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Abstract

In this paper we define the p-adic framed braid group F∞,n, arising as the inverse limit of the modular framed braids. An
element in F∞,n can be interpreted geometrically as an infinite framed cabling. F∞,n contains the classical framed braid group
as a dense subgroup. This leads to a set of topological generators for F∞,n and to approximations for the p-adic framed braids.
We further construct a p-adic Yokonuma–Hecke algebra Y∞,n(u) as the inverse limit of a family of classical Yokonuma–Hecke
algebras. These are quotients of the modular framed braid groups over a quadratic relation. Finally, we give topological generators
for Y∞,n(u).
© 2007 Elsevier B.V. All rights reserved.
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0. Introduction

0.1. Framed knots and links are like classical knots and links but with an integer, the ‘framing’, attached to each
component. It is well known that framed links can be used for constructing 3-manifolds using a topological technique
called surgery. Then two-manifolds are homeomorphic if and only if any two framed links in S3 representing them are
related through isotopy moves and the Kirby moves or the equivalent Fenn–Rourke moves [2]. In [6] Ko and Smolin-
sky give a Markov-type equivalence for framed braids corresponding to homeomorphism classes of 3-manifolds. It
would be certainly very interesting if one could construct 3-manifold invariants by constructing Markov traces on
quotient algebras of the framed braid group and using the framed braid equivalence of [6].

In this paper we introduce the concept of p-adic framed braids and we also construct p-adic quotient algebras. The
p-adic framed braids can be seen as natural infinite cablings of framed braids. Cablings of framed braids have been
used for constructing 3-manifold invariants (e.g., by Wenzl [11]). The paper is organized as follows: In Section 2.1 we
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recall the structure of the framed braid group Fn = Zn � Bn, where Bn is the classical braid group on n strands. By
construction, a framed braid splits into the ‘framing part’ and the ‘braiding part’. Moreover, Fn is generated by the
elementary braids σ1, . . . , σn−1 and by the elementary framings f1, . . . , fn. We further introduce the modular framed
braid group Fd,n = (Z/dZ)n � Bn, which has the same presentation as Fn, but with the additional relations:

f d
i = 1.

In [13] the Yokonuma–Hecke algebras (abbreviated to Y-H algebras), Yd,n(u), were introduced by Yokonuma,
where u is a fixed non-zero complex number. They appeared originally in the representation theory of finite Chevalley
groups and they are natural generalizations of the classical Iwahori–Hecke algebras, see also [10]. In Section 3 we
define the Y-H algebra as a finite-dimensional quotient of the group algebra CFd,n of the modular framed braid group
Fd,n over the quadratic relations:

g2
i = 1 + (1 − u)ed,i(1 − gi),

where gi is the generator associated to the elementary braid σi and ed,i are certain idempotents in CFd,n (see Sec-
tions 3.1 to 3.3). In Yd,n(u) the relations f d

i = 1 still hold, and they are essential for the existence of the idempotents
ed,i , because ed,i is by definition a sum involving all powers of fi and fi+1. In Section 3.4 we give diagrammatic
interpretations for the elements ed,i as well as for the quadratic relation (see Figs. 10, 11 and 12).

For relating to framed links and 3-manifolds we would rather not have the restrictions f d
i = 1 on the framings.

An obvious idea would be to consider the quotient of the classical framed braid group algebra, CFn, over the above
quadratic relations. But then, the elements ed,i are not well-defined. Yet, we achieve this aim by employing the
construction of inverse limits.

In Sections 1.1 and 1.3 we give some preliminaries on inverse systems and inverse limits and we introduce the
concept of topological generators. This is a set, whose span is dense in the inverse limit (see Definition 1). In Sec-
tions 1.2, 1.4 and 2.2 we focus on the construction of the p-adic integers Zp and their approximations. Let p be a
prime number and let Cr be the cyclic group of pr elements: Cr

∼= Z/prZ. Then lim←− Cr = Zp , where the inverse

system maps θr
s : Z/prZ → Z/psZ (r � s) are the natural epimorphisms. Zp contains Z = 〈t〉 as a dense subgroup.

The element t is a topological generator for Zp , and a p-adic integer will be denoted t a←, where a← =: (a1, a2, . . .) with
ar ≡ as (mod ps) whenever r � s.

We shall now explain briefly our constructions. Section 2 deals with the construction of the p-adic framed braids.
More precisely, in Section 2.3 we consider the inverse system (Cn

r ,πr
s ) indexed by N, where the map πs

r :Cn
r → Cn

s

(r � s) acts componentwise as the natural epimorphism θr
s . Then lim←− Cn

r
∼= Zn

p (see Proposition 3) and Zn
p contains

Zn = 〈t1, . . . , tn〉 as a dense subgroup (see Lemma 2). We then consider the inverse system (Fpr ,n, πr
s · id) indexed

by N, where the map πr
s · id acts on the framing part of a modular framed braid as described above, and trivially on

the braiding part (Section 2.4). So, we define the p-adic framed braid group F∞,n (Definition 3) as

F∞,n = lim←−Fpr ,n.

Geometrically, a p-adic framed braid is an infinite sequence of modular framed braids with the same braiding part
and such that the framings of the ith strands in each element of the sequence give rise to a p-adic integer. See
Section 2.5 and left-hand side of Fig. 1 for an illustration, where (a1, a2, . . .), (b1, b2, . . .) ∈ Zp . In Theorem 1 the
natural identification

F∞,n
∼= Zn

p � Bn

is established. This is used in Section 2.5, where we give geometric interpretations of the p-adic framed braids as
classical braids with framings p-adic integers. See Fig. 4. We can then say that a p-adic framed braid splits into the
‘p-adic framing part’ and the ‘braiding part’. So, a p-adic framed braid can be also interpreted as an infinite framed
cabling of a braid in Bn, such that the framings of each infinite cable form a p-adic integer. See right-hand side of
Fig. 1. Of course, the closure of a p-adic framed braid defines an oriented p-adic framed link. Fig. 2 illustrates an
example.

The identification in Theorem 1 implies also that there are no modular relations for the framing in F∞,n. Moreover,
that the classical framed braid group Fn sits in F∞,n as a dense subset. Hence, the set A = {t1, σ1, . . . , σn−1} ⊂Fn is
a set of topological generators for F∞,n. So, by Theorem 1, a p-adic framed braid is a word of the form:

t
a1←
1 t

a2←
2 . . . t

an←
n · σ,



Aut
ho

r's
   

pe
rs

on
al

   
co

py

1806 J. Juyumaya, S. Lambropoulou / Topology and its Applications 154 (2007) 1804–1826

Fig. 1. A p-adic framed braid as an infinite framed cabling.

Fig. 2. A p-adic framed braid and a p-adic framed link.

where a1←, . . . , an← are the p-adic framings and σ ∈ Bn. In Section 2.6 we give approximations of p-adic framed braids
by sequences of classical framed braids. See Figs. 8 and 9 for examples.

Section 3 deals with the construction of the p-adic Yokonuma–Hecke algebras. More precisely, in Section 3.5
we define the p-adic Yokonuma–Hecke algebra Y∞,n(u) as the inverse limit of the inverse system (Ypr ,n(u),ϕr

s ) of
classical Y-H algebras, indexed by N (Definition 5):

Y∞,n(u) = lim←− Ypr ,n(u).

The above inverse system is induced by the inverse system (CFpr ,n, φ
r
s ), where φr

s is the ‘linear span’ of πr
s · id at the

level of the group algebra, using also our definition of the Y-H algebras as finite-dimensional quotients of the group
algebras CFd,n. Y∞,n(u) is an infinite-dimensional algebra, in which the framing restrictions f d

i = 1 do not hold.
Finally, in Section 3.6, Theorem 3, we give the set of topological generators {t1, g1, . . . , gn−1} for Y∞,n(u), satisfying
the quadratic relations:

g2
i = 1 + (1 − u)ei(1 − gi),

where the element ei is also an idempotent and its approximation involves the ‘framing’ generators ti , ti+1.
It is, perhaps, worth stressing that the quadratic relations satisfied in the classical as well as in the p-adic Y-H

algebras involve the framing, by definition of the elements ei . One could also define ‘framed’ Iwahori–Hecke alge-
bras (see Section 3.7) by taking quotients of the group algebras CFd,n or CFn over the well-known Hecke algebra
quadratic relations:

g2
i = (q − 1)gi + q.

The structure of these algebras is clearly not as rich as that of the Y-H algebras.
In [4] linear Markov traces have been constructed by the first author for the classical Y-H algebras of any index.

In a sequel paper we use these traces to extend the construction to a p-adic linear Markov trace on the p-adic Y-H
algebras. We then normalize all these traces according to the Markov equivalence for classical framed and p-adic
framed braids to construct isotopy invariants of classical and p-adic framed links. We also adapt the Markov traces
constructed in [7] by the second author for obtaining a simpler family of framed link invariants.

