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1. Introduction

This paper gives a new interpretation of the virtual braid group in terms of a strict
monoidal category SC that is freely generated by one object ∗ and three morphisms
µ : ∗ ⊗ ∗ −→ ∗ ⊗ ∗, µ′ : ∗ ⊗ ∗ −→ ∗ ⊗ ∗, and v : ∗ ⊗ ∗ −→ ∗ ⊗ ∗. This basic structure,
subjected to appropriate relations can be understood via defined morphisms µij where
this symbol can be interpreted as an abstract string or connection between strands i and
j in a diagram that otherwise is an identity on n strands. That is, µij is diagrammatically
a decorated identity braid where the decoration consists in a connection between the i

strand and the j strand. The µij satisfy the algebraic Yang-Baxter equation in the sense
that for i < j < k, µijµikµjk = µjkµikµij. The other generators of this category are
elements vi that can be depicted as virtual crossings between strings i and i + 1. The
vi generate the symmetric group Sn. An n-strand diagram that is a product of these
generators is a morphism from [n] to [n] where the symbol [n] is an ordered row of n

points that constitute the top or the bottom of a diagram involving n strands. In terms
of the definition of the monoidal category [n] = ∗ ⊗ ∗ · · · ∗ ⊗∗ for a tensor product of n

∗’s.

The virtual braid group on n strands is isomorphic to the group of morphisms in SC

from [n] to [n]. The point of this categorical formulation of the virtual braid groups is
that we see how these groups form a natural extension of the symmetric groups by formal
elements that satisfy the algebraic Yang-Baxter equation. The category we desribe is a
natural structure for an algebraist interested in exploring formal properties of the algebraic
Yang-Baxter equation, and it is directly related to more topological points of view about
virtual links and virtual braids.

This paper is an abbreviated version of [20] where we give complete proofs of all the
theorems stated here. The present paper is self-contained with a few details of proofs
omitted. Our longer paper [20] gives complete proofs of all results and discusses general-
izations related to Hopf algebras and quantum link invariants for rotational virtual knots
and links.

Without the concept of virtuality, the direct relationship of the algebraic Yang-Baxter
equation with the braid groups would not be apparent. We see that from an algebraic
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point of view, the virtual braid group is an entirely natural construction. It is an alge-
braic structure related to viewing solutions to the algebraic Yang-Baxter equation inside
tensor products of algebras where these tensor products are endowed with the natural
permutation action of the symmetric group.

We develop this model for the virtual braid group by first recalling its usual definition
motivated by virtual knot theory. We then proceed to reformulate the virtual braid group
in terms of the above mentioned generators. By the time we reach Theorem 1, we have
reformulated the virtual braid group in terms of the new generators. We then use this
approach to give a presentation of the pure virtual braid group in Theorem 2.

More precisely, in Section 2 we give a presentation for the virtual braid group in terms
of our stringy model. We start by describing the usual presentation of the virtual braid
group in terms of classical braid generators and virtual generators that act as permuta-
tions between pairs of adjacent strands in the braid. Elementary connection strings (see
Figure 6) are defined as elementary pure braids – products of braid generators and vir-
tual generators. We then generalize the notion of connecting string and show that it has
the formal diagrammatic property of being stretched and contracted as shown in Figure
8. With these constructions we then rewrite presentations for the virtual braid group
and, in Section 3, show how the connection with strings generate the pure virtual braid
group with a set of relations that correspond to the algebraic Yang-Baxter equation. See
Theorem 2.

In Section 4 we construct the String Category alluded to in the first paragraph of
this introduction. In Section 5 we detail the relationship with the algebraic Yang-Baxter
equation, show how to use solutions of the algebraic Yang-Baxter equation to obtain
representations of the pure virtual braid group and virtual braid group. In our point of
view the entire virtual braid group can be seen as a natural extension of the pure virtual
braid group by a category of permutation operators. The pure virtual braid groups
themselves are seen to be a natural monoidal category associated with solutions of the
algebraic Yang-Baxter equation. This gives an essentially categorical point of view for
understanding the nature of the virtual braid group. In starting our discussion of the
virtual braid group from virtual knot theory we began with the motivation that virtual
crossings are artifacts of a planar representation of knots and links that are embedded
in thickened surfaces. This is a correct point of view, but it does not speak directly to
the algebraic structure of the virtual braid group, where the virtual part of the group
is the symmetric group generated by the virtual crossings. In the braiding context the
virtual crossings are permutation operators and it is conceptually important to have a
point of view in which their role is natural in a categorical and algebraic sense. This is
what we have done in reformulating the virtual braid group in terms of the category of
string connectors and associated permutation operators.

2. A Stringy Presentation for the Virtual Braid Group

2.1. The virtual braid group. Let’s begin with a presentation for the virtual braid
group. The set of isotopy classes of virtual braids on n strands forms a group, the virtual
braid group denoted V Bn, that was introduced in [15]. The group operation is the usual
braid multiplication (form bb′ by attaching the bottom strand ends of b to the top strand
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Figure 1. The generators of V Bn

ends of b′). V Bn is generated by the usual braid generators σ1, . . . , σn−1 and by the virtual
generators v1, . . . , vn−1, where each virtual crossing vi has the form of the braid generator
σi with the crossing replaced by a virtual crossing. See Figure 1 for illustrations. Recall
that in virtual crossings we do not distinguish between under and over crossing. Thus,
V Bn is an extension of the classical braid group Bn by the symmetric group Sn, whereby
vi corresponds to the elementary transposition (i, i + 1).

Among themselves the braid generators satisfy the usual braiding relations:

(B1) σiσi+1σi = σi+1σiσi+1,

(B2) σiσj = σjσi, for j 6= i ± 1.

