fixed strand represents the comple-
mentary solid torus in S3, and the next n numbered strands represent the knot
in ST . Also, that knot isotopy in ST can be translated in terms of equivalence
classes in

⋃∞
n=1 B1,n (Markov theorem), the equivalence being generated by the

following two moves.

(i) Conjugation: if α, β ∈ B1,n then α ∼ β−1αβ.
(ii) Markov moves: if α ∈ B1,n then α ∼ ασn

±1 ∈ B1,n+1.

Consider now the classical Iwahori-Hecke algebra of type Bn, Hn(q, Q), as a
quotient of the group algebra Z [q±1, Q±1]B1,n by factoring out the ideal gener-
ated by the relations t2 = (Q − 1)t + Q and g2

i = (q − 1)gi + q for all i, where
we denote the image of σi in Hn(q, Q) by gi. The idea in [12, 13, 8] was to
construct invariants of knots in the solid torus by constructing trace functions
τ on

⋃∞
n=1Hn(q, Q) which support the Markov property:

τ(hgn) = zτ(h),

for z an independent variable in Z [q±1, Q±1] and h ∈ Hn(q,Q). In other words,
traces that respect the above braid equivalence on

⋃∞
n=1 B1,n. The construction

of such traces was only possible because we were able to find an appropriate
inductive basis on Hn+1(q, Q), every element of which involves the generator
gn or the element t′n := gn . . . g1tg

−1
1 . . . g−1

n at most once (see picture above for
the lifting of t′i in B1,n). In particular, the trace constructed in [12, 13] was
well-defined inductively by the rules:

1) tr(ab) = tr(ba) a, b ∈ Hn(q, Q)
2) tr(1) = 1 for all Hn(q, Q)
3) tr(agn) = z tr(a) a ∈ Hn(q, Q)
4) tr(at′n) = s tr(a) a ∈ Hn(q, Q)

If we had not used the elements t′n in the above constructions we would have not
been able to define the trace with only four simple rules. The intrinsic reason for
this is that B1,n splits as a semi-direct product of the classical braid group Bn

and of its free subgroup P1,n generated precisely by the elements t, t′1, . . . , t
′
n−1:

B1,n = P1,n o Bn.

The Jones-type invariants in ST constructed from the above traces on
⋃∞

n=1Hn(q, Q)
satisfy the skein rule related to the quadratic relations g2

i = (q − 1)gi + q plus
another one reflecting the quadratic relation t2 = (Q − 1)t + Q (cf. [12, 13, 8]
for an extensive treatment).

During the work of S.L. and J. Przytycki on the problem of computing the
3rd skein module of the lens spaces L(p, 1) following the above strategy, it turned
out that the skein rule of the homfly-pt type invariants in [12, 13, 8] related to
t was actually ’artificial’, so far that knot invariants in ST were concerned, and
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that for analogous constructions in L(p, 1) it was needed to have constructed
first the most generic 2-variable Jones analogue in ST , one that would not satisfy
any skein relation involving t.

We drop then the quadratic relation of t, and we consider the quotient of
the group algebra Z [q±1]B1,n by factoring out only the relations

g2
i = (q − 1)gi + q

for all i. This is now a new infinite dimensional algebra, which we denote by
Hn(q,∞) and we shall call it generalized Iwahori-Hecke algebra of type B. By gi

above we denote the image of σi in Hn(q,∞), whilst the symbol ∞ was chosen
to indicate that the generator t satisfies no order relation (since now any power
tk, for k ∈ Z may appear, like in B1,n). For connections of these algebras with
the affine Hecke algebras of type A see Remark 1.

But we would like now to go one step back and, instead of removing from
Hn(q, Q) the quadratic relation for t, to require that t satisfies a relation given
by a cyclotomic polynomial of degree d:

(t− u1)(t− u2) · · · (t− ud) = 0

Then we obtain a finite-dimensional algebra known as cyclotomic Hecke alge-
bra of type B, denoted here by Hn(q, d). The corresponding cyclotomic Coxeter
group of type B, which we denote by Wn,d, is obtained as a quotient of B1,n mod-
ulo the relations g2

i = 1 and td = 1. Hn(q, d) may be seen as a ‘d-deformation’
of Wn,d: In order to obtain the group algebra we have to substitute the param-
eters of the cyclotomic polynomial by the d th roots of unity (and not by 1 as
in the classical case). These algebras have been introduced and studied inde-
pendently by two groups of mathematicians in [1, 2, 4, 3]. It follows from the
discussion above that the cyclotomic Hecke algebras are also related to the knot
theory of the solid torus and, in fact, they make the bridge between Hn(q, Q)
and Hn(q,∞).

Like for the classical Hecke algebras of type B, in order to construct linear
Markov traces on

⋃∞
n=1Hn(q,∞) or on

⋃∞
n=1Hn(q, d), we need to find appro-

priate inductive bases on both types of these algebras. The inductive bases are
derived from known basic sets. This is the aim and the main result of Section
3. Note that, in the case of Hn(q,Q), we could easily yield such an inductive
basis using the results in [6], whilst for Hn(q, d) we use the results in [2], [4].
For Hn(q,∞) we study its structure in Section 2 and we construct a basis for it
using the structure of the braid group B1,n and the known bases for Hn(q, d).

In Section 4 we construct Markov traces on
⋃∞

n=1Hn(q,∞) and on
⋃∞

n=1Hn(q, d)
using the inductive bases of Section 3. Finally in Section 5, we normalize the
traces according to the Markov braid theorem in order to derive the correspond-
ing knot invariants in ST , and we also give skein interpretations. The invariant
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related to Hn(q,∞) is the most interesting one for us, and in this sense, this
work may be seen as the required fundament for extending such constructions to
knots in the lens spaces (see remarks at the end). In the special case ofHn(q,∞)
the derived knot invariant reproves the structure of the 3rd skein module of the
solid torus (cf. [10, 16]). On the other hand, the knot invariants derived from
Hn(q, d) are related to submodules of the 3rd skein module of ST . It may be
worth noting that introducing and studying Hn(q,∞) has been independent of
the studies on the cyclotomic analogues.

Our method shows on one hand that the original strategy of [11] can carry
through to so complicated structures. On the other hand it unifies the con-
struction for all these different B-type algebras and it highlights the algebraic
background underlying these knot invariants in ST . The tedious calculations
employed for constructing appropriate bases reflect the tedious arguments of a
more combinatorial approach.

It gives the author pleasure to acknowledge her thanks to V.F.R. Jones for
his valuable comments on this work and to T. tom Dieck for discussions and
valuable suggestions. Many thanks are also due to M. Geck for discussions,
useful comments and for pointing out the literature on the cyclotomic Hecke
algebras of type B, and especially to J. Przytycki for our discussions on the
structure of the generalized Coxeter groups and Hecke algebras. Finally, finan-
cial support by the SFB 170 in Göttingen and the European Union for parts of
this work are gratefully acknowledged.

2 Finding a basis for Hn(q,∞)

We start by introducing in more detailHn(q,∞), Hn(q, d) and their correspond-
ing Coxeter-type groups Wn,∞, Wn,d.

Definition 1. The generalized Iwahori-Hecke algebra of type Bn is defined as

Hn(q,∞) := Z [q±1] B1,n / < σi
2 = (q − 1) σi + q for all i > .

The underlying generalized Coxeter group of type Bn is defined as

W := B1,n / < σi
2 = 1 for all i > .

It follows that if gi denotes the image of σi inHn(q,∞), thenHn(q,∞) is defined
by the generators t, g1, g2, . . . , gn−1 and their relations:

tg1tg1 = g1tg1t
tgi = git for i > 1

gigi+1gi = gi+1gigi+1 for 1 ≤ i ≤ n− 2
gigj = gjgi for |i− j| > 1
gi

2 = (q − 1) gi + q for all i
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Hn(q,∞) is an associative algebra with 1. Also, it is easily verified that, if Sn

is the symmetric group, then

W = Zn o Sn ( compare with the structure ofB1,n).

Definition 2. Let R := Z [q±1, u±1
1 , . . . , u±1

d , . . .], where q, u1, . . . , ud, . . . are
indeterminates. The cyclotomic Iwahori-Hecke algebra of type Bn and of degree
d is defined as

Hn(q, d) := RB1,n / < σi
2 = (q−1) σi+q all i, (t−u1)(t−u2) · · · (t−ud) = 0 > .

The underlying cyclotomic Coxeter group of type B and of degree d is:

Wn,d := B1,n / < σi
2 = 1 for all i, td = 1, d ∈ N > .

The relation td = 1 is derived by the cyclotomic polynomial by substituting
the ui’s by the d’th roots of unity. Also, the Coxeter group of Bn-type, in our
notation Wn,2, is the quotient of B1,n over the relations t2 = σi

2 = 1, for all i.

Hn(q, d) is an associative algebra with 1, and it is a free module over R of rank
dn ·n!, which is precisely the order of Wn,d (cf. [2],[4]). If d = 1 and u1 = 1, then
Hn(q, 1) is isomorphic to the Iwahori-Hecke algebra of type A (over Z [q±1]). If
d = 2, u1 = −1 and u2 = Q, we recover the familiar relation of Hn(q, Q), the
Iwahori-Hecke algebra of type B (over Z [q±1, Q±1]). In Hn(q, d) we have

♠ td = ad−1t
d−1 + · · ·+ a0, where

ad−1 = u1+ · · ·+ud, ad−2 = −(u1u2+ · · ·+ud−1ud), . . . , a0 = (−1)d(u1 . . . ud);
from this we can derive easily a relation for t−1.

Wn,d may also be seen as the quotient W / < td = 1 >, d ∈ N of W , and it is
easily verified that

Wn,d = Zd
n o Sn

Its order is dn · n!, whilst Wn,2 = Z2
n o Sn (compare with the structure of

B1,n).

Note 1. W.l.o.g. we extend the ground ring of Hn(q,∞) to R. Then Hn(q, d)
may also be obtained from Hn(q,∞) by factoring out the cyclotomic relation.
In this sense Hn(q, d) is a ‘bridge’ between Hn(q,∞) and Hn(q,Q), the classical
Hecke algebra.

We shall now find a basis for Hn(q,∞) as follows: We find first a canonical
form for the braid group B1,n, which yields a basis for Z [q±1]B1,n. The images
of these basic elements in Hn(q,∞) through the canonical map span Hn(q,∞).
In [2, 4] bases for Hn(q, d) have been constructed. We then treat the spanning
set and using these bases we obtain a basis for Hn(q,∞). This approach shows
clearly the relation among the structures of B1,n, Hn(q,∞), Hn(q, d) and Wn,∞,
Wn,d.
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In order to proceed we need to recall the notion of the pure braid group and
Artin’s canonical form for pure braids: The classical pure braid group, Pn,
consists of all elements in Bn that induce the identity permutation in Sn; PnCBn

and Pn is generated by the elements

Ars = σr
−1σr+1

−1 . . . σs−2
−1σs−1

2σs−2 . . . σr+1σr

= σs−1σs−2 . . . σr+1σr
2σr+1

−1 . . . σs−2
−1σs−1

−1, 1 ≤ r < s ≤ n.

Artin’s canonical form says that every element, A, of Pn can be written uniquely
in the form:

A = U1U2 · · ·Un−1

where each Ui is a uniquely determined product of powers of the Aij using only
those with i < j. Geometrically, this means that any pure braid can be ‘combed’
i.e. can be written canonically as: the pure braiding of the first string with the
rest, then keep the first string fixed and uncrossed and have the pure braiding
of the second string and so on (cf. [J.S. Birman, Braids, Links and Mapping
Class Groups, Ann. of Math. Stud. 82, Princeton University Press, Princeton
1974] for a complete treatment).

We find now a canonical form for B1,n. An element w of B1,n induces a
permutation σ ∈ Sn of the n numbered strands. We add at the bottom of the
braid a standard braid in Bn corresponding to σ−1, and then we add its inverse
σ. Now, wσ−1 is a pure braid on n + 1 stands (including the first fixed one),
and we apply to it Artin’s canonical form. This separates the braiding of the
fixed strand from the rest:

The above is in fact the proof of the decomposition of B1,n as a semidirect
product:

Proposition 1. B1,n = P1,n o Bn.

From the uniqueness of Artin’s canonical form, it follows that any w ∈ B1,n can
be expressed uniquely as a product v · σ (‘vector-permutation’), where v is an
element of the free group P1,n :

v = t′i1
k1t′i2

k2 . . . t′ir

kr , k1, . . . , kr ∈ Z, where t′i
k := σi . . . σ1t

kσ−1
1 . . . σ−1

i ,
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and σ ∈ Bn is written in the induced by Pn canonical form. Thus the set {v ·σ}
forms a basis for the algebra Z [q±1] B1,n, and, therefore, it spans the quotient
Hn(q,∞). On the level of Hn(q,∞) we can already improve this spanning set,
since on this level σ is a word in Hn(q), the Iwahori-Hecke algebra of An−1-type.
So, σ can be written in terms of the standard basis of Hn(q) (cf. [11]):

{(gi1gi1−1 . . . gi1−r1)(gi2gi2−1 . . . gi2−r2) . . . (gip
gip−1 . . . gip−rp

)},
for 1 ≤ i1 < . . . < ip ≤ n− 1 and rj ∈ {0, 1, . . . , ij − 1}.

Therefore we showed

Proposition 2. The set

Σ1 = {t′j1
k1t′j2

k2 . . . t′jr

kr · σ},
where t′0 := t, t′i

k := gi . . . g1t
kg−1

1 . . . g−1
i , j1, . . . , jr ∈ {0, 1, . . . , n−1}, k1, . . . , kr ∈

Z and σ a basic element of Hn(q), spans Hn(q,∞).

Notice that the indices of the ‘vector’ part are not ordered. Also, that the above
canonical form for B yields immediately the following canonical form {v ·σ} for
W :

{v · σ} = {tj1k1tj2
k2 . . . tjr

kr · σ},
where t0 := t, ti

k := si . . . s1t
ks1 . . . si, for 0 ≤ j1 < . . . < jr ≤ n − 1,

k1, . . . , kr ∈ Z and σ ∈ Sn is an element of the canonical form of Sn (where si

denotes the image of σi in W ). Thus, this set also forms a basis for the group
algebra Z [q±1] W .

Notice here that the indices of the ‘vector’ part are ordered. This suggests that
it may be possible to order the indices j1, . . . , jr of the words t′j1

k1t′j2
k2 . . . t′jr

kr

in Σ1, so as to be left with a canonical basis for H. To achieve this straight
from Σ1 is very difficult, because it is hard to get hold of an induction step,
even though there are relations among the t′i

ki ’s. Instead, we change the t′i
k’s

to the elements ti
k, where t0 := t, and ti := gi . . . g1tg1 . . . gi. These elements

commute in H.

The following relations hold in H and in Hn(q, d) and will be used repeatedly
in the sequel.

Lemma 1. For ε ∈ {±1} the following hold:

(i) gi
ε = qε gi

−ε + (qε − 1),

gi
2ε = (qε − 1) gi

ε + qε, for q 6= 0.

(ii) gi
ε(gk

±1g±1
k−1 . . . gj

±1) = (gk
±1g±1

k−1 . . . gj
±1)gi+1

ε, for k > i ≥ j,

gi
ε(gj

±1g±1
j+1 . . . gk

±1) = (gj
±1g±1

j+1 . . . gk
±1)gi−1

ε, for k ≥ i > j,

where the sign of the ±1 superscript is the same for all generators.
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(iii) gigi−1 . . . gj+1gjgj+1 . . . gi = gjgj+1 . . . gi−1gigi−1 . . . gj+1gj ,

gi
−1g−1

i−1 . . . g−1
j+1gj

εgj+1 . . . gi = gjgj+1 . . . gi−1gi
εg−1

i−1 . . . g−1
j+1gj

−1.

(iv) gi
ε . . . gn−1

εgn
εgn

εgn−1
ε . . . gi

ε =

(qε − 1)
∑n−i

r=0 qεr (gi
ε . . . gn−r−1

εgn−r
εgn−r−1

ε . . . gi
ε) + qε(n−i+1) =

∑n−i+1
r=0 (qε − 1)εrqεr (gi

ε . . . gn−r−1
εgn−r

εgn−r−1
ε . . . gi

ε),

where εr = 1 if r ≤ n− i and εn−i+1 = 0.

Similarly,

gi
ε . . . g2

εg1
εg1

εg2
ε . . . gi

ε =

(qε − 1)
∑i−1

r=0 qεr (gi
ε . . . gr+2

εgr+1
εgr+2

ε . . . gi
ε) + qεi =

∑i
r=0 (qε − 1)εrqεr (gi

ε . . . gr+2
εgr+1

εgr+2
ε . . . gi

ε),

where εr = 1 if r ≤ i− 1 and εi = 0.

(v) tλg1tg1 = g1tg1t
λ for λ ∈ Z,

gitk
ε = tk

εgi for k > i, k < i− 1,

giti = q ti−1gi + (q − 1) ti,

giti−1 = q−1 tigi + (q−1 − 1) ti,

giti−1
−1 = q ti

−1gi + (q − 1) ti−1
−1,

giti
−1 = q−1 ti−1

−1gi + (q−1 − 1) ti−1
−1.

(vi) git
′
k

ε = t′k
ε
gi for k > i, k < i− 1,

git
′
i
ε = t′i−1

ε
gi + (q − 1) t′i

ε + (1− q) t′i−1
ε
,

git
′
i−1

ε = t′i
ε
gi.

(vii) ti
ktj

λ = tj
λti

k for i 6= j and k, λ ∈ Z.

(viii) t′i
k = gi . . . g1t

kg1
−1 . . . gi

−1 for k ∈ Z.

Therefore we have in Hn(q, d):

(t′i−u1)(t′i−u2) . . . (t′i−ud) = 0, which implies t′i
d = ad−1t

′
i
d−1 + · · ·+a0,

and where the ai’s are given in relation (♠) in Section 2.

Proof. We point out first that in the rest of the paper and in order to facilitate
the reader we underline in the proofs the expressions which are crucial for the
next step. We also use the symbol ‘

∑
’ instead of the phrase ‘linear combination

of words of the type’.
Except for (iv), all relations are easy consequences of the defining relations of

H respectivelyHn(q, d). Relation (vii) can be also checked using braid diagrams.
We prove (iv) by induction on the length l = n− i+1 of the word gngn−1 . . . gi.
For l = 1 we have gn

2 = (q− 1)gn + q1. Assume now (iv) holds up to l = n− i.
Then for l = n− i + 1 we have
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gigi+1 . . . gngn . . . gi+1gi
induction step

=

gi [(q − 1)
∑n−(i+1)

r=0 qr (gi+1 . . . gn−r−1gn−rgn−r−1 . . . gi+1) + qn−i] gi =

(q − 1)
∑n−(i+1)

r=0 qr (gi . . . gn−r−1gn−rgn−r−1 . . . gi) + qn−igi
2 =

(q−1)
∑n−(i+1)

r=0 qr (gi . . . gn−r−1gn−rgn−r−1 . . . gi)+(q−1)qn−igi+qn−i+1 =

(q − 1)
∑n−i

r=0 qr (gi . . . gn−r−1gn−rgn−r−1 . . . gi) + qn−i+1.
Furthermore note that in the Relations (v) and (vi) a ti or a t′i will not change
to a ti

−1 or a t′i
−1 respectively and, therefore, these relations preserve the total

sum of the exponents of the ti’s and the t′i’s in a word. Note also that for j = i−1
the relations (iii) boil down to the usual braid relation and its variations with
inverses.

Theorem 1. In H the set

Σ2 = {ti1k1ti2
k2 . . . tir

kr · σ}

for 0 ≤ i1 < . . . < ir ≤ n − 1, k1, . . . , kr ∈ Z and σ a basic element in Hn(q),
forms a basis for Hn(q,∞).

Notice that in Σ2 the indices of the ‘vector’ part are ordered.

Proof. To show that Σ2 spans H it suffices, by Proposition 2, to show that an
element of Σ1 can be written as a linear combination of elements in Σ2. Indeed,
let

w = t′j1
k1t′j2

k2 . . . t′jm

km · σ ∈ Σ1.

We do the proof by induction on

ρ = |k1|+ |k2|+ · · ·+ |km|,

the absolute number of t’s in w. For ρ = 1 either w = t′i · σ or w = t′i
−1 · σ :

t′i · σ = gi . . . g1tg1
−1 . . . gi

−1 · σ =

gi . . . g1t(g1 . . . gigi
−1 . . . g1

−1)g1
−1 . . . gi

−1 · σ = ti · σ1,

where σ1 = gi
−1 . . . g1

−1g1
−1 . . . gi

−1 · σ ∈ Hn(q), a linear combination of
basic elements of Hn(q).

t′i
−1 · σ = gi . . . g1t

−1g1
−1 . . . gi

−1 · σ =

gi . . . g1(g1 . . . gigi
−1 . . . g1

−1)t−1g1
−1 . . . gi

−1 · σ Lemma1,(iv)
=

(q−1)
∑i−1

r=0 qr (gi . . . gr+2gr+1gr+2 . . . gi)gi
−1 . . . gr+1

−1gr
−1 . . . g1

−1t−1g1
−1 . . .

gi
−1 · σ + qi t−1

i · σ =
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(q−1)
∑i−1

r=0 qr (gi . . . gr+2)gr
−1 . . . g1

−1t−1g1
−1 . . . gr

−1 . . . gi
−1 ·σ + qi t−1

i ·
σ =

(q − 1)
∑i−1

r=0 qr tr
−1(gi . . . gr+2gr+1

−1 . . . gi
−1 · σ) + qi t−1

i · σ =

(q−1)
∑i−1

r=0 qr tr
−1 ·σr+qi t−1

i ·σ, where σr = gi . . . gr+2gr+1
−1 . . . gi

−1 ·σ ∈
Hn(q).

Suppose now the assumption holds for up to ρ−1 t’s in w. Then, the induction
step holds in particular for all such words with σ = 1. So, for |k1|+ |k2|+ · · ·+
|km| = ρ we have:

t′j1
k1 . . . t′jm

km · σ =





t′j1
k1 . . . t′jm

km−1
t′jm

· σ, if km > 0

t′j1
k1 . . . t′jm

km+1
t′jm

−1 · σ, if km < 0

by induction
=





Σ ti1
λ1 . . . tin

λn · σ1 · t′jm
· σ, for some σ1 ∈ Hn(q),

Σ tµ1
ν1 . . . tµn

νn · σ2 · t′jm

−1 · σ, for some σ2 ∈ Hn(q),

{
1 ≤ i1 < . . . < in ≤ n− 1, |λ1|+ · · ·+ |λn| = ρ− 1

1 ≤ µ1 < . . . < µn ≤ n− 1, |ν1|+ · · ·+ |νn| = ρ− 1

=





Σ ti1
λ1 . . . tin

λn · σ1 · tjm(gjm
−1 . . . g1

−1g1
−1 . . . gjm

−1) · σ
Σ tµ1

ν1 . . . tµn
νn · σ2 · (gjm . . . g1g1 . . . gjm)tjm

−1 · σ
.

We apply Lemma 1,(v) on the underlying expressions in order to shift tjm

and tjm
−1 to the left and we obtain sums of the words:

{
Σ ti1

λ1 . . . tin
λn · te1 · σ′1, σ′1 ∈ Hn(q), e1 ∈ {0, 1, . . . , n− 1}

Σ tµ1
ν1 . . . tµn

νn · te2
−1 · σ′2, σ′2 ∈ Hn(q), e2 ∈ {0, 1, . . . , n− 1}

Lemma1,(vii)
=

{
Σ ti1

λ1 . . . tir
λr · te1 · tir+1

λr+1 . . . tin
λn · σiσ

′, ir < e1 < ir+1.

Σ tµ1
ν1 . . . tµk

νk · te2
−1 · tµk+1

ν1 . . . tµn
νn · σ′iσ, µk < e2 < µk+1.

I.e. in either case we obtained a linear combination of elements of Σ2.

We next show linear independency of the elements of Σ2:
Let

∑m
i=1 λiwi = 0 for w1, w2, . . . , wm ∈ Σ2. We assume first that the ex-

ponents of the tj ’s in the words wi are all positive for all i, and we choose
d > k ∈ N, where k is the maximum of the exponents of the tj ’s in

∑m
i=1 λiwi.

Then, the canonical epimorphism of H onto Hn(q, d) applied on the equa-
tion

∑m
i=1 λiwi = 0 in H yields the equation

∑m
i=1 λiwi = 0 in Hn(q, d).

As shown in [2], Proposition 3.4 and Theorem 3.10, the elements of Σ2 with
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0 < k1, . . . , kr ≤ d − 1 form a basis for Hn(q, d), d ∈ N. (In [2] d is denoted
by r, Hn(q, d) is denoted by Hn,r and σ is denoted by aw.) This implies
λi = 0, i = 1, . . . ,m.

Assume finally that some wi’s contain tj ’s with negative exponents. The
idea is to resolve the negative exponents and then refer to the previous case.
One way is to proceed as above, and after we have projected

∑m
i=1 λiwi = 0 on

Hn(q, d), to resolve the tj ’s with negative exponents using the algebra relations;
finally, to conclude λi = 0, i = 1, . . . , m, using induction and arguments from
linear algebra. But we would rather give a more elegant argument, that was
suggested by T. tom Dieck.

Namely, let P be the product of all tkj , k ∈ N for all j, k such that t−k
j is in

some wi. Since P is an invertible element of H, we have
∑m

i=1 λiwi = 0 ⇔
P ·∑m

i=1 λiwi = 0. The last equation is equivalent to
∑m

i=1 λiPwi = 0, where
the elements Pwi are pairwise different and the exponents of the tj ’s contained
in each Pwi are positive for all i. We then refer to the previous case, and the
proof of Theorem 1 is now concluded.

Thus Σ2 is a basis of H, and therefore H is a free module.

Remark 1. In [5], (8.23) tom Dieck establishes an isomorphism between H
and the twisted tensor product of the Hecke algebra of the Coxeter group of the
affine type Ãn−1. One can also use the extended affine Hecke algebra of type
Ãn−1 and study quotient maps onto Hn(q, d) as defined in [1], Section 2.1. The
same map also works for H and it is in fact an isomorphism.

3 Inductive bases for Hn(q,∞) and Hn(q, d)

The basis of Hn(q,∞) constructed in the previous section as well as the cor-
responding one for Hn(q, d) yields an inductive basis for Hn(q,∞) respectively
Hn(q, d), which gives rise to another two inductive bases, the last one being
the appropriate for constructing Markov traces on these algebras. Here we give
these three inductive bases and we conclude this section by giving another basic
set for Hn(q,∞) respectively Hn(q, d), which is analogous to the set Σ2, but
using t′i’s instead of ti’s.

From now on we shall denote by Hn both Hn(q,∞) and Hn(q, d) and by Wn

both Wn,∞ and Wn,d. Also, whenever we refer to k ∈ Z respectively k ∈ Zd we
shall assume k 6= 0. We now find the first inductive basis for Hn+1. This on the
group level is an inductive canonical form, and it provides a set of right coset
representatives of Wn into Wn+1, which is completely analogous to [6], p. 456
for B-type Coxeter groups.

Lemma 2. For k ∈ Z the following hold in Hn+1(q,∞) respectively Hn+1(q, d):

(i) tn
kgn = (q − 1)

∑k−1
j=0 qj tn−1

jtn
k−j + qk gntn−1

k, if k ∈ N and
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tn
kgn = (1− q)

∑k−1
j=0 qj tn−1

jtn
k−j + qk gntn−1

k, if k ∈ Z − N.

(ii) tn
kgngn−1 . . . gi =

(q − 1)
∑k−1

j=0 qj (tn−1
jgn−1gn−2 . . . gi)tnk−j+

(q − 1)qk
∑k−1

j=0 qj (tn−2
jgn−2gn−3 . . . gi)gntn−1

k−j+

(q − 1)q2k
∑k−1

j=0 qj (tn−3
jgn−3 . . . gi)gngn−1tn−2

k−j

+ · · ·+
(q − 1)q(n−i)k

∑k−1
j=0 qj (ti−1

j)gngn−1 . . . gi+1ti
k−j

+q(n−i+1)k gngn−1 . . . giti−1
k, if k ∈ N,

whilst for k ∈ Z − N we have an analogous formula, only (q − 1) is replaced by
(1− q), qk = q−|k| and |k − j|+ |j| = |k|.
Proof. We prove (i) for the case k > 0 by induction on k. (For k < 0 completely
analogous.) For k = 1 we have tngn = (q − 1)tn + q1gntn−1. Suppose the
assumption holds for k − 1. Then for k we have:

tn
kgn = tntn

k−1gn
by induction

=

tn [(q − 1)
∑k−2

j=0 qj tn−1
jtn

k−1−j + qk−1 gntn−1
k−1]

Lemma 1,(vii)
=

(q − 1)
∑k−2

j=0 qj tn−1
jtn

k−j + qk−1 tngntn−1
k−1 Lemma 1,(v)

=

(q−1)
∑k−2

j=0 qj tn−1
jtn

k−j +qk−1(q−1) tntn−1
k−1+qk gntn−1

k Lemma 1,(vii)
=

(q − 1)
∑k−1

j=0 qj tn−1
jtn

k−j + qk gntn−1
k.

We prove (ii) for the case k > 0 by decreasing induction on i. (For k < 0
completely analogous.) For i = n we have (i). Assume it holds for i+1 < n (⇔
i ≤ n− 2 ⇔ n− i ≥ 2). Then for i we have:

tn
kgn . . . gi+1gi

by induction
=

[(q − 1)
∑k−1

j=0 qj (tn−1
jgn−1gn−2 . . . gi+1)tnk−j ]gi + · · ·+

[(q − 1)q(n−(i+1))k
∑k−1

j=0 qj (tij)gngn−1 . . . gi+2ti+1
k−j ]gi+

[q(n−i)k gngn−1 . . . gi+1ti
k]gi

Lemma1,(v)&Lemma2,(i)
=

(q − 1)
∑k−1

j=0 qj (tn−1
jgn−1 . . . gi+1gi)tnk−j + · · ·+

(q − 1)q(n−(i+1))k
∑k−1

j=0 qj (tijgi)gngn−1 . . . gi+2ti+1
k−j+
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q(n−i)k(q − 1)
∑k−1

j=0 qj gngn−1 . . . gi+1ti−1
jti

k−j+

q(n−i)kqk gngn−1 . . . giti−1
k =

(q − 1)
∑k−1

j=0 qj (tn−1
jgn−1 . . . gi+1gi)tnk−j + · · ·+

(q − 1)q(n−(i+1))k
∑k−1

j=0 qj (tijgi)gngn−1 . . . gi+2ti+1
k−j+

q(n−i)k(q − 1)
∑k−1

j=0 qj (ti−1
j)gngn−1 . . . gi+1ti

k−j+

q(n−i)kqk gngn−1 . . . giti−1
k.

Theorem 2. Every element of Hn+1(q,∞) respectively Hn(q, d) is a unique
linear combination of words, each of one of the following types:

1) wn−1

2) wn−1gngn−1 . . . gi

3) wn−1gngn−1 . . . giti−1
k, k ∈ Z respectively k ∈ Zd

4) wn−1tn
k, k ∈ Z respectively k ∈ Zd

where wn−1 is some word in H respectively Hn(q, d). Thus, the above words
furnish an inductive basis for Hn+1(q,∞) respectively Hn(q, d).

Proof. By Theorem 1 it suffices to show that every element v · σn ∈ Σ2, where
v is a product of ti’s and σn ∈ Hn+1(q), can be expressed uniquely in terms of
1), 2), 3) and 4). We prove this by induction on n: For n = 0 there are no gi’s
in the word, so v · σ0 = tk · 1, a word of type 1). Suppose the assertion holds
for all basic words in Σ2 with indices up to n− 1, and let w ∈ Σ2 such that w
contains elements of index n. We examine the different cases:

• w = ti1
k1ti2

k2 . . . tir
kr tn

k · σn−1, 1 ≤ i1 < . . . < ir < n and σn−1 ∈ Hn(q).

Then, by Lemma 1,(v), w = ti1
k1 . . . tir

kr · σn−1 · tnk = wn−1tn
k, a word of type

4).

• w = ti1
k1ti2

k2 . . . tir
kr · σn, where ir < n and σn = σn−1 · (gngn−1 . . . gi) ∈

Hn+1(q). Then w = ti1
k1ti2

k2 . . . tir
kr · σn−1·(gngn−1 . . . gi) = wn−1gngn−1 . . . gi,

a word of type 2).

• Finally, let w = ti1
k1ti2

k2 . . . tir
kr tn

k ·σn, where σn = σn−1 ·(gngn−1 . . . gi) ∈

Hn+1(q). Then w = ti1
k1 . . . tir

kr tn
k · σn−1 · gngn−1 . . . gi

Lemma 1,(v)
=

ti1
k1 . . . tir

kr · σn−1 · tnkgngn−1 . . . gi
Lemma 2,(ii)

=
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wn−1tn
k−j + Σwn−1gngn−1 . . . gsts−1

k−j , for j = 0, . . . , k − 1.

I.e. w is a sum of words of type 4) and type 3). The uniqueness of these
expressions follows from Lemma 1 and Lemma 2.

Theorem 2 rephrased weaker says that the elements of the inductive ba-
sis contain either gn or tn

k at most once. But, as explained in the be-
ginning, our aim is to find an inductive basis for Hn+1 using the elements
t′i = gigi−1 . . . g1tg1

−1 . . . gi−1
−1gi

−1, as these are the right ones for constructing
Markov traces on

⋃∞
n=1Hn. We go from the ti’s to the t′i’s via the ‘intermediate’

elements

T k
i := gigi−1 . . . g1t

kg1 . . . gi−1gi, k ∈ Z.

Theorem 3. Every element of Hn+1(q,∞) respectively Hn(q, d) is a unique
linear combination of words, each of one of the following types:

1′) wn−1

2′) wn−1gngn−1 . . . gi

3′) wn−1gngn−1 . . . giT
k
i−1, k ∈ Z respectively k ∈ Zd

4′) wn−1T
k
n , k ∈ Z respectively k ∈ Zd

where wn−1 is some word in H respectively Hn(q, d).

Proof. It suffices to show that elements of the inductive basis given in Theorem
2 can be expressed uniquely as sums of the above words. For this we need the
following three lemmas.

Lemma 3. For k ∈ N respectively k ∈ Zd−1 and ε ∈ {±1} the following hold in
Hn+1(q,∞) respectively Hn+1(q, d):

tn
ε(k+1) =

∑n
r1,...,rk=0 (qε − 1)εr1+···+εrk qε(r1+···+rk)·

gn
εgn−1

ε . . . g1
εtε(g1

ε . . . gn−r1
ε . . . g1

ε)tε . . . tε(g1
ε . . . gn−rk

ε . . . g1
ε)tεg1

ε . . . gn−1
εgn

ε,

where εri = 1 if ri = 0, . . . , n− 1, εn = 0 and g0
ε := 1.

Proof. We show the case ε = +1 by induction on k. The proof for ε = −1 is
completely analogous. For k = 1 we have:

tn
2 = gngn−1 . . . g1tg1 . . . gn−1gngngn−1 . . . g1tg1 . . . gn−1gn

Lemma 1,(iv)
=

∑n
r=0 (q − 1)εrqr gngn−1 . . . g1t(g1 . . . gn−r . . . g1)tg1 . . . gn−1gn.

Assume that the statement holds for any k ∈ N. Then for k + 1 we have:

tn
k+1 = tn

ktn
by induction

=
∑n

r1,...,rk−1=0 (q − 1)εr1+···+εrk−1 qr1+···+rk−1 gn . . . g1·
t(g1 . . . gn−r1 . . . g1)t . . . t(g1 . . . gn−rk−1 . . . g1)tg1 . . . gn(gn . . . g1tg1 . . . gn)
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Lemma 1,(iv)
=

∑n
r1,...,rk=0 (q − 1)εr1+···+εrk qr1+···+rk gn . . . g1·

t(g1 . . . gn−r1 . . . g1)t . . . t(g1 . . . gn−rk
. . . g1)tg1 . . . gn.

Lemma 4. For k ∈ N and ε ∈ {±1} the following hold in H respectively
Hn(q, d):

(i) tεg1
εtεkg1

ε = g1
εtεkg1

εtε + (qε − 1)tεg1
εtεk + (1− qε)tεkg1

εtε and

(ii) t−εg1
εtεkg1

ε = g1
εtεkg1

εt−ε + (qε − 1)tε(k−1)g1
ε + (1− qε)g1

εtε(k−1).

Proof. We only prove (i) for the case ε = +1, by induction on k. All other
statements are proved similarly. For k = 1 we have tg1tg1 = g1tg1t. Assume
the assertion is correct for k. Then for k + 1 we have:

tg1t
k+1g1 = tg1t

kg1g
−1
1 tg1

Lemma 1,(i)
=

q−1 tg1t
kg1g1tg1 + (q−1 − 1) tg1t

kg1tg1
induction step

=

q−1 g1t
kg1tg1tg1 + q−1(q − 1) tg1t

kg1tg1 + q−1(1− q) tkg1tg1tg1+

(q−1 − 1) g1t
kg1t

2g1 + (q−1 − 1)(q − 1) tg1t
k+1g1+

(q−1 − 1)(1− q) tkg1t
2g1

rels., induction step
= q−1 g1t

k+1g1tg
2
1+

(1− q−1) g1t
kg1t

2g1 +(1− q−1)(q− 1) tg1t
k+1g1 +(1− q−1)(1− q) tkg1t

2g1+

(q−1 − 1) tk+1g1tg
2
1 + (q−1 − 1) g1t

kg1t
2g1 + (q−1 − 1)(q − 1) tg1t

k+1g1+

(q−1 − 1)(1− q) tkg1t
2g1

Lemma 1,(i)
=

q−1(q − 1) g1t
k+1g1tg1 + g1t

k+1g1t + (q−1 − 1)(q − 1) tk+1g1tg1+

(q−1 − 1)q tk+1g1t
Lemma 1,(v)

=

(1−q−1) g2
1tg1t

k+1+g1t
k+1g1t+(q−1−1)(q−1) tk+1g1tg1+(1−q) tk+1g1t =

(1− q−1)(q − 1) g1tg1t
k+1 + (1− q−1)q tg1t

k+1 + g1t
k+1g1t+

(q−1 − 1)(q − 1) tk+1g1tg1 + (1− q) tk+1g1t
Lemma 1,(v)

=

g1t
k+1g1t + (q − 1) tg1t

k+1 + (1− q) tk+1g1t.

Lemma 5 (Fundamental Lemma (F.L.)). For i, k ∈ N and for ε ∈ {±1}
the following hold in H respectively Hn(q, d):

(i) tεig1
εtεkg1

ε = g1
εtεkg1

εtεi+

(qε − 1) [tεg1
εtε(k+i−1) + t2εg1

εtε(k+i−2) + · · ·+ tεig1
εtεk]+

(1− qε) [tεkg1
εtεi + tε(k+1)g1

εtε(i−1) + · · ·+ tε(k+i−1)g1
εtε] and
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(ii) t−εig1
εtεkg1

ε = g1
εtεkg1

εt−εi+

(qε − 1) [tε(k−1)g1
εt−ε(i−1) + tε(k−2)g1

εt−ε(i−2) + · · ·+ tε(k−i)g1
ε]+

(1− qε) [t−ε(i−1)g1
εtε(k−1) + t−ε(i−2)g1

εtε(k−2) + · · ·+ g1
εtε(k−i)].

Proof. We prove (i) for the case ε = +1, by induction on i. The proof for ε = −1
is completely analogous. For i = 1 the assertion is true by Lemma 4,(i). Assume
it holds for i. Then for i + 1 we have:

ti+1g1t
kg1 = ttig1t

kg1
induction step

= tg1t
kg1t

i+

(q − 1) [t2g1t
k+i−1 + t3g1t

k+i−2 + · · ·+ ti+1g1t
k]+

(1− q) [tk+1g1t
i + tk+2g1t

i−1 + · · ·+ tk+ig1t]
Lemma 4,(i)

=

g1t
kg1t

i+1 + (q − 1) tg1t
k+i + (1− q) tkg1t

i+1+

(q − 1) [t2g1t
k+i−1 + t3g1t

k+i−2 + · · ·+ ti+1g1t
k]+

(1− q) [tk+1g1t
i + tk+2g1t

i−1 + · · ·+ tk+ig1t].

We go back now to the proof of Theorem 3. By Lemma 3, a typical summand
of tn

ε(k+1) ∈ Hn+1 is:

gn
ε . . . g1

εtελ1(g1
ε . . . gn−l1

ε . . . g1
ε)tελ2 . . . tελN (g1

ε . . . gn−lN
ε . . . g1

ε)tελN+1g1
ε . . . gn

ε,

where λ1, λ2, . . . , λN+1 ∈ N such that λ1+· · ·+λN+1 = k+1 and li < n for i =
1, . . . , N (since the cases li = n are incorporated in tελi). In order to prove
the theorem we want to show that such a word can be expressed in terms of
words of the form 1′), 2′), 3′) and 4′). This is a very slow process as we shall
readily see. In order to obtain an inductive argument on the number N + 1
of the intermediate powers of t, we show first the following, seemingly more
general result, where a non–symmetric expression appears also in the word. It
is ’seemingly more general’ because this non–symmetry of the word appears
anyhow in a later stage of the calculations.

Proposition 3. Let k ∈ N respectively k ∈ Zd−1, ε ∈ {±1}, l, m, l2, . . . , lN ≤ n
and let λ1, λ2, . . . , λN+1 ∈ N such that λ1 + · · ·+ λN+1 = k + 1. Then it holds
in Hn+1(q,∞) respectively Hn+1(q, d) that words of the form:

wn−1gn
ε . . . g1

εtελ1(g1
ε . . . gl

ε)(g1
ε . . . gm

ε . . . g1
ε)tελ2(g1

ε . . . gl2
ε . . . g1

ε)tελ3 . . .

tελN+1g1
ε . . . gn

ε

where only between the first two powers of t appears the non–symmetric expres-
sion (g1

ε . . . gl
ε)(g1

ε . . . gm
ε . . . g1

ε), can be expressed as sums of words of the
form 1′), 2′), 3′) and 4′). Note that if l = 0 we obtain the generic summand of
tn

ε(k+1).
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Proof. We prove the statement for ε = +1 by induction on the number N + 1
of intermediate powers of t. The proof for ε = −1 is completely analogous.
For N = 0 we have wn−1gn . . . g1t

λ1g1 . . . gn, where λ1 = k + 1 i.e. wn−1T
k+1
n .

Suppose the assertion holds for N . Then for N + 1 we have:

A = wn−1gn . . . g1t
λ(g1 . . . gl)(g1 . . . gm . . . g1)tµ(g1 . . . gl2 . . . g1)tλ3 . . . tλN+1g1 . . . gn

= wn−1gn . . . g1t
λ(g1 . . . gl)(gm . . . g1 . . . gm)tµ(gl2 . . . g1 . . . gl2)t

λ3 . . . tλN+1g1 . . . gn.

Here we also use the symbol ‘
∑

’ to mean ‘linear combination of words of the
type’, the symbol ‘wn−1’ for not always the same word in Hn, and, in order to
shorten the words, we substitute the expression gl2 . . . g1 . . . gl2t

λ3 . . . tλN+1g1 . . . gn

by S.

We proceed by examining the cases l < m, l > m and l = m.

• For l < m we have:

A = wn−1gn . . . g1t
λgm . . . g2g1 . . . gm(g1 . . . gl)tµ · S =

wn−1(gm−1 . . . g1)gn . . . g1t
λg1 . . . gmg1g2 . . . glt

µ · S m>1=

wn−1(gm−1 . . . g1g1)gn . . . g1t
λg1 . . . gmg2 . . . glt

µ · S =

wn−1(gm−1 . . . g2
1)gn . . . g1t

λg1t
µg2 . . . gmg2 . . . gl · S F.L.=

wn−1gn . . . g2t
µg1t

λg1g2 . . . gmg2 . . . gl · S+
∑

i+j=λ+µ wn−1gn . . . g2t
ig1t

jg2 . . . gmg2 . . . gl · S =

wn−1t
µgn . . . g1t

λg1 . . . gmg2 . . . gl · S+

∑
i+j=λ+µ wn−1t

ign . . . g1g2 . . . gmg2 . . . glt
j · S Lemma 1,(ii), l<m

=

(wn−1t
µg2 . . . gl)gn . . . g1t

λg1 . . . gm · S+
∑

i+j=λ+µ (wn−1t
ig1 . . . gm−1g1 . . . gl−1)gn . . . g1t

j · S =

(wn−1gn . . . g1t
λg1 . . . gm · S +

∑
i+j=λ+µ wn−1gn . . . g1t

j · S
and the number of intermediate powers of t has reduced to N in all summands
of tn

k+1.

• For l > m we have:

A = wn−1gn . . . g1t
λ(g1 . . . gl)gm . . . g1 . . . gmtµ · S m<l, Lemma 1,(ii)

=

(wn−1gm . . . g1 . . . gm)gn . . . g1t
λg1 . . . glt

µ · S =

wn−1gn . . . g1t
λg1t

µg2 . . . gl · S F.L.= wn−1gn . . . g2t
µg1t

λg1 . . . gl · S+
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∑
i+j=λ+µ wn−1gn . . . g2t

ig1t
jg2 . . . gl · S =

wn−1t
µgn . . . g1t

λg1 . . . gl·S+
∑

i+j=λ+µ wn−1t
ign . . . g1(g2 . . . gl)tj ·S Lemma 1,(ii)

=

wn−1gn . . . g1t
λg1 . . . gl · S +

∑
i+j=λ+µ (wn−1t

ig1 . . . gl−1)gn . . . g1t
j · S =

wn−1gn . . . g1t
λg1 . . . gl +

∑
i+j=λ+µ wn−1gn . . . g1t

j

and the number of intermediate powers of t has reduced to N in all summands
of tn

k+1.

• Finally if l = m we have:

A = wn−1gn . . . g1t
λ(g1 . . . gm)gm . . . g1 . . . gmtµ · S Lemma1, (iv)

=

wn−1gn . . . g1t
λg2 . . . gmtµ · S+

∑m−1
r=0 wn−1gn . . . g1t

λ(gm−r . . . g2g1 . . . gm−r)g2 . . . gmtµ · S Lemma1, (ii)
=

(wn−1g1 . . . gm−1)gn . . . g1t
λ+µ · S+

∑m−1
r=0 (wn−1gm−r−1 . . . g1)gn . . . g1t

λg1t
µ(g2 . . . gm−r)g2 . . . gm · S F.L.=

wn−1gn . . . g1t
λ+µ · S +

∑m−1
r=0 wn−1gn . . . g2t

µg1t
λ(g1 . . . gm−r)g2 . . . gm · S+

∑
i+j=λ+µ

∑m−1
r=0 wn−1gn . . . g2t

ig1t
j(g2 . . . gm−r)g2 . . . gm · S =

wn−1gn . . . g1t
λ+µ·S+

∑m−1
r=0 wn−1t

µgn . . . g1t
λ(g1 . . . gm−r)g2 . . . gm−r−1 . . . gm·

S +
∑

i+j=λ+µ

∑m−1
r=0 wn−1t

ign . . . g1(g2 . . . gm−r)g2 . . . gmtj · S Lemma1, (ii)
=

wn−1gn . . . g1t
λ+µ · S+

∑m−1
r=0 (wn−1t

µg2 . . . gm−r−1)gn . . . g1t
λ(g1 . . . gm−r−1g

2
m−rgm−r+1 . . . gm)·S+

∑
i+j=λ+µ

∑m−1
r=0 (wn−1t

ig1 . . . gm−r−1g1 . . . gm−1)gn . . . g1t
j · S =

wn−1gn . . . g1t
λ+µ · S +

∑m−1
r=0 wn−1gn . . . g1t

λ(g1 . . . gm−r−1gm−r+1 . . . gm) ·
S+

∑m−1
r=0 wn−1gn . . . g1t

λ(g1 . . . gm) ·S +
∑

i+j=λ+µ

∑m−1
r=0 wn−1gn . . . g1t

j ·S =

wn−1gn . . . g1t
λ+µ · S +

∑m−1
r=0 wn−1gm−r+1 . . . gmgn . . . g1t

λ(g1 . . . gm−r−1) ·
S+

∑m−1
r=0 wn−1gn . . . g1t

λ(g1 . . . gm) ·S +
∑

i+j=λ+µ

∑m−1
r=0 wn−1gn . . . g1t

j ·S =

wn−1gn . . . g1t
λ+µ · S +

∑m−1
r=0 wn−1gn . . . g1t

λ(g1 . . . gm−r−1) · S+
∑m−1

r=0 wn−1gn . . . g1t
λ(g1 . . . gm) · S +

∑
i+j=λ+µ

∑m−1
r=0 wn−1gn . . . g1t

j · S
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and the number of the intermediate powers of t has reduced to N in all sum-
mands of tn

k+1.

We can now conclude the proof of Theorem 3, since for the different possi-
bilities of a word w ∈ Hn+1 we have:

Case 1. If w = wn−1 or w = wn−1gn . . . gi for i = 0, . . . , n there is nothing to
show.

Case 2. If w = wn−1t
k
n, k ∈ Z respectively Zd, then by Proposition 3, w is a

unique linear combination of words of type 1′), 2′), 3′) and 4′).

Case 3. Finally, if w = wn−1gn . . . gi+1t
k
i , k ∈ Z respectively Zd, by Propo-

sition 3, tki is written in terms of words wi−1, wi−1gi . . . gr for r ≤
i, wi−1gi . . . gr+1T

k
r and wi−1T

k
i . Therefore w can be written uniquely

in terms of the words

wn−1gn . . . gi+1wi−1gi . . . gr for r = 0, . . . , i,

wn−1gn . . . gi+1wi−1gi . . . gr+1T
k
r and

wn−1gn . . . gi+1wi−1T
k
i .

wi−1 commutes with gn . . . gi+1, unless i = 0, where the word is already
arranged in a trivial manner. So the above words reduce to the types
wn−1gn . . . gr or wn−1gn . . . gj+1T

k
j .

Theorem 3 rephrased weaker says that the elements of the inductive basis
contain either gn or T k

n at most once. We can now pass easily to the inductive
basis that we need for constructing Markov traces on

⋃∞
n=1Hn. Indeed we have

the following:

Theorem 4. Every element of Hn+1(q,∞) respectively Hn+1(q, d) can be writ-
ten uniquely as a linear combination of words, each of one of the following types:

1′′) wn−1

2′′) wn−1gngn−1 . . . gi

3′′) wn−1gngn−1 . . . gi+1t
′
i
k
, k ∈ Z respectively Zd

4′′) wn−1t
′
n

k
, k ∈ Z respectively Zd

where wn−1 is some word in H respectively Hn(q, d).

Proof. By Theorem 3 it suffices to show that expressions of the forms 3′) and 4′)
can be written (uniquely) in terms of 1′′), 2′′), 3′′) and 4′′). Indeed, for k ∈ Z,
let
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w = wn−1gngn−1 . . . gi+1T
k
i = wn−1gngn−1 . . . gi+1gi . . . g1t

kg1 . . . gi.

We apply the relation gr = q · g−1
r + (q− 1) · 1 to all letters of the word g1 . . . gi

to get:

w = wn−1gn . . . gi+1gi . . . g1t
kg−1

1 . . . g−1
i +

∑
wn−1gn . . . g1t

kg−1
j1

. . . g−1
jk

,

where in the words g−1
j1

. . . g−1
jk

there are possible gaps of indices. Let the closest
to tk gap occur at the index ρ; then

w = wn−1gn . . . gi+1t
′
i
k +

∑
wn−1gn . . . g1t

kg−1
1 . . . g−1

ρ−1g
−1
ρ+1 . . . g−1

jk
=

wn−1gn . . . gi+1t
′
i
k +

∑
(wn−1g

−1
ρ . . . g−1

jk−1)gn . . . g1t
kg−1

1 . . . g−1
ρ−1 =

wn−1gn . . . gi+1t
′
i
k +

∑
wn−1gn . . . gρt

′
ρ−1

k
.

Hence w is a sum of words of type 3′′. In the case where w = wn−1T
k
n , k ∈ Z,

we apply the same reasoning as above.

Theorem 4 rephrased weaker says that the elements of the inductive basis
contain either gn or t′n

k at most once. Notice also that if we were working on
the level of the Iwahori–Hecke algebra Hn(q, Q), we would omit Theorem 3.

Remark 2. All three inductive bases of Hn+1(q,∞) respectively Hn+1(q, d)
given in Theorems 2, 3 and 4 induce the same complete set of right coset rep-
resentatives, Sn+1, of Wn,∞ respectively Wn,d in Wn+1,∞ respectively Wn+1,d,
namely:

Sn+1 := {snsn−1 . . . si | i = 1, . . . , n}⋃

{snsn−1 . . . s1t
ks1 . . . si | i = 1, . . . , n− 1, k ∈ Z respectively k ∈ Zd, k 6= 0}⋃

{tnk | k ∈ Z respectively k ∈ Zd}.

We now give the final result of this section, namely, a basic set of Hn+1

which is a proper subset of Σ1.

Theorem 5. The set

Σ = {t′i1
k1t′i2

k2 . . . t′ir

kr · σ}

for 1 ≤ i1 < i2 < . . . < ir ≤ n, k1, . . . , kr ∈ Z respectively Zd and σ ∈ Hn+1(q)
forms a basis in Hn+1(q,∞) respectively Hn+1(q, d).

Proof. By Theorem 4 it suffices to show that words in the inductive basis 1′′),
2′′), 3′′) and 4′′) can be written in terms of elements of Σ. Indeed, by induction
on n we have: if n = 0 the only non-empty words are powers of t, which are
of type 4′′) and which are elements of Σ trivially. Assume the result holds for
n− 1. Then for n we have:



Knot theory and B-type Hecke algebras 22

Case 1. If w = wn−1 there is nothing to show (by induction).

Case 2. If w = wn−1gn . . . gi, then, by induction wn−1 = t′i1
k1 . . . t′ir

kr · σ, a word
of Σ restricted on Hn. Thus w = t′i1

k1 . . . t′ir

kr · σ · gn . . . gi ∈ Σ, since
σ · gn . . . gi is an element of the canonical basis of Hn+1(q).

Case 3. If w = wn−1gn . . . gi+1t
′
i
k, then, by induction step wn−1 = t′i1

k1 . . . t′ir

kr ·σ,
a word of Σ restricted on Hn, so

w = t′i1
k1 . . . t′ir

kr · σ · gn . . . gi+1t
′
i
k Lemma1, (vi)

=

t′i1
k1 . . . t′ir

kr · σ · t′nk
gn . . . gi+1

Lemma1, (vi)
=

t′i1
k1 . . . t′ir

kr t′n
k · σ · gn . . . gi.

Now σ · gn . . . gi is a basic element of Hn+1(q), thus w ∈ Σ.

Case 4. Finally, if w = wn−1t
′
n

k, by induction step we have wn−1 = t′i1
k1 . . . t′ir

kr ·
σ, a word of Σ restricted on Hn. Then

w = t′i1
k1 . . . t′ir

kr · σ · t′nk Lemma1, (vi)
= t′i1

k1 . . . t′ir

kr t′n
k · σ ∈ Σ.

4 Construction of Markov traces

The aim of this section is to construct Markov linear traces on the generalized
and on each level of the cyclotomic Iwahori-Hecke algebras of B-type. As these
algebras are quotients of the braid groups, the constructed traces will actually
attach to each braid a Laurent polynomial. The traces as well as the strategy of
their construction are based on and include as special case the one constructed
on the classical B-type Hecke algebras in [12], [13] (Theorem 5), which in turn
was based on Ocneanu’s trace on Hecke algebras of A-type, cf. [11] (Theorem
5.1). In the next section we combine these results with the Markov braid equiv-
alence for knots in a solid torus, so as to obtain analogues of the homfly-pt
polynomial for the solid torus.

Let R = Z [q±1, u±1
1 , . . . , u±1

d , . . .] and let Hn denote either Hn(q,∞) or
Hn(q, d). Note that the natural inclusion of the group B1,n into B1,n+1 (geo-
metrically, by adding one more strand at the end of the braid) induces a natural
inclusion of Hn into Hn+1. Therefore it makes sense to consider B :=

⋃∞
n=1 B1,n

and H :=
⋃∞

n=1Hn. Then we have the following result:

Theorem 6. Given z, sk, specified elements in R with k ∈ Z respectively Zd

and k 6= 0, there exists a unique linear trace function
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tr : H :=
∞⋃

n=1

Hn −→ R(z, sk), k ∈ Z respectively Zd

determined by the rules:

1) tr(ab) = tr(ba) a, b ∈ Hn

2) tr(1) = 1 for all Hn

3) tr(agn) = z tr(a) a ∈ Hn

4) tr(at′n
k) = sk tr(a) a ∈ Hn, k ∈ Z respectively Zd

Proof. The idea of the proof of Theorem 6 is to construct tr on
⋃∞

n=1Hn in-
ductively using Theorem 4 and the two last rules of the statement above. For
this we need the following lemma. In order to avoid confusion with the indices
we introduce here the symbol ‘Z’ to mean ‘Z’ or ‘Zd’ respectively.

Lemma 6. The map

cn : (Hn

⊗
Hn−1

Hn)
⊕

k∈Z Hn −→ Hn+1

given by cn(a⊗ b⊕k ek) := agnb +
∑

k∈Z ekt′n
k

is an isomorphism of (Hn,Hn)-bimodules.

Proof. It follows from Theorem 4 that the set Ln below provides a basis of Hn

as a free Hn−1-module (compare with Remark 2 for Wn+1):

Ln := {gn−1gn−2 . . . gi | i = 1, . . . , n− 1}⋃{t′n−1
k | k ∈ Z}⋃

{gn−1gn−2 . . . g1t
kg1

1 . . . gi
1 | i = 1, . . . , n− 2, k ∈ Z, k 6= 0}.

Then we have: Hn =
⊕

b∈Ln
Hn−1 · b,

and using the universal property of tensor product we obtain:

Hn

⊗
Hn−1

Hn = Hn

⊗
Hn−1

(
⊕

b∈Ln
Hn−1 · b)

=
⊕

b∈Ln
(Hn

⊗
Hn−1

Hn−1 · b)
=

⊕
b∈Ln

Hn · b.
Therefore:

Hn

⊗
Hn−1

Hn

⊕
k∈Z Hn =

⊕
b∈Ln

Hn · b
⊕

k∈Z Hn.

Applying now the same reasoning as above, the set Ln+1 below provides a basis
of Hn+1 as a free Hn-module:

Ln+1 := {gngn−1 . . . gi | i = 1, . . . , n}⋃{t′nk | k ∈ Z}⋃

{gngn−1 . . . g1t
kg1

−1 . . . gi
−1 | i = 1, . . . , n− 1, k ∈ Z, k 6= 0}.
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The latter isomorphism then proves that cn is indeed an isomorphism of (Hn,Hn)-
bimodules, since it corresponds bijectively basic elements to elements of the set
Ln+1.

We can now define inductively a trace, tr, on H =
⋃∞

n=1Hn as follows:
assume tr is defined on Hn and let x ∈ Hn+1 be an arbitrary element. By
Lemma 6 there exist a, b, ek ∈ Hn, k ∈ Z, such that

x := cn(a⊗ b⊕k ek).

Define now:

tr(x) := z · tr(ab) + tr(e0) +
∑

k∈Z

sk · tr(ek).

Then tr is well-defined. Furthermore, it satisfies the rules 2), 3) and 4) of
the statement of Theorem 6. Rule 3) reflects the Markov property (recall the
discussion in Introduction), and therefore, if the function tr is a trace then it is
in particular a Markov trace. In fact one can check easily using induction and
linearity, that tr satisfies the following seemingly stronger condition:

(3′) tr(agnb) = z tr(ab), for any a, b ∈ Hn.

In order to prove the existence of tr, it remain to prove the conjugation
property, i.e. that tr is indeed a trace. We show this by examining case by
case the different possibilities. Before continuing with the proof, we note that
having proved the existence, the uniqueness of tr follows immediately, since for
any x ∈ Hn+1, tr(x) can be clearly computed inductively using rules 1), 2), 3),
4) and linearity.

We now proceed with checking that tr(ax) = tr(xa) for all a, x ∈ H. Since tr
is defined inductively the assumption holds for all a, x ∈ Hn, and we shall show
that tr(ax) = tr(xa) for a, x ∈ Hn+1. For this it suffices to consider a ∈ Hn+1

arbitrary and x one of the generators of Hn+1. I.e. it suffices to show:

tr(agi) = tr(gia) a ∈ Hn+1, i = 1, . . . , n

tr(at) = tr(ta) a ∈ Hn+1.

By Theorem 4, a is of one of the following types:

i) a = wn−1

ii) a = wn−1gngn−1 . . . gi

iii) a = wn−1gngn−1 . . . gi+1t
′
i
k
, k ∈ Z respectively Zd

iv) a = wn−1t
′
n

k
, k ∈ Z respectively Zd, where wn−1 is some word in Hn.
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If a = wn−1 and x = t or x = gi for i = 1, . . . , n− 1 the assumption holds from
the induction step, whilst for x = gn it follows from (3′) that tr(wn−1gn) =
z tr(a) = tr(gnwn−1).

If a is of type ii) or of type iii) and x = t or x = gi for i = 1, . . . , n− 1 we apply
the same reasoning as above using rule (3′). So we have to check still the cases
where a = wn−1gngn−1 . . . gi or a = wn−1gngn−1 . . . gi+1t

′
i
k and x = gn, i.e.

tr(wn−1gn . . . gign) = tr(gnwn−1gn . . . gi)

tr(wn−1gn . . . gi+1t
′
i
k
gn) = tr(gnwn−1gn . . . gi+1t

′
i
k)

(∗)

If a is of type iv) and x = t or x = gi for i = 1, . . . , n− 1 we have to check:

tr(wn−1t
′
n

k
t) = tr(twn−1t

′
n

k)

tr(wn−1t
′
n

k
gi) = tr(giwn−1t

′
n

k)
(∗∗)

Finally, if a is of type iv) and x = gn we have to check:

tr(wn−1t
′
n

k
gn) = tr(gnwn−1t

′
n

k) (∗ ∗ ∗)
Before checking (∗), (∗∗) and (∗ ∗ ∗) we need the following:

Lemma 7. The function tr satisfies the following stronger version of rule 4):

(4′) tr(xt′n
k
y) = sk tr(xy),

for any x, y ∈ Hn, k ∈ Z respectively Zd.

Proof. It suffices to prove (4′) for the case that y is of the form y = y1t
λy2,

where y1is a product of the gi’s for i = 1, . . . , n− 1, λ ∈ Z respectively Zd and
y2 an arbitrary word in Hn. Indeed we have:

tr(xt′n
k
y) = tr(xt′n

k
y1t

λy2)
Lemma1,(vi)

= tr(xy1t
′
n

k
tλy2)

= tr(xy1gn . . . g1t
kg1

−1g2
−1 . . . gn

−1tλy2)
Lemma1,(vi)

=

= tr(xy1gn . . . g1t
kg1

−1tλg2
−1 . . . gn

−1) = A

The latter underlined expression says that we have to consider four possibilities
depending on k, λ being positive or negative. We show here the case where both
k, λ are positive. The rest are proved completely analogously. For k, λ positive,
Lemma 5,(i) says:

g1t
kg1

−1tλ = tλg1t
kg1

−1 + (q−1 − 1) [tλ−1g1t
k+1 + · · ·+ g1t

k+λ]

+ (1− q−1) [tkg1t
λ + · · ·+ tk+λ−1g1t].
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We substitute then in A to obtain:

A = tr(xy1gn . . . g2t
λg1t

kg1
−1 . . . gn

−1y2)

+(q−1 − 1) [tr(xy1gn . . . g2t
λ−1g1t

k+1g2
−1 . . . gn

−1y2) + · · ·
+tr(xy1gn . . . g1t

k+λg2
−1 . . . gn

−1y2)]

+(1− q−1) [tr(xy1gn . . . g2t
kg1t

λg2
−1 . . . gn

−1y2) + · · ·

+tr(xy1gn . . . g2t
k+λ−1g1tg2

−1 . . . gn
−1y2)]

Lemma 1,(vi)
=

= tr(xy1t
λt′n

k
y2)

+(q−1 − 1) [tr(xy1t
λ−1gn . . . g1g2

−1 . . . gn
−1tk+1y2) + · · ·

+tr(xy1gn . . . g1g2
−1 . . . gn

−1tk+λy2)]

+(1− q−1) [tr(xy1t
kgn . . . g1g2

−1 . . . gn
−1tλy2) + · · ·

+tr(xy1t
k+λ−1gn . . . g1g2

−1 . . . gn
−1ty2)]

Lemma 1,(iii)
=

= tr(xy1t
λt′n

k
y2)

+(q−1 − 1) [tr(xy1t
λ−1g1

−1 . . . gn−1
−1gn . . . g1t

k+1y2) + · · ·
+tr(xy1g1

−1 . . . gn−1
−1gn . . . g1t

k+λy2)]

+(1− q−1) [tr(xy1t
kg1

−1 . . . gn−1
−1gn . . . g1t

λy2) + · · ·

+tr(xy1t
k+λ−1g1

−1 . . . gn−1
−1gn . . . g1ty2)]

(3′)
=

= tr(xy1t
λt′n

k
y2) + (q−1 − 1)z [tr(xy1t

λ+ky2) + (1− q−1)z [tr(xy1t
k+λy2)

= tr(xy1t
λt′n

k
y2).

The relations (∗∗) follow now immediately from Lemma 7, since:

tr(wn−1t
′
n

k
gi)

(4′)
= sk tr(wn−1gi)

induction step
= sk tr(giwn−1) = tr(giwn−1t

′
n

k),

for all i < n, and similarly for x = t.

We next show (∗) for a = wn−1gn . . . gi. The case a = wn−1gn . . . gi+1t
′
i
k is

shown similarly. On the one hand we have:

tr(wn−1gngn−1. . . gign) = tr(wn−1gngn−1gngn−2 . . . gi)

= tr(wn−1gn−1gngn−1gn−2 . . . gi)
(3′)
= z tr(wn−1gn−1

2gn−2 . . . gi)

= (q − 1)z tr(wn−1gn−1 . . . gi) + qz tr(wn−1gn−2 . . . gi).
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On the other hand in order to calculate tr(gnwn−1gn . . . gi) we examine the
different possibilities for wn−1:

– If wn−1 ∈ Hn−1, then tr(gnwn−1gn . . . gi) = tr(wn−1gn
2gn−1 . . . gi)

= (q − 1)z tr(wn−1gn−1 . . . gi) + qz tr(wn−1gn−2 . . . gi).

– If wn−1 = bgn−1c, where b, c ∈ Hn−1, then tr(gnbgn−1cgngn−1 . . . gi)

= tr(bgn−1gngn−1cgn−1 . . . gi)
(3′)
= z tr(bgn−1

2cgn−1 . . . gi)

= (q − 1)z tr(bgn−1cgn−1 . . . gi) + qz tr(bcgn−1 . . . gi)

= (q − 1)z tr(bgn−1cgn−1 . . . gi) + qz2 tr(bcgn−2 . . . gi)

= (q − 1)z tr(bgn−1cgn−1 . . . gi) + qz tr(bgn−1cgn−2 . . . gi)

= (q − 1)z tr(wn−1gn−1 . . . gi) + qz tr(wn−1gn−2 . . . gi).

– Finally, if wn−1 = bt′n−1
k, where b,∈ Hn−1, then

tr(gnbt′n−1
k
gn . . . gi) = tr(bgnt′n−1

k
gn . . . gi)

= q tr(bt′n
k
gn−1 . . . gi) + (q − 1) tr(bgnt′n−1

k
gn−1 . . . gi)

(4′),(3′)
=

= qz tr(bt′n−1
k
gn−2 . . . gi) + (q − 1)z tr(bt′n−1

k
gn−1 . . . gi)

= qz tr(wn−1gn−2 . . . gi) + (q − 1)z tr(wn−1gn−1 . . . gi).

Note 2. The relations (∗) imply that tr(xgnygn) = tr(gnxgny) for any x, y ∈
Hn.

It remains now to show (∗ ∗ ∗). On the one hand we have:

tr(wn−1t
′
n

k
gn)

Lemma 1,(vi)
= tr(wn−1gnt′n−1

k)
(3′)
= z tr(wn−1t

′
n−1

k).

On the other hand in order to calculate tr(gnwn−1t
′
n

k) we examine the different
possibilities for wn−1:

– If wn−1 ∈ Hn−1, then tr(gnwn−1t
′
n

k) = tr(wn−1gn
2t′n−1

k
gn
−1)

= (q − 1) tr(wn−1t
′
n

k) + q tr(wn−1t
′
n−1

k
gn
−1) = (q − 1) tr(wn−1t

′
n−1

k)

+z tr(wn−1t
′
n−1

k) + (1− q) tr(wn−1t
′
n−1

k) = z tr(wn−1t
′
n−1

k).

– If wn−1 = agn−1b, where a, b ∈ Hn−1, then

tr(gnagn−1bt
′
n

k) = tr(agngn−1gnbt′n−1
k
gn
−1

= q−1 tr(agn−1gngn−1bt
′
n−1

k
gn) + (q−1 − 1) tr(agn−1gngn−1bt

′
n−1

k) =

(applying Note 2 for x = agn−1 and y = gn−1bt
′
n−1

k)
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= q−1 tr(gnagn−1gngn−1bt
′
n−1

k) + (q−1 − 1)z tr(agn−1
2bt′n−1

k)

= q−1 tr(agn−1gngn−1
2bt′n−1

k) + (q−1 − 1)z tr(agn−1
2bt′n−1

k)

= q−1z(q2 − q + 1) tr(agn−1bt
′
n−1

k) + q−1zq(q − 1) tr(abt′n−1
k)

+(q−1−1)z(q−1) tr(agn−1bt
′
n−1

k)+(q−1−1)zq tr(abt′n−1
k) = z tr(wn−1t

′
n−1

k).

Before proving the last case we need to deform the expression t′n−1
l
t′n

k. Indeed
we have:

t′n−1
l
t′n

k = gn−1 . . . g1t
lg1

−1 . . . gn−1
−1gn . . . g1t

kg1
−1 . . . gn

−1

= gn−1 . . . g1t
lgn . . . g2g1g2

−1 . . . gn
−1tkg1

−1 . . . gn
−1

= (gn−1gn) . . . (g1g2)tlg1t
k(g2

−1g1
−1) . . . (gn

−1gn−1
−1)gn

−1

= (gn−1gn) . . . (g1g2)tlg1t
kg1

−1(g2
−1g1

−1) . . . (gn
−1gn−1

−1)

= q−1 (gn−1gn) . . . (g1g2)tlg1t
kg1(g2

−1g1
−1) . . . (gn

−1gn−1
−1)

+(q−1−1) (gn−1gn) . . . (g1g2)tlg1t
kg1(g2

−1g1
−1) . . . (gn

−1gn−1
−1)

Lemma 5,(i)
=

= q−1 (gn−1gn) . . . (g1g2)g1t
kg1t

l(g2
−1g1

−1) . . . (gn
−1gn−1

−1)

+(1− q−1) [(gn−1gn) . . . (g1g2)tg1t
k+l−1(g2

−1g1
−1) . . . (gn

−1gn−1
−1) + · · ·

+(gn−1gn) . . . (g1g2)tlg1t
k(g2

−1g1
−1) . . . (gn

−1gn−1
−1)]

+(q−1 − 1) [(gn−1gn) . . . (g1g2)tkg1t
l(g2

−1g1
−1) . . . (gn

−1gn−1
−1) + · · ·

+(gn−1gn) . . . (g1g2)tk+l−1g1t(g2
−1g1

−1) . . . (gn
−1gn−1

−1)]

+(q−1 − 1) (gn−1gn) . . . (g1g2)tlg1t
k(g2

−1g1
−1) . . . (gn

−1gn−1
−1)

= q−1 gngn−1 . . . g1t
kgn . . . g1g2

−1 . . . gn
−1tlg1

−1 . . . gn−1
−1

+(1− q−1) [gn−1 . . . g1tgn . . . g1g2
−1 . . . gn

−1tk+l−1g1
−1 . . . gn−1

−1 + · · ·
+gn−1 . . . g1t

lgn . . . g1g2
−1 . . . gn

−1tkg1
−1 . . . gn−1

−1]

+(q−1 − 1) [gn−1 . . . g1t
kgn . . . g1g2

−1 . . . gn
−1tlg1

−1 . . . gn−1
−1 + · · ·

+gn−1 . . . g1t
k+l−1gn . . . g1g2

−1 . . . gn
−1tg1

−1 . . . gn−1
−1]

+(q−1 − 1) gn−1 . . . g1t
lgn . . . g1g2

−1 . . . gn
−1tkg1

−1 . . . gn−1
−1

= q−1 gn . . . g1t
kg1

−1 . . . gn−1
−1lgn . . . g1t

lg1
−1 . . . gn−1

−1

+(1− q−1) [gn−1 . . . g1tg1
−1 . . . gn−1

−1gn . . . g1t
k+l−1g1

−1 . . . gn−1
−1 + · · ·

+gn−1 . . . g1t
l−1g1

−1 . . . gn−1
−1gn . . . g1t

k+1g1
−1 . . . gn−1

−1]
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+(q−1 − 1) [gn−1 . . . g1t
kg1

−1 . . . gn−1
−1gn . . . g1t

lg1
−1 . . . gn−1

−1 + · · ·
+gn−1 . . . g1t

k+l−1g1
−1 . . . gn−1

−1gn . . . g1tg1
−1 . . . gn−1

−1]

= gn . . . g1t
kg1

−1 . . . g−1
n gn−1 . . . g1t

lg1
−1 . . . gn−1

−1

+(1− q−1) gn . . . g1t
k+lg1

−1 . . . gn−1
−1

+(1− q−1) [gn−1 . . . g1tg1
−1 . . . gn−1

−1gn . . . g1t
k+l−1g1

−1 . . . gn−1
−1 + · · ·

+gn−1 . . . g1t
l−1g1

−1 . . . gn−1
−1gn . . . g1t

k+1g1
−1 . . . gn−1

−1]

+(q−1 − 1) [gn−1 . . . g1t
kg1

−1 . . . gn−1
−1gn . . . g1t

lg1
−1 . . . gn−1

−1 + · · ·
+gn−1 . . . g1t

k+l−1g1
−1 . . . gn−1

−1gn . . . g1tg1
−1 . . . gn−1

−1].

Notice that with applying the other cases of Lemma 5 we obtain analogous
results.

– If, finally, wn−1 = bt′n−1
l, where b ∈ Hn−1, we have: tr(gnbt′n−1

l
t′n

k)

= tr(bgn
2gn−1 . . . g1t

kg1
−1 . . . g−1

n gn−1 . . . g1t
lg1

−1 . . . gn−1
−1)

+(1− q−1) tr(bgn
2gn−1 . . . g1t

k+lg1
−1 . . . gn−1

−1)

+(1− q−1) [tr(bgngn−1 . . . g1tg1
−1 . . . gn−1

−1gn . . . g1t
k+l−1g1

−1 . . . gn−1
−1)

+ · · ·+ tr(bgngn−1 . . . g1t
l−1g1

−1 . . . gn−1
−1gn . . . g1t

k+1g1
−1 . . . gn−1

−1)]

+(q−1−1) [tr(bgngn−1 . . . g1t
kg1

−1 . . . gn−1
−1gn . . . g1t

lg1
−1 . . . gn−1

−1)+· · ·
+tr(gn−1 . . . g1t

k+l−1g1
−1 . . . gn−1

−1gn . . . g1tg1
−1 . . . gn−1

−1)]

= (q−1) tr(bt′n
k
t′n−1

l)+q tr(bt′n−1
k
gn
−1t′n−1

l)+(1−q−1)[(q−1)z+q] tr(bt′n−1
k+l)

+(1− q−1) [q tr(bt′nt′n−1
k+l−1) + (q − 1)z tr(bt′n−1

k+l) + · · ·

+q tr(bt′n
l−1

t′n−1
k+1) + (q − 1)z tr(bt′n−1

k+l)]

+(q−1 − 1) [q tr(bt′n
k
t′n−1

l) + (q − 1)z tr(bt′n−1
k+l) + · · ·

+q tr(bt′n
k+l−1

t′n−1) + (q − 1)z tr(bt′n−1
k+l)]

= (q − 1)sksl tr(b) + q[q−1z + (q−1 − 1)] tr(bt′n−1
k+l)+

[(q + q−1 − 2)z + (q − 1)] tr(bt′n−1
k+l) + (q−1 − 1)(q − 1)z tr(t′n−1

k+l)tr(b)

+(q − 1)s1 tr(t′n−1
k+l−1)tr(b) + · · ·+ (q − 1)sl−1 tr(t′n−1

k+1)tr(b)

+(1− q) tr(t′n
k)sl tr(b) + · · ·+ (1− q) tr(t′n

k+l−1)s1 tr(b).

And since tr(t′n
i) = tr(t′n−1

i) in all algebras Hn, we conclude that



Knot theory and B-type Hecke algebras 30

tr(gnbt′n−1
l
t′n

k) = z tr(bt′n−1
k+l) = z tr(bt′n−1

l
t′n−1

k) = z tr(wn−1t
′
n−1

k).

The proof of Theorem 6 is now concluded.

As already mentioned in the Introduction, we can define tr with so few rules,
because the elements tk, . . . , t′i

k in rule 4) are all conjugate, and this reflects the
fact that B1,n splits as a semi-direct product of the classical braid group Bn

and of its free subgroup P1,n generated precisely by the elements t, t′1, . . . , t
′
n−1:

B1,n = P1,n o Bn.

Note that if k ∈ Z2 we are in the case of the classical Iwahori-Hecke algebras
of type B, and from the above construction we recover the trace given in [12, 13].
Moreover, if a word x ∈ Hn does not contain any t’s (that is, if x is an element
of the Iwahori-Hecke algebra of type An), then tr(x) can be computed using
only rules 1), 2), and 3) of Theorem 6, and in this case tr agrees with Ocneanu’s
trace (cf. [11]).

Remark 3. A word seen as an element of different B-type Hecke algebras
will aquire in principle different values for the different traces. This difference
consists in substituting – if necessary – the parameters si according to the
defining relation (♠) of Hn(q, d) : td = ad−1t

d−1 + · · ·+ a0. So, in Hn(q, d) we
have: tr(t′n

k) = sk for k ∈ Zd and tr(t′n
d) = ad−1sd−1 + · · ·+ a0.

For example in Hn(q,∞) and in Hn(q, d) for d > 5 we have tr(t5) = s5.

In Hn(q, 5) is tr(t5) = a4s4 + · · ·+ a0, whilst in Hn(q, 3) is

tr(t5) = (a2
3 + 2a1a2 + a0)s2 + (a1

2 + a1a2
2 + a0a2)s1 + (a0a1 + a0a2

2).

In order to calculate the trace of a word in Hn we bring it to the canonical form
of Theorem 5 applying at the same time the rules of the trace. As an example
we calculate below tr(g2g1t

3g−1
1 g3g2g3). We have:

tr(g2g1t
3g−1

1 g3g2g3) = tr(g2g1t
3g−1

1 g2g3g2) = z tr(g2g1t
3g−1

1 g2
2)

= z(q − 1) tr(g2g1t
3g−1

1 g2) + zq tr(g2g1t
3g−1

1 )

= z(q − 1)q tr(t′2
3) + z(q − 1)2 tr(g2g1t

3g−1
1 ) + zq tr(g2g1t

3g−1
1 )

= q(q − 1)z tr(t′2
3) + z2(q2 − q + 1) tr(t′1

3).

5 Invariants of knots in the solid torus

The aim of this section is to construct all analogues of the 2-variable Jones
polynomial homfly-pt) for oriented knots in the solid torus derived from the
cyclotomic and generalized Hecke algebras of type B, using their Markov equiv-
alence and the Markov traces constructed in Theorem 6. All knots/links will be
assumed to be oriented, and we shall say ‘knots’ for both knots and links.
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Figure 4:

As mentioned in the Introduction the elements of the braid groups B1,n,
which we call ‘mixed braids’, are represented geometrically by braids in n +
1 strands in S3, which keep the first strand fixed. The closure of a mixed
braid represents a knot inside the oriented solid torus, ST , where the fixed
strand represents the complementary solid torus in S3, and the next n numbered
strands represent the knot in ST . Below we illustrate a mixed braid in B1,5 and
a knot in ST .
Moreover, it has been well-understood that all knots in ST may be represented
by mixed braids, and their isotopy in ST is reflected by equivalence classes of
braids in

⋃∞
n=1 B1,n through the following:

Theorem 7. (cf. [13], Theorem 3.)
Let L1, L2 be two oriented links in ST and β1, β2 be mixed braids in

⋃∞
n=1 B1,n

corresponding to L1, L2. Then L1 is isotopic to L2 in ST if and only if β1 is
equivalent to β2 in

⋃∞
n=1 B1,n under equivalence generated by the braid relations

together with the following two moves:

(i) Conjugation: If α, β ∈ B1,n then α ∼ β−1αβ.

(ii) Markov moves: If α ∈ B1,n then α ∼ ασn
±1 ∈ B1,n+1.

Let now π denote the canonical quotient map B1,n −→ Hn given in Defini-
tion 1, and consider the trace constructed in Theorem 6 for a specified algebra
Hn. Then a braid in B1,n can be mapped through tr ◦π to an expression in the
variables q, u±1

1 , . . . , u±1
d , . . . , z, (sk), k ∈ Z respectively Zd. Let also α̂ denote

the knot obtained by closing the mixed braid α. Theorem 7 combined with The-
orem 6 say that in order to obtain a knot invariant X in ST from any specified
trace of Theorem 6 we have to normalize first gi to

√
λgi so that

tr(a(
√

λgn)) = tr(a((
√

λgn)
−1

)) for a ∈ Hn.

This normalization has been done in [13], (5.1), where Jones’s normalization of
Ocneanu’s trace (cf. [11]) was followed, and it yields

λ :=
z + 1− q

qz
, z :=

1− q

qλ− 1
.

Then we have to normalize tr so that
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X (α̂) = X (α̂σn) = X (α̂σ−1
n ).

Let finally A be the field of rational functions over Q in indeterminates
√

λ,
√

q,
ad−1, . . . , a0, . . . , (sk), k ∈ Z respectively Zd. (The reason for having square root
of q becomes clear in the recursive formula † below.) Then the normalizations
result the following

Definition 3. (cf. [13], Definition 1.) For α, tr, π as above let

Xbα = Xbα(q, ad−1, . . . , a0,
√

λ, s1, s2, . . .) :=
[
− 1− λq√

λ(1− q)

]n−1

(
√

λ)e tr(π(α)),

where e is the exponent sum of the σi’s that appear in α. (Note that the t′i’s do
not affect the estimation of e, so they can be ignored.) Then Xα̂ depends only
on the isotopy class of the mixed knot α̂, which represents an oriented knot in
ST . (For example, in Hn(q, d) and for k ∈ Zd we have: α = tk, then Xα̂ = sk.)

Note that if a knot in ST can be enclosed in a 3-ball then it may be seen as
a knot in S3 and there exists a mixed braid representative, α, which does not
contain t′i’s. Then Xα̂ has the same value as the 2-variable Jones polynomial
(homfly-pt) as given in [11], Definition 6.1. On the lower level of Hn(q,Q) X
yields the invariants constructed in [13], Section 5 and [8], Section 5.

Remark 4. Note furthermore that one could also define Hn(q, d) as a quotient
of B1,n by sending the generator t of B1,n to t−1 of Hn(q, d). Then the traces
and the knot invariants in ST constructed above exhaust the whole range of
such constructions related to all possible Hecke and Hecke-related algebras of
type B.

On recursive formulae: We shall now show how to interpret the above in
terms of knot diagrams, and how to calculate alternatively the above knot in-
variants in ST by applying recursive skein relations and initial conditions on
the mixed link diagrams. Let L+, L−, L0 be oriented mixed link diagrams that
are identical, except in one crossing, where they are as depicted below:
With analogous reasoning as in [13], (5.2) (cf. also [11]) the defining quadratic
relation of Hn induces the invariant X to satisfy the following recursive linear
formula, which is the well-known skein rule used for the evaluation of the homfly-
pt polynomial.
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1
√

q
√

λ
XL+ −

√
q
√

λXL− = (
√

q − 1√
q
)XL0 †

In the case of Hn(q,∞) there is no other skein relation that X satisfies.
In the case of Hn(q, d), let Md,Md−1, . . . ,M0 be oriented mixed link diagrams
that are identical, except in the regions depicted below:

Using conjugation we may assume that Md = α̂ t′i
d,Md−1 = α̂ t′i

d−1, . . . ,M0 = α̂
for some α ∈ B1,n. And so by Lemma 1, (viii) we obtain:

tr(π(α t′i
d)) = ad−1 tr(π(α t′i

d−1)) + · · ·+ a0 tr(π(α)),

If we multiply now the above equation by

[
− 1− λq√

λ(1− q)

]n−1

(
√

λ)
e

we obtain the following skein relation for X :

Xdαt′i
d = ad−1 X

α̂t′i
d−1 + · · ·+ a0 XM0 ‡

(compare with Remark 3). We next find the initial conditions that are also
needed for evaluating X for any knot diagram in ST using the skein relations †
and ‡. Clearly

Xunknot = 1

should be one of them. Recall now the canonical basis ofHn+1 given in Theorem
5. With appropriate changes of crossings (using the quadratic relations for the
gi’s) this basis yields a canonical enumeration of descending diagrams related
to B1,n+1. Let now α be such a descending diagram. Applying tr on α means
geometrically that we close the braid α and we apply the Markov moves. Using
Rule (4) we extract and re-insert tr(t′i

k) so as to obtain:

Xbα = X ̂t′i1
k1 t′i2

k2 ...t′ir
kr

.

This provides the second set of initial conditions, namely the values of X at
all links consisting of stucks of loops of different twists with same orientation
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, ,

Figure 7:

around the ‘axis’ solid torus. If X is derived by the cyclotomic Hecke algebra
Hn(q, d) the number of twists of each loop cannot exceed d− 1. In the case of
Hn(q,∞) the number of twists is arbitrary. We illustrate below an example of
a descending diagram with the starting point at the top of the last strand, the
basic link t4t1t2

−1 and the projection of t3 on a punctured disc.
We conclude with some remarks.

Remarks (i) On the level of Hn(q,∞),X is defined by all initial conditions
(with unrestricted number of twists) and only by the first skein rule. Therefore

the set of mixed links of the form ̂
t′i1

k1t′i2
k2 . . . t′ir

kr , for k1, . . . , kr ∈ Z forms the
basis of the 3rd skein module of the solid torus. Thus the result of J.Hoste and
M.Kidwell in [10], and of V.Turaev in [16] is recovered with this method. If X is
derived by the cyclotomic Hecke algebras Hn(q, d) the set of mixed links of the

form ̂
t′i1

k1t′i2
k2 . . . t′ir

kr , for k1, . . . , kr ∈ Zd forms the basis of the corresponding
submodule of the 3rd skein module of ST . In [15] the algebra Hn(q,∞) has been
studied independently and the corresponding ST -invariant has been constructed
using similar methods.

(ii) If on the level of Hn(q,∞) we use the skein rule

1
t
YL+ − tYL− = (

√
t− 1√

t
)YL0

instead of †, and the initial conditions Yunknot = 1 and Ybt = s we obtain an
analogue of the Jones polynomial for oriented knots in the oriented ST . If ST
is unoriented we have to allow an extra isotopy move for knots in ST , namely
to flip over the diagram around the x-axis, where the knot diagram is projected
on a punctured disc. The invariant Y is preserved under the flipping over move,
so Y is the analogue of the Jones polynomial in the orientable ST . For details
and for the Kauffman bracket approach of this invariant see [9].

(iii) The invariant X related to Hn(q,∞) is the appropriate one for extending
the results to the lens spaces L(p, 1). The combinatorial setup is similar to the
one for ST , only the Markov braid equivalence includes one more move, which
reflects the surgery description of L(p, 1). So, in order to construct a homfly-pt
analogue for knots in L(p, 1) or, equivalently, in order to compute for L(p, 1)
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the 3rd skein module and its quotients we have to normalize the ST -invariants
further so that

Xbα = Xsl(bα), for α ∈ B1,n,

for all possible slidings of α. This is the subject of [S. Lambropoulou, J. Przyty-
cki, Hecke algebra approach to the skein module of lens spaces, in preparation].

(iv) Analogous combinatorial setup, Markov braid equivalence and braid struc-
tures in arbitrary c.c.o. 3-manifolds and knot complements has already been
done in [14],[S. Lambropoulou, Braid structures in 3-manifolds, to appear in
JKTR]. Therefore it is possible in principle to extend such algebraic construc-
tions to other 3-manifolds, by means of constructing appropriate quotient alge-
bras and Markov traces on them, followed by appropriate normalizing, in order
to derive knot invariants.
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