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Summary

In this present thesis, we study on the theory of knotoids that was introduced
by V. Turaev in 2012, we introduce the theory of braidoids and lastly we apply the
theory of knotoids to the study of proteins. In the first chapter of the thesis, after
a detailed recollection of basic notions of knotoids, we construct new invariants of
knotoids, including the arrow polynomial, the odd writhe, the parity bracket poly-
nomial, the affine index polynomial, and also give an introduction to the theory of
virtual knotoids. These invariants are defined for both classical (knotoids in S2 or
R2) and virtual knotoids in analogy to the corresponding invariants of virtual knots.
We discuss on the virtual closure map that connects the classical knotoid theory to
the virtual knot theory and show it is a non-injective and non-surjective map. We
show that the arrow polynomial that is an oriented generalization of the bracket
polynomial, provides a lower bound estimation for the height (or complexity) in-
variant of knotoids. We then introduce the affine index polynomial of knotoids and
show that the afine index polynomial of a knotoid in S2 is symmetric. We provide
one more lower bound estimation for the height invariant via the affine index poly-
nomial. We compare the two lower bounds for the height invariant provided by the
arrow polynomial and the affine index polynomial with some examples. Addition-
ally, we observe that knotoids are the first knotted objects to admit a non-trivial
parity in the classical setting. We introduce parity invariants using the parity de-
fined; such as the odd writhe and the parity bracket polynomial. We also give a
geometric interpretation of planar knotoids in terms of open ended space curves.
This interpretation later in the last chapter is used for the study of protein chains.
This part covers the results of works with L.H. Kauffman.

In the second chapter, we introduce the theory of braidoids that forms a ‘braided’
counterpart theory for the theory of knotoids. We introduce notions of braidoid di-
agram and isotopy classes of braidoid diagrams, namely, braidoids, and we define
a closure operation on a special class of braidoids namely labeled braidoid dia-
grams. We give two algorithms to turn a knotoid or a multi-knotoid into a labeled
braidoid diagram whose closure is isotopic to the initial (multi-)knotoid. With our
algorithms and defined closure, we obtain a theorem which is analogous to the clas-
sical Alexander theorem for knotoids. After this, we adapt the classical L-moves
on braidoid and labeled braidoid diagrams that generate an extended equivalence
relation on them, called the L-equivalence together with braidoid isotopy. e show
that the L-equivalence provides a bijection between the set of multi-knotoids and
the L-equivalence classes of labeled braidoid diagrams. This provides an analogous
theorem to the L-move analogoue of the Markov theorem for braidoids that we give
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a proof herein. We note that it would not be possible to have such a result without
the concept of the L-moves, since we do not have in hand an algebraic structure for
braidoids. We introduce a set of elementary blocks that any braidoid is composed
of, and we give the defining relations for the ‘multiplication’ of these blocks that
correspond to the braidoid isotopy moves. In this way, we show that braidoids can
be encoded in terms of algebraic expressions. We end this chapter with a discussion
on further questions and directions for braidoids with a small introduction to the
theory of tangloids. This part of the thesis covers the results of the works with
Lambropoulou.

Lastly, we study topological modelings of protein chains bu utilizing the geo-
metric interpretation we give for planar knotoids. We observe that planar knotoids
provide a finer way to understand the entanglement in protein chains than the using
the spherical knotoids and classical modelings utilizing closures for protein chains.
We introduce the notion of bonded knotoids for modelling bonded protein chains.
We study the twist insertion at bonding sites and provide a detection for sequential,
pseudoknot-like and nested bonds by using knotoid invariants, such as the Turaev
loop polynomial and the arrow polynomial. We end the thesis with a proposal of an
algebraic encoding of polymer chains by corresponding braidoids to their knotoid
models. This chapter covers the results of the work with Kauffman, Lambropoulou,
Stasiak, Goundaroulis and Dorier.
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Wake! The sky is light!
let us to the road

again . . .
Companion butterfly!

-Basho−
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Chapter 1

Preliminaries

1.0 Introduction

In this chapter we recall the concepts of virtual knot theory that will be later con-
sulted throughout the discussion in Chapter 2. The virtual knot theory was intro-
duced by Louis Kauffman [28, 29] in 1996 as a generalization of the classical knot
theory. The objects of virtual knot theory are virtual knots and links that are stud-
ied either in (thickened) surfaces of some genus up to an equivalence relation called
the stable-equivalence or in the 2-sphere S2 (equivalently in R2) with the concept
of a virtual crossing up to a combinatorial equivalence relation called the virtual
equivalence. See Figure 1.1 for two presentations of a virtual knot with respect to
two different approaches.

Figure 1.1: The diagrams of a virtual knot in a plane and in a torus

1.1 Basics on virtual knots

Definition 1.1. A virtual link k is an embedding of a finite union of disjoint unit
circles S1 in a thickened orientable surface Σg × [0, 1], of some genus g ≥ 0
The number of circles in this embedding denotes the component number of the
virtual link k. A virtual knot is a one component virtual link.

Definition 1.2. A diagram of a virtual knot k in Σg × I is a generic projection of
k in Σg with finitely many transversal double points that are endowed with over-
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/under-data accordingly to the weaving of k and called crossings of the diagram.

Definition 1.3. Two virtual knots/links k1 and k2 in some thickened surfaces Σg1×I
and Σg2×I are said to be stably-equivalent if their diagrams in surfaces Σ1 and Σ2 are
related to each other by a finite sequence of three Reidemeister moves, orientation
preserving homeomorphisms of the surfaces and addition/removal of 1- handles to
surfaces in the complements of the diagrams.

The combinatorial way of studying virtual knot theory considers virtual knots/links
as represented by virtual knot diagrams with finitely many classical (or real) cross-
ings and virtual crossings that are neither over-crossings nor under-crossings. A
virtual crossing is indicated by two crossing segments with a small circle placed
around the crossing point as depicted in Figure 1.2.

Figure 1.2: A virtual crossing

The equivalence moves on virtual knot/link diagrams, shown in Figure 1.4 are
generated by the Reidemeister moves plus the detour move. The detour move, shown
in Figure 1.3 allows a segment with a consecutive sequence of virtual crossings to
be excised and replaced by any other such a segment with a sequence of virtual
crossings.

Figure 1.3: The detour move
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V Ω1

V Ω2

V Ω3

Figure 1.4: Virtual Ωi=1,2,3-moves and a partial virtual move

Definition 1.4. Virtual knot/link diagrams that can be related to each other by
a finite sequence of the Reidemeister and detour moves are said to be virtually
equivalent or virtually isotopic. A virtual equivalence class of virtual knot/link
diagrams is called a virtual knot/link.

There is a one-to-one correspondence between the topological and the combina-
torial approach to virtual knot theory. Just as non-planar graphs can be embedded
in surfaces of some genus, a virtual knot in the plane can be represented by an em-
bedding of the circle in thickened orientable surfaces without any virtual crossings,
or in the opposite direction, an embedding of the circle in some thickened orientable
surface can be represented by a virtual knot in the plane by regarding virtual cross-
ings as artifacts of the projection of the relating surface to the plane. Precisely, we
have the following theorem.

Theorem 1.5. ( [4]) Two virtual link diagrams are virtually equivalent if and only
if their surface embeddings are stably-equivalent.

The proof of this theorem investigates the transition between the two approaches
by utilizing abstract knot/link diagrams that are uniquely assigned to virtual knot/link
diagrams and associating virtual knot/link diagrams to thickened surface embed-
dings. More details on abstract diagrams and their association with thickened sur-
faces appear in [4, 25, 28, 30, 31]. We shall discuss more on an analogous notion of
abstract diagrams in relation with knotoid diagrams in Section 2.2.
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Definition 1.6. The genus of a virtual knot is the minimum genus among the
surfaces that the knot has a diagram without any virtual crossings. A diagram of a
virtual knot lying in the minimum genus surface are called a minimal representation
of the virtual knot.

Theorem 1.7. ( [41]) (Kuperberg’s theorem) Virtual knots/links admit a unique
minimal representation.

Considering classical knots/links in the virtual setting, it can be said that a
classical knot/link is a virtual knot of genus 0 (a virtual knot in S2 × I). Moreover
the following theorem resulting from Theorem 1.7, justifies the virtual knot theory
is a natural extension of the classical knot theory.

Theorem 1.8. ( [10,28,29]) If two classical knot diagrams are virtually equivalent
to each other then they are equivalent in the classical setting, that is, there is a
sequence of Reidemeister moves and planar isotopies taking one another.

The minimal surface representation of virtual knots can be detected by the sur-
face bracket polynomial introduced by H. Dye and L. Kauffman in [10].

Definition 1.9. Let (F,K) denote a representation of the virtual knot K in the
surface F . A surface state pair, (F, s) is a collection of disjoint simple closed curves
in F obtained by smoothing each crossing of K in A- or B- type. The collection of
all state pairs is denoted by (F, S).

Definition 1.10. [10]. LetK be a virtual knot and (F,K) be a fixed representation
of K. The surface bracket polynomial of K, denoted by < (F,K) >S is defined as
follows.

< (F,K) >S = Σ(F,s)∈(F,S) < K|s > d|s|[s],

where < K|s > = A#ofA−smoothings − #ofB−smoothings, |s| is the number of simple
closed curves bounding a disk in F in state s , and [s] is the sum of the isotopy classes
of non-trivial curves in the state s up to orientation preserving homeomorphisms of
the surface F .

1.1.1 Virtualization of classical crossings

A classical crossing in a classical knot diagram K is virtualized as follows. A tangle
consisting of a single crossing is removed and replaced with a new tangle consisting
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of the opposite crossing flanked by two virtual crossings. See Figure 1.5. This
operation is called the virtualization of the crossing.

Figure 1.5: Virtualization of a crossing

It is shown in [29] that the Jones polynomial of a classical knot diagram is
equal to the Jones polynomial of its virtualization of a crossing. This implies the
existence of an infinite set of non-trivial virtual knot diagrams with unit (trivial)
Jones polynomial. Precisely, a subset of crossings of a classical knot diagram K

is chosen such that K is unknotted when these crossings are switched to opposite
crossings. Letting V irt(K) denote the virtual knot diagram obtained by virtualizing
each crossing in S, it follows that the Jones polynomial of V irt(K) is equal to unity.
Nevertheless, V irt(K) is a non-trivial knot as can be shown by using the involutary
quandle invariant of knots [32]. Indeed, ifK is non-trivial then its involutary quandle
is not trivial [32] and the involutary quandle of V irt(K) is equal to the involutary
quandle of K [29].

Theorem 1.11. (Dye & Kauffman) [10] If K is a classical knot diagram with un-
knotting number one and non-unit Jones polynomial then V irt(K) is a genus 1
virtual knot.

Dye and Kauffman utilize the surface bracket polynomial for detecting the re-
sulting knots are indeed non-classical so to prove Theorem 1.11. Note that if K is
a non-trivial classical knot with unit Jones polynomial and unknotting number one
then the surface bracket polynomial would not detect V irt(K). The following theo-
rem is proved by an analysis of the fundamental group by Silver and Williams [56].

Theorem 1.12. (Silver & Williams) [56] Let K be a non-trivial classical knot di-
agram. The virtualization of K, V irt(K) is a non-trivial and non-classical virtual
knot.
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Corollary 1. [10,56] There is an infinite set of virtual knots of genus 1 with unit
Jones polynomial.

1.1.2 Parity in virtual knots

Gauss introduced encoding of plane curves and this was generalized to encoding
of knot diagrams with a sequence of labels corresponding to the crossings of an
oriented diagram that are met during a full trip along the diagram. A Gauss or
chord diagram of an oriented classical knot diagram consists of such labels that are
placed upon a circle with an order of labels and oriented chords (arcs) connecting
the same labels. The orientation on chords carries the information of the passages
of crossings, that is, the orientation assigned to each chord heads from overpassing
strands to underpassing strands. The Gauss diagram of an oriented virtual knot
diagram is defined similarly, by placing labels corresponding to the classical crossings
on an oriented circle and connecting the same labels via oriented chords. Virtual
crossings are not represented on Guass diagrams. See for [28, 29, 47, 57] for Gauss
diagrams for flat knots, free knots.

Definition 1.13. [46] A Gaussian parity is a rule assigning classical crossings of
all knot diagrams of a knot theory to a value in the set of integers modulo two such
that
i. the parity is invariant for crossings that do not take place in a Reidemeister move,
ii. for each of the Reidemeister moves, the sum of parities of crossings taking place
in these moves is equal to zero modulo two.

The realization of knot diagrams via chord diagrams gives rise to a Gaussian
parity in the following way. We say that two chords are linked if the ends of one
chord lies on different components obtained by removing the ends of the other chord
from the circle. A crossing of a knot diagram is said to be even if its corresponding
chord is linked with an even number of chords, and odd otherwise. Any crossing of
a classical knot diagram is even. In fact, it is proved that there is no non-trivial
parity for classical knots. For virtual knots, and as we shall show in the next
chapter for both classical and virtual knotoids, however, the parity starts being a
non-trivial theme with the existence of odd crossings. In fact, it is known that not
every Gauss diagram realizes a classical knot diagram, that is, one may need virtual
crossings when drawing the corresponding knot diagram to a given Gauss diagram.
It is shown [20, 28] that the theory of virtual knots is in one-to-one correspondence
with the theory of Gauss diagrams taken up to the equivalence relation on Gauss
diagrams induced by the Reidemeister moves. As studied in [26, 28, 29, 36, 46, 87],
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the parity in knots gives rise non-trivial invariants of virtual knots. See for [58, 87]
for other aspects of parity.

Here we recall the following theorems.

Theorem 1.14. [46] Given a virtual knot diagram K. If its surface representation
is not a minimal genus representation then there exists a knot diagram K ′ in the
virtual equivalence class of K, whose Gauss diagram is obtained by deleting some
chords of the Gauss diagram of K.

Theorem 1.15. (Nikonov) [46] There is a projection map pr from minimal genus
virtual knot diagrams to classical knot diagrams, such that for every knot K, pr(K)
is obtained by deleting some chords of K and if two diagrams K1 and K2 are related
by a Reidemeister move (within the given minimal genus surface) then pr(K1) and
pr(K2) are related by a Reidemeister move.

From the above theorems the following theorem follows.

Theorem 1.16. (Manturov) [46] For every virtual knot diagram K there exists a
classical knot diagram K∗ such that
i. The Gauss diagram of K∗ is obtained by deleting some chords of K.
ii. K = K∗ if and only if K is classical itself.
iii. If K and K ′ are virtually equivalent then the corresponding knots K∗ and K ′∗

are equivalent.
iv. The map pr is a surjection when restricted to non-classical knots.