Among themselves, the virtual generators are a presentation for the symmetric group Sn,
so they satisfy the following virtual relations:

(S1) vivi+1vi = vi+1vivi+1,

(S2) vivj = vjvi, for j 6= i ± 1,
(S3) vi

2 = 1.

The mixed relations between virtual generators and braiding generators are as follows:

(M1) viσi+1vi = vi+1σivi+1,

(M2) σivj = vjσi, for j 6= i ± 1.

To summarize, the virtual braid group V Bn has the following presentation [15].

(1) V Bn =

〈

σ1, . . . , σn−1,

v1, . . . , vn−1

∣

∣

∣

∣

∣

∣

(B1), (B2),
(S1), (S2), (S3),
(M1), (M2)

〉

It is worth noting at this point that the virtual braid group V Bn does not embed in
the classical braid group Bn, since the virtual braid group contains torsion elements (the
vi have order two) and it is well–known that Bn does not. But the classical braid group
embeds in the virtual braid group just as classical knots embed in virtual knots. This
fact may be most easily deduced from [22], and can also be seen from [24] and [6]. For
reference to previous work on virtual knots and virtual braids the reader should consult
[4, 5, 9, 10, 11, 15, 16, 17, 13, 14, 21, 22, 24, 25, 27, 28, 29, 18, 19] and references therein.
For work on welded braids and welded knots, see [6, 14, 18, 19].

Further, for Markov–type theorems for virtual braids, giving sets of moves on virtual
braids that generate the same equivalence classes as the oriented virtual link types of their
closures, see [14] and [19]. Such theorems are important for understanding the structure
and classification of virtual knots and links.
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Figure 2. The local detour
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Figure 3. Detouring the crossing σi+1

The second mixed relation in the presentation of the virtual braid group will be called
the local detour relation and it is illustrated in Figure 2. Note that the following relations
are also local detour moves for virtual braids and they are easy consequences of the above.

(2)
vivi+1σi

±1 = σi+1
±1vivi+1,

σi
±1vi+1vi = vi+1viσi+1

±1.

This set of relations taken together define the basic local isotopies for virtual braids. Note
that each relation is a braided version of a local virtual link isotopy. The local detour
move is written equivalently:

(3) σi+1 = vivi+1σivi+1vi.

Notice that Eq. 3 is the braid detour move of the ith strand around the crossing between
the (i + 1)-st and the (i + 2)-nd strand (see first two illustrations in Figure 3) and it
provides an inductive way of expressing all braiding generators in terms of the first braid-
ing generator σ1 and the virtual generators v1, . . . , vn−1 (see first and last illustrations in
Figure 3), that is:

(4) σj = (vj−1 . . . v2v1) (vj . . . v3v2) σ1 (v2v3 . . . vj) (v1v2 . . . vj−1).

In [18] we derive the following reduced presentation for V Bn:

(5) V Bn =

〈

σ1,

v1, . . . , vn−1

∣

∣

∣

∣

∣

∣

∣

∣

(S1), (S2), (S3)
σ1vj = vjσ1, for j > 2
v1σ1v1 v2σ1v2 v1σ1v1 = v2σ1v2 v1σ1v1 v2σ1v2

σ1 v2v3v1v2σ1v2v1v3v2 = v2v3v1v2σ1v2v1v3v2 σ1

〉

The local detour move gives rise to a generalized detour move, by which any box in the
braid can be detoured to any position in the braid, see Figure 4.
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Figure 4. Detouring a box
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Figure 5. The forbidden moves

Finally, it is worth recalling that in virtual knot theory there are “forbidden moves”
involving two real crossings and one virtual. More precisely, there are two types of for-
bidden moves: One with an over arc, denoted F1 and another with an under arc, denoted
F2. See [15] for explanations and interpretations. Variants of the forbidden moves are
illustrated in Figure 5. So, relations of the types:

(6) σivi+1σ
−1
i = σ−1

i+1viσi+1 (F1) and σ−1
i vi+1σi = σi+1viσ

−1
i+1 (F2)

are not valid in virtual knot theory.

2.2. We now wish to describe a new set of generators and relations for the virtual braid
group that makes it particularly easy to describe the pure virtual braid group, V Pn.
In order to accomplish this aim, we introduce the following elements of V Pn, for i =
1, . . . , n − 1.

(7) µi,i+1 := σivi

We indicate µi,i+1 by a connecting string between the i-th and (i + 1)-st strands with a
dark vertex on the i-th strand, a dark vertex on the (i + 1)-st strand, and an arrow from
left to right. View Figure 6. The inverses µ−1

i,i+1 = viσ
−1
i have same directional arrows but

are indicated by using white vertices. Note that, by detouring it to the leftmost position
of the braid, we can write µi,i+1 in terms of µ12 conjugated by a virtual word:

(8) µi,i+1 = (vi−1 . . . v2v1)(vi . . . v3v2)µ12(v2v3 . . . vi)(v1v2 . . . vi−1).

We also introduce the elements

(9) µi+1,i := viσi = viµi,i+1vi
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Figure 6. The elementary connecting strings µi,i+1, µi+1,i and their inverses

We indicate µi+1,i by a connecting string between the i-th and (i + 1)-st strands, with a
dark vertex on the i-th strand, a dark vertex on the (i + 1)-st strand, and an arrow from
right to left (reversing the direction from µi,i+1), view Figure 6. An illustration of Eq. 9
(see top of Figure 7) explains the reversing of the direction of the arrow in the graphical
interpretation of µi+1,i. The inverses µ−1

i+1,i = σ−1
i vi have same directional arrows but are

indicated by using white vertices. Note that an analogous equation to Eq. 8 holds:

(10) µi+1,i = (vi−1 . . . v2v1)(vi . . . v3v2)µ21(v2v3 . . . vi)(v1v2 . . . vi−1)

Definition 1. The pure virtual braids µi,i+1, µi+1,i and their inverses shall be called
elementary connecting strings.