We hope that this new concept of p-adic framed braids and p-adic framed links that we propose, as well as our
framed link invariants will be useful for constructing new 3-manifold invariants.

0.2. As usual we denote by C, Z and N = {1,2, . . .} the set of complex numbers, the integers and the natural
numbers, respectively. We also denote Z/dZ the additive group of integers modulo d . Throughout the paper we fix a
prime number p and a u ∈ C\{0,1}. Finally, whenever two objects a, b are identified we shall write a

.= b.
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0.3. Let H be a group and let Hn = H × · · · × H (n times). The symmetric group Sn of the permutations of the set
{1,2, . . . , n} acts on Hn by permutation, that is:

σ · (h1, . . . , hn) = (hσ(1), . . . , hσ(n)) ∀σ ∈ Sn.

We define on the set Hn × Sn the operation:

(h,σ ) · (h′, τ ) = (
hσ(h′), στ

)
.

Then, the set Hn × Sn with the above operation is a group, the semidirect product Hn � Sn.

1. Inverse limits and p-adic integers

1.1. An inverse system (Xi,φ
i
j ) of topological spaces (groups, rings, algebras, et cetera) indexed by a directed set I ,

consists of a family (Xi; i ∈ I ) of topological spaces (groups, rings, algebras, et cetera) and a family (φi
j :Xi → Xj ;

i, j ∈ I, i � j) of continuous homomorphisms, such that

φi
i = idXi

and φ
j
k ◦ φi

j = φi
k whenever i � j � k.

If no other topology is specified on the sets Xi , they are regarded as topological spaces with the discrete topology. In
particular, finite sets are compact Hausdorff spaces.

The inverse limit lim←− Xi of the inverse system (Xi,φ
i
j ) is defined as:

lim←− Xi :=
{
z ∈

∏
Xi;

(
φi

j ◦ �i

)
(z) = �j(z) whenever i � j

}
,

where the map �i denotes the natural projection of the Cartesian product
∏

Xi onto Xi . It turns out that lim←− Xi

is uniquely defined, and it is non-empty if each Xi is a non-empty compact Hausdorff space. lim←− Xi is a topological

group (ring, algebra, etc.) with operation induced in
∏

Xi componentwise by the group (ring, algebra, etc.) operations.
Moreover, in this case, lim←− Xi is always non-empty.

As a topological space,
∏

Xi is endowed with the product topology, so lim←− Xi inherits the induced topology.

A basis of open sets in lim←− Xi contains elements of the form

�−1
i (Ui) ∩ lim←− Xi,

where Ui open in Xi . Then, any open set in lim←− Xi is a union of sets of the form

�−1
i1

(U1) ∩ · · · ∩ �−1
in

(Un) ∩ lim←− Xi, (1.1)

where i1, . . . , in ∈ I and Ur open in Xir for each r .
A morphism between two inverse systems (Xi,φ

i
j ) and (Yi,ψ

i
j ), both indexed by the same directed set I , is a

collection of continuous homomorphisms

(ρi :Xi → Yi; i ∈ I )

such that ψi
j ◦ ρi = ρj ◦ φi

j , for all i ∈ I . A morphism (ρi; i ∈ I ) from the inverse system (Xi,φ
i
j ) to the inverse

system (Yi,ψ
i
j ) induces a morphism between the inverse limits:

lim←− ρi : lim←− Xi → lim←− Yi

by setting

lim←− ρi

(
(xi)

) := (
ρi(xi)

)
.

If we have embeddings ιi from Xi into Yi , these induce a natural embedding lim←− ιr : lim←− Xi → lim←− Yi . Moreover, if the

following sequence

0 → Xi
ιi→Yi

ϕi→Zi → 0
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is exact for any i, then the sequence

0 → lim←− Xi

lim←− ιr−−−→ lim←− Yi

lim←−ϕr−−−−→ lim←− Zi (1.2)

is also exact.
Let now J be a subset of the index set I , such that for every i ∈ I there is a j ∈ J with j � i. Then J gives rise

to the same inverse limit. This is used in the following: Let X and Y be the inverse limits of the inverse systems
(Xi,φ

i
k; i ∈ I ) and (Yj ,ψ

j
m; j ∈ I ), respectively. Then we have

X × Y ∼= lim←− (i,i)(Xi × Yi) ∼= lim←− (i,j)∈I×I (Xi × Yj ). (1.3)

The isomorphism between X × Y and lim←− (i,i)(Xi × Yi) identifies pairs of sequences ((xi), (yi)) ∈ X × Y with the

sequence (xi, yi) ∈ lim←− (i,i)(Xi × Yi). Clearly, the above generalize to any finite Cartesian product of inverse limits.

Finally, let Xi = X for all i and φi
j the identity for all i, j . Then lim←− X can be identified naturally with X (identifying

a constant sequence (x, x, . . .) with x ∈ X).

1.2. Our working example for the notion of inverse limit will be the construction of the p-adic integers. Let p be a
prime number, which will be fixed throughout the paper, and let Z/prZ be the additive group of integers modulo pr .
An element ar ∈ Z/prZ can be written uniquely in the form

ar = k0 + k1p + k2p
2 + · · · + kr−1p

r−1 + prZ,

where k0, . . . , kr−1 ∈ {0,1, . . . , p − 1}. For any r, s ∈ N with r � s we consider the following natural epimorphisms:

θr
s : Z/prZ → Z/psZ, (1.4)

θr
s

(
k0 + k1p + k2p

2 + · · · + kr−1p
r−1 + prZ

) = k0 + k1p + k2p
2 + · · · + ks−1p

s−1 + psZ

(“cutting out” r − s terms). We obtain, thus, the inverse system (Z/prZ, θr
s ) of topological groups, indexed by N. Its

inverse limit, lim←− Z/prZ, is the group of p-adic integers, denoted Zp . Zp is a non-cyclic subgroup of
∏

(Z/prZ) and

it contains no elements of finite order. Zp can be identified with the set of sequences:

Zp = {
(ar ); ar ∈ Z, ar ≡ as (mod ps) whenever r � s

}
. (1.5)

Clearly, for the (n + 1)st entry of an element (ar ) ∈ Zp there are p choices, namely:

ar+1 ∈ {ar + λpr ; λ = 0,1, . . . , p − 1}. (1.6)

On the contrary, there is no choice for the entries before, as as ≡ ar (mod ps) for all s = 1, . . . , r − 1. Elements in Zp

shall be usually denoted as

a← := (a1, a2, a3, . . .) ∈ Zp. (1.7)

1.3. Contrary to embeddings between inverse systems, if each component ρi :Xi → Yi of a morphism between two
inverse systems is onto, the induced map lim←− ρi between the inverse limits is not necessarily onto.

For example, consider the inverse systems (Z, id) and (Z/prZ, θr
s ), both indexed by N, and for each s ∈ N define

the canonical epimorphism

ρs : Z → Z/psZ. (1.8)

Then (ρs; s ∈ N) is a morphism between the two inverse systems. The first inverse limit is isomorphic to Z, while the
second is the set of p-adic integers Zp . Note that the image of lim←− Z in Zp under lim←− ρs consists in all constant tuples

of integers. On the other hand, the tuple (br ), where br = 1 + p + · · · + pr−1 is in Zp but is not constant.
Yet, we have the following very important result.

Lemma 1. (See [8], Lemma 1.1.7.) Let (Xi,φ
i
j ) be an inverse system of topological spaces indexed by a directed set I

and let ρi :X → Xi be compatible surjections from a topological space X onto the spaces Xi (i ∈ I ). Then, either
lim←− Xi = ∅ or the induced mapping ρ = lim←− ρi : lim←− X → lim←− Xi maps lim←− X onto a dense subset of lim←− Xi .
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Proof. For the proof of Lemma 1 consider a non-empty open set V in lim←− Xi of the form (1.1). We have to show that

ρ(X)∩V �= ∅. Indeed, let i0 � i1, . . . , in and let y = (yi) ∈ V . Choose x ∈ X so that ρi0(x) = yi0 . Then ρ(x) ∈ V . �
For example, let ρi denote the restriction on a subset A ⊂ lim←− Xi of the canonical projection of lim←− Xi onto Xi .

Recall that lim←− A can be identified with A. Then we have the following.

Corollary 1. If for a subset A ⊂ lim←− Xi we have ρi(A) = Xi for all i ∈ I , then ρ(lim←− A) is dense in lim←− Xi , where

ρ = lim←− ρi .

Since Z projects onto each factor Z/prZ via the canonical epimorphism (1.8), we obtain the following, as an
application of Corollary 1.

Corollary 2. Z is dense in Zp .

This means that every p-adic integer can be approximated by a sequence of constant sequences. In Section 1.4 we
study further this approximation.

Definition 1. (cf. [8] §2.4.) Let Gi be a group (ring, algebra, et cetera) for all i ∈ I . A subset S ⊂ lim←− Gi is a set of

topological generators of lim←− Gi if the span 〈S〉 is dense in lim←− Gi . If, moreover, S is finite, lim←− Gi is said to be finitely

generated.