Here is a corollary of these theorems which will be used in proving a conjecture
of Turaev [57] in the next chapter (see for Section 2.3, Proposition 2).

Corollary 2. [46] Minimal number of classical crossings of a virtual knot can be
attained only in minimal genus representations of the knot.
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Chapter 2

On Knotoids

2.0 Introduction

Knotoid diagrams are open ended oriented knot diagrams in oriented surfaces, form-
ing new diagrammatic theories, including an extension of the classical knot theory
when the surface of the knotoid is considered to be the 2-sphere S2 [57]. A standard
1-1 tangle or a long knot has its endpoints in a single region of the diagram. A
knotoid diagram generalizes the notion of 1-1 tangle or long knot by allowing the
endpoints to be in different regions of the diagram. This gives rise to many topo-
logical and algebraic properties of knotoids that are not observed in classical knots,
and a more realistic insight for understanding the knottedness in physical structures.
In this chapter, we first recollect fundamental notions of knotoids given by Turaev,
give a geometric interpretation for planar knotoids, make a small introduction to the
theory of virtual knotoid theory, then present and introduce invariants of knotoids,
mostly focusing on spherical and planar knotoids given in [15,57] and discuss about
their relations to the height invariant of spherical knotoids. We also give a proof to
a conjecture of Turaev on minimal diagrams of knot-type knotoids. The results of
this chapter appear in [15–17].

2.1 Basics on knotoids

Definition 2.1. [57] A knotoid diagram K in an oriented surface Σg≥0 is a generic
immersion of the unit interval [0, 1] into Σg≥0

K : [0, 1]→ Σg such that

i. K has finitely many singular points that are transversal double points. Each dou-
ble point is endowed with over/under- crossing data and called a classical crossing
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of the knotoid diagram.
ii. The images of 0 and 1 are two points distinct from each other and any of the

crossings. They are regarded as the endpoints of a knotoid diagram and called the
tail (or the leg) and the head, respectively.
iii. K is endowed with the natural orientation of [0, 1], oriented from tail to head.

Some examples of knotoid diagrams are given in Figure 2.1. The trivial knotoid
diagram is a knotoid diagram admitting no crossings, as depicted in Figure 2.1(a).

a b c d e
Figure 2.1: Knotoid diagrams

The ∆- moves of knot diagrams specifically the Reidemeister moves are adapted
to knotoid diagrams as follows. The Reidemeister moves of knotoid diagrams modify
a knotoid diagram as shown in Figure 2.2b within small disks surrounding the local
the diagrammatic regions and not containing any of the endpoints. These moves
are denoted as Ω1,Ω2,Ω3 moves, respectively. Together with the planar isotopy
moves (moves having no intersecting arc in defining regions, see Figure 2.2a), they
are referred as Ω-moves. Since pulling the strand adjacent to an endpoint over
and under a transversal strand can turn any knotoid diagram into a trivial knotoid
diagram, the moves Φ+ and Φ−, depicted in Figure 2.2c are forbidden and called
forbidden moves of knotoids.
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(a) Planar Ω- moves

Ω1

Ω2

Ω3

(b) Ω1,2,3- moves

Φ+ Φ−

(c) Forbidden moves

Figure 2.2: The moves on knotoid diagrams

Definition 2.2. It is clear that the Ω-moves generate an equivalence relation on
knotoid diagrams in a surface Σg. Two knotoid diagrams in Σg are said to be
equivalent or (conspiratorially) isotopic if they are related to each other by a finite
sequence of Ω-moves. The corresponding equivalence classes are called knotoids in
Σg and the set comprising all knotoids in Σg is denoted by K (Σg). A knotoid
diagram is said to represent a knotoid if it is in the equivalence class of the knotoid.

Definition 2.3. Let M be a category of mathematical structures (e.g. polynomials,
Laurent polynomials, the integers modulo five, commutative rings, groups, · · · ). An
invariant of knotoids is a mapping I: Knotoids →M such that equivalent knotoids
map to equivalent structures in M .

2.1.1 Extending the definition of a knotoid

Definition 2.4. A multi-knotoid diagram is defined to be a knotoid diagram in an
oriented surface Σ with multiple circular components [57]. The equivalence relation
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on knotoid diagrams extends naturally to an equivalence relation on multi-knotoid
diagrams and a multi-knotoid is defined to be an equivalence class of multi-knotoid
diagrams.
A linkoid diagram is defined to be an immersion of a disjoint union of finitely many
unit intervals whose images are knotoid diagrams. The equivalence relation on
knotoid diagrams extends naturally to an equivalence relation on linkoid diagrams
and a linkoid is defined to be an equivalence class of linkoid diagrams

2.1.2 Spherical and planar knotoids

We assume that the 2-sphere S2 is endowed with the natural orientation extending
the oriention on R2.

Definition 2.5. Knotoid diagrams in S2 or in R2 are called classical knotoid dia-
grams. The equivalence classes of classical knotoids are specifically called spherical
knotoids and planar knotoids, respectively.

The sets comprising all spherical and planar knotoids are denoted by K (S2)
and K (R2), respectively. There is a well-defined map between these two sets of
classical knotoids, ι : K (R2) → K (S2), that is induced by the inclusion R2 ↪→
S2 ∼= R2 ∪ ∞ [57]. Any knotoid in S2 can be represented by a knotoid diagram
in R2 by pushing a representative diagram in S2 away from ∞ ∈ S2. Considering
the equivalence class of this planar representation in K (R2), there is also a well-
defined map ρ : K (S2) → K (R2). It is clear that ι ◦ ρ = id so that the map ι

is surjective. However, there are examples of nontrivial knotoids in K (R2) which
are trivial in K (S2). For instance, the knotoid diagram given in Figure 2.1(b)
represents a nontrivial planar knotoid [57] whilst it represents the trivial knotoid in
S2. In fact, it can be turned into the trivial diagram by an isotopy of S2 (pulling
the lower arc across S2 and bringing it back to the diagram side) followed by an
Ω1-move. This suffices to tell that the map ι is not an injective map and unlike
the case of the classical knot diagrams, planar and spherical knotoid diagrams yield
different theories.

Classical knots via knotoid diagrams

In [57], classical knotoid diagrams are suggested as a new diagrammatic approach to
the study of knots in three-dimensional space. Precisely, the endpoints of a knotoid
diagram in S2 can be connected with an arc that is declared to go either under or
over every strand it meets. A connection arc is called a shortcut of the knotoid
diagram. In this way, one obtains an oriented classical knot diagram. One then
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can regard the knotoid diagram as a knotoid representation of the corresponding
classical knot. In fact, any classical knot can be represented by a knotoid diagram
by cutting out an under- or over-passing strand from an oriented diagram of the knot.
The connection types due to the passage information of the shortcut, are called the
underpass closure and the overpass closure, respectively. A knotoid diagram may
represent different knots depending on the type of the closure. For example, the
knotoid in Figure 2.3 represents a trefoil via the underpass closure and represents
the trivial knot via the overpass closure.

Figure 2.3: Two closures of a knotoid resulting in different knots

In order to have a well-defined representation of knots via knotoid diagrams, one
fixes the closure type. In fact, assuming the closure type as the underpass closure
induces a well-defined map ω− [15, 57],

ω− :{ Knotoids in S2}→ {Classical knots } .

The map ω− is clearly a surjective but not an injective map, in fact we have the
following proposition.

Proposition 2.6. [57] Two knotoid diagrams in S2 represent the same classical
knot if and only if the knotoid diagrams are related to each other by finitely many
Ω- moves, the forbidden Φ−-moves and planar isotopy moves in S2.

As it is proposed in [57], any invariant of classical knots can be computed on
knotoid representatives of knots. Indeed, the use of knotoid diagrams may ease
the computation of many knot invariants since knotoid representatives of a knot
may have fewer crossings than its knot diagrams. One direct application of this
approach is shown on the computation of the knot group [57]. Precisely, a knotoid
group of a knotoid is defined to be the group represented by generators associated
to the overpassings of a knotoid diagram and the relations obtained by imposing
Wirtinger relations [38] at each crossing of the diagram [57]. The knotoid group
is invariant under the Ω- moves and the forbidden move Φ−. The following lemma
shows that the knot group of a knot can be computed on its knotoid representatives.
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Lemma 2.7. ( [57]) Let κ be a classical knot in R3 and K be a knotoid in S2 repre-
senting k via the underpass closure. Let π(K) denote the knotoid group of K. Then,

π1(R3 − κ) ∼= π(K).

We see a similar situation [16] for the tricolorability invariant of a classical knot
[24]. The tricolorability rules can directly be applied to knotoid diagrams as follows.
A knotoid diagram K in S2 is tricolorable if each overpassing strand of K (a strand
of K can be colored with one of three colors with respect to the following rules.

• At least two colors must be used.

• At each crossing, the three incident strand should be colored either with the
same color or with three different colors.

Clearly, tricolorability of a knotoid is invariant under the Ω- moves and the forbidden
move Φ−. From this it follows that a classical knot is tricolorable if and only if it
admits a knotoid representative (via the underpass closure) which is tricolorable. See
Figure 2.4 for a tricolorable knotoid diagram which implies the knot it represents,
the trefoil knot, is also tricolorable.

Figure 2.4: A knotoid colored with a, b, c

Spherical knotoids extending classical knot theory

Besides bringing a new diagrammatic approach for the study of classical knots, the
theory of knotoids in S2 is a natural extension of the theory of classical knots [57] in
the following way. Let κ be a classical knot and D be an oriented knot diagram of
κ in S2. By cutting out an open arc of D which is disjoint from any of the crossings
we obtain a knotoid diagram in S2. This operation induces the injective map α [57]

α: {Classical knots} → K (S2),
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defined by assigning κ to the resulting spherical knotoid type. It is shown in [57] that
neither the choice of the knot diagram representing κ nor the choice of the open arc
to be cut out from the chosen diagram alters the resulting knotoid. Therefore the
map α is well-defined. For the injectivity of α, it suffices to see that underpass and
overpass closures of any knotoid that is in the image of the map α, are equivalent
knot diagrams [57].

Definition 2.8. The knotoids in S2 that are in the image of the map α are called
the knot-type knotoids, and otherwise, are called the pure or proper knotoids.

LetK be a classical knotoid diagram with n crossings. By ignoring the over/under
information at each crossing of the diagram K and regarding crossings as vertices,
we obtain a connected planar graph with n+2 vertices, n of which correspond to the
crossings and two of which correspond to the endpoints of K. This graph is called
the underlying graph of the knotoid diagram K. By Euler’s formula, the underlying
graph divides S2 (or R2) into n+1 local regions. We call these regions the regions of
the knotoid diagram K. Each knot-type knotoid has a knotoid diagram in its equiv-
alence class whose endpoints are located in the same local region of the diagram.
Such a knotoid diagram is called a knot-type knotoid diagram. The endpoints of a
proper knotoid can be in any but different local regions of any of its representative
diagrams. Figures 2.1(a),(b),(e), when they are considered in S2, illustrate some ex-
amples of knot-type knotoid diagrams and Figures 2.1(c),(d),(f),(g) illustrate some
examples of proper knotoid diagrams.

The set of knotoids, K (S2) can be regarded as the union of the set of knot-type
knotoids and the set of proper knotoids. The set of classical knots is in one-to-one
correspondence with the set of knot-type knotoids via the map α. Note that a
knot-type knotoid can be thought as a 1− 1 tangle or a long knot. It is well-known
that a classical long knot carries the same knotting information as the classical knot
obtained by closing the two endpoints of the long knot [6, 38, 47, 59]. From this it
is immediate to conclude that a knot-type knotoid can be considered the same as
the classical knot it represents. For proper knotoids this is no longer true. There
are proper knotoids (so nontrivial) representing the trivial knot. The knotoid given
by the diagram in Figure 2.1(d) is a nontrivial proper knotoid [57] but it represents
the trivial knot (via the underpass closure map).

2.1.3 A geometric interpretation of planar knotoids

Let K be a knotoid diagram in R2. The plane of the diagram is identified with
R2 × {0} ⊂ R3. K can be embedded into R3 by pushing the overpasses of the
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diagram into the upper half-space and the underpasses into the lower half-space in
the vertical direction. The tail and the head of the diagram are attached to the two
lines, t×R and h×R that pass through the tail and the head, respectively and are
perpendicular to the plane of the diagram. Moving the endpoints of K along these
special lines gives rise to open oriented curves embedded in R3 with two endpoints
of each on these lines.

(a) (b) (c)

Figure 2.5: Space curves obtained by the knotoid diagram in Figure 2.1(c)

Definition 2.9. Two smooth open oriented curves embedded in R3 with the end-
points that are attached to two special lines, are said to be line isotopic if there is
a smooth ambient isotopy of the pair (R3 \ {t × R, h × R}, t × R ∪ h × R), taking
one curve to the other curve in the complement of the lines, taking endpoints to
endpoints, and lines to lines; t× R to t× R and h× R to h× R.

Conversely, let be given an open oriented embedded curve in R3 with a generic
projection to the xy- plane. The endpoints of the curve determine two lines passing
through the endpoints and are perpendicular to the plane. The generic projection of
the curve to the xy- plane along the lines with self-intersections endowed with over
and under-crossing data of the curve, is a knotoid diagram in R2. We call a smooth
open embedded curve in R3 that has a generic projection to the xy- plane a generic
curve with respect to the xy-plane. Such a curve has a line isotopy class as described
in the previous paragraph. We now prove the following theorem appearing in our
paper [15].

Theorem 2.10. [15] Two smooth open oriented curves in R3 that are generic with
respect to the xy-plane are line isotopic with respect to the lines passing through the
endpoints if and only if their generic projections to the xy-plane (along the lines)
are equivalent knotoid diagrams, that is, they are related by Ω- moves in the plane.

Proof. Since everything is set in the smooth category, we can switch to the piecewise
linear category. Open curves are defined as piecewise linear curves in R3, that is, as
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a union of finitely many edges: [p1, p2],...,[pn−1, pn] such that each edge intersects one
or two other edges at the points, pi, i = 2,...,n− 1 and p1 and pn are the endpoints
of the curve. We define the triangle move in 3- dimensional space. Given an open
curve with endpoints on the lines, let [pi, pi+1] be an edge of the curve and p0 be a
point in the complement of the curve and the two lines. The edge is transformed
to two edges [pi, p0] and [p0, pi+1] which form a triangle, whenever this triangle is
not pierced by another edge of the curve or by the lines. In the reverse direction,
a consecutive sequence of two edges may be transformed to one edge by a triangle
move. An ambient isotopy of a piecewise linear curve in the complement of the two
lines can be expressed by a finite sequence of triangle moves.