From Eqs. 7 and 9 follow directly the relations:

(11) viµi+1,i = µi,i+1vi and µ−1
i+1,ivi = viµ

−1
i,i+1,

also illustrated in Figure 7.

Further, we generalize the notion of a connecting string and define, for i < j, the
element µij (a connecting string from strand i to strand j) by the formula

(12) µij := vj−1vj−2 . . . vi+1 µi,i+1 vi+1 . . . vj−2vj−1.

In a diagram µij is denoted by a connecting string from strand i to strand j, with dark
vertices on these two strands and an arrow pointing from left to right, view Figure 8.

We also generalize, for i < j, the elements µi+1,i to the elements:

(13) µji := tij µij tij
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Figure 7. Relations between the elementary connecting strings

(defn)
=

Figure 8. Connecting strings

where tij = vivi+1 . . . vj . . . vi+1vi is the element of Sn (generated by the vi’s) that inter-
changes strands i and j, leaving all other strands fixed. We denote µji by a connecting
string from strand i to strand j, with dark vertices, and an arrow pointing from right to
left. Figure 9 illustrates the example µ31 = v2v1v2µ13v2v1v2. It is easily verified that

(14) µji = vj−1vj−2 . . . vi+1 µi+1,i vi+1 . . . vj−2vj−1
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Figure 9. The exchange of labels between µij and µji

The inverses of the elements µij and µji have same directional arrows respectively, but
white dotted vertices.

Definition 2. The elements µij, µji and their inverses shall be called connecting strings.

With the above conventions we can speak of connecting strings µrs for any r, s. It is
important to have the elements µji when j > i, but in the algebra they are all defined in
terms of the µij. The importance of having the elements µji will become clear when we
restrict to the pure virtual braid group.

Remark 1. In the definition of µij if we consider µi,i+1 as a virtual box inside the virtual
braid we can use the (generalized) detour moves to bring it to any position, as Figure 8
illustrates. This means that the contraction of µij to µi,i+1 may be pulled anywhere
between the i-th and the j-th strands. By the same reasoning the contraction of µji to
µi+1,i may be also pulled anywhere between the i-th and the j-th strands.

2.3. We shall next give some relations satisfied by the connecting strings. Before that we
need the following remark.

Remark 2. The symmetric group Sn clearly acts on V Bn by conjugation. By their
definition (Eqs. 7, 9, 12, 14), this action on connecting strings translates into permuting
their indices, that is, a permutation τ ∈ Sn acting on µrs will change it to µτ(r),τ(s). This
means that Sn acts by conjugation also on the subgroup of V Bn generated by the µij’s.
Moreover, by Eqs. 8, 9, all connecting strings may be obtained by the action of Sn on
µ12. Note that for σ ∈ Sn we regard σ both as a product of the elements vi and as a
permutation of the set {1, 2, 3, . . . , n}.

Further, any relation in V Bn transforms into a valid relation after acting on it an
element of Sn. In particular, a commuting relation between connecting strings will be
transformed to a new commuting relation between connecting strings.

Lemma 1. The following relations hold in V Bn for all i.

(1) viµi,i+1 = µi+1,ivi , viµi+1,i = µi,i+1vi

(2) vi+1µi,i+1 = µi,i+2vi+1 , vi+1µi+1,i = µi+2,ivi+1

(3) vi−1µi,i+1 = µi−1,i+1vi−1 , vi−1µi+1,i = µi+1,i−1vi−1

(4) vjµi,i+1 = µi,i+1vj , vjµi+1,i = µi+1,ivj , j 6= i − 1, i, i + 1.
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Figure 10. Slide moves
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Figure 11. Proving a local slide move

The above local relations generalize to similar ones involving different indices. Relations
1 are generalized by Eq. 13, reflecting the mutual reversing of µij and µji, recall Figures 7
and 9. Relations 2 and 3 are the local slide moves, as illustrated in Figure 10, and they
generalize to the slide moves coming from the defining equations: µi+1,k = viµikvi for any
k < i or k > i + 1. Relations 4 and their generalizations: vjµik = µikvj for any k 6= i

and j 6= i− 1, i, k − 1, k, are all commuting relations. All these relations result from the
action of any τ ∈ Sn on µ12:

(15) τ
−1

µ12 τ = µτ(1),τ(2) .

Proof. All relations 1,2 and 3 follow directly from the definitions of the elements µij and
µji. For example, vi+1µi,i+1 = µi,i+2vi+1 is equivalent to the defining relation µi,i+2 =
vi+1µi,i+1vi+1. Figure 11 illustrates the proof of a local slide move. Relations 4 follow
immediately from the commuting relations (S2) and (M2) of V Bn. The generalizations
of all types of moves follow from the local ones after using detour moves. Finally, the
derivation of all relations from the action of Sn on µ12 is explained in Remark 2 and, more
precisely, by the Eqs. 8, 12, 10, 14. �

Lemma 2. The following commuting relations among connecting strings hold in V Bn.

(1) µ12µ34 = µ34µ12
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Figure 12. A local commuting relation

(2) µ14µ23 = µ23µ14 (action by (324))
(3) µ13µ24 = µ24µ13 (action by (23))

The above local relations generalize to commuting relations of the form:

(16) µijµkl = µklµij, {i, j} ∩ {k, l} = ∅.