For example, the element (1,1, . . .) is a topological generator of Zp , since, by Corollary 2, the cyclic subgroup
〈(1,1, . . .)〉 = Z is dense in Zp .

1.4. As a topological space, Zp is endowed with the induced topology of
∏

(Z/prZ), which builds up from the
discrete topology of each factor Z/prZ. Thus, a basic open set in Zp is of the form {�−1

i (Ui); Ui ⊆ Z/piZ}, where
�i is the restriction of the natural projection of Zp onto Z/piZ. So, for any given element a = (a1, a2, . . .) ∈ Zp we
have that a ∈ �−1

i ({ai}) for all i. Moreover,

�−1
1

({a1}
) = {(

a1, x2, x3, x4, . . .
); x2 ≡ a1 (mod p), xn ≡ xm (mod pm), n � m

}
,

�−1
2

({a2}
) = {

(a1, a2, y3, y4, . . .); y3 ≡ a2 (mod p2), yn ≡ ym (mod pm), n � m
}

....

As we can see, �−1
1 ({a1}) � �−1

2 ({a2}) � · · · .
This implies, in particular, that for ai ∈ Z the constant sequence (ai, ai, . . .) ∈ Zp is contained in infinitely many

open sets, each set being a refinement of the previous one. Recall now, from Corollary 2, that the set of constant
sequences is dense in Zp . Thus, every element a← = (a1, a2, a3, . . .) ∈ Zp can be approximated by a sequence of
constant sequences, the following:

(a1, a1, a1, . . .) ∈ �−1
1

({a1}
)
,

(a1, a2, a2, a2, . . .) = (a2, a2, a2, . . .) ∈ �−1
2

({a2}
)
,

(a1, a2, a3, a3, . . .) = (a3, a3, a3, . . .) ∈ �−1
3

({a3}
)
,

...

(1.9)

since ar ≡ a1 (mod p), for r � 1, ar ≡ a2 (mod p2), for r � 2, and so on. Indeed, (a1, a2, a3, . . .) and (ai, ai, ai, . . .) =
(a1, a2, . . . , ai−1, ai, ai, . . .) are both in �−1

i ({ai}) for all i. Finally, �−1
1 ({a1}) � �−1

2 ({a2}) � · · ·, justifying the
approximation claim. We shall write:

a← = lim
k

(ak). (1.10)

For more details and further reading on inverse limits and the p-adic integers see, for example, [1,8,9,12].
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2. p-Adic framed braids

The aim of this section is to introduce the notion of p-adic framed braids. These are similar to the classical framed
braids but, instead of integral framing, each strand may be colored with a p-adic integer.

2.1. Before starting with our construction we need to digress briefly and recall the definition and the structure of the
classical framed braid group (see, for example, [6]) and the modular framed braid group.

We consider the group Zn with the usual operation:

(a1, . . . , an)(b1, . . . , bn) := (a1 + b1, . . . , an + bn). (2.1)

Zn is generated by the ‘elementary framings’:

fi := (0, . . . ,0,1,0, . . . ,0)

with 1 in the ith position. Then, an element a = (a1, . . . , an) ∈ Zn can be expressed as:

a = f
a1
1 f

a2
2 . . . f an

n .

Let also Bn be the classical braid group on n strands. Bn is generated by the elementary braids σ1, . . . , σn−1, where
σi is the positive crossing between the ith and the (i + 1)st strand. The σi ’s satisfy the well-known braid relations:
σiσj = σjσi , if |i − j | > 1 and σiσi+1σi = σi+1σiσi+1. Recall the symmetric group Sn, generated by the n − 1
elementary transpositions si := (i, i + 1), and let further π be the natural projection of Bn on Sn. We let σ(j) denote
π(σ)(j) for any j = 1,2, . . . , n. In particular, σi(j) = si(j). Using π we define the framed braid group Fn as:

Fn = Zn � Bn,

where the action of Bn on a = (a1, . . . , an) ∈ Zn is given by permutation of the indices:

σ(a) = (aσ(1), . . . , aσ(n)) (σ ∈ Bn). (2.2)

In the above notation, the action of Bn on Zn is given by the multiplicative formula:

σ
(
f

a1
1 f

a2
2 . . . f an

n

) = f
aσ(1)

1 f
aσ(2)

2 . . . f
aσ(n)
n (σ ∈ Bn).

Any word in Fn splits, by construction, into the ‘framing’ part and the ‘braiding’ part. That is, it can be written in
the form

f
k1
1 f

k2
2 . . . f kn

n · σ, where ki ∈ Z, σ ∈ Bn. (2.3)

The multiplication in Fn is defined using the action of Bn on Zn as follows:(
f

a1
1 f

a2
2 . . . f an

n · σ )(
f

b1
1 f

b2
2 . . . f bn

n · τ) := f
a1+bσ(1)

1 f
a2+bσ(2)

2 . . . f
an+bσ(n)
n · στ. (2.4)

Geometrically, an element of Fn is a classical braid on n strands, with each strand decorated on the top by an
integer, its framing. An element of Zn, when this is seen as a subgroup of Fn, is identified with the identity braid on
n strands, each strand being decorated by the corresponding integer of the element. For example, the element fi is
the identity braid with framing 1 on the ith strand and 0 elsewhere, while f

a1
1 f

a2
2 . . . f

an
n is the identity braid with

framings a1, a2, . . . , an. On the other hand, a braid in Bn, when this is seen as a subgroup of Fn, is meant as a framed
braid with all framings 0. Geometrically, the multiplication in the group Fn is the usual concatenation in Bn together
with collecting the total framing of each strand to the top of the final braid. See Fig. 3 for an illustration.

Definition 2. The d-modular (or simply modular) framed braid group on n strands is defined as Fd,n := (Z/dZ)n �

Bn.

The group Fd,n can be considered as the quotient of Fn by imposing the relations

fi
d = 1 (i = 1, . . . , n).

Clearly, Fd,n has the same geometric interpretation as Fn, only that the framings of the n strands are taken from the
cyclic group Z/dZ. Note now that in Fn or in Fd,n the fi ’s can be deduced from f1, setting, for example:

fi := σi−1 . . . σ1f1σ
−1
1 . . . σ−1

i−1.

Then we have the following.
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Fig. 3. Multiplication of framed braids.

Proposition 1. Fn has a presentation with generators f1, σ1, . . . , σn−1 and relations:

f1σj = σjf1 for j > 1,

f1σ1f1σ
−1
1 = σ1f1σ

−1
1 f1,

σi(σi−1 . . . σ1f1σ
−1
1 . . . σ−1

i−1)σ
−1
i = σ−1

i (σi−1 . . . σ1f1σ
−1
1 . . . σ−1

i−1)σi for all i

together with the usual braid relations among the σi ’s.

Proposition 2. Fd,n has the same presentation as Fn, but with the extra relation f d
1 = 1.

2.2. In order to define the p-adic framed braids we would rather pass to multiplicative notation for Z/prZ. Let Cr

denote the multiplicative cyclic group of order pr , generated by the element tr . That is,

Cr := 〈
tr ; t

pr

r = 1
〉
.

Then Z/prZ ∼= Cr . The maps (1.4) of the inverse system (Cr, θ
r
s ) are now defined by:

θr
s :Cr → Cs,

tr �→ ts
(2.5)

whenever r � s. In this notation: θr
s (t

k0+k1p+···+kr−1p
r−1

r ) = t
k0+k1p+···+ks−1p

s−1

s . We have:

Zp = lim←− Cr

and we can write:

Zp =
{
(t

a1
1 , t

a2
2 , . . .) ∈

∏
Ci; ar ∈ Z, ar ≡ as (mod ps) whenever r � s

}
.

The element

t := (t1, t2, . . .) ∈ lim←− Cr (2.6)

corresponds to (1,1, . . .) in the additive notation, so, following the notation of (1.7), we shall write: t a← := (t
a1
1 , t

a2
2 , . . .)

for elements in lim←− Cr = Zp . The element t generates in lim←− Cr the constant sequences. So, we shall write Z = 〈t〉. By

Corollary 2, Z is dense in lim←− Cr and t is a topological generator of lim←− Cr , so an element (t
a1
1 , t

a2
2 , . . .) ∈ Zp can be

approximated by the sequence (tak ) of elements in Z. So, we shall write:

t a← = (
t
a1
1 , t

a2
2 , . . .

) = lim
k

(tak ). (2.7)

For example, for b← = (1,1 + p,1 + p + p2, . . .) in the additive notation we write t b← in the multiplicative notation,

and we have that it can be approximated by the sequence (t, t1+p, t1+p+p2
, . . .). That is:

t b← = (
t1, t

1+p

2 , t
1+p+p2

3 , . . .
) = lim

k
(t1+p+···+pk

). (2.8)
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With the above notation and according to Section 1.2, if t b← = (t
b1
1 , t

b2
2 , . . .) is another element in Zp , the multiplication

in Zp is defined as follows:

t a←t b← := t a←+ b← = (
t
a1+b1
1 , t

a2+b2
2 , . . .