By using triangle moves we can subdivide the edges into smaller edges as shown
in Figure 2.6. Any triangle move can be factored into a sequence of smaller trian-
gular moves by subdividing the triangles and the edges accordingly. Consider the
projection of a curve to the plane, triangular regions that triangular moves take
place are projected to non-singular triangles and these triangles possibly contain
many strands which are the projection of other edges. The entire ambient isotopy of
the curve can be reduced to the shadow cases in the plane shown in Figure 2.7, by
subdivision. Inducting on the strands inside the triangles shows that triangle moves
are generated by Ω- moves, shown in the left of the figure and the right side shows
some cases that are finite combinations of Ω- moves.

Corollary 3. [15] There is a one-to-one correspondence between the set of knotoids
in R2 and the set of line-isotopy classes of smooth open oriented curves in R3 with
two endpoints attached to lines that pass through the endpoints and perpendicular to
the xy-plane.

It may be the case that a smooth open oriented curve embedded in R3 is not
generic with respect to the xy-plane but is generic with respect to many other planes.
Projecting the curve in the generic way to these planes gives a set of knotoid diagrams
in the planes. The line isotopy can be generalized to all the curves that is generic
with respect to some plane and Theorem 2.10 above generalizes as follows.

Theorem 2.11. [15] Two open oriented curves embedded in R3 that are both generic
to a given plane, are line isotopic (with respect to the lines determined by the end-
points of the curves and the plane) if and only if the projections of the curves to that
plane are equivalent knotoid diagrams in the plane.

We say that a knotoid in a plane represents an open oriented embedded curve
in R3 if the knotoid is in the equivalence class of the generic projection of the curve
to some plane.
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The equivalence classes of knotoids in the planes all representing the same open
curve embedded in 3-dimensional space, can vary with respect to the projection
plane. For instance, the projection of the curve represented in Figure 3(b) to the
yz-plane gives a knotoid diagram with the tail and the head in the unbounded region
of the plane and one can see that it is equivalent to the trivial knotoid in the yz-
plane. The projection to the xy- plane, however, is the knotoid diagram given in
Figure 2.1(c) that is a nontrivial knotoid in S2 as it can be verified by various knotoid
invariants such as; the odd writhe, the bracket polynomial or the arrow polynomial
(see Figures 2.23 and 2.27. Therefore it is also nontrivial in R2.

Figure 2.6: Subdivision of an edge

Figure 2.7: Shadow of ∆- moves
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2.1.4 Involutions of knotoids

Two commuting operations; reversion and mirror reflection are defined on knotoids
in Σ [57]. The reversion is induced by reversing the orientation of a knotoid diagram
K. More precisely, the reversion operation exchanges the tail and the head. The
resulting knotoid diagram is called the inverse of K, and is denoted by K or rev(K).
.

The mirror reflection is induced by changing overcrossings to undercrossings or
vice versa of a knotoid diagram K. The resulting knotoid diagram is called themirror
image of K, and is denoted by K∗ or mir(K).

There is another involution operation on spherical and planar knotoids, namely
the symmetry [57]. The symmetry is induced by reflecting a knotoid diagram K

in R2 with respect to the vertical line {0} × R. The symmetry extends to a self-
homeomorphism of S2 by sending ∞ to ∞ and induces an involution for spherical
knotoids as well. The resulting knotoid diagram is said to be symmetric to K, and
is denoted by sym(K).

Note 1. The involution operations defined above are also defined for classical knots
and virtual knots.
For classical knots the mirror reflection and the symmetry operations coincide since
the mirror reflections of a classical knot in any two orthogonal planes are isotopic.
It can be verified that for virtual knots the two operations do not coincide as in the
case of knotoids.

2.1.5 Multiplication of knotoids

In [57], a multiplication operation is defined on knotoids in surfaces as follows. Let
k1, k2 be two knotoids in Σ1 and Σ2 represented by two knotoid diagrams K1 ⊂ Σ1

and K2 ⊂ Σ2 . Let B1 ⊂ Σ1, B2 ⊂ Σ2 be 2-disk neighborhoods of the head of K1,
and the tail of K2, respectively, such that each disk intersects the diagrams along
a radius. Such a disk neighborhood is called a regular neighborhood of an endpoint.
We glue Σ1 − (B1) to Σ2 − (B2) through a homeomorphism taking ∂B1 to ∂B2

and carrying the single intersection point of ∂B1 and K1 to the single intersection
point of ∂B2 and K2. Then K1 − (B1) meets with K2 − (B2) at one point and
form a knotoid diagram K1K2 representing the knotoid k1k2 in a surface Σ. Note
that the multiplication operation is well-defined up to the orientation preserving
homeomorphisms of surfaces and if both Σ1 and Σ2 are connected surfaces then Σ
is the connected sum of Σ1 and Σ2.

The multiplication operation is associative and the trivial knotoid in S2 is the
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identity element [57]. Since S2#S2 = S2 the set of knotoids K (S2) when endowed
with the multiplication, forms a semigroup with identity element [57]. Note that the
multiplication of spherical knotoids has a clear representation in terms of normal
knotoid diagrams. A knotoid diagram in R2 is said to be normal if its tail lies in the
outermost region (in the unbounded region of the plane) of the diagram. Any kno-
toid diagram in S2 is equivalent to a normal knotoid diagram and the equivalence
between two spherical knotoid diagrams is preserved between the coresponding nor-
mal knotoid diagrams [57]. A picture for the multiplication for spherical knotoids
via normal knotoid diagrams is given in Figure 2.8.

K1

K2

Figure 2.8: Multiplication of two knotoid diagrams

2.1.6 The height of knotoids

Now we present an invariant of knotoids given in [57]. The height (or the complexity
with respect to Turaev’s terminology in [57]) of a knotoid diagram K in S2 is the
minimum number of crossings that a shortcut creates during the underpass closure,
and it is denoted by h(K) [57]. The height of a knotoid k in S2 is defined as the
minimum of the heights, taken over all equivalent classical knotoid diagrams to k,
and denoted by h(k). The height is an invariant of knotoids in S2 [57] that measures
how far a knotoid is from being a knot. Precisely, a knotoid in S2 is of knot-type if
and only if its height is zero or equivalently, a knotoid in S2 has nonzero height if
and only it is a proper knotoid [57].

The height of a knotoid is preserved under the basic involutions of knotoid dia-
grams [57]. That is, for a knotoid K,

h(K) = h(mir(K)) = h(sym(K)) = h(rev(K)).

Theorem 2.12 ( [57, Theorem 4.3]). The height is additive over the multiplication
of knotoids, that is, h(k1k2) = h(k1) + h(k2) for any k1, k2∈ K (S2).
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The height is also invariant under the isotopy of S2 so that for the computation
of the height one can work with planar representations of spherical knotoids and
shortcuts in R2. The height invariant may get complicated to compute by a direct
attack on knotoid diagrams. In Section 2.4.3 and 2.4.2, we will present two lower
bounds for the height of a knotoid provided by two knotoid polynomials constructed
in the same sections. We will see these lower bounds often ease the estimation of
the height.

2.2 Virtual knotoids

As pointed out in [15,57], notions of virtual knot theory extend to knotoids naturally.

Definition 2.13. A virtual knotoid diagram is a knotoid diagram in S2 with an extra
combinatorial structure called virtual crossings. A virtual crossing is indicated by a
circle around the crossing point of two strands, as in the case of virtual knots.

Figure 2.12 depicts an example of a virtual knotoid diagram.
The moves on virtual knot diagrams are generated by the Reidemeister moves and
the detour move as for virtual knot diagrams. Similarly, the local moves generated
are referred as the virtual Ωi=1,2,3-moves , the partial virtual move (see Figure 1.4)
and the virtual Ωv-move shown in Figure 2.9. The virtual Ω-move is a special case
of the detour move that enables to slide back/forth the strand which is adjacent
to the tail or the head, deleting/creating virtual crossings located consecutively on
the strand. The virtual Ωi=1,2,3-moves, partial virtual moves and Ωv-moves together
with the (classical) Ω-moves are called the generalized Ω-moves of virtual knotoid
diagrams.

Ωv

Figure 2.9: Ωv-move

Definition 2.14. The generalized Ω- moves define an equivalence relation on virtual
knotoid diagrams. We say that two virtual knotoid diagrams are virtually equivalent
if one can be obtained from the other by a finite sequence of the generalized Ω-moves
in S2. The virtual equivalence is denoted by∼virt. A virtual knotoid is an equivalence
class of virtual knotoid diagrams under this equivalence.
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Definition 2.15. Let M be a category of mathematical structures. A virtual kno-
toid invariant is a mapping I: Virtual Knotoids→M such that virtually equivalent
knotoids map to equivalent structures in M .

Note 2. Note that any invariant of virtual knotoids is an invariant also of classical
knotoids since the generalized Ω- moves include the Ω- moves.

A topological interpretation of virtual knotoids

The theory of virtual knotoids has a topological interpretation as explained in our
paper [15]. We give a detailed overview here.

Definition 2.16. Let K be a knotoid diagram in a compact connected and oriented
surface F . The pair (F,K) is called an abstract knotoid diagram if K ⊂ F is a
deformation retract of F .

To any virtual knotoid diagram we can associate an abstract knotoid diagram.
Let K be a virtual knotoid diagram. An abstract knotoid diagram associated to
a virtual knotoid diagram can be considered to be a ribbon-neighborhood surface
containing the knotoid diagram K. This surface is obtained by attaching a 2-disk
to each classical crossing and the two endpoints of K such that the crossings and
the endpoints are contained in the disks, and connecting these disks by ribbons,
as depicted in Figure 2.10a. The virtual crossings are represented by ribbons that
pass over one another. The abstract knotoid diagrams are pictured as embedded
in 3-dimensional space, but they are not considered as particular embeddings. The
ribbons containing virtual crossings can pass over one another in either way. In fact,
there is a unique abstract knotoid diagram associated to a virtual knotoid diagram.
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(a) Attaching disks to a classical crossing and to an endpoint

(b) Two ways of attaching bands to a virtual crossing

(c) A virtual knotoid diagram and the associated abstract knotoid diagram

Figure 2.10: Abstract knotoid diagrams

Definition 2.17. We say that two abstract knotoid diagrams are abstractly equiva-
lent if one can be obtained from the other one by finitely many abstract Ω-moves that
are shown in Figure 2.11. We denote the abstract equivalence by ∼abst. Abstract
Ω-moves are ribbon versions of the generalized Ω-moves. The abstract detour move
is accomplished by the freedom of movement of the virtual crossings represented by
non-interacting ribbon bands. An abstract knotoid is defined to be an equivalence
class of abstract knotoid diagrams under these moves.

Abstract Detour Move
AΩ1

AΩ2

AΩ3

Figure 2.11: Generalized abstract moves
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Proposition 2.18. [15] The mapping

f : {Virtual knotoid diagrams } → {Abstract knotoid diagrams },

that is defined by assigning a virtual knotoid diagram K to the associated abstract
knotoid diagram (F,K) induces a bijection

f∗: {Virtual knotoid diagrams/ ∼virt → {Abstract knotoid diagrams/∼abst }

Proof. Let K1, K2 be two virtually equivalent virtual knotoid diagrams and (F1, K1)
and (F2, K2) be the assigned abstract diagrams, respectively. The Ω-moves between
these diagrams transform to abstract Ω- moves between (F1, K1) and (F2, K2). If
the given diagrams are related to each other by moves generated by the detour move
then (F1, K1) and (F2, K2) are related by the moves generated by the abstract detour
move. This shows the map f∗ is well-defined.

Let (F,K) be an abstract knotoid diagram. (F,K) can be embedded in S3 in a
way that the 2- disks containing the classical crossings and the endpoints of K lie in
S2 ⊂ S3. Being an orientable surface, the abstract knotoid diagram (F,K) can be
projected to S2 so that the projection is an immersion whose only singularities are the
transversal intersection of bands. The segments through transversal ribbon bands
are projected as transversal segments and the intersection points of the transversal
segments are regarded as virtual crossings. So, the image of K under this projection
is a virtual knotoid diagram and in fact this virtual knotoid diagram is taken to
(F,K) under the map f . Therefore f so f∗ are surjective.

It follows similarly as in the case of virtual knots [25] that projection taken with
an embedding of the immersed abstract diagram, induces a well-defined map from
the set of abstract knotoids to the set of virtual knotoids and this map forms the
inverse of f∗.

Abstract knotoid diagrams are associated to knotoid diagrams in surfaces of
higher genus in the following sense. The abstract knotoid diagram (F,K) associ-
ated to a virtual knotoid diagram K is a closed connected orientable surface with
boundary. The underlying graph of a virtual knotoid diagram is the graph that is
obtained by turning the classical crossings and the endpoints of K into graphical
vertices, and keeping the virtual crossings as they are. The underlying graph of
a virtual knotoid diagram is sometimes called a virtual graph. A virtual graph is
subjected to the detour move but not the Ω-moves.

Let Γ(K) be the underlying graph of K. Γ(K) is a connected graph with n

four-valent vertices corresponding to classical crossings of K, two one-valent vertices
corresponding to the endpoints ofK, and with 2n+1 edges. It is a consequence of the
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construction of (F,K) that the graph Γ(K) is a deformation retract of (F,K). We
close the boundary components of (F,K) with 2-disks to have a representation of the
virtual knotoid K in a closed connected orientable surface, denoted by (F,K). Let
δ be the number of boundary components of (F,K). Then the Euler characteristic
of (F,K) is equal to (n + 2)− (2n + 1) + δ = 1− n + δ and the genus of (F,K), g
is equal to

g = 1 + ((n− 1)− δ)/2.

The closure (F,K) is the least genus surface among the surfaces in which the
knotoid diagramK can be immersed without any virtual crossings. We can add extra
handles in the complement of K so that K is represented by a diagram without any
virtual crossings in other surfaces with higher genus. On the other hand, let be
given a knotoid diagram K in a surface of genus g̃, Σg̃. The regular neighborhood
of the diagram N(K) can be regarded as an abstract knotoid diagram (N(K), K)
immersed in Σg̃. If the complement of (N(K), K) has genus then we cut out this
extra genus to reduce the genus g̃ to the genus of (N(K), K).