All the above commuting relations result from relation 1 by actions of permutations (in-
dicated for relations 2, 3 to the right of each relation). Moreover, for any choice of four
strands there are exactly 24 such commuting relations that preserve the four strands.

Proof. Relation 1 clearly rests on the virtual braid commuting relations (B2) and (M2).
We shall show how relation 2 reduces to relation 1. In the proof we underline in each step
the generators of V Bn on which virtual braid relations are applied.

µi,i+3µi+1,i+2 = vi+2vi+1µi,i+1vi+1vi+2µi+1,i+2

detour
= vi+2vi+1µi,i+1µi+2,i+3vi+1vi+2

(1)
= vi+2vi+1µi+2,i+3µi,i+1vi+1vi+2

detour
= µi+1,i+2vi+2vi+1µi,i+1vi+1vi+2

= µi+1,i+2µi,i+3.

Figure 12 illustrates how relation 3 also reduces to relation 1. Notice now that relations 2
and 3 can be derived from relation 1 by conjugation by the permutations (324) and (23)
respectively. Let us see how this works specifically for relation 2: the indices of relation 1
against the indices of relation 2 induce the permutation (324) = v2v3. This means that
conjugating relation 1 by the word v2v3 will yield relation 2.

Notice also that there are 24 commuting relations in total involving the strands 1, 2, 3, 4
and indices in any order. Likewise for any choice of four strands. The derivation of all
relations from the action of Sn on relation 1 is clear from Remark 2. �
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Figure 13. The stringy braid relation

Lemma 3. The following stringy braid relations hold in V Bn.

(1) µ12µ13µ23 = µ23µ13µ12

(2) µ21µ23µ13 = µ13µ23µ21 (action by (12))
(3) µ13µ12µ32 = µ32µ12µ13 (action by (23))
(4) µ32µ31µ21 = µ21µ31µ32 (action by (13))
(5) µ23µ21µ31 = µ31µ21µ23 (action by (123))
(6) µ31µ32µ12 = µ12µ32µ31 (action by (132))

The above relations generalize to three-term relations of the form:

(17) µijµikµjk = µjkµikµij, for any distinct i, j, k.

All six relations stated above result from the action on relation 1 by permutations of
Sn, which only permute the indices {1, 2, 3}. These permutations are indicated to the
right of each relation. Moreover, for any choice of three strands there are exactly six
relations analogous to the above, which all result from relation 1 by actions of appropriate
permutations that preserve the three strands each time.

Proof. Figure 13 illustrates relation 1. Relation 1 rests on the braid relations (B1) of V Bn.
See also Figure 14 for a pictorial proof. We omit the remaining details of this proof. �

Another remark is now due.

Remark 3. The forbidden moves are naturally forbidden also in the stringy category. For
example, the forbidden relations F1, F2 of Eq. 6 translate into the following corresponding
forbidden stringy relations SF1, SF2:

(18) µi,i+2µi+1,i+2 = µi+1,i+2µi,i+2 (SF1) and µi,i+2µi,i+1 = µi,i+1µi,i+2 (SF2)

which, together with all similar relations arising from conjugating the above by permuta-
tions, are not valid in the stringy category. See Figure 15 for illustrations.

2.4. The stringy presentation. We will now define an abstract stringy presentation
for V Bn that starts from the concept of connecting string and recaptures the virtual braid
group. By Eq. 7 we have

(19) σi = µi,i+1vi
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Figure 14. Proof of the stringy braid relation

(SF1) (SF2)

Figure 15. Stringy forbidden moves

so, the connecting strings µij can be taken as an alternate set of generators of the virtual
braid group, along with the virtual generators vi. The relations in this new presen-
tation consist in the results we proved above in Lemmas 1, 2, 3 describing the inter-
action of connecting strings with virtual crossings, the commutation properties of con-
necting strings, the stringy braiding relations, and the usual relations (S1), (S2), (S3) in
the symmetric group Sn. For the work below, recall that we have defined the element
tij = vivi+1 . . . vj . . . vi+1vi that corresponds to the transposition (ij) in Sn.

In any presentation of a group G containing the elements {v1, . . . , vn−1} and the rela-
tions (S1), (S2), (S3) among them, we have an action of the symmetric group Sn on the
group G defined by conjugation by an element τ in Sn, expressed in terms of the vi:

gτ = τgτ−1
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Figure 16. The detour moves correspond to the slide moves in the stringy category

for g in G. In particular, we can consider tij g tij as the action by the transposition tij on
an element g of G. We will use this action to define a stringy model of the virtual braid
group.

Definition 3. Let V Sn denote the following stringy group presentation.

(20) V Sn =

〈

µij, 1 ≤ i 6= j ≤ n,

v1, . . . , vn−1

∣

∣

∣

∣

∣

∣

∣

∣

τµijτ
−1 = µτ(i),τ(j), τ ∈ Sn

µ12µ13µ23 = µ23µ13µ12

µ12µ34 = µ34µ12

(S1), (S2), (S3)

〉

We can now state the following theorem.

Theorem 1. The stringy group V Sn is isomorphic to the virtual braid group V Bn.

Proof. First we define a homomorphism F : V Bn −→ V Sn by F (vi) = vi and F (σi) =
µi,i+1vi, and extend the map to be a homomorphism on words in the generators of the
virtual braid group. In order to show that this map is well-defined, we must show that it
preserves the relations in the virtual braid group. We omit the details of this verification.