)
(2.9)

and we have the approximation:

t a←t b← = lim
k

(tak+bk ). (2.10)

2.3. Consider now the direct product Cn
r := Cr ×· · ·×Cr (n times). This is an Abelian group with the usual product

operation defined componentwise, generated by the n elements

tr,i := (1, . . . ,1, tr ,1, . . . ,1), (2.11)

where tr is in the ith position and where 1 is the unit element in Cr . In this notation:(
tm1
r , tm2

r , . . . , tmn
r

) = t
m1
r,1 · tm2

r,2 . . . tmn
r,n in Cn

r . (2.12)

Moreover, Cn
r has the presentation:

Cn
r = 〈

tr,1, . . . , tr,n; tr,i tr,j = tr,j tr,i and t
pr

r,i = (1, . . . ,1)
〉
. (2.13)

Using the maps (2.5) of the inverse system (Cr, θ
r
s ) and (2.12) we define componentwise the maps:

πr
s :Cn

r → Cn
s

tr,i �→ ts,i

whenever r � s. Then:

πr
s

(
t
m1
r,1 · tm2

r,2 . . . tmn
r,n

) = t
m1 (mod ps)

s,1 · tm2 (mod ps)

s,2 · · · tmn (mod ps)
s,n . (2.14)

The maps πr
s are obviously group epimorphisms, so (Cn

r ,πr
s ) is an inverse system of topological groups, indexed

by N, and so the inverse limit lim←− Cn
r exists.

Proposition 3. lim←− Cn
r

∼= (lim←− Cr)
n = Zn

p.

Proof. It follows immediately from (1.3). �
Notice now that an element w ∈ lim←− Cn

r can be written as:

w = ((
t
a11
1 , t

a12
1 , . . . , t

a1n

1

)
,

(
t
a21
2 , t

a22
2 , . . . , t

a2n

2

)
, . . .

)
,

= (
t
a11
1,1 t

a12
1,2 . . . t

a1n

1,n , t
a21
2,1 t

a22
2,2 . . . t

a2n

2,n , . . .
)

(by (2.12))

= (
t
a11
1,1 , t

a21
2,1 , . . .

) · (ta12
1,2 , t

a22
2,2 , . . .

)
. . .

(
t
a1n

1,n , t
a2n

2,n , . . .
)

(by product operation)

= (
t
ar1
r,1 t

ar2
r,2 . . . tarn

r,n

)
r
.

An explicit isomorphism between lim←− Cn
r and Zp is then given by the map:

w �→ ((
t
a11
1 , t

a21
2 , . . .

)
,
(
t
a12
1 , t

a22
2 , . . .

)
, . . . ,

(
t
a1n

1 , t
a2n

2 , . . .
))

Thus, we have the identification:(
t
ar1
r,1 t

ar2
r,2 . . . tarn

r,n

)
r

.= ((
t
a11
1 , t

a21
2 , . . .

)
,
(
t
a12
1 , t

a22
2 , . . .

)
, . . . ,

(
t
a1n

1 , t
a2n

2 , . . .
))

. (2.15)

In particular, the following elements get identified, for i = 1, . . . , n:

lim←− Cn
r � (tr,i )r

.= (
(1, 1, . . .), . . . , (t1, t2, . . .), . . . , (1, 1, . . .)

) ∈ (lim←− Cr)
n,

where the sequence (t1, t2, . . .) is in the ith position. Set now 1 := (1,1, . . .) and t = (t1, t2, . . .) (recall (2.6)) in lim←− Cr

and denote:

ti := (1, . . . ,1, t,1, . . . ,1) ∈ (lim←− Cr)
n, (2.16)
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where t is in the ith position. Then we have the identifications:

lim←− Cn
r � (tr,i )r

.= ti ∈ Zn
p. (2.17)

Thus, with the above notation and with the notation of (2.7) we can rewrite the identification (2.15) as follows, for
ai← = (ari)r :

lim←− Cn
r � w = (

t
ar1
r,1 t

ar2
r,2 . . . tarn

r,n

)
r

.= (ta1←, ta2←, . . . , tan←) = t
a1←
1 t

a2←
2 . . . t

an←
n ∈ Zn

p. (2.18)

Lemma 2. The identification in lim←− Cn
r of the set X = {t1, . . . , tn} ⊂ Zn

p is a set of topological generators of lim←− Cn
r .

Equivalently, the identification in lim←− Cn
r of the subgroup Zn = 〈X〉 of Zn

p is dense in lim←− Cn
r .

Proof. By Corollary 2 and by Definition 1, 〈ti〉 is clearly dense in the ith factor ({1}×· · ·×{1}×Zp ×{1}×· · ·×{1})
of Zn

p . The result now follows from Corollary 2 and the identification (2.18). �
For example, by (2.16) and (2.17), and by the approximation (2.7), we have the approximation of (t

ar

r,i )r ∈ lim←− Cn
r :

(
t
ar

r,i

)
r

.= ti
a← = lim

k

(
ti ak

) .= lim
k

[(
t
ak

r,i

)
r

]
. (2.19)

In general, for an element in Zn
p we have, by (2.18), (2.7) and (2.19), the following approximation, where ai← = (ari)r :

Zn
p � t

a1←
1 t

a2←
2 . . . t

an←
n = lim

k

(
tak1
1 tak2

2 . . . takn
n

) = lim
k

(tak1 , tak2 , . . . , takn). (2.20)

Consequently, for the product of two elements in Zn
p we have by (2.10) the following approximation, where bi← =

(bri)r :

(
t
a1←
1 . . . t

an←
n

) (
t
b1←
1 . . . t

bn←
n

) = lim
k

(
tak1+bk1
1 . . . takn+bkn

n

)
. (2.21)

Hence, for an element w ∈ lim←− Cn
r , w = (t

ar1
r,1 t

ar2
r,2 . . . t

arn
r,n )r

.= t
a1←
1 t

a2←
2 . . . t

an←
n we obtain, by (2.18), (2.19) and (2.20), the

approximation:

lim←− Cn
r � (

t
ar1
r,1 t

ar2
r,2 . . . tarn

r,n

)
r
= lim

k

[(
t
ak1
r,1 t

ak2
r,2 . . . takn

r,n

)
r

]
(2.22)

and for the product of two elements in lim←− Cn
r we have the approximation:

(
t
ar1
r,1 . . . tarn

r,n

)
r

(
t
br1
r,1 . . . tabn

r,n

)
r
= lim

k

[(
t
ak1+bk1
r,1 . . . taknbkn

r,n

)
r

]
. (2.23)

2.4. p-Adic framed braids. In order to introduce the inverse limits in the construction of framed braids we start
the construction from the beginning. Consider the Cartesian product Cn

r × Bn. Using the maps (2.14), define for any
r, s ∈ N with r � s the surjective maps:

πr
s × id :Cn

r × Bn → Cn
s × Bn,(

t
ar1
r,1 t

ar2
r,2 . . . t

arn
r,n , σ

) �→ (
t
as1
s,1 t

as2
s,2 . . . t

asn
s,n , σ

) (2.24)

for any σ ∈ Bn and for any exponents satisfying ari ≡ asi (mod ps). Then we have the following.

Proposition 4. (Cn
r × Bn, πr

s × id) is an inverse system of topological spaces, indexed by N and we have:

lim←−
(
Cn

r × Bn

) ∼= lim←− Cn
r × Bn

∼= Zn
p × Bn.

Moreover, the identification in lim←−(Cn
r × Bn) of Zn × Bn is dense in lim←−(Cn

r × Bn) and Zn × Bn is dense in Zn
p × Bn.
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Proof. Since the maps πr
s are maps of the inverse system (Cn

r ,πr
s ), it follows immediately that (Cn

r ×Bn, πr
s × id) is

an inverse system of topological spaces. An element in lim←−(Cn
r ×Bn) is a sequence of the form ((w1, σ ), (w2, σ ), . . .),

where σ ∈ Bn and where w1 ∈ Cn
1 ,w2 ∈ Cn

2 , . . . , such that πr
s (wr) = ws whenever r � s. Identifying it with the pair of

sequences ((w1,w2, . . .), (σ, σ, . . .)) ∈ lim←− Cn
r × lim←− Bn, where lim←− Bn arises as the inverse limit of the trivial inverse

system (Bn, id), induces the bijection between lim←−(Cn
r × Bn) and lim←− Cn

r × Bn:

lim←−
(
Cn

r × Bn

) � (
(w1, σ ), (w2, σ ), . . .

) .= (
(w1,w2, . . .), σ

) ∈ lim←− Cn
r × Bn, (2.25)

where the natural identification between lim←− Bn and Bn is induced by the identification (σ,σ, . . .) = σ . So the assertion

lim←−(Cn
r × Bn) ∼= lim←− Cn

r × Bn is proved. Moreover, by (2.15), lim←− Cn
r × Bn

∼= Zn
p × Bn.

By Lemma 2, and by Corollary 2, the identification of Zn = 〈t1, t2, . . . , tn〉 in lim←− Cn
r projects surjectively on

each factor Cn
r of the inverse system (Cn

r , πr
s ). Extending the projection by the identity map on Bn implies that the

identification of Zn × Bn projects surjectively on each factor Cn
r × Bn of the inverse system (Cn

r × Bn,π
r
s × id).

Hence, by Corollary 1, the identification of Zn × Bn is dense in lim←−(Cn
r × Bn). �

Consider now the action of the group Bn on the group Cn
r by permutation, as defined in (2.2). For the case d = pr

and with the above notation, we have that Cn
r � Bn =Fpr ,n, the modular framed braid group with the operation (2.4)

(in additive notation).

Remark 1. The generator fi of Fpr ,n (Proposition 2) in the additive notation corresponds to the generator tr,i of
Cn

r . The generators of Cn
r � Bn = Fpr ,n are the n elementary framings tr,1, . . . , tr,n and the n − 1 elementary braids

σ1, . . . , σn−1.

Further, use the maps (2.24) of the inverse system (Cn
r × Bn, πr

s × id) to define:

πr
s · id :Fpr ,n → Fps,n,

(tr,i , id) �→ (ts,i , id),(
(1, . . . ,1), σi

) �→ (
(1, . . . ,1), σi

)
,

(2.26)

whenever r � s.

Lemma 3. (Fpr ,n,π
r
s · id) is an inverse system of topological groups, indexed by N.

Proof. On the level of the sets Cn
r × Bn, the map πr

s · id is πr
s × id. We shall show that πr

s · id is a group homomor-
phism. Indeed, let (x, σ ), (y, τ ) ∈ Cn

r � Bn. Then we have:(
πr

s · id
)[

(x, σ ), (y, τ )
] = (

πr
s · id

)(
x σ(y), στ

) = (
πr

s

(
x σ(y)

)
, σ τ

)
(in Cn

r )= (
πr

s (x)πr
s

(
σ(y)

)
, σ τ

) (πr
s ◦σ=σ◦πr

s )= (
πr

s (x)σ
(
πr

s (y)
)
, σ τ

)
= (

πr
s (x), σ

) · (πr
s (y)τ

) = (
πr

s · id
)
(x, σ ) · (πr

s · id
)
(y, τ ).

Hence, (Fpr ,n,π
r
s · id) is an inverse system of topological groups. �

Definition 3. The p-adic framed braid group on n strands F∞,n is defined to be the inverse limit of the inverse system
(Fpr ,n,π

r
s · id), that is:

F∞,n := lim←−Fpr ,n = lim←−
(
Cn

r � Bn

)
.

Elements of F∞,n shall be denoted β←.

Remark 2. F∞,n could have alternatively been defined as the semidirect product Zn
p � Bn. In fact, the two groups are

isomorphic, as the following theorem states. Our definition, though, leads naturally to the construction of the p-adic
Yokonuma–Hecke algebras, since the classical Yokonuma–Hecke algebras are quotients of the modular framed braid
groups (see Section 3).
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Theorem 1. There are group isomorphisms:

F∞,n
∼= Zn

p � Bn
∼= lim←− Cn

r � Bn.

Moreover, Fn is dense in Zn
p × Bn and the identification in F∞,n of Fn = Zn � Bn is dense in F∞,n. Finally, the

identification in F∞,n of the set A = {t1, σ1, . . . , σn−1} ⊂Fn is a set of topological generators of F∞,n.

Proof. The second isomorphism is clear from Proposition 3. We will prove the first one. On the right-hand side Bn

acts on Zn
p by permutation, that is, a σ ∈ Bn permutes accordingly the positions of an n-tuple of p-adic integers. We

consider the bijection:

α :F∞,n → Zn
p � Bn

defined by combining (2.25) and (2.15). More precisely:
(
(w1, σ ), (w2, σ ), . . .

) α�→ ([
(w11,w21, . . .), (w12,w22, . . .), . . . , (w1n,w2n, . . .)

]
, σ

)
where wr = (wr1,wr2, . . . ,wrn) ∈ Cn

r .

Claim. α is a group homomorphism.

Indeed, let x = ((w1, σ ), (w2, σ ), . . .) and y = ((μ1, τ ), (μ2, τ ), . . .) ∈ F∞,n, where μr = (μr1,μr2, . . . ,μrn) ∈
Cn

r . Then:

xy = (
(w1, σ ), (w2, σ ), . . .

) · ((μ1, τ ), (μ2, τ ), . . .
)

= (
(w1, σ )(μ1, τ ), (w2, σ )(μ2, τ ), . . .

)
= ((

w1 σ(μ1), στ
)
,
(
w2 σ(μ2), στ

)
, . . .

)
= ([

(w11μ1σ(1), . . . ,w1nμ1σ(n)), σ τ
]
,
[
(w21μ2σ(1), . . . ,w2nμ2σ(n)), σ τ

]
, . . .

)
.

Hence,

α(xy) = ([
(w11μ1σ(1),w21μ2σ(1), . . .), . . . , (w1nμ1σ(n),w2nμ2σ(n), . . .)

]
, σ τ

)
.

On the other hand:

α(x)α(y) = ([
(w11, . . .), . . . , (w1n, . . .)

]
, σ

) · ([(μ11, . . .), . . . , (μ1n, . . .)
]
, τ

)
= ([

(w11, . . .), . . . , (w1n, . . .)
]
σ
[
(μ11, . . .), . . . , (μ1n, . . .)

]
, σ τ

)
= ([

(w11, . . .), . . . , (w1n, . . .)
] [

(μ1σ(1), . . .), . . . , (μ1σ(n), . . .)
]
, σ τ

)
= ([

(w11, . . .) (μ1σ(1), . . .), . . . , (w1n, . . .) (μ1σ(n), . . .)
]
, σ τ

)
= ([

(w11μ1σ(1), . . .), . . . , (w1nμ1σ(n), . . .)
]
, σ τ

) = α(xy).

Further, Zn � Bn is identical as set to Zn × Bn. By Proposition 4, Zn × Bn is dense in Zn
p × Bn, which in turn is

identical as set to Zn
p � Bn. With similar reasoning the identification in F∞,n of Fn = Zn � Bn is dense in F∞,n.

For the last statement of the theorem, we only need to observe that the generators (2.16) of Zn are the multiplicative
versions of the generators fi of Fn given in Section 2.1. Therefore, the span 〈A〉 is isomorphic to the classical framed
braid group Fn. So, the identification of A in F∞,n is a set of topological generators for F∞,n. �

In the sequel we will not distinguish between Zn
p � Bn and F∞,n.

Remark 3. The fact that Zp and Bn contain no elements of finite order imply that F∞,n
∼= Zn

p � Bn contains no
elements of finite order either. In particular, the modular relations for the framing are not valid in F∞,n.
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Fig. 4. A p-adic framed braid.

Fig. 5. A p-adic identity framed braid.

Fig. 6. Multiplication of p-adic framed braids in F∞,n.

2.5. Geometric interpretations. By Definition 3 a p-adic framed braid is an infinite sequence of the same braid σ ∈
Bn, such that the r th braid of the sequence gets framed in the modular framed braid group Fpr ,n (recall Definition 2)
with the framings (ar1, ar2, . . . , arn) ∈ (Z/Zpr )n, where ai← = (ari)r . By the isomorphism in Theorem 1, a p-adic
framed braid can be identified with the element:

t
a1←
1 t

a2←
2 . . . t

an←
n · σ ∈ Zn

p � Bn, (2.27)

that is, the braid σ ∈ Bn with each strand decorated with a p-adic integer. This in turn can be interpreted as an infinite

framed cabling of a braid σ ∈ Bn. See Fig. 4. In particular, the element t
a1←
1 t

a2←
2 . . . t

an←
n ∈ Zn

p can be viewed as the identity
braid in Bn, having the p-adic framing ai← on the ith strand, see Fig. 5.

Remark 4. By (2.3) for classical framed braids, by Theorem 1 and by (2.27) a p-adic framed braid splits into the
‘p-adic framing’ part and the ‘braiding’ part.

The operation in F∞,n corresponds geometrically to concatenating in each position of the infinite sequence the two
corresponding modular framed braids and collecting the total modular framings to the top (recall Section 2.1, (2.1)
and Fig. 3). See Fig. 6 for an illustration.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

J. Juyumaya, S. Lambropoulou / Topology and its Applications 154 (2007) 1804–1826 1817

Fig. 7. Multiplication of p-adic framed braids in Zn
p � Bn.

Fig. 8. The approximation of an one-strand p-adic framed braid.