Definition 2.19. Let K1, K2 be two knotoid diagrams in surfaces Σg1 , Σg2 , re-
spectively. These surface representations are denoted by (Σg1 , K1) and (Σg2 , K2),
respectively. Two surface representations (Σg1 , K1) and (Σg2 , K2) are said to be sta-
bly equivalent if they can be obtained from each other by finitely many Ω-moves
in the surfaces (that do not utilize the endpoints), isotopy of the surfaces and the
addition/subtraction of empty handles in the complement of the diagrams. The
stable equivalence is denoted by ∼stable.

Proposition 2.20. [15] The mapping

f̃ : {Abstract knotoid diagrams} → {Knotoid diagrams in c.c.o. surfaces }

defined by assigning to (F,K) the knotoid diagram in the closure (F,K) induces a
bijection
f̃∗:{ Abstract knotoid diagrams/∼abst}→ {Knotoid diagrams in c.c.o surfaces/∼stable
}

Proof. It is easy to see that by filling the boundary components of an abstract
knotoid diagram with 2-disks, abstract Ω1 and Ω3-moves are transformed to Ω1-
and Ω3-moves between the knotoid diagrams represented in the resulting surfaces
of the same genus. The genus does not change under these two moves. An abstract
Ω2-move may increase/decrease the genus of the surface by 1. In the case of a change
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in the genus, an abstract Ω2-move corresponds to Ω2-move plus removal/addition of
empty handles in the surface. Thus the map f̃∗ is well-defined.

Let K be a knotoid diagram in a surface Σg. The regular neighborhood of the
diagram in Σg is an abstract knotoid diagram (N(K), K). The closure of (N(K), K)
with 2-disks, (N(K), K) is stably equivalent to (Σg, K) since (N(K), K) is the least
genus surface in which K is given without any virtual crossings. So, the map is
surjective. Addition/removal of handles occur in the complement ofK in the surface.
Thus (N(K), K) is not affected by these moves. An Ω-move on K transforms to an
abstract Reidemeister move on (N(K), K) as can be verified easily. Therefore the
map f̃∗ is injective. This completes the proof of Proposition 2.20

The statement of the following theorem is due to Turaev [57]. We demonstrate
a proof for the theorem [15] in the sequel.

Theorem 2.21. The theory of virtual knotoids is equivalent to the theory of knotoid
diagrams in higher genus surfaces considered up to Ω-moves in the surfaces, isotopy
of the surfaces and addition/removal of handles in the complement of knotoid dia-
grams.

Proof. The composition of the two bijections f∗ and f̃∗ gives a bijection between the
virtual knotoids and knotoids in higher genus surfaces up to the stable equivalence.

Projecting a knotoid diagram that lies in a higher genus surface to S2 results
in virtual crossings. We make this projection canonical by forming the abstract
knotoid diagram in the surface and then arranging a standard projection of the
abstract diagram. Figure 2.12 depicts the projection process.

Definition 2.22. The genus of a knotoid is the least genus among the surfaces in
which the knotoid can be immersed without any virtual crossings. Virtual knotoids
that can be represented by a classical knotoid diagram are called genus 0- knotoids.

We end this section with the following conjecture.

Conjecture 1. [15] If two classical knotoid diagrams in S2 are virtually equivalent
then they are equivalent to each other by finitely many Ω- moves in S2.

Remark 1. A virtual multi-knotoid diagram is defined to be an immersion of finitely
many oriented circles and oriented unit intervals into S2 with finitely many transver-
sal double points that correspond to classical and virtual crossings. The virtual
equivalence defined for virtual knotoids generalizes to an equivalence on virtual
multi-knotoids in the obvious way.
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Figure 2.12: Canonical projection of a knotoid diagram

A digression on welded knotoids

There are two more moves on virtual knotoid diagrams, shown in Figure 2.13, which
resemble the Reidemeister moves but do not result from any of the Ω-moves or the
detour move. We call them virtual forbidden moves. The virtual forbidden moves
slide either an underpassing or overpassing under/over a virtual crossing and they are
denoted by Φunder and Φover, respectively. These moves are the forbidden moves of
virtual knots/links since allowing both of these moves trivializes the theory of virtual
knots [51]. It can be shown that any virtual knotoid diagram can be transformed to
the trivial knotoid diagram by observing the effect of allowing both virtual forbidden
moves on the corresponding chord diagrams of knotoid diagrams (see Section 2.4.4
for chord diagrams). On the other hand, allowing only the over-forbidden move,
Φover, yields a nontrivial theory called welded knot theory [28,54]. We introduce the
corresponding welded knotoid theory [15].

Definition 2.23. Two virtual knotoid diagrams are said to be w-equivalent if they
can be obtained from one another by a finite sequence of the generalized Ω-moves,
the over-forbidden move Φover and the forbidden move Φ− (see Figure 2.2c). The
corresponding equivalence classes are called welded virtual knotoids.

S. Satoh [55] defines w-equivalence on virtual knotoid diagrams (named as vir-
tual arc diagrams in [55]) just in the same way. The fundamental group of a virtual
knotoid diagram is given by the generators associated to the overpasses of the dia-
gram and at each classical crossing there is a relation defined in the same way with
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the relations of Wirtinger presentation [13] of knot groups. Note that the funda-
mental group of any knotoid diagram K in S2 is invariant under the Ω-moves and
the Φ−-move, and the fundamental group of K is isomorphic to the fundamental
group of the classical knot represented by the underpass closure of K, see [57] for
more details and also [55] in which this concept was given in terms of w-equivalences
of classical arc diagrams. Satoh shows that any two w-equivalent virtual knotoid
diagrams represent equivalent ribbon 2-knots in R4 and the fundamental group of
the complement of any ribbon 2-knot is isomorphic to the fundamental group of the
associated welded virtual knotoid.

Φunder

Φover

Figure 2.13: Virtual forbidden moves

2.2.1 Flat knotoids

Definition 2.24. A flat knotoid diagram in an oriented surface Σ is a generic im-
mersion of the unit interval into Σ with finitely many flat crossings that are the
transversal double intersection points without any under/over-crossing information
or further data. The two endpoints of a flat knotoid diagram that are the images of
0 and 1, are distinct from each other and from any of flat crossings. The endpoints
are named analogously with endpoints of knotoids, as the tail and the head of the
diagram.

Flat Ω1,Ω2,Ω3- moves on flat knotoid diagrams in S2 or R2, are defined by ig-
noring the under/over- crossing information at the crossings of the move patterns
Ω1, Ω2 and Ω3, respectively. These moves are referred as flat Ω-moves. The flat
Ω-moves and planar isotopy moves induce an equivalence relation on flat knotoid
diagrams that is called the f -equivalence.

Definition 2.25. A flat knotoid is defined to be an equivalence class of flat knotoid
diagrams with respect to the f -equivalence.

The analogue of the forbidden moves of knotoids, that allows pulling the strand

27



adjacent to the tail or the head across a transversal strand so that creating/removing
a flat crossing, remains as forbidden for flat knotoids.

Definition 2.26. A flat virtual knotoid diagram is defined to be a flat knotoid
diagram in S2 with also virtual crossings as we have described them.

The detour move is defined in the same way as it is defined for virtual knotoid
diagrams. The rules for changing flat crossings among themselves are identical with
the rules for changing virtual crossings. A special case of the detour move, a flat
partial virtual move is available for virtual crossings with respect to flat crossings
when classical crossings in the partial virtual moves are replaced by flat crossings.
The moves obtained by replacing classical crossings in the forbidden moves given
in Figure 2.13 by flat crossings, remain forbidden for flat virtual knotoid diagrams.
The moves on flat knotoid diagrams that are generated by flat Ω-moves and the
detour move, are called generalized flat Ω- moves.

Definition 2.27. Two flat virtual knotoid diagrams are said to be f-equivalent if
there is a finite sequence of generalized flat Ω- moves together with the planar isotopy
moves taking one diagram to the other. A flat virtual knotoid is defined to be an
equivalence class of flat knotoids diagrams with respect to this equivalence.

We say that a virtual knotoid diagram K overlies a flat virtual knotoid diagram
if it is obtained from the flat diagram by choosing a crossing type as over or under
for each flat crossing. The flat virtual diagram that K overlies, is the underlying
flat diagram of K and denoted by F (K). It is clear that any generalized Ω-move
on K induces a flat generalized Ω-move on the underlying flat diagram F (K). It
follows that if K and K̂ are two virtually equivalent virtual knotoid diagrams then
the underlying flat diagrams, F (K) and F (K̂) are f-equivalent. Thus, a virtual
knotoid diagram is necessarily nontrivial if it overlies a nontrivial flat virtual knotoid.
Clearly, this argument holds for flat knotoid diagrams in S2 or in R2. A classical
knotoid diagram is nontrivial if it overlies a montrivial flat knotoid diagram.

It is well-known that any flat classical knot diagram is equivalent to the triv-
ial knot diagram. This property of flat classical knots generalizes to flat knotoid
diagrams in S2 as we [15] explain in the sequel.

Proposition 2.28. [15] Any flat knotoid in S2 is f-equivalent to the trivial knotoid.

Proof. A flat knotoid diagram in R2 is said to be normal if its tail in the outermost
region of the diagram. Similarly with the argument for knotoids in S2, any flat
knotoid diagram in S2 can be represented by a flat normal knotoid diagram. It is
clear that two flat normal knotoid diagrams represent the same flat knotoid in S2 if
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and only if they are related to each other by a finite sequence of flat Ω-moves and
planar isotopy.

An ascending knotoid diagram is a classical knotoid diagram that consists of
crossings encountered firstly as an undercrossing while traversing the diagram from
its tail to its head. Clearly, a flat normal knotoid diagram is f-equivalent to the
trivial knotoid diagram if and only the ascending normal knotoid diagram overlying
this flat diagram is equivalent to the trivial knotoid diagram. We claim that any
ascending normal knotoid diagram is equivalent to the trivial knotoid diagram. To
prove our claim, we first show that any open-ended space curve corresponding to a
normal ascending knotoid diagram, is line isotopic to the trivial space curve with
two endpoints attached to the special lines. Then by Theorem 2.11, it follows that
an ascending normal knotoid diagram represents the trivial knotoid in R2, so in S2.

Let K be an ascending normal knotoid diagram. Let l1 and l2 be the two lines
that are passing through the tail and the head, respectively, and perpendicular to
the xy-plane. We fix the tail at the point (x, y, 0) (on the plane) on l1 and start
raising K in the vertical direction by pulling the head up along the line l2. The
head is pulled up until K becomes a helical space curve c(K). See Figure 2.14 for
an illustration of this.

Notice that the curve c(K) is isotopic to a curve that does not wind around
the line l1 since K is a normal diagram. Then the curve c(K) is line isotopic to
a curve with one endpoint on the line l1 and the rest winds around l2, where the
other endpoint is attached. The part of the curve c(K) that winds around the line l2
together with the line l2 that is oriented upwards, can be regarded as a 2-braid. By
the line isotopy the parts that correspond to a braid word σ1σ

−1
1 , are eliminated so

that the curve c(K) corresponds to a braid word σn1 ∈ B2, for some n ≥ 0. We start
unwinding c(K) from the top by a rotation of 180-degrees in the counterclockwise
direction around the line l2. Applying n consecutive rotations around the line l2
transforms the curve c(K) into the trivial curve. In other words, the curve c(K) is
line isotopic to the trivial curve. Then the projection of c(K) to R2 is the trivial
knotoid diagram by Theorem 2.11. This proves that any ascending normal knotoid
diagram is equivalent to the trivial knotoid. Therefore, by the argument above, any
flat normal knotoid diagram is f -equivalent to the trivial knotoid diagram. Since
any flat knotoid diagram in S2 can be represented by a flat normal diagram, the
statement follows.
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line isotopy

Figure 2.14: A space curve corresponding to an ascending knotoid diagram

Note 3. Proposition 2.28 does not hold for flat knotoids in R2. For instance, the
ascending knotoid diagram shown in Figure 2.1b, when considered in the plane, is
not equivalent to the trivial knotoid [57]. It follows that the underlying flat diagram
of the diagram K is not f -equivalent to the trivial knotoid diagram. Also, there are
flat virtual knotoids that are non-trivial. See Section 2.4.4 for a discussion on this.

2.3 The virtual closure

Every knotoid diagram in S2 represents a virtual knot as discussed in [15, 57]. The
endpoints of a knotoid diagram can be connected with an embedded arc in S2 but
this time a virtual crossing is created every time the connection arc crosses a strand
of the diagram, as depicted in Figure 2.15a. In this way one obtains a virtual knot
diagram. Let B1, B2 be regular neighborhoods of the tail and the head of the knotoid
diagram, respectively. The virtual knot diagram resulting from the above connection
can be represented in a torus in the following way. The disks B1, B2 are cut out
from S2 and a 1-handle that holds the connection arc is attached to the resulting
tube via an orientation reversing homeomorphism identifying the boundary circles
of the tube and the handle in a way that the endpoints of the connection arc are
identified with the intersection points of the disks with the strands adjacent to the
endpoints. Such a representation of the resulting virtual knot in the torus is called
the standard torus representation of the knot, see Figure 2.15b.

Connecting the endpoints of a knotoid in the virtual fashion explained above
induces a map from the set of spherical knotoids to the set of virtual knots of genus
at most 1 that is called the virtual closure map and denoted by v,

v : K (S2)→ { Virtual knots of genus ≤ 1 }.
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(a) The virtual closure of a knotoid diagram

K

(b) Standard torus representation of the vir-
tual closure

The connection arc is unique up to isotopy of S2. The isotopy between any
two connection arcs induces detour moves between the corresponding virtual knot
diagrams. So, the choice of a connection arc does not alter the isotopy class of
the resulting virtual knot. Also, an Ω-move on a knotoid diagram is transformed
to a combination of generalized Reidemeister moves on the resulting knot diagram.
Therefore, the virtual closure map is a well-defined map. The virtual knot assigned
to a knotoid K in S2 via the virtual closure map is called the virtual closure of K,
and it is denoted by v(K).

Having its endpoints in the same region, a knot-type knotoid diagram can result
in a classical knot diagram when its endpoints are connected virtually. Then since
the map v is well-defined, the virtual closure of a knot-type knotoid is a classical
knot. Moreover the converse also holds as shown in [39].

Theorem 2.29. [39] A knotoid is knot-type (or of height 0) if and only if its virtual
closure admits destabilization.

Note 4. The classical closures (underpass/overpass closure) and the virtual closure
of a knot-type knotoid are isotopic classical knots.

Lemma 2.30. [15,16] The virtual closure map is not injective.