We now define an inverse mapping G : V Sn −→ V Bn by G(vi) = vi and G(µi,i+1) =
σivi. At this stage we have two pieces of work to accomplish: We must extend G to all of
V Bn and we must show that G is well-defined and that it preserves the relations in the
group presentation. We omit the details of this verification. �

Finally, we also give below a reduced presentation for V Bn, which derives immediately
from (5).
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Proposition 1. The following is a reduced stringy presentation for V Bn:

(21) V Bn =

〈

µ12,

v1, . . . , vn−1

∣

∣

∣

∣

∣

∣

∣

∣

µ12vj = vjµ12, for j > 2
µ12 v2µ12v2 v1v2µ12v2v1 = v1v2µ12v2v1 v2µ12v2 µ12

µ12 v2v3v1v2µ12v2v1v3v2 = v2v3v1v2µ12v2v1v3v2 µ12

(S1), (S2), (S3)

〉

Note that the second relation is the stringy braid relation 1 of Lemma 3 and the third
relation is the commuting relation 1 of Lemma 2.

3. The Pure Virtual Braid Group

3.1. A presentation for the pure virtual braid group. From presentation Eq. 1 of
V Bn we have a surjective homomorphism

π : V Bn −→ Sn

defined by
π(σi) = π(vi) = vi.

For a virtual braid b, we refer to π(b) as the permutation associated with the virtual braid
b, and we define the pure virtual braid group V Pn to be the kernel of the homomorphism
π. Hence, V Pn is a normal subgroup of V Bn of index n!. So, V Pn ·Sn = V Bn. Moreover,
V Pn ∩ Sn = {id}. Hence, V Bn = V Pn ⋊ Sn. Equivalently, we have the exact sequence

1 −→ V Pn −→ V Bn −→ Sn −→ 1.

A presentation for V Pn can be now derived immediately from the stringy presentation of
V Bn as an application of the Reidemeister-Schreier process [7, 23, 26]. To see this, we
first need the following.

Lemma 4. The subgroup V Pn of V Bn is generated by the elements µij for all i 6= j.

Proof. Indeed, by Eqs. 7 and 9, σi = µi,i+1vi = viµi+1,i. So, any element b ∈ V Bn can
be written as a product in the µij ’s and the vk’s. Furthermore, by the slide relations of
Lemma 1, all µij’s can pass to the top of the braid, leaving at the bottom a word τ in
the vk’s, such that τ = π(b). Thus, if b ∈ V Pn then τ must be the identity permutation.
This completes the proof of the Lemma. �

We can now give a stringy presentation of V Pn.

Theorem 2. The following is a presentation for the pure virtual braid group.

(22) V Pn =

〈

µrs, r 6= s

∣

∣

∣

∣

µijµikµjk = µjkµikµij, for all distinct i, j, k

µijµkl = µklµij, {i, j} ∩ {k, l} = ∅

〉

Proof. Having reformulated the presentation of the virtual braid group, the proof is now
a direct application of the Reidemeister-Schreier technique [7, 23, 26]. The relations in
V Pn arise as conjugations of the relations in V Bn by coset representatives of V Pn in V Bn,
which are the elements of Sn. The relations (S1), (S2), (S3) describe Sn and are used for
choosing the coset representatives. We now describe the process from the point of view of
covering spaces. We have V Pn ⊂ V Bn as a normal subgroup with the subgroup Sn acting
on it by conjugation. V Pn is the fundamental group of the covering space E of a cell
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complex B with fundamental group V Bn, where E has group of deck transformations Sn.

Since the elements of the symmetric group lift to paths in the covering space, the relations
τµijτ

−1 = µτ(i),τ(j) serve to describe the action of the symmetric group on the loops in the
covering space (these loops are the lifts of the elements µij). We choose basic relations in
V Pn to be the lifts at a specific basepoint of the braiding relation µ12µ13µ23 = µ23µ13µ12

and the commuting relation µ12µ34 = µ34µ12. All other relations are obtained from these
by the action of Sn, and all relations constitute the two orbits of the basic relations under
this action. For example the relations

µijµikµjk = µjkµikµij

constitute the orbit under the action of Sn on the single basic braiding relation

µ12µ13µ23 = µ23µ13µ12.

The same pattern applies to the commuting relations. This gives the statement of the
Theorem and completes the proof. �

3.2. Semi-Direct Product Structure. The virtual braid group and the pure virtual
braid group can be described in terms of semi-direct products of groups, just as is begun
in the paper by Bardakov [1] and continued in [8]. In this section we remark that these
decompositions are based on the following algebra: The Yang-Baxter relation has the
generic form

µi,i+1µi,i+2µi+1,i+2 = µi+1,i+2µi,i+2µi,+1

which is abstractly in the form

ABC = CBA

and can be rewritten in the form B−1ABC = B−1CBA or

AB = CBAC−1.

This allows one to rewrite some of the Yang-Baxter relations in terms of the conjugation
action of the group on itself, and this is the key to the structural work pioneered by
Bardakov.

4. A String Category for the Virtual Braid Group

In this section we summarize our results by pointing out that the string connectors and
the virtual crossings can be regarded as generators of a category whose algebraic structure
yields the virtual braid group and the pure virtual braid group.

For this purpose we define a strict monoidal category with generating morphisms µij

where this symbol is interpreted as an abstract string or connection between strands i

and j in a diagram that otherwise is an identity braid on n strands just as defined in
the previous sections. The other generators of this category are morphisms vi that are
interpreted as virtual crossings between strings i and i + 1. The generators vi have all
the relations for transpositions generating the symmetric group. Compositions of these
elements generate the morphisms of the category. The relations among these morphisms
are exactly the relations described for the vk and the µij in the previous sections.
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Consider the strict monoidal category freely generated by one object ∗ and three mor-
phisms µ : ∗⊗∗ −→ ∗⊗∗, µ′ : ∗⊗∗ −→ ∗⊗∗, and v : ∗⊗∗ −→ ∗⊗∗. Let µ12 = µ⊗ id∗,

µ21 = µ′ ⊗ id∗, v1 = v ⊗ id∗, v2 = id∗ ⊗ v and let

vi = id∗ ⊗ · · · ⊗ id∗ ⊗ v ⊗ id∗ ⊗ · · · ⊗ id∗

where v occurs in the i-th place in this tensor product. More generally, it is understood
that µ12 can stand for µ ⊗ id∗ ⊗ · · · ⊗ id∗ and that µ21 can stand for µ′ ⊗ id∗ ⊗ · · · ⊗ id∗

for an arbitrary number of tensor factors.

Quotient this category by the following relations.

(1) µµ′ = id∗⊗∗ = µ′µ,

(2) vv = id∗,

(3) µ12vj = vjµ12, for j > 2,
(4) µ12 v2µ12v2 v1v2µ12v2v1 = v1v2µ12v2v1 v2µ12v2 µ12,

(5) µ12 v2v3v1v2µ12v2v1v3v2 = v2v3v1v2µ12v2v1v3v2 µ12,

(6) vivi+1vi = vi+1vivi+1,

(7) vivj = vjvi, for j 6= i ± 1.

This quotient is called the String Category and denoted SC. The category SC is still strict
monoidal.

To recapture the connecting string morphisms, we follow the formalism of the previous
sections. Define

µi,i+1 = id∗ ⊗ · · · ⊗ id∗ ⊗ µ ⊗ id∗ ⊗ · · · ⊗ id∗

where µ occurs in the i and i + 1 places in the tensor product and define

µi+1,i = id∗ ⊗ · · · ⊗ id∗ ⊗ µ′ ⊗ id∗ ⊗ · · · ⊗ id∗

where µ′ occurs in the i and i + 1 places in the tensor product. Define, for i < j, the
element µij by the formula

(23) µij = vj−1vj−2 · · · vi+1 µi,i+1 vi+1 · · · vj−2vj−1.

and define

(24) µji = vj−1vj−2 · · · vi+1 µi+1,i vi+1 · · · vj−2vj−1.

Remark 4. Note that, in this notation, relation 4 becomes the algebraic Yang-Baxter
equation

µ12µ13µ23 = µ23µ13µ12,

and relation 5 becomes the commuting relation

µ12µ34 = µ34µ12.
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Then one has, as consequences, the general algebraic Yang-Baxter equation and com-
muting relations, as we have described them in earlier sections of the paper.

µijµikµjk = µjkµikµij, for all distinct i, j, k

and

µijµkl = µklµij , {i, j} ∩ {k, l} = ∅.

The morphisms vi effect the action of the symmetric group and the category models
the pure virtual braid group in the following precise sense:

By Proposition 1, for any positive integer n, the group of endomorphisms of the object
∗⊗n is isomorphic to V Bn. In particular, any monoidal functor

F : SC −→ Modk

gives rise to a representation of V Bn :

f ∈ EndSC(∗⊗n) ≃ V Bn 7−→ F (f) ∈ Endk(A
⊗n)

where A = F (∗).

Remark 5. For each natural number n, the symbols

[n] = ∗ ⊗ ∗ ⊗ · · · ⊗ ∗

with n ∗’s are the objects in the category. One can regard [n] as an ordered row of n points
that constitute the top or the bottom of a diagram involving n strands. Diagrammatically,
µij consists in n parallel strands with a string connector between the i-th and j-th strands
directed from i to j. Similarly, vi corresponds to a diagram of n strands where there is a
virtual crossing between the i-th and (i + 1)-st strands. An n-strand diagram that is a
product of these generators is regarded as a morphism from [n] to [n] for n any natural
number. Note that we interpret µij and vi diagrammatically according to the conventions
previously established in this paper.

The virtual braid group on n strands is isomorphic to the group of morphisms in
the String Category from [n] to [n]. The point of this categorical formulation of the
virtual braid groups is that we see how these groups form a natural extension of the
symmetric groups by formal elements that satisfy the algebraic Yang-Baxter equation.
The category we desribe is a natural structure for an algebraist interested in exploring
formal properties of the algebraic Yang-Baxter equation. It should be remarked that the
relationship between the relations in the pure virtual braid group and the algebraic Yang-
Baxter equation was also pointed out in [3]. See also [2] Remark 10, page 7. We have
taken this observation further to point out that the virtual braid group is a direct result
of forming a convenient category associated with the algebraic Yang-Baxter equation.
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For the reader who would like to take the String Category as a starting point for the
theory of virtual braids, here is a description of how to read our figures for that purpose.
Figure 1 illustrates the permutation generators vi for the String Category. The braiding
elements σi will be defined in terms of the string generators. Elementary connecting
strings are given in Figure 6. Note that, it is implicit in Figure 6 how to define the braiding
elements σi by composing string generators with permutations (virtual crossings). See also
Figure 7, which illustrates basic relationships among string generators, permutations and
braiding operators. Figure 8 illustrates the general connecting strings and their relations
with the permutation operators. In particular, Figure 8 shows how any string connection
can be written in terms of a basic string generator and a product of permutations. Figure 9
illustrates how µij and µji are related diagrammatically. Figures 10, 11 and 12 show the
basic slide relations between string connections and permutations. Figure 13 illustrates
the algebraic Yang-Baxter relation as it occurs for the string connectors.

5. Representations of the Virtual and Pure Virtual Braid Groups

5.1. Let A be an algebra over a commutative ground ring k. Let ρ ∈ A⊗A be an element
of the tensor product of A with itself. Then ρ has the form given by the following equation

(25) ρ =

N
∑

i=1

ei ⊗ ei

where ei and ej are elements of the algebra A. We will write this sum symbolically as

(26) ρ =
∑

e ⊗ e′

where it is understood that this is short-hand for the above specific summation.
We then define, for i < j, ρij ∈ A⊗n by the equation

(27) ρij =
∑

1A ⊗ · · · ⊗ 1A ⊗ e ⊗ 1A ⊗ · · · ⊗ 1A ⊗ e′ ⊗ 1A ⊗ · · · ⊗ 1A

where the e occurs in the i-th tensor factor and the e′ occurs in the j-th tensor factor.
If i > j we define ρij by reversing the roles of e and e′ as shown in the next equation

(28) ρij =
∑

1A ⊗ · · · ⊗ 1A ⊗ e′ ⊗ 1A ⊗ · · · ⊗ 1A ⊗ e ⊗ 1A ⊗ · · · ⊗ 1A

where e′ occurs in the j-th tensor factor and e occurs in the i-th tensor factor.
We say that ρ is a solution to the algebraic Yang-Baxter equation if it satisfies the

equation

(29) ρ12ρ13ρ23 = ρ23ρ13ρ12

in A⊗n. It is immediately obvious that if ρ satisfies the algebraic Yang-Baxter equation,
then, for any pairwise distinct i, j, k we have

(30) ρijρikρjk = ρjkρikρij,

and that the equations obtained from this particular equation by permuting the indices
i, j, k remain true. All such equations derive from permutations of any given instance of
the algebraic Yang-Baxter equation.
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The following proposition is an immediate consequence of our presentation for the pure
virtual braid group.

Proposition 2. Let V Pn denote the pure virtual braid group with generators µij and
relations as given in Theorem 2 of Section 3. Let A be an algebra over a commutative
ground ring k, with an invertible algebraic solution to the Yang-Baxter equation denoted
by ρ ∈ A ⊗ A as described above. Define rep : V Pn −→ A⊗n by the equation

rep(µij) = ρij .

Then rep is a representation of the the pure virtual braid group to the tensor algebra A⊗n.

Proof. Note that it follows at once from the definitions of the ρij that ρijρkl = ρklρij

whenever the sets {i, j} and {k, l} are disjoint. Thus, we have shown that the ρij satisfy all
the relations in the pure virtual braid group. This completes the proof of the Proposition.

�

Next, we show how to obtain representations of the full virtual braid group. To this
purpose, consider the algebra Aut(A⊗n) of linear automorphisms of A⊗n as a module over
the ground ring k. Assume that we are given an invertible solution to the algebraic Yang-
Baxter equation, ρ ∈ A ⊗ A, and define ρ̃ij : A⊗n −→ A⊗n by the equation ρ̃ij(α) = ρijα

where α ∈ A⊗n. Since ρ is invertible, ρ̃ij ∈ Aut(A⊗n). Let Pij : A⊗n −→ A⊗n be the
mapping that interchanges the i-th and j-th tensor factors. Then Pij ∈ Aut(A⊗n). We let
Pi denote Pi,i+1. We now define Rep : V Bn −→ Aut(A⊗n) by the equations

Rep(µij) = ρ̃ij

and

Rep(vi) = Pi.

Here we use our presentation (20) for the virtual braid group.

Proposition 3. With the above conventions the mapping Rep : V Bn −→ Aut(A⊗n) is a
representation of the virtual braid group to a subgroup of Aut(A⊗n).

Proof. It is clear that the elements Pi obey all the relations in the symmetric group Sn.
Thus it remains to show that letting λ = Rep(τ) where τ is an element of Sn, the relations

λρijλ
−1 = ρ̃τ(i),τ(j), τ ∈ Sn

are satisfied in Aut(A⊗n). Since ρij is defined via the placement of the e and e′ factors
in the summation for ρ on the i-th and j-th strands, these relations are immediate. This
completes the proof of the proposition. �

Remark 6. The method we have described for constructing a representation of the virtual
braid group from an algebraic solution to the Yang-Baxter equation generalizes the well-
known construction of a representation of the classical Artin braid group from a solution
to the Yang-Baxter equation in braided form. In the usual method for constructing
the classical representation, one composes the algebraic solution with a permutation,
obtaining a solution to the braiding equation (B1). This is the same as our relation

σi = µi,i+1vi
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between the braiding element σi and the stringy generator µi,i+1 for the pure virtual
braid group. Without the concept of virtuality, the direct relationship of the algebraic
Yang-Baxter equation with the braid groups would not be apparent. We see that from an
algebraic point of view, the virtual braid group is an entirely natural construction. It is
the universal algebraic structure related to viewing solutions to the algebraic Yang-Baxter
equation inside tensor products of algebras and endowing these tensor products with the
natural permutation action of the symmetric group.

Solutions to the algebraic version of the Yang-Baxter equation are usually thought of
as deformations of the identity mapping on a two-fold tensor product A ⊗ A. We think
of a braiding operator as a deformation of a transposition, and so one goes between the
algebraic and braided versions of such operators by composition with a transposition.

The Artin braid group Bn is motivated by a combination of topological considerations
and the desire for a group structure that is very close to the structure of the symmetric
group Sn. We have seen that the virtual braid group V Bn is motivated at first by a natural
extension of the Artin braid group in the context of virtual knot theory, but now we see
a different motivation for the virtual braid group. Given that one studies the algebraic
Yang-Baxter equation in the context of tensor powers of an algebra A, it is thoroughly
natural to study the compositions of algebraic braiding operators placed in two out of
the n tensor lines (the stringy generators) and to let the permutation group of the tensor
lines act on this algebra. As we have seen in (20), this is precisely the virtual braid
group. Viewed in this way, the virtual braid group has nothing to do with the plane and
nothing to do with virtual crossings. It is a natural group associated with the structure
of algebraic braiding.