On the other hand, by (2.9), the multiplication between two elements in Zn
p � Bn is defined as follows:

(
t
a1←
1 . . . t

an←
n · σ ) · (t

b1←
1 . . . t

bn←
n · τ) = t

a1←+bσ (1)←
1 . . . t

an←+bσ (n)←
n · στ (2.28)

where ai← = (ari)r and bi← = (bri)r . This corresponds geometrically to concatenating the two braids σ and τ with
p-adic framings (a1←, . . . , an←) and (b1←, . . . , bn←), respectively, and collecting the total p-adic framings to the top. The
resulting braid will then have the p-adic framings (a1← + bσ(1)← , . . . , an← + bσ(n)← ), where ai← + bσ(i)← = (ari + brσ(i))r ,

according to (2.9). See Fig. 7.
As we said, we consider F∞,n

.= Zn
p �Bn. So, the expression (2.27) and its corresponding geometric interpretation

is what we will have in mind from now on. In this context, if b← ∈ Zn
p � Bn, such that all framings of b← are con-

stant sequences (k1), . . . , (kn) ∈ Zn
p for (ki ∈ Z), then b← ∈ Zn � Bn and it is a classical framed braid with framings

k1, . . . , kn. Of course, a classical braid in Bn is meant as a p-adic framed braid with all framings 0.

2.6. Approximations. By Theorem 1, any element w = (t
ar1
r,1 t

ar2
r,2 . . . t

arn
r,n · σ)r in F∞,n can be approximated as

follows:

w = lim
k

(wk), (2.29)

where wk is the constant sequence (t
ak1
r,1 t

ak2
r,2 . . . t

akn
r,n · σ)r ∈ F∞,n. The product of two elements is approximated ac-

cording to (2.29) and (2.23). Further, the fact thatFn is dense in Zn
p �Bn

.=F∞,n, means that any p-adic framed braid

can be approximated by a sequence of classical framed braids. More precisely, let β← = t
a1←
1 t

a2←
2 . . . t

an←
n · σ ∈ Zn

p � Bn,
where ai← = (ari)r . Then, by (2.20), we have:

β← = lim
k

(βk), (2.30)

where βk = tak1
1 tak2

2 . . . takn
n · σ ∈ Fn, and where aki = (aki, aki , . . .), the constant sequence in Z ⊂ Zp . For example,

the p-adic braid t a← for a← = (a1, a2, . . .), can be approximated as shown in Fig. 8, where ak = (ak, ak, . . .) ∈ Z ⊂ Zp .
See Fig. 9 for a generic example. Of course, the product of two p-adic framed braids is approximated accordingly, by
(2.30) and (2.21).
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Fig. 9. The approximation of a p-adic framed braid.

3. Quotient algebras from p-adic framed braids

In this section we define the main algebra studied in the paper. This algebra arises as the inverse limit of an
inverse system of so-called Yokonuma–Hecke algebras. In the sequel we fix an element u in C\{0,1} and we shall
denote C[G] (or simply CG) the group algebra of a group G.

3.1. Let H = 〈h〉 be a finite cyclic group of order d . As in (2.11) we define the element hi in Hn := H × · · ·× H (n
copies) as the element having h on the ith component and 1 elsewhere. So, for any element (ha1 , . . . , han) ∈ Hn we
can write

(ha1 , . . . , han) = h
a1
1 . . . han

n .

For any i, j with i �= j , we define the subgroups Hi,j of Hn as follows:

Hi,j := 〈
hih

−1
j

〉
. (3.1)

Clearly, Hi,j is isomorphic to the group H . In C[Hn] = CHn we define the following elements:

ed,i,j := 1

d

∑
x∈Hi,j

x ∈ CHn

or, equivalently:

ed,i,j = 1

d

∑
1�m�d

hm
i h−m

j .

Lemma 4. For any i, j with i �= j the elements ed,i,j are idempotents.

Proof. It is enough to observe that ed,i,j is the average on the elements of the group Hi,j . Indeed,

(ed,i,j )
2 = 1

d

∑
y∈Hi,j

y
1

d

∑
x∈Hi,j

x = 1

d2

∑
y∈Hi,j

∑
x∈Hi,j

yx = d

d2

∑
x′∈Hi,j

x′ = ed,i,j . �

Remark 5. Notice that Hi,j = Hj,i . In the case j = i + 1 we denote Hi,i+1 by Hi and ed,i,i+1 by ed,i .

3.2. Consider now the modular framed braid group Fd,n (Definition 2). The C-algebra CHn is a subalgebra of the
group algebra CFd,n and the elements ed,i,j are still idempotents in CFd,n. The main commutation relations among
them and the elementary braids σi are given in the proposition below.

Proposition 5. For any i, j ∈ {1, . . . , n − 1} we have:

(1) σ±1
i ed,j = ed,j σ

±1
i , for all j �= i − 1, i + 1.

(2) σ±1
i ed,j = ed,i,j σ

±1
i , for |i − j | = 1.

(3) ed,j σ
±1
i = σ±1

i ed,i,j , for |i − j | = 1.
(4) ed,i h

a1
1 . . . h

an
n = ed,i h

a1
1 . . . h

ai−1
i−1 (h

ai+1
i h

ai

i+1)h
ai+2
i+2 . . . h

an
n .
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Proof. (1) If j �= i, i ± 1, the claim follows from the fact that σi commutes with hj . Let now j = i. We have σied,i =
σid

−1 ∑
s hs

i h
−s
i+1. Note that σih

s
i h

−s
i+1 = hs

i+1σih
−s
i+1 = hs

i+1h
−s
i σi . Then

σied,i = 1

d

(∑
s

hs
i+1h

−s
i

)
σi = ed,iσi .

(2) Let j = i + 1. We have that σih
s
i+1h

−s
i+2 = hs

i σih
−s
i+2 = hs

i f
−s
i+2σi. So, we deduce: σied,i+1 = d−1 ∑

s hs
i h

−s
i+2σi.

Claim 3 follows similarly as Claim 2.
(4) Setting c := h

a1
1 . . . h

an
n we have:

hs
i h

−s
i+1c = h

a1
1 . . . h

ai−1
i−1 h

ai+s
i h

ai+1−s

i+1 h
ai+2
i+2 . . . han

n

= h
a1
1 . . . h

ai−1
i−1 h

(s+ai−ai+1)+ai+1
i h

−(s+ai−ai+1)+ai

i+1 h
ai+2
i+2 . . . han

n

= h
a1
1 . . . h

ai−1
i−1 h

(s+ai−ai+1)

i h
ai+1
i h

−(s+ai−ai+1)

i+1 h
ai

i+1h
ai+2
i+2 . . . han

n

= (
h

(s+ai−ai+1)

i h
−(s+ai−ai+1)

i+1

)
h

a1
1 . . . h

ai−1
i−1 h

ai+1
i h

ai

i+1h
ai+2
i+2 . . . han

n .

Therefore,

ed,ic = 1

d

∑
0�s�d−1

hs
i h

−s
i+1c

=
(

1

d

∑
s

h
(s+ai−ai+1)

i h
−(s+ai−ai+1)

i+1

)
h

a1
1 . . . h

ai−1
i−1

(
h

ai+1
i h

ai

i+1

)
h

ai+2
i+2 . . . han

n

= ed,ih
a1
1 . . . h

ai−1
i−1

(
h

ai+1
i h

ai

i+1

)
h

ai+2
i+2 . . . han

n . �
Remark 6. The elements hi correspond to the elementary framings fi in the additive notation of Section 2.1 and, for
d = pr , to the elements tr,i defined in (2.11).

3.3. The Yokonuma–Hecke (Y-H) algebras were introduced by Yokonuma [13] in the context of Chevalley groups,
as generalizations of the Iwahori–Hecke algebras. More precisely, the Iwahori–Hecke algebra associated to a finite
Chevalley group G is the centralizer algebra associated to the permutation representation of G with respect to a Borel
subgroup of G. The Y-H algebra is the centralizer algebra associated to the permutation representation of G with
respect to a unipotent subgroup of G. So, the Y-H algebra can be also regarded as a particular case of a unipotent
algebra. See [10] for the general definition of unipotent algebras.

Definition 4. We define the Yokonuma–Hecke algebra of type A, Yd,n(u), as the quotient of the group algebra of the
modular framed braid group Fd,n under the quadratic relations:

g2
i = 1 + (u − 1) ed,i (1 − gi) (i = 1, . . . , n − 1). (3.2)

More precisely, Yd,n(u) is defined as follows:

Yd,n(u) := CFd,n

〈σ 2
i − 1 − (u − 1)ed,i(1 − σi), i = 1, . . . , n − 1〉 .

Corresponding now σi ∈ CFd,n to gi ∈ Yd,n(u) and fi ∈Fd,n to hi ∈ Yd,n(u), we obtain from the above and from
Proposition 2 a presentation of Yd,n(u), by setting:

hi = gi . . . g1h1g
−1
1 . . . g−1

i . (3.3)

Indeed, we have:

Theorem 2. The algebra Yd,n(u) can be presented with the generators h1, g1, . . . , gn−1 and the following relations:

(1) Braid relations among the gi ’s.
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(2) h1gi = gih1, for i � 2.
(3) h1g1h1g

−1
1 = g1h1g

−1
1 h1.

(4) hd
1 = 1.

(5) gi(gi−1 . . . g1h1g
−1
1 . . . g−1

i−1)g
−1
i = g−1

i (gi−1 . . . g1h1g
−1
1 . . . g−1

i−1)gi .

(6) g2
i = 1 + (u − 1)ed,i(1 − gi) (i = 1, . . . , n − 1).

In this above notation, we may rewrite the elements ed,i ∈ Yd,n(u) as:

ed,i = 1

d

∑
1�m�d

(
g−1

i−1 . . . g−1
1 hm

1 g1 . . . gi−1
)(

gi . . . g1h
−m
1 g−1

1 . . . g−1
i

)
.

Remark 7. The Y-H algebra Yd,n(u) can be also thought of as a u-deformation of the group algebra C[Hn � Sn] in
the following sense: The algebra C[Hn � Sn] = C[Hn � Sn] contains CHn as a subalgebra, so the elements ed,i are
also in C[Hn � Sn]. We correspond now the generator si ∈ C[Hn � Sn] to the generator gi ∈ Yd,n(u), the generator
h1 ∈ C[Hn � Sn] to the generator h1 ∈ Yd,n(u) and ed,i ∈ C[Hn � Sn] to ed,i ∈ Yd,n(u) (we keep the same notation).
Then, the canonical presentation of C[Hn � Sn] gives rise to a presentation of Yd,n(u) (the same as in Theorem 2) by
imposing the quadratic relations (3.2) instead of the relations s2

i = 1.

Remark 8. The fact that the element ed,i is an idempotent makes it possible to define in Yd,n(u) the inverse of gi .
Indeed, multiplying relation (3.2) by gi gives g3

i = gi + (u − 1) ed,igi − (u − 1) ed,i g
2
i . Replacing now g2

i by its
expression (3.2) and using the fact that ed,i is an idempotent, we obtain that g3

i = gi − (u2 − u)ed,i + (u2 − u)ed,igi .
Using again (3.2) we substitute ed,igi by (u− 1)−1(1 + (u− 1)ed,i − g2

i ), so we have g3
i = u+ gi −ug2

i . Multiplying
the latter by g−1

i we deduce g−1
i = u−1(g2

i + ugi − 1) and, using (3.2) once more, we finally obtain:

g−1
i = gi − (u−1 − 1) ed,i + (u−1 − 1) ed,i gi . (3.4)

3.4. In this part we give a diagrammatic interpretation of the elements ed,i and of the quadratic relations in Yd,n(u).
The elements ed,i seen as elements of CFd,n can be interpreted geometrically as the average of the sum of d identity
framed braids with framings as shown in Fig. 10.

Similarly, the quadratic relations g2
i = 1+ (u−1) ed,i − (u−1)ed,igi can be also considered as relations in CFd,n.

In Fig. 11 we illustrate the relation for g2
1 in CFd,3. Note that the effect of ed,i on the identity element or on gi is to

produce d copies and frame appropriately the ith and (i + 1)st strand. Similar is the effect of ed,i on any braid. In
Fig. 12 we illustrate the quadratic relation in a compact form. Finally, in Fig. 13 we illustrate the equation for g−1

1
in CFd,3.

Remark 9. Note the resemblance of relation (3.4) to the skein relations used for defining classical quantum link
invariants. For d = 1 the relation gives rise to the skein relation of the 2-variable Jones polynomial (HOMFLYPT),
that arises from the quadratic relation of the Hecke algebra of type A, see [3]. In fact, Y1,n(u) coincides with the
Hecke algebra of type A.

3.5. The p-adic Yokonuma–Hecke algebra. We shall now explain our construction of the p-adic Yokonuma–Hecke
algebra Y∞,n(u). The C-algebra Y∞,n(u) will be defined as the inverse limit of an inverse system of the Y-H algebras

Fig. 10. The elements ed,i .
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Fig. 11. Geometric interpretation of g2
1 .

Fig. 12. g2
i

= 1 + (u − 1) ed,i (1 − gi ).

Fig. 13. Geometric interpretation of g−1
1 .

Ypr ,n(u), r ∈ N, where p is a fixed prime number. On this family of Y-H algebras we consider epimorphisms

ϕr
s : Ypr ,n(u) → Yps,n(u) (r � s),

induced from the group homomorphisms πr
s · id defined in (2.26). More precisely, extending πr

s · id linearly, yields a
natural algebra epimorphism

φr
s : CFpr ,n → CFps,n (r � s).

It is a routine to check the following lemma.

Lemma 5. (CFpr ,n, φ
r
s ) is an inverse system of rings, indexed by N.

Note that the natural embedding ιr :Fpr ,n ↪→ CFpr ,n induces a natural embedding lim←− ιr :F∞,n ↪→ lim←− CFpr ,n.

So, up to identifications, we have the inclusions:

Fn ⊆F∞,n ⊆ lim←− CFpr ,n.

Recall now that t1 := (t,1, . . . ,1) and σi := (σi, σi, . . .) in lim←− CFpr ,n. Then we have the following result:

Proposition 6. The set X = {t1, σ1, . . . , σn−1} is a set of topological generators of the algebra lim←− CFpr ,n. In partic-

ular, the subalgebra CFn is dense in lim←− CFpr ,n.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

1822 J. Juyumaya, S. Lambropoulou / Topology and its Applications 154 (2007) 1804–1826

Proof. By Proposition 1, the set X is a set of generators for the group Fn, hence X spans the algebra CFn. Now,
the mapping σi �→ σi , t1 �→ tr,1 defines an epimorphism ηr : CFn → CFpr ,n, for any r ∈ N. Notice now that ηr is
surjective and that we have the following commutative diagram:

1 CFn

ηr

lim←− CFpr ,n

ξr

CFpr ,n CFpr ,n

where ξr is the natural projection. Then the proof follows from Corollary 1. �
Recall now the subgroups Hi,j defined in (3.1). With the notations of Section 2 for H = Cr we denote these

subgroups by Hr,i,j and we have:

Hr,i,j = 〈
tr,i t

−1
r,i+1

〉
.

Hence epr ,i,j ∈ CCn
r . Recalling also that Fpr ,n = Cn

r � Bn, we have the following.

Proposition 7. For any i, j with i �= j and for s � r , we have:

(1) The homomorphism φr
s maps Hr,i,j onto Hs,i,j .

(2) The kernel of the restriction of φr
s on Hr,i,j has order pr−s .

(3) φr
s (epr ,i,j ) = eps,i,j .

Proof. Since φr
s (tr,i t

−1
r,j ) = ts,i t

−1
s,j Claim 1 follows. Claim 2 is clear by the fundamental theorem of homomorphisms

for groups. Finally, Claim 3 follows directly from Claims 1 and 2. �
Defining now in CFpr ,n the elements:

εr,i := σ 2
i − 1 − (u − 1)epr ,i(1 − σi) ∈ CFpr ,n (i = 1, . . . , n − 1),

and the ideal

Ipr ,n = 〈εr,i; i = 1, . . . , n − 1〉.
We have that

Ypr ,n(u) = CFpr ,n

Ipr ,n

.

Using (3) of Proposition 7 we obtain the following lemma.

Lemma 6. For all i and for s � r , we have: φr
s (Ipr ,n) = Ips,n.

According to Lemma 6, we obtain the following commutative diagram of rings:

CFpr ,n
φr

s

ρr

CFps,n

ρs

Ypr ,n(u)
ϕr

s Yps,n(u)

where ρr and ρs are the canonical epimorphisms and ϕr
s is defined via φr

s as:

ϕr
s (x + Ipr ,n) := φr

s (x) + Ips,n. (3.5)

Recall that Ker(ρr) = Ipr ,n. Thus, the inverse system (CFpr ,n, φ
r
s ) induces the inverse system(

Ypr ,n(u),ϕr
s

)
indexed by N.
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Definition 5. The p-adic Yokonuma–Hecke algebra Y∞,n(u) is defined as the inverse limit of this last inverse system.

Y∞,n(u) := lim←− Ypr ,n(u).

The algebra Y∞,n(u) is equipped with canonical epimorphisms:

Ξr : Y∞,n(u) → Ypr ,n(u),

such that ϕr
s ◦ Ξr = Ξs .

3.6. We shall now try to understand better the structure of Y∞,n(u). By Lemma 6 the restriction of φr
s to Ipr ,n yields

the inverse system (Ipr ,n, φ
r
s ). Furthermore, for any r we have the following exact sequence:

0 → Ipr ,n
ιr→CFpr ,n

ρr→Ypr ,n(u) → 0.

Then, by (1.2), we obtain the exact sequence:

0 → lim←− Ipr ,n
ι→ lim←− CFpr ,n

ρ→Y∞,n(u),

where ι := lim←− ιr and ρ := lim←− ρr . Hence, and since lim←− Ipr ,n is an ideal in lim←− CFpr ,n, we have:

lim←− CFpr ,n

lim←− Ipr ,n

∼= ρ(lim←− CFpr ,n).

At this writing it is not clear whether the map ρ is a surjection or not. Yet, we have the following result.

Proposition 8. ρ(lim←− CFpr ,n) is dense in Y∞,n(u).

Proof. The proof is again an application of Corollary 1. Indeed, define the map θ :ρ(x) �→ (ρr ◦ ξr )(x), for x =
(xr ) ∈ lim←− CFpr ,n. Clearly θ is a surjective map. Also, we have: (ρr ◦ ξr )(x) = ρr(ξr (x)) = ρr(xr) = xr + Ipr ,n =
Ξr((xr + Ipr ,n)r∈N) = Ξr(ρr(xr)) = (Ξr ◦ lim←− ρr)(x). Hence the proposition follows. �

Proposition 8 tells us that, although Y∞,n(u) may not arise as a quotient of lim←− CFpr ,n, yet it does contain a dense

quotient. This means that, if we find a set of topological generators for ρ(lim←− CFpr ,n) we will have a set of topological

generators for Y∞,n(u). In order to do that, we define first certain idempotents ei,j in lim←− CFpr ,n that play analogous

role to the idempontent epr ,i,j . According to (3) in Proposition 7 we can define the following elements:

ei,j := (ep,i,j , ep2,i,j , . . .) ∈ lim←− CCn
r ⊆ lim←− CFpr ,n, (3.6)

where i, j ∈ {1, . . . n − 1} and i �= j . For j = i + 1 we shall denote:

ei := ei,i+1.

Notice that ei,j = ej,i . According to Remark 6 and Definition 4, epr ,i,j is also an element in Ypr ,n(u). So (3.6) defines
an element in Y∞,n(u) (with same notation) and we have from the diagram below:

lim←− CCn
r lim←− CFpr ,n

ρ

ξr

Y∞,n(u)

Ξr

CCn
r CFpr ,n

ρr Ypr ,n(u) 1

(Ξr ◦ ρ)(ei,j ) = (ρr ◦ ξr )(ei,j ) = epr ,i,j (for all r).

Lemma 7. For any i, j with i �= j , the elements ei,j ∈ lim←− CFpr ,n are idempotents.
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Proof. The multiplication in lim←− CFpr ,n is defined componentwise, so the proof follows directly from Lemma 4. �
Lemma 8. In lim←− CFpr ,n, we have:

σ 2
i = 1 + (u − 1)ei(1 − σi) mod (lim←− Ipr ,n).

Proof. We must prove that σ 2
i −(1+(u−1)ei(1−σi)) ∈ lim←− Ipr ,n. Recall that σi is the constant sequence (σi, σi, . . .),

hence σ 2
i is the constant sequence (σ 2

i , σ 2
i , . . .). Also, the r th component of the element 1 + (u − 1)ei(1 − σi) ∈

lim←− CFpr ,n is 1 + (u − 1)epr ,i(1 − σi) ∈ CFpr ,n. Therefore, the element σ 2
i − (1 + (u − 1)ei(1 − σi)) is the sequence

(ε1,r , ε2,r , . . .), and εi,r ∈ Ipr ,n. Hence the lemma follows. �
Proposition 9. Setting εi := σ 2

i − 1 − (u − 1)ei + (u − 1)eiσi ∈ lim←− CFpr ,n, we have:

lim←− Ipr ,n = 〈εi; i = 1, . . . , n − 1〉.

Proof. Recall that εi = (εr,i )r∈N. Now, for any i and for any x = (xr ), y = (yr ) ∈ lim←− CFpr ,n we have that xεiy =
(xrεr,i yr ). Furthermore φr

s (xrεr,iyr ) = φr
s (xr )εs,iφ

r
s (yr ) ∈ Ips,n. Thus, xεiy belongs to lim←− Ipr ,n for all i. Hence, the

ideal generated by the εi ’s is contained in lim←− Ipr ,n. Let now w = (wr)r∈N ∈ lim←− Ipr ,n. Then wr = ∑
i yr,iεr,izr,i ,

where yr,i , zr,i ∈ CFpr ,n. Thus, we can write:

w =
∑

i

(yr,i )r (εr,i )r (zr,i )r ∈ lim←− Ipr ,n.

As (yr,i)r , (zr,i )r ∈ lim←− CFpr ,n we obtain w ∈ 〈εi; i = 1, . . . , n − 1〉. �
Recall that, according to our inverse system, the element σi ∈ Bn corresponds to the constant sequence (gi, gi, . . .)

in Y∞,n(u). We denote this sequence by gi . Similarly, the braid σ−1
i ∈ Bn corresponds to the constant sequence

(g−1
i , g−1

i , . . .) in Y∞,n(u) and it shall be denoted by g−1
i . Thus, in ρ(lim←− CFpr ,n) ⊆ Y∞,n(u) the following quadratic

relations holds:

g2
i = 1 + (u − 1)ei(1 − gi) (i = 1, . . . , n − 1).

We define now ti := ρ(ti ) and ei := ρ(ei). Then, from Theorem 2 and Proposition 8, we deduce the following theorem.

Theorem 3. {1, t1, g1, . . . , gn−1} is a set of topological generators of Y∞,n(u). Moreover, these elements satisfy the
following relations:

(1) Braid relations among the gi ’s.
(2) t1gi = git1, for i � 2.
(3) t1g1t1g

−1
1 = g1t1g

−1
1 t1.

(4) gigi−1 . . . g1t1g
−1
1 . . . g−1

i−1)g
−1
i = g−1

i (gi−1 . . . g1t1g
−1
1 . . . g−1

i−1)gi .

(5) g2
i = 1 + (u − 1)ei(1 − gi) (i = 1, . . . , n − 1).

Moreover, as in Proposition 5, we can prove analogous commutation relations for ei . More precisely we have:

Proposition 10. In Y∞,n(u) we have:

(1) g±1
i ej = ejg

±1
i , for j �= i − 1, i + 1.

(2) g±1
i ej = eij g

±1
i , for |i − j | = 1.

(3) ejg
±1
i = g±1

i eij , for |i − j | = 1.
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Proof. The proofs follow directly from Lemma 7 and Proposition 5. �
Remark 10. It is worth observing that Y∞,n(u) can be regarded as a topological deformation of a quotient of the group
algebra CFn, recall Theorem 3. Roughly, the algebra Y∞,n(u) can be described in terms of topological generators, in
the sense of Definition 1, and the same relations as the algebra Yd,n(u) but where the relations hd

i = 1 do not hold.
Consequently, Y∞,n(u) has a set of topological generators which look like the canonical generators of the framed
braid group Fn (recall Proposition 1), but with the addition of the quadratic relation.

3.7. As already noted in the introduction, the advantage of the classical and the p-adic Y-H algebras is that, by
definition of the elements ei , their quadratic relations involve the framing. Using the well-known Iwahori–Hecke
quadratic relations we define the modular and classical framed Hecke algebras:

Hd,n(q) := CFd,n/
〈
σ 2

i − (q − 1)σi − q; i = 1, . . . , n − 1
〉

and

H∞,n(q) := CFn/
〈
σ 2

i − (q − 1)σi − q; i = 1, . . . , n − 1
〉
.

The structure of these algebras is simpler than that of the Y-H algebras. Yet, the framed Hecke algebras are related to
the cyclotomic and ‘generalized’ Hecke algebras of type B (see [7] and references therein) in a similar manner that the
modular and classical framed braid groups are related to the B-type Artin braid group. So, the Markov traces and the
link invariants for the solid torus constructed in [7] by the second author can be adapted here for obtaining invariants
of framed links.

In a sequel paper we construct a p-adic linear Markov trace using the linear Markov traces in [4]. More precisely,
we can prove the following result.

Theorem 4. There exists a unique p-adic linear Markov trace defined as

τ := lim←− τr : Y∞,n+1(u) → lim←− C[Xr ],
where τr is the trace trk of [4] for k = pr and where lim←− C[Xr ] is constructed via appropriate connecting epimor-

phisms: δr
s : C[Xr ] → C[Xs] (see [5]).

Furthermore

τ(ab) = τ(ba),

τ (1) = 1,

τ (agnb) = (z)rτ (ab),

τ (atmn+1b) = (xm)rτ (ab)

for any a, b ∈ Y∞,n(u) and m ∈ Z.

Normalizing all these traces according to the Markov equivalence for classical framed and p-adic framed braids,
we construct invariants of classical and p-adic oriented framed links.

We hope that this new concept of p-adic framed braids and p-adic framed links that we propose, as well as the use
of the Yokonuma–Hecke algebras and our framed and p-adic framed link invariants, will lead to the construction of
new 3-manifold invariants.
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