Proof. It can be shown that the knotoid diagrams given in Figure 2.16 with the
same virtual closure, are nonequivalent, by using many knotoid invariants. One way
can be the following. It can be shown that the knotoid group of the left hand-
side knotoid diagram has the presentation < x, y|x2 = y3 > (it is isomorphic to
the knot group of the trefoil knot). On the other hand, the knotoid group of the
right hand side knotoid diagram is isomorphic to Z. Since the knotoid group is
a knotoid invariant [57], we conclude that these two diagrams are nonequivalent
knotoid diagrams. One another way is to utilize the tricolorability of knotoids. One
can verify easily that the right hand-side knotoid diagram is not tricolorable but the
left hand-side knotoid is tricolorable (recall Figure 2.4).
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Figure 2.16: A pair of nonequivalent knotoids with the same virtual closure

The virtual closure map is also non-surjective as we show in [17].

Theorem 2.31. [17] If a virtual knot of genus 1 lies in the image of the virtual
closure map v then any torus representation of the knot contains a surface bracket
state curve that is homologous to the curve h∗([λ]+n[µ]) where λ and µ are generators
of H1(T 2,Z), where h∗ is the isomorphism on H1(T 2,Z) induced by an orientation
preserving homeomorphism h of the torus T 2.

Proof. Let k be a virtual knot of genus 1 that lies in the image of v and K be a kno-
toid diagram in S2 such that v(K) = k. Consider the standard torus representation
of the virtual knot v(K). Let [λ], [µ] be the generators of H1(T 2,Z) corresponding
to the longitude and the meridian of T 2, respectively. By the construction of the
standard representation, the surface bracket states consist of components that are
homologous to the curves [λ] + n[µ] and m[µ], n,m ∈ Z, for some choice of orien-
tation assigned to state curves. Standard torus representation of v(K) is a minimal
representation. Then by Kuperberg’s theorem, there is an orientation preserving
homeomorphism of the torus taking the standard representation to any torus rep-
resentation of the knot k. Then it follows that at least one of the surface state
components of any torus representation of k is homologous to h∗([λ] + n[µ]) where
h∗ is the isomophism on H1(T,Z) induced by an orientation preserving homeomor-
phism h.

Corollary 4. [17] Let k be a virtual knot of genus 1 and (T, k) denote a torus
representation of k. If the nontrivial isotopy classes of state curves of (T 2, k) are
only of the form (for some choice of orientation) a[λ] and b[µ] for some a, b ∈ Z−{0},
|a|, |b| 6= 1 then k does not lie in the image of v.
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Proof. Suppose k lies in the image of v then by Theorem 2.31, (T, k) has a state
curve, when oriented, that is homologous to h∗([λ] + n[µ]) for some h ∈ Aut+(T ).
Then h∗([λ] + n[µ]) = a[λ] or h∗([λ] + n[µ]) = b[µ]. Since λ + nµ is a connected
curve, there is no homeomorphism taking λ+ nµ to aλ or bµ for some a, b 6= 1.

Claim 1. The virtual knot represented by the diagram K given in Figure 2.17 is not
the virtual closure of a knotoid in S2.

Proof. The surface bracket states of the representation of K in the torus consist of
the curves shown in Figure 2.17. When the curves are oriented in an all possible
ways, it is observed that there are only two states that contribute to the polynomial
in a nontrivial way. The isotopy classes of the non-trivial state curves are of the form
(homologous to) [2a] and [2b]. Then by Corollary 4, it is deduced that K cannot
be turned into (by any orientation preserving homeomorphism of T 2) a virtual knot
diagram that is the virtual closure of a knotoid diagram in S2.

AAA AAB ABA BAA

ABB BAB

(T 2, K)

[0] [2λ] [2µ] [2µ]

[0]

BBBBBA

[2µ] [0][0]

Figure 2.17: Surface state loops of K

More generally we have the following theorem appearing in [17].

Theorem 2.32. [17] Let K be a non-trivial classical knot diagram with unknotting
number 1. Then the genus 1 virtual knot V irt(K) that is obtained by virtualizing of
a crossing which turns K into unknot when switched, does not lie in the image of
the virtual closure map.
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Proof. We analyze the surface state curves of the torus representation of V irt(K)
depicted in Figure 2.18. Note that trivial state curves bounding a disk in torus
may appear in the circled region. We see that non-trivial state curves of this rep-
resentation are only of the form 2[µ] and 2[λ]. Then by Corollary 4 the theorem
follows.

(T 2, V irt(K))
K

Figure 2.18: The homology classes of surface state curves of V irt(K) in torus (up
to an orientation)

Corollary 5. The virtual closure map is not surjective.

The following conjecture appearing in [57] is due to Turaev. We now give a proof
for this conjecture that also appears in [17]. In the following, a minimal diagram
refers to a diagram (a classical knotoid diagram or classical/virtual knot diagram)
with minimal number of classical crossings, and recall that genus g of the abstract
knotoid diagram associated to a virtual knot diagram is:

g = 1 + (n− δ)/2.

Conjecture 2. [57] Minimal diagrams of non-trivial knot-type knotoids have zero
height.

Proof. Let k be a knot -type knotoid and assume to the contrary that k admits
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a minimal diagram with non-zero height. Let K1 denote such diagram with the
minimal number of classical crossings, say n > 0.

Since k is a knot-type knotoid, the virtual closure of k, v(k) is a classical knot.
On the other hand, the diagram K1 has nonzero height so its virtual closure v(K1) is
a virtual knot diagram with a number of virtual crossings that is equal to the height
of K1 and with n classical crossings. The virtual closure map is well-defined. From
this it follows that the virtual knot diagram v(K1) represents the classical knot v(k).

Claim 2. The genus of the abstract knot diagram associated with v(K1) is 1 (that
is the surface representation of v(K1) is 1).

Proof. The abstract knotoid diagram associated with K1 has genus 0 since it is a
planar diagram. In fact we have

0 = g = 1 + ((n− 1)− δ)/2,

where n is the crossing number of K1 and δ is the number of boundary components
of the abstract diagram associated with K1.

The number of boundary components is equal to the the number of regions of
the diagram K1. The boundary components that are adjacent to the endpoints, are
actually different components since the endpoints are in different regions. ClosingK1

virtually does not change the number of classical crossings but reduces the number of
boundary components by one since the two different boundary components become
the same. Then by Equation (2.2) we have,

g(v(K1) = 1 + (n− (δ − 1))/2 = 1

.

Since v(k) is a classical knot then by Manturov’s theorem 2, minimal number of
classical crossings can be attained only in a classical diagram of v(k). let K be such
diagram of v(k) with m crossings. It is clear that K is virtually equivalent to v(K1)
for representing the same knot v(k). Then we have

m < n.

On the other hand, the image of K under the α-map (recall Section 2.1.2), α(K)
is a knot-type knotoid diagram with m crossings. It is clear that the underpass
closures of α(K) and the knotoid diagram K1 are both equivalent to the knot v(k).
This implies that both knotoid diagrams are equivalent to each other since the
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underpass closure is a bijection map when restricted to the knot-type knotoids. By
assumption K1 is a minimal diagram of k, that is we have,

n ≤ m,

which contradicts with the above inequality.

Remarks.

1. Being a well-defined map, the virtual closure map gives a way to construct
many invariants for knotoids in S2 which can be generalized to a virtual kno-
toid invariant. In fact, for any invariant of a virtual knot, denoted by Inv, an
invariant on knotoids in S2 denoted by I, can be defined through the following
formula,

I(K) = Inv(v(K)),

where K is knotoid in S2.

This makes virtual knot theory a natural domain for the study of knotoids in
S2. Note also that as we will do in the sequel, many virtual knot invariants
can be constructed directly on knotoid diagrams without need of closing the
endpoints in the virtual fashion. We observe that this approach often gives
more strength to the defined invariants.

2. The virtual closure map extends to a well-defined map from the set of virtual
knotoids to the set of virtual knots. We call this map extended virtual closure
map. It is clear that the extended virtual closure map is a surjective map. Any
virtual knotoid diagram whose endpoints can be connected by an embedded
arc without creating any type of crossings (either classical or virtual), can be
regarded as a long virtual diagram. The virtual knotoid shown in Figure 2.19 is
a nontrivial virtual knotoid as we show in Section 2.4.4 by the parity bracket
polynomial of knotoids. It can be verified by the figure that the extended
virtual closure of this virtual knotoid is the trivial knot. Obviously, trivial
virtual knotoid diagrams are also sent to the trivial knot by the map. Thus,
the extended virtual closure map is not injective.

3. The underpass closure map cannot be extended to a well-defined map on
virtual knotoids. Figure 2.20 depicts a virtual knotoid diagram that represents
two virtual knots via the underpass closure map. The arrow polynomial which
will be discussed in Section 2.4.2, detects that these knots are not equivalent.
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In fact, to transform one diagram to the other one, we require the virtual
forbidden move, Φunder which is shown in Figure 2.13.

Figure 2.19: A nontrivial virtual knotoid with trivial virtual closure

Figure 2.20: A virtual knotoid diagram representing different knots via ω−

2.4 Invariants of knotoids

2.4.1 The bracket polynomial

The bracket polynomial of a knotoid in an oriented surface Σ is introduced by
Turaev in [57]. The bracket polynomial of a knotoid is defined by extending the
state expansion of the bracket polynomial of knots [32, 34, 35] as follows. Each
classical crossing of a classical knotoid diagram K is smoothed either by A- or
B-type smoothing, as shown in Figure 2.21. A smoothing site is labeled by 1 if A-
smoothing is applied and labeled by −1 if B-smoothing is applied at a particular
crossing. A state of the knotoid diagram K is a choice of smoothing each crossing of
K with the labels at smoothing sites. Each state of K consists of disjoint embedded
circular components and a single long segment component with two endpoints. The
initial conditions given in Figure 2.21 are sufficient for the skein computation of the
bracket polynomial of classical knotoids.

Definition 2.33. [57] The bracket polynomial of a knotoid diagram K is defined
as

< K >= ∑
S A

σ(S)d‖S‖−1,

where the sum is taken over all states, σ(S) is the sum of the labels of the state S,
‖S‖ is the number of components of S, and d = −A2 − A−2.
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K = d K

= 1

A-smoothing B-smoothing

= A + A−1

=A−1 A+

Figure 2.21: Skein relations of the bracket polynomial

The writhe of a classical or virtual knotoid diagram K, wr(K) is the number
of positive crossings (the classical crossings with sign +1, see Figure 2.22) minus
the number of negative crossings (the classical crossings with sign −1, see Figure
2.22) of K [57]. The writhe is invariant under the generalized Ω-moves except the
Ω1-move [57].

positive negative

Figure 2.22: Crossing signs

An Ω1-move changes the writhe by ±1. The bracket polynomial turns into an
invariant for classical knotoids with a normalization by the writhe. The normalized
bracket polynomial of a classical knotoid K, fK is defined as the multiplication,

fK = (−A3)−wr(K) < K > [57].

The normalized bracket polynomial of knotoids in S2 generalizes the Jones poly-
nomial of classical knots with the substitution A = t−1/4 [57] . Note that by connect-
ing the endpoints of the long segment components of states of a knotoid in S2, K
by an embedded arc in the virtual fashion, we obtain the bracket state components
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of the virtual knot v(K). This gives us the equality, V (K) = V (v(K)), where V (K)
denotes the Jones polynomial of K.

Example 1. Let K1 be the knotoid diagram in S2 illustrated in Figure 2.23. As can
be seen by the figure, the normalized bracket polynomial ofK1, fK1 = (−A3)−2(A2+
1−A−4) = A−4 +A−6 −A−10. Having a nontrivial normalized bracket polynomial,
K1 is a non-trivial knotoid.

A +A−1=

A( A + A−1 + A−4= )

= (A2 + 1− A−4)

Figure 2.23: Computation of the bracket polynomial of K1

We extend the well-known Jones polynomial conjecture to the following conjec-
ture [15].

Conjecture 3. [15] The normalized bracket polynomial of knotoids in S2 (or the
Jones polynomial) detects the trivial knotoid.

Note 5. The bracket polynomial for multi-knotoids can be extended naturally using
the bracket state sum expansion.

2.4.2 Generalizations of the bracket polynomial

The arrow polynomial

We define the arrow polynomial for knotoids [15] in analogy with the arrow polyno-
mial of virtual knots and links which was defined by H.A. Dye and L.H. Kaufman [10]
and independently by Y. Miyazawa [50]. The construction of the arrow polynomial
of knotoids both for classical and virtual, is based on the oriented state expansion
of the bracket polynomial of knotoids which is shown in Figure 2.24.
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= A + A−1

= A−1 + A

K = (−A2 − A−2)K

Figure 2.24: Oriented state expansion

Oriented state expansion of knotoids involves oriented and disoriented smooth-
ings of all classical crossings that result in oriented states circular components and
one long state component or only a single long state component. The state compo-
nents which are obtained by disoriented smoothings include an extra combinatorial
structure in the form of paired cusps. Each cusp has two arcs either going into the
cusp or going out from the cusp. A cusp can be denoted by an angle which locally
divides S2 into two parts. One part is the span of the acute angle and the other
part is the span of the obtuse angle. We call the part which is the span of the acute
angle as inside of the cusp and the part which is the span of the obtuse angle as
outside of the cusp.

There is a list of rules which reduce the number of cusps in a state component that
are generated accordingly to the virtual equivalence that is generated by the isotopy
of S2 or R2 and the detour move (only isotopy of S2 or R2 for the classical case).
This list is given in Figure 2.25. The basic reduction rule consists of cancellation of
two consecutive cusps both with insides on the same side of the segment connecting
them. Two consecutive cusps on a state component which have insides on the
opposite sides of the segment connecting them, are not canceled out. Specifically,
any two consecutive cusps on a circular component are canceled if they have insides
in the same local region that the component forms. Therefore, a circular component
with two such cusps turns into an embedded circular component which contributes
to the polynomial as d = −A2 − A−2. Any two consecutive cusps on a long state
component which have insides on the same side of the segment connecting them, are
canceled out as well. Such a long state component turns into an embedded arc in S2

and contributes to the polynomial with the same value of an embedded circular state,
as d = −A2−A−2. Two cusps on a circular component with insides on the opposite
local sides of the circle are kept as graphical nodes. This component is regarded as
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a circular graphical state. Two cusps on a long state component whose insides are
on opposite sides of the segment connecting them, are not reduced as well. Such a
long state component is regarded as a graphical state. The graphical components
contribute to the polynomial as extra variables. A circular graph component with
surviving cusps can be turned into a circular graph without any virtual crossings by
the detour move so that it can be depicted as a circular graph with cusps forming
zig-zags on the component. A circular component with two cusps forming a zig-
zag contributes as K1 to the polynomial. In general, a circular graph with zig-zags
formed by 2i alternating cusps, contributes as a variable,Ki to the arrow polynomial.
A long state component with zig-zags formed by 2i alternating cusps contributes as
an additional variable, as Λi to the arrow polynomial.