5.2. A Representation Category for the Virtual Braid Group. We now give a
categorical interpretation of virtual knot theory and the virtual braid group in terms of
these representation modules. For A as above, let End(A⊗n) denote the linear endo-
morphisms of A⊗n as a module over k. View End(A⊗n) as a category with generating
morphisms:

(1) α1 ⊗ α2 ⊗ · · · ⊗ αn ∈ A⊗n acting on A⊗n by left multiplication,
(2) the elements of the symmetric group Sn, generated by transpositions of adjacent

tensor factors.

This category has one object. In making the representation of V Bn we have used the
stringy generators µij and mapped them to sums of morphisms of the first type above.
The virtual braid group V Bn described via (20), can be viewed as a category with one
object and generators µij and vk. Of course any associative algebra can be seen as a
single object category with morphisms the elements of the algebra. But here we have a
pictorial representation of the morphisms as stringy braid diagrams. These diagrams can
be generalized to include the algebraic category End(A⊗n) by letting algebra elements
decorate the lines and taking the transpositions of the form Pi,i+1 as represented by vi via
a diagram of lines i and i + 1 virtually crossing over one another. In this view the virtual
crossing is interpreted as a generator of the symmetric group. The virtual crossings have
not disappeared. They have become part of the embedded symmetry of the structure of
the virtual braid group. This is in sharp contrast to the role of the virtual crossings in the
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original form of the virtual braid group. There the virtual crossings appear as artifacts of
the presentation of virtual knots in the plane where those knots acquire extra crossings
that are not really part of the essential structure of the virtual knot. Nevertheless, these
same crossings appear crucially in the virtual braid group, and turn into the generators of
the symmetric group embedded in the virtual braid group. With the use of the full set of
µij in (20) the detour moves and other remnants of the virtual crossings as artifacts have
completely disappeared into the permutation action. We will continue the categorical
discussion for the virtual braid group after first discussing certain aspects of knot theory
and the tangle categories.

The representations of V Bn that we have here derived can be interpreted as follows.

Theorem 3. Let ρ ∈ A ⊗ A be a solution of the algebraic Yang-Baxter equation, where
A is an algebra over a commutative ring k. Define a monoidal functor

FA : SC −→ Modk

by setting FA(∗) = A, FA(µ) = ρ̃, and FA(vi) = P , where the endomorphisms ρ̃ and P of
A ⊗k A are given by

ρ̃(x ⊗ y) = ρ(x ⊗ y)

and

P (x ⊗ y) = y ⊗ x

for all x, y ∈ A.

Proof. The proof follows from the previous discussion. �

Remark 7. In the case A is a bialgebra (so that the category ModA of modules over A

is monoidal), it would be interesting to address the following question: When does the

above functor FA : SC −→ Modk lift to a monoidal functor F̃A : SC −→ ModA (that is
such that U ◦ F̃A = FA as monoidal functors, where U : ModA −→ Modk is the forgetful
functor)?

5.3. Virtual Hecke Algebra. From the point of view of the theory of braids the Hecke
algebra Hn(q) is a quotient of the group ring Z[q, q−1][Bn] of the Artin braid group by
the ideal generated by σ2

i − zσi − 1 where z = q − q−1. This corresponds to the identity
σi − σ−1

i = z1, which is sometimes regarded diagrammatically as a skein identity for
calculating knot polynomials. By the same token, we define the virtual Hecke algebra
V Hn(q) to be the quotient of the group ring Z[q, q−1][V Bn] by the ideal generated by
σ2

i − zσi − 1 for i = 1, 2, . . . n − 1. There are difficulties in extending structure theorems
for the Hecke algebra to corresponding structure theorems for the virtual Hecke algebra,
but some matters of representations do generalize directly. In particular, if R is a solution
to the Yang-Baxter equation with R : W ⊗ W −→ W ⊗ W , where W is a module over
Z[q, q−1], then one has a corresponding representation Rep : V Hn(q) −→ Aut(W⊗n). This
representation is specified as follows.

(31) Rep(σi) =
∑

1 ⊗ · · · ⊗ 1 ⊗ R ⊗ 1 ⊗ · · · ⊗ 1
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where R operates in the i-th and i + 1-st tensor factors, and

(32) Rep(vi) =
∑

1 ⊗ · · · ⊗ 1 ⊗ P ⊗ 1 ⊗ · · · ⊗ 1

where P acts to permute the i-th and (i + 1)-st tensor factors. It is easy to see that this
gives a representation of the virtual Hecke algebra.

One can hope that the presence of such representations would shed light on the existence
of a generalization of the Ocneanu trace [12] on the Hecke algebra to a corresponding trace
and link invariant using the virtual Hecke algebra. At this point there is an issue about
the nature of the generalization. One can aim for a trace on the virtual Hecke algebra
that is compatible with the Markov Theorem for virtual knots and links as formulated
in [14, 19]. This is the trace that is most difficult to achieve. A simpler trace is possible
by working in rotational virtual knot theory [15]. See [20] for a discussion of unoriented
quantum invariants for rotational virtuals. We will report on the relation of this approach
with the Markov Theorem for virtuals in a separate paper.

Another line of investigation is suggested by translating the basic Hecke algebra relation
into the language of stringy connections. We have σ = µv for the abstract relation
between a braiding generator, a connector and a virtual element. Thus, the Hecke relation
σ2 = zσ + 1 becomes

µvµ = zµ + v,

and it is possible to work in the presentation (20) of the virtual braid group to find a
structure theory for the virtual Hecke algebra.
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