Definition 2.34. We define the arrow polynomial of a virtual or classical knotoid
diagram K as,

A [K] = ∑
S A

i−j(−A2 − A−2)‖S‖−1< Ŝ >,

where the sum runs over the oriented bracket states, i is the number of state markers
touching A labels and j is the number of state markers touching A−1 labels in the
state S, as in the usual the bracket sum, ‖S‖ is the number of components of the
state S and < Ŝ > is the product of variables, Ki1

j1 ...Kin
jnΛi, associated to the

components of S with surviving cusps.

The variables Ki and Λi constitute an infinite set of commuting variables, com-
muting with each other also with the variable A of the arrow polynomial. It can be
seen by Figure 2.26, an Ω1- move changes the arrow polynomial of a virtual knotoid
by −A±3.
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Λ1 Λ2

K1

K2

Long State Components

Figure 2.25: Reduction rules for the arrow polynomial

[ ] = A + A−1 A[ ] [ ]

]= (A(−A2 − A−2) + A−1) [A

A A

Figure 2.26: The arrow polynomial change by an Ω1-move

Theorem 2.35. [15] The normalization of arrow polynomial by (−A3)−wr(K), where
wr(K) is the writhe of K, is a virtual and classical knotoid invariant.
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Proof. Since Ω- moves take place far away from the endpoints, the proof follows
similar as the proof of the invariance of the arrow polynomial for virtual knots/links.
See [10,29].

See Figure 2.27 for an example of a knotoid with nontrivial arrow polynomial.

A [ = A2 +
A

A

A

B

+
B

A

+ A−2
]

= A2 + (1− A−4)Λ1

B

B

= A2 + 2 + A−2 d

Figure 2.27: A knotoid with non-trivial arrow polynomial

Definition 2.36. The K-degree of a summand of the arrow polynomial of a virtual
knotoid which is of the form, Am(Ki1

j1Ki2
j2 ...Kin

jn)Λi, is equal to

i1 × j1 + ...+ in × jn.

The K-degree of the arrow polynomial of a virtual knotoid is defined to be the max-
imum K- degree taken among the K-degrees of summands of the arrow polynomial
of the knotoid.

Note that the K-degree of the arrow polynomial of a virtual knot/link is defined
in a similar way, as the maximum K-degree among the K-degrees of the summands
of the arrow polynomial [10].

Definition 2.37. The Λ-degree of a summand of the arrow polynomial of a virtual
knotoid which is in the form, Am(Ki1

j1Ki2
j2 ...Kin

jn)Λi is equal to i. The Λ-degree of
the arrow polynomial of a virtual knotoid is defined to be the maximum Λ- degree
among the Λ-degrees of all the summands of the polynomial.

Note 6. For a classical knotoid diagram in S2 or a virtual knotoid diagram K, the
oriented state components of the virtual closure of K, v(K), is obtained by connect-
ing the endpoints of each long state component in the oriented state expansion of
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K in the virtual fashion (with an embedded arc creating virtual crossings whenever
it meets with the component). Therefore, instead of assigning Λi to long state com-
ponents with 2i cusps which are not reduced by the reduction rules, if we assigned
Ki as a variable, we would have

A [K] = A [v(K)].

The arrow polynomial gets more effective as an invariant of virtual knotoids by
assigning to long state components with 2i irreducible cusps, the variable Λi, i ∈ Z+.
Figure 2.28 depicts the oriented state expansion of the knotoid diagram given before
in Figure 2.19. It is visible that the virtual closure of this knotoid is the trivial knot
and the arrow polynomial of the resulting virtual knot is trivial. In the direction
of the discussion, it can be said that assigning K1 to the long state components
of this knotoid results in trivial arrow polynomial. Assigning Λ1 to the long state
components, however, results in a non-trivial arrow polynomial, as shown in Figure
2.28. The arrow polynomial extended with Λ-variables detects the non-triviality of
this knotoid.

Another example is the virtual knotoid represented by the knotoid diagram K,
shown in Figure 2.29. The virtual closure of this knotoid is the Slavik’s Knot [10]
whose normalized arrow polynomial is trivial. The arrow polynomial of the knotoid
K is

A [K] =
(A−9 +A−7 +3A−5 +5A−1 +A+6A3 ++2A5 +3A7)+(−A3−A−1 +A−3 +A+A5)Λ1.

This implies that the normalized arrow polynomial is non-trivial and shows that the
non-triviality of this virtual knotoid is detected by the normalized arrow polynomial
defined by assigning Λ1-variable to the long state components.
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= A2 + A−2) Λ1 + (−A2 − A−2 ) K1 +1(

Figure 2.28: The arrow polynomial of the knotoid in Figure 2.19

Figure 2.29: A knotoid closing to Slavik’s knot

Theorem 2.38 ( [29]). In a classical knot or link diagram, all state components of
the arrow polynomial reduce to loops that are free from cusps.

Proof. The proof follows by Jordan curve theorem. For the details the reader is
directed to [29].

As it has been discussed in Section 2.3, the virtual closure of a knot-type knotoid
diagram is a classical knot diagram. The oriented state components of a knot-type
knotoid diagram become the oriented state components of a classical knot diagram
when the endpoints of long components are connected virtually. Then it follows by
the Theorem 2.38 that cusps do not survive in any of the state components of a
knot-type knotoid diagram, and we have the following corollary.

Corollary 6. The normalized arrow polynomial of a knot-type knotoid coincides
with the normalized bracket polynomial of the knotoid.
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On the other hand, cusps may survive in a long state component of a proper
knotoid diagram as seen in Figure 2.27. If the Λ-degree of the arrow polynomial of a
knotoid is nonzero then it is immediate to conclude by the discussion above that it
not a knot-type but a proper knotoid, in other words a knotoid with nonzero height.
For example, the knotoid diagram shown in Figure 2.27 represents a proper knotoid
since the arrow polynomial of the knotoid has Λ- degree 1.

The circular components of an oriented state of any classical knotoid diagram
are all free of cusps. This follows by the same reasoning with the proof of Theorem
2.38. As a conclusion, the K-degrees of any summand of the arrow polynomial of a
classical knotoid is zero.

For virtual knotoids, cusps may survive in circular state components as well as
they can survive in long state components. It means that both theK- and Λ- degrees
of the arrow polynomial of a virtual knotoid may be nontrivial. We know that the
knotoid diagram, given in Figure 2.28 is not virtually equivalent to a classical knotoid
since the K-degree of the arrow polynomial is 1.

Remark 2. Direct computation shows that the arrow polynomial of the knotoids
represented by the diagrams K1 and K2 given in Figure 2.20, are respectively,

A [K1] = 1− A−4 + A4 + (−A−2 + A2)Λ1

,
A [K2] = 2− A−4 − A4 + A8 + (−A−6 + A−2)Λ1

. It can be easily verified that the normalized arrow polynomials of K1 and K2 are
different. Therefore K1 is not equivalent to K2 and the underpass closure is not
well-defined on virtual knotoids.

Note 7. The arrow polynomial generalizes to a virtual multi-knotoid invariant di-
rectly as follows. All crossings including the crossings shared by two components of
a given oriented virtual multi-knotoid diagram are smoothed in the same way. The
resulting oriented state components, including oriented circular components and ori-
ented long state components, are labeled by either A or A−1 at each smoothing site.
The arrow polynomial for multi-knotoids is defined as the summation of all products
of labels assigned to oriented state components. If K is a multi-knotoid diagram
without any virtual crossings then it follows by a reasoning similar to the the proof
of Theorem 2.38 that the circular components of K are free of cusps, and cusps can
survive only on the long state components.
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An estimation of the height by the arrow polynomial

The arrow polynomial can be used for estimating the height of a knotoid in S2 as
we show in [15]. Before demonstrating this result, we shall firstly recall more from
virtual knot theory.

Definition 2.39. The virtual crossing number of a virtual knot/link is the minimum
number of virtual crossings over all representative diagrams.

The problem of determining the virtual crossing number of a virtual knot or link
is a fundamental problem in virtual knot theory. There is a relation between the
virtual crossing number and the maximal K-degree of the arrow polynomial of a
virtual knot, as stated by the following theorem.

Theorem 2.40. [10] The virtual crossing number of a virtual knot/link is greater
than or equal to the maximal K-degree of the arrow polynomial of that virtual
knot/link.

LetK be a knotoid in S2. The oriented state components of the virtual closure of
K, v(K) are the same with the oriented state components of K when the long state
components are closed in the virtual fashion. Therefore the Λi-variables assigned to
long state components with surviving cusps of a knotoid transform to Ki-variables
assigned to the circular components with surviving cusps in the arrow polynomial
of the virtual knot which is the virtual closure of the knotoid. Using this idea, we
show that the Λ-degree of the arrow polynomial can be used as a lower bound for
the height of knotoids in S2.

Theorem 2.41. [15] The height of a knotoid in S2 is greater than or equal to the
Λ-degree of its arrow polynomial.

Proof. Let K be a knotoid in S2. By Theorem 6.3 and the discussion above we have
the following inequality,

The Λ-degree of A [K] ≤ The virtual crossing number of the knot v(K).

It is clear that the least number of virtual crossings obtained by closing a classical
knotoid diagram virtually, is equal to the height of that diagram. Let K̃ be a
classical knotoid diagram representing K. Then the height of the knotoid diagram
K̃, h(K̃) is equal to the number of virtual crossings of v(K̃). So, the virtual crossing
number of the virtual knot v(K) is less than or equal to h(K̃). By this and the first
inequality, we have the following.

The Λ-degree of A [K] ≤ h(K̃).
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The inequality above holds for any classical knotoid diagram equivalent to K since
the Λ-degree of the polynomial is invariant under the Ω-moves. Therefore we have,

The Λ-degree of A [K] ≤ h(K),

where h(K) denotes the height of the knotoid K.

A 3-variable bracket polynomial

Turaev defines a 3-variable polynomial invariant []o [57] for knotoids in R2 with val-
ues in Z(A±1, u±1, v) as follows. Each crossing of a planar knotoid diagram K are
smoothed in two ways as in the bracket state expansion. We obtain states each con-
sisting of a number of circular components and a long segment component. Given
any state s, any circular state component bounds a disk in R2 which is either dis-
joint from the long segment component of the state or contain this long segment
component. Let p(s) be the number of the circular components of the former type
and q(s) be the number of the circles of the latter type. Then,

[K]o = (−A3)−wr(K)uK.aΣs∈S(K)A
σsu−ks.a(−A2 − A−2)p(s)vq(s),

where K.a is the algebraic intersection number of K with a chosen shortcut a and
ks.a is the algebraic intersection number of the long segment of the state s, ks with
the shortcut a.

The polynomial []o is the extended 2-variable bracket polynomial [57] when
v = −A2 − A−2 and the normalized bracket polynomial when we also set u = 1.

We set u = 1 and keep the v- variable and call the polynomial as Turaev loop
polynomial. The Turaev loop polynomial is a knotoid invariant as it can be verified
in a routine way. It will be discussed later in Section 4 that we use the Turaev loop
polynomial for detecting types of planar knotoids obtained by projecting a protein
chain in to planes.

2.4.3 The affine index polynomial

The affine index polynomial was initially constructed for virtual knots and links
by Kauffman [33]. In [15], we construct the affine index polynomial for knotoids.
analogously. The affine index polynomial of a knotoid, either classical or virtual,
is based on an integer labeling assigned to flat knotoid diagrams in the following
way. A flat knotoid diagram, classical or virtual, is associated with a graph (virtual
graph in the case of flat virtual diagrams) where the flat classical crossings and
the endpoints are regarded as the vertices of the graph. An arc of an oriented flat
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knotoid diagram is an edge of the graph it represents, that extends from one vertex
to the next vertex. Note that tail and the head of the diagram are considered to
be vertices of the graph). Given a knotoid diagram K, the labeling of each arc
of the underlying flat knotoid diagram of K, F (K), begins with the first arc which
connects the tail and the first flat crossing. The integer labeling rule at a flat crossing
is illustrated in Figure 2.30. At each flat crossing, the labels of the arcs change by
one; if the incoming arc labeled by a, a ∈ Z crosses the crossing towards left then
the next arc is labeled by a+1, if the incoming arc crosses the crossing towards right
then it is labeled by a − 1. There is no change of labels at virtual crossings. Note
that the numbers at c, w+(c) and w−(c) are defined as differences of labels so that
the weights are well-defined. Since the weights are well-defined up to this integer
labeling, it is convenient to label the first arc with 0.

a

a−1b+1

b

Figure 2.30: Integer labeling at a flat crossing

Let c be a classical crossing of K. We define two numbers at c resulting by the
labeling of F (K). These numbers that are denoted by w+(c) and w−(c), are defined
as follows.

w+(c) = a− (b+ 1)

w−(c) = b− (a− 1),

where a and b are the labels for the left and the right incoming arcs at the corre-
sponding flat crossing to c, respectively. the numbers w+(c) and w−(c) are called
positive and negative weights of c, respectively.
The weight of c is defined as

wK(c) =

w+(c), if the sign of c is a positive crossing

w−(c), if the sign of c is a negative crossing.

Definition 2.42. The affine index polynomial of a virtual or classical knotoid di-
agram K is a Laurent polynomial in variable t that is defined by the following
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equation.

PK(t) = ∑
c sign(c)(twK(c) − 1),

where the sum is taken over all classical crossings of a diagram of K.

The underlying flat diagram of the virtual closure of a knotoid diagram is labeled
as the same as the knotoid diagram since virtual crossings do not add any new arcs
or labels. In fact, we have PK(t) = Pv(K)(t), where K is a knotoid diagram in S2

and v(K) is the virtual closure of K.

Theorem 2.43. [15] The affine index polynomial is a virtual and classical knotoid
invariant.

Proof. The polynomial PK(t), by its definition, is independent of the moves gener-
ated by the detour move. It is left to check the invariance under oriented Ω- moves.
Note that for the verification of invariance of oriented virtual knot invariants, it is
sufficient to check the oriented Reidemeister moves given in Figure 2.31 that include
two types of the first move, one type of the second move and one type of the third
move where there is a cyclic triangle in the middle and two of the crossings have the
same sign and the third crossing has the opposite sign [52]. It can be verified easily
that this argument applies directly to verification of virtual knotoid invariants. The
integer labeling is uniquely inherited under these moves. The local changes (inside
the disks where the move pattern lies) in labels is shown in Figure 2.31. It can be
seen in the figure that the Ω1-move adds a crossing with zero weight. The Ω2-move
adds/removes two crossings with opposite signs but with same weights. The Ω3-
move does not change weights or signs of the three crossings in the move pattern.
Therefore, the affine index polynomial remains unchanged under these moves.
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Figure 2.31: The invariance of the affine index polynomial under the oriented moves

A comparison of affine index polynomials: Knotoids vs Knots

The affine index polynomial of a knotoid in S2 is the same as the affine index
polynomial of its virtual closure that is a virtual knot as we noted before. We show
in the following that the affine index polynomial has different properties for classical
knotoids than the polynomial has for virtual and classical knots.

1. It is shown in [33] that any classical knot has trivial affine index polynomial.
Similarly knot-type knotoids have trivial affine index polynomial. In fact,
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any crossing of a knot-type knotoid diagram is even by Theorem 2.50, and so
the weights of crossings are zero. Since a knot-type knotoid can always be
represented by a knot-type knotoid diagram, the statement follows. On the
other hand, proper knotoid diagrams have odd crossings that have nonzero
weights. Following this, a proper knotoid may have nontrivial affine index
polynomial if the contributions to the polynomial coming from the crossings
do not cancel each other.
This difference may be used to determine whether a knotoid is proper or knot-
type knotoid: If a given classical knotoid diagram has nonzero affine index
polynomial, then we conclude that this knotoid diagram represents a proper
knotoid.

2. Let k be a virtual knot. Then we have,

PK(t) = PK(t−1) [33],

where K is an oriented diagram of k and K is the inverse of K (see Section
2.1.4). Therefore, the affine index polynomial may be used to distinguish a
virtual knot from its inverse.
The affine index polynomial fails to distinguish a knotoid diagram from its
inverse as we explain in the sequel.

Definition 2.44. The weights of crossings of a knotoid diagram K are said
to be symmetric if for any classical crossing of K, c1 with a nonzero positive
weight w+(c1), there is another classical crossing c2 with a nonzero positive
weight w+(c2) such that w+(c2)=−w+(c1). Such two crossings with opposite
positive weights are said to be paired crossings.

Lemma 2.45. [15] The weights of the crossings of a flat knotoid diagram in
S2 are symmetric.

Proof. Proposition 2.28 implies that any flat knotoid diagram in S2 can be
obtained from the trivial knotoid diagram by a finite sequence of the flat Ω-
moves, and also by isotopy of S2. Using this fact, we proceed by induction
on flat knotoid diagrams in S2. The trivial diagram has no crossings so con-
ventionally it satisfies the lemma. The flat diagrams shown in Figure 2.32,
are obtained by applying one or two Ωi-moves to the trivial knotoid diagram.
The weights of crossings of these diagrams are symmetric, as can be seen in
the figure. Let us assume that the weights of crossings of any flat classical
knotoid diagrams that are obtained by applying n > 0 flat Ωi- moves to the
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trivial knotoid diagram are symmetric. Let K be such a flat knotoid diagram
and K1, K2, K3 be flat knotoid diagrams that are obtained by applying one
flat Ω1, Ω2 and Ω3-move to K, respectively. A flat Ω2 move adds/removes
two crossings to K. Since the weights of the other crossings outside the move
region are not affected, the symmetry of weights of K is not destroyed. If the
crossings located in the move region are even then they both have zero weights.
If the crossings are odd then they are paired crossings. Thus, the weights of
crossings of K2 are symmetric. A flat Ω3- move does not change the weights
of the three crossings, A,B,C that are located in the triangular region of the
move or the weights of the crossings outside the move region. If A,B,C are
even crossings then they have zero weight and they are taken to crossings with
zero weight by a flat Ω3-move. If two of these crossings are odd and one of
them is even, it is assumed that the odd crossings are paired with some other
crossings of K (either two of them with each other or with other crossings
in the rest of the diagram). Thus the weights of K3 are symmetric. A flat
Ω1- move adds/removes one crossing with zero weight to the given diagram K

and does not change the weights of the remaining crossings. Therefore, the
weights of the crossings of K1 are symmetric. This completes the induction
and proves that the weights of crossings of any flat knotoid diagram in S2 are
symmetric.
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Figure 2.32: Induction step

Theorem 2.46. [15] The affine index polynomial of a knotoid K in S2 is
symmetric with respect to t ↔ t−1. Therefore, PK(t) = PK(t), where K

denotes the inverse of K.

Proof. Lemma 2.45 shows that any crossing of a knotoid diagram in S2 with
a nonzero positive weight, is paired with another crossing. If the signs of
paired crossings are different then the contributions of these crossings to the
polynomial are canceled out. Let c1 and c2 be two paired crossings with the
same sign, then they contribute to the polynomial either as the summands
(tn − 1) and t−n − 1 or −tn + 1 and −t−n + 1, respectively, where n is the
weight of c1 and −n is the weight of c2. Since the affine index polynomial
is a classical knotoid invariant, the symmetry of the affine index polynomial
follows. It can be verified easily by the reader that reversing the orientation
of K only permutes the set of crossings and the weight chart of K. The
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affine index polynomial remains the same by reversing the orientation of K.
Therefore we have PK(t) = PK(t−1) = PK(t−1) = PK(t).

3. The mirror reflection on a virtual knot and a knotoid diagram does not change
weight chart since the underlying flat diagrams appear the same. But this op-
eration changes the signs of (classical) crossings of diagrams and so reverses
the attributed weight to a crossing. For an oriented virtual knot diagram K,
this results in the following equality.

PK(t) = −PK∗(t−1) [33]

Therefore if the affine index polynomial of a virtual knot is non-trivial then
the polynomial distinguishes the knot from its mirror reflection .
On the other hand, since the weights of a knotoid in S2 are symmetric by the
above argument, the affine index polynomial changes only by sign. That is we
have,

PK(t) = −PK∗(t)

This shows non-trivial affine index polynomials are able to distinguish a kno-
toid from its inverse.

Note 8. There are virtual knotoids with non-symmetric affine index polynomial.
For instance, it can be verified that any virtual knotoid diagram whose underlying
flat diagram and the corresponding weight chart are as given in Figure 2.33, has
non-symmetric affine index polynomial. Consequently, none of these virtual knotoid
diagrams is virtually equivalent to a classical knotoid diagram.

0
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0 1

0
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−1

−2

−1

0
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C

D

w+ w−
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C
D

0 0
1 −1
−2 2
1 −1

Figure 2.33: A flat virtual knotoid diagram with non-symmetric weights
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Theorem 2.47. [15] If the affine index polynomial of a virtual knot is not sym-
metric with respect to t ↔ t−1 then it is not the virtual closure of a knotoid in
S2.

Proof. The affine index polynomial remains unchanged by the virtual closure map
since the virtual crossings added via the map, do not change the weights of any
of the (classical) crossings and have no contribution to the polynomial. Thus, we
have PK(t) = Pv(K)(t), where K is a knotoid in S2. The statement follows by this
equality and by Theorem 2.46.

Estimation of the height of a knotoid via the affine index polynomial

Now, we demonstrate a lower bound for the height of a knotoid by using the affine
index polynomial.

Theorem 2.48. [15] Let K be a knotoid in S2. The height of K is greater than or
equal to the maximum degree of the affine index polynomial of K.

Proof. Let K̃ be a knotoid diagram representing K. We label the underlying flat
knotoid diagram of K̃ with respect to the labeling rule given in Figure 2.30. The
algebraic intersection number of a loop at a crossing C, l(C) (see Section 2.4.4 for
the definition of the loop at a crossing) with a strand of K̃ is defined to be the
total number of times that the strand intersects the loop from right to left minus
the total number of times that the strand intersects the loop from left to right.
Figure 2.34 illustrates two possible types of loops at the crossing C one of which
is oriented in the counterclockwise, and the other in the clockwise direction. The
algebraic intersection numbers of the loop at C with the piece of strand shown in
the figure, are +1 and −1, respectively. In both pictures, the incoming arcs towards
the crossing C are labeled by some integer a. Assuming that the strand shown is the
only one intersecting the loops, it can be verified that +1 is equal to the negative
weight of the crossing C of the first loop and −1 is equal to the positive weight of
the crossing C of the second loop. Then the following generalization is clear. If
the sum of the algebraic intersection numbers of the loop l(C) at the crossing C
with intersecting strands is equal to n then n is equal to either w−(C) or w+(C),
depending on the orientation of the loop l(C).
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Figure 2.34: The weights with respect to the orientation of the loop at C

Let m be the maximum degree of the affine index polynomial of K. Then there
exists a crossing of K̃ with weight m. In fact, m is the maximal weight among the
weights of crossings of K̃. Let C̃ be one of the crossings of K̃ with weight m and
l(C̃) be the loop at C̃.

Figure 2.35 shows the oriented smoothing of a classical crossing of a knotoid
diagram. Each crossing which are met twice while traversing along the loop l(C̃),
including the crossing C̃ itself, are all smoothed accordingly to the orientation. This
implies that each self-intersection of the loop l(C̃) is smoothed. Smoothing the self-
intersections of the loop l(C̃) results in oriented disjoint oriented embedded circles
(in S2), so called Seifert circles, and a long oriented segment containing the tail and
the head of K̃. The long segment may intersect the resulting circles and itself. The
algebraic intersection number of a Seifert circle with the long segment is defined
as the total times of the segment intersects the circle from right to left minus the
total times of the segment intersects the circle from left to right. Let IK̃ denote the
sum of the algebraic intersection numbers of resulting Seifert circles with the long
segment.

Figure 2.35: Smoothing a crossing in the oriented way

The crossings of K̃ that contributes to non-trivially to the total algebraic in-
tersection number are not smoothed since such crossings are met only once. As a
result, IK̃ is equal to the sum of algebraic intersection numbers of the loop l(C̃)
with the strands intersecting l(C̃). This shows that the sum of algebraic intersec-
tion numbers of the Seifert circles with the long segment is equal to either w−(C̃)
or w+(C̃). Thus, the absolute value of I(K) is equal to the , |I(K)| = m.

On the other hand, it is easy to verify that the number |IK | can be at most as
large as the number of the Seifert circles that are enclosing the endpoints (the tail
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or the head). In particular, |IK | is equal to the number of the Seifert circles if all
intersections are positive. Thus we have that m is at most as the number of circles
enclosing the endpoints.

The height of the diagram K̃ is at least as large as the number of the Seifert
circles enclosing the endpoints, by the Jordan curve theorem. With this we have
h(K̃) ≥ m.

The affine index polynomial is a knotoid invariant so m appears as the maximum
degree of the affine index polynomial of any classical knotoid diagram equivalent
to K̃. This implies that there is a crossing with weight m in each representative
knotoid diagram of K. Applying the same procedure explained above to the loops at
the crossings with weight m in each representative diagram gives us the inequality,
h(K) ≥ m for any representative classical diagram K and the statement follows.

Figure 2.36 gives an illustration for the proof of Theorem 2.48. In the figure the
affine index polynomial of the knotoid K given in Figure 2.1(g), is computed. We
see that C is one of the maximal weight crossings of K. Smoothing all the twice-met
crossings on the loop at C in the oriented way results in two Seifert circles and an
oriented long segment intersecting the circles.
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Figure 2.36: An illustration for the proof of Theorem 2.48

One immediate consequence of Theorem 2.48 is that we are able to tell the height
of the knotoids that can be represented with a spiral diagram with positive crossings.
In particular, the affine index polynomials of the knotoids each represented by a
diagram overlying the flat diagrams in 2.37 with positive crossings are the following.
PK1(t) = t+t−1−2, PK2(t) = t2 +t+t−1 +t−2−4 and PK3(t) = t3 +t2 +t+t−1 +t−2 +
t−3− 6. The heights of the given diagrams are 1, 2 and 3, respectively. Then by the
theorem, it is concluded that the heights of the knotoids are 1, 2 and 3, respectively.
This is generalized as follows. The affine index polynomial of a classical knotoid
represented by an n- fold spiral knotoid diagram has a term of the form tn + t−n if
all crossings of the diagram are positive. The maximum degree of the affine index
polynomial is n and the height of the spiral diagram is n. By Theorem 2.48, we
conclude that the height of the knotoid is n. This shows that we have an infinite
set of knotoids whose height is given by the affine index polynomial.

59



...

w+ w−
A

B

−1 +1
+1 −1

A

B

C
D

−2 +2
−1 +1

+2 −2
+1 −1

A

B

C
D

+3
−2 +2
−1
+3 −3

E
F

−3

+2
+1

−2
−1

A
B

C

D E
F

A

B

C
D

A

B

w−w+
w+ w−

+1

0

−1 0
1

0

0

−1

−2 −10
2

0

1 1

0
−1
−2

−3
−2−1

3
1

0
1 2

2
0

Figure 2.37: Flat spiral knotoid diagrams

A discussion on the arrow polynomial and the affine index polynomial

The presented two tools for the estimation of the height of a knotoid, namely, the ar-
row polynomial and the affine index polynomial differ from each other conceptually.
The arrow polynomial coincides with the bracket polynomial of knotoids [15,16,57]
if the Λi-variables assigned to long segment components of oriented states are set to
be equal to 1. In other words, the arrow polynomial is a generalization of the bracket
polynomial of knotoids as we have already mentioned. The affine index polynomial
on the other hand, uses the biquandle structure [12,31] on flat knotoid diagrams.

In terms of height estimation, the strengths of the two polynomials also differ.
There are cases that both of the polynomials give the same estimation for the height
and there are cases in which one of the polynomials give a more accurate estimation.
We give some examples here.

Example 2. The arrow polynomial of the knotoid K, represented by the diagram
given in Figure 2.1(g) is equal to

A [K] = A6 − (A−4 − A4)Λ1 − (A−2 − A2)Λ2.

The Λ-degree of the arrow polynomial of the knotoid K is 2. As can be computed
by the weight chart given in Figure 34(a), the affine index polynomial ofK is equal to

PK(t) = t2 + 2t+ 2t−1 + t−2 − 6,

60



Thus the maximal degree of the affine index polynomial of K is also equal to 2.
So both the affine index polynomial and the arrow polynomial give the same lower
bound for the height. It is easy to check that the height of the knotoid diagram in
the figure is 2. Since K can be represented by a diagram with height 2, we conclude
that the height of K is 2.

Example 3. The affine index polynomial of the knotoid K which is overlying the
flat 3-fold spiral knotoid diagram given in Figure 2.37 with negative crossings B, C
and D and positive crossings A,E and F , is trivial since the contributions by the
crossings cancel each other. Direct computation shows that the arrow polynomial
of the knotoid is equal to

A [K] =
1 + (−A−3 +A−2 +A2 +A6)Λ1 + (−2A−4−2A4 + 4)Λ2 + (−A−6 +A−2 +A2 +A6)Λ3.

The Λ- degree of the arrow polynomial is 3 so by Theorem 2.41, the height of the
knotoidK is at least 3. It is visible by the figure that the height of the given diagram
is also 3. Therefore the height of the knotoid K is 3.

Example 4. Figure 2.38 illustrates a knotoid diagram representing the knotoid
5.7 [68] and the corresponding weight chart. It can be verified easily that the affine
index polynomial of knotoid 5.7 is trivial. Direct computation shows that the arrow
polynomial of the knotoid is equal to

A [K5.7] = (−A−3 + A− 2A5 + A9) + (A−9 − 2A−5 + 2A−1 − 2A3 + A7)Λ1.

Thus it is a non-trivial arrow polynomial with Λ-degree 1. By Theorem 2.41 it
follows that the height of the knotoid 5.7 is at least 1. It is seen by the figure that
the height of the knotoid diagram is 1. Since the knotoid 5.7 is represented by a
diagram with height 1, we conclude that the height of the knotoid 5.7 is 1.

Example 5. The reader can see that the height of the knotoid diagram K given in
Figure 2.1(f) is equal to 2. We want to find out if there exists an equivalent knotoid
diagram to K with less height. The affine index polynomial of K is equal to

PK(t) = 2t+ 2t−1 − 4

as can be verified by Figure 2.39. Direct computation shows that the arrow polyno-
mial of K is equal to
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A [K] = (−A−5 + 2A−1 − A3 − A7) + 2(A− A5)Λ1.

The affine index polynomial and the arrow polynomial both assure that the height
of K is at least 1. Therefore we have, 1 ≤ h(K) ≤ 2. This is a case where our tools
discussed here cannot give an exact estimation for the height.

w+ w−

Figure 2.38: The weight chart of knotoid 5.7
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Figure 2.39: The weight chart of K

2.4.4 Parity in knotoids

Gauss codes/diagrams

We introduce the Gauss code and Gauss diagram for knotoids [15]. The Gauss
code of a knotoid diagram K (classical, virtual or flat) is a linear code that consists
of a sequence of labels each of which is assigned to the classical (or flat for flat
diagrams) crossings encountered during a trip along K from its tail to the head.
Since any crossing of K is traversed twice, each label in the code appears twice.
Thus, the length of the code is 2n, where n is the number of classical crossings (flat
crossings for flat diagrams) of K. We keep the information of the passage through
a crossing either as an overcrossing or an undercrossing by adding the symbols O
and U , respectively, to the code, and we keep the signs of the crossings by putting

62



+ or − next to the label accordingly to the sign of the crossing. The resulting code
is referred as the signed Gauss code of K. Note that the symbols O and U and the
signs of crossings are omitted in the Gauss codes of flat knotoid diagrams.

Gauss codes have a diagrammatic representation as follows. Each label in the
Gauss code is represented by 2n points placed upon a segment which is oriented
from left to right. The points are labeled as the corresponding labels in the code. A
signed and oriented chord connects each pair of the labeled points. The orientation
of a chord heads from the overcrossing to the undercrossing. That is, during a travel
along the knotoid diagram K starting from the tail, if a crossing is first encountered
as an overcrossing then the arrow of the corresponding chord heads towards the
second appearance of the label. The sign of the chord is the sign of the associated
crossing. For flat knotoid diagrams, we have the notion of right and left at each flat
crossing as follows. If a crossing is first encountered as going to the right then the
head of the arrow on the corresponding chord heads towards the first appearance of
the label. We call such a diagram with chords that represents the Gauss code of a
knotoid diagram the chord diagram or the Gauss diagram of the knotoid diagram.
Each knotoid diagram, including classical, virtual and flat knotoid diagrams, has a
unique Gauss code and chord diagram. Figure 2.40 depicts the chord diagram of
the knotoid diagram K that is given in Figure 2.1(g).

A B C D A E F D B E F C

+ + + +
++

Figure 2.40: Chord diagram of K

Definition 2.49. A single component Gauss code is said to be evenly intersticed if
there is an even number of labels between two appearances of any label.

Any classical knot diagram has evenly intersticed Gauss code [53]. The Gauss
codes of classical knotoid diagrams are not necessarily evenly intersticed. For in-
stance, the Gauss code of K shown in Figure 2.40, is OA + OB + UC + UD +
UA+OE+UF +OD+UB+UE+OF +OC+, which is not an evenly-intersticed
Gauss code. This fact gives rise to a well-defined parity for the crossings of classical
knotoid diagrams taking values in Z2. A crossing of a classical, virtual or flat kno-
toid diagram is called odd if there is an odd number of labels in between the two
appearances of the crossing otherwise it is called an even crossing. For the knotoid
diagram K, the crossings A,D,E and F of the knotoid diagram K are odd, and the
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crossings B,C are even. Note that for the purpose of parity we may use the Gauss
code of the underlying flat diagram of a knotoid diagram.

Theorem 2.50. [15] The Gauss code of a knotoid diagram in S2 is evenly inter-
sticed if and only if it is a knot-type knotoid diagram.

Proof. The loop at a (classical) crossing of a knotoid diagram in S2 is defined to
be the path obtained by traversing the knotoid diagram starting and ending at
that crossing, accordingly to the orientation. There is a loop at each crossing of a
knotoid diagram. Let K be a proper knotoid diagram. Then one of the endpoints
of K is separated from the other endpoint by at least one loop at a crossing of K,
that is, one of the endpoints is located inside at least one loop. All the strands
entering the loop except the one that is adjacent to the endpoint, leave the loop
by Jordan curve theorem. Thus each such strand contributes with a pair of labels
to the Gauss code of the diagram. The Gauss code of K along this loop is in the
following pattern: ...c... d a e ...a... e c..., where c represents the crossing that forms
the loop containing the endpoint, d represents the crossing of the strand adjacent to
the endpoint with the loop, and a, a and e, e for the pairs of crossings created by the
transversally intersecting strands which enter and leave the loop. Thus, between the
two appearances of the label c, we have an odd number of labels so that the Gauss
code of K is not evenly-intersticed. For a knot-type diagram K, we can assume that
the tail and head lie in the outermost region of the diagram (where the ∞-point is
located) so that none of the loops at crossings encloses them. Again by Jordan curve
theorem, all the strands passing through any of the loops of K enter and leave the
loop so that they contribute with a pair of labels to the Gauss code of K. This shows
that each crossing is even, that is, the Gauss code of K is evenly-intersticed.

Lemma 2.51. [15] The Gauss code of a knotoid diagram in S2 is the same as the
Gauss code of its virtual closure.

Proof. The virtual closure map adds virtual crossings to a given knotoid diagram
then it is clear that the map does not have any effect on the Gauss code of the
diagram.

Odd writhe

Using the parity of crossings of knotoid diagrams, we introduce the odd writhe of
knotoids [15] in analogy with the odd writhe of virtual knots/links [36].

Definition 2.52. The odd writhe for both classical and virtual knotoid diagrams is
defined to be the sum of the signs of the odd crossings,
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Odd Writhe of K = J(K) = ∑
c∈(K)(c),

where K is a knotoid diagram and Odd(K) is the set of odd crossings in K.

Theorem 2.53. [15] Odd writhe is a virtual and classical knotoid invariant.

Proof. The virtual moves that are induced by the detour move do not have an effect
on the Gauss code of a virtual knotoid diagram. As a result, the set of odd crossings
of the virtual knotoid diagram remains the same under these moves. The odd writhe
is invariant under the virtual moves. It is left to verify the invariance under the Ω-
moves. The changes in Gauss codes under some of the classical moves are illustrated
in Figure 2.41. In this figure, A, B, C denote the labels of the crossings lying in the
move patterns, and τ , γ and ω denote the words consisting of the labels of crossings
that are met outside of the move patterns during a trip along a knotoid diagram.
We observe the following. An Ω1-move adds/removes two consecutive labels in the
Gauss code. The parity of the crossings outside the move region remains the same
and being an even crossing, the added/removed crossing by an Ω1-move does not
affect the odd writhe.

An Ω2-move adds/removes either a pair of even crossings or a pair of odd cross-
ings with opposite signs for any orientation type of the move. In the former case
the even crossings do not have any effect on the odd writhe. In the latter case,
the two odd crossings will be canceled out in the odd writhe summation for they
have opposite signs. The parity of the crossings located outside the Ω2 move region,
remains the same since the labels which are added/removed by one Ω2-move are
located as consecutive pairs in the the Gauss code.

The triangular move pattern of Ω3-move can contain either three even crossings
or two odd crossings and one even crossing. In the former case, these even crossings
are taken to even crossings by an Ω3-move and the parity of other crossings outside
the move pattern remains the same thus the odd writhe is not affected. In the
latter case, an Ω3- move permutes the order of the odd crossings in the Ω3-move
region. The parity and the sign of the odd crossings remain the same. It is not hard
to see that the parities of crossings outside the move pattern do not change and
the arguments above hold for the other cases of the oriented Reidemeister moves.
Therefore, the odd writhe is an invariant of both virtual and classical knotoids.
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τ AA γ τ γ

τ AB γ BA ω τ γ ω

τ AC γ BA ω BC τ BA γ AC ω BC

Figure 2.41: Change in Gauss codes under the oriented Ω- moves

Corollary 7. If a knotoid K is a knot-type knotoid then the odd writhe of K is
zero.

Proof. It follows by Theorem 2.50 and Theorem 2.53.

Note 9. The crossings shared by any two components of a multi-knotoid diagram
obstruct extending the parity to multi-knotoids. For instance, the Gauss code of the
multi-knotoid diagram given in Figure 2.42 is O1−U2−O3−O4 +U1−O2−U3−
/U4+. Crossings 1, 2 and 3 are even crossings in the circular component. These
crossings become odd when the second component is considered.

1

2 3

4

Figure 2.42: A multi-knotoid diagram

To define a well-defined parity for crossings of multi-knotoid diagrams, we apply
the same method used in [26, 27, 87] to extend the parity to a parity of virtual
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links [15]. The idea is to regard the crossings of a multi-knotoid diagram that are
shared by two components as link crossings. The parity remains the same for self-
crossings of each component, as odd or even crossings. In particular for the diagram
given in Figure 2.42, the crossings 1, 2, 3 are even and the crossing 4 is a link
crossing.

Parity bracket polynomial

The parity bracket polynomial of Manturov [87] is a modification of the bracket
polynomial that uses the parity of crossings in virtual knots and links. With the
existence of even and odd crossings in knotoid diagrams, we define the parity bracket
polynomial for both classical and virtual knotoid diagrams [15] as follows. For a
knotoid diagram K, either classical or virtual, a parity state is defined to be a
labeled graph (a virtual graph for virtual diagrams). A parity state of a virtual
knotoid diagram K is obtained by smoothing the even crossings of K by A- and B-
smoothing type of the usual bracket polynomial and labeling the smoothing sites
by A or A−1, respectively, and replacing the odd crossings of K by graphical nodes.
Note that circular and long segment components of parity states are regarded as
graphs.

e
= A + A−1

o
=

P

P

P

=

P P

P

P

Figure 2.43: Parity bracket expansion

The resulting states are taken up to the virtual equivalence (isotopy of S2 and
detour moves) and up to the reduction rule, shown in Figure 2.43. The reduction
rule is simply a Reidemeister two- move that eliminates two graphical nodes forming
the vertices of a bigon. The state components that still contain nodes after applying
the reduction rule, are called irreducible state components. Each irreducible state
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component contributes to the polynomial as a graphical coefficient.

Definition 2.54. The parity bracket polynomial of a virtual or classical knotoid
diagram K, is defined as

< K >P=
∑
S A

n(S)(−A2 − A−2)l(S)G(S),

where n(S) denotes the number of A-smoothings minus the number ofB-smoothings,
l(S) is the number of components without any nodes of the parity state S and G(S)
is the union of irreducible state components.

Definition 2.55. The normalized parity bracket polynomial of a knotoid diagram
(classical or virtual) K is defined as

< K >P = (−A3)−wr(K) < K >P .

Theorem 2.56. [15] The normalized parity bracket polynomial is a virtual and a
classical knotoid invariant.

Proof. It can be verified by the reader that one Ω1-move adds/removes an even
crossing and changes the polynomial by −A±3. Then the writhe normalization
makes the parity polynomial invariant under an Ω1- move. An Ω2-move may add
two crossings that are both even crossings. In this case the parity bracket polynomial
is invariant under this move since the bracket polynomial is invariant under Ω2-move.
If the crossings in the move pattern are both odd crossings, the reduction rule applies
and eliminates the crossings. So, the polynomial does not change by an Ω2- move. It
is clear that the invariance under Ω3- move, if three of the crossings in the triangular
region are even, follows from the bracket polynomial invariance, and if two of them
are odd and one is an even crossing then the invariance follows by an isotopy of the
state component.

The parity bracket polynomial can be defined for flat virtual knotoids and flat
knotoids [15] as follows. LetK be a flat diagram. Odd crossings ofK are replaced by
graphical nodes and even crossings are smoothed out in two ways, and the smoothing
sites are labeled by A = −1. If K is a virtual flat diagram, virtual crossings of K
are kept as they are. In this way, we obtain the parity states of K. The reduction
rule applies the same on the parity states of K for the elimination of nodes. The
parity bracket polynomial of K is defined as,

< K >P=
∑
S −2l(S)G(S),

where l(S) is the number of components without any nodes of the parity state S
and G(S) is the union of irreducible state components.
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Theorem 2.57. [15] The parity bracket polynomial is an invariant of flat virtual
knotoids and flat knotoids. The parity bracket polynomial of a flat knotoid in S2 is
trivial.

Proof. The invariance of the parity bracket polynomial for flat knotoids can be seen
easily by checking of the invariance of the polynomial under the generalized flat Ω-
moves. Since any flat knotoid in S2 is f-equivalent to the trivial knotoid, the second
statement follows.

Proposition 2.58. [15] There is no irreducible state component in the parity state
expansion of a knotoid diagram in S2.

Proof. Let K be a knotoid diagram in S2. If K is a knot-type knotoid diagram then
none of its crossings is odd, as a result of Jordan curve theorem. Therefore, there is
no graphical coefficient contributing to the parity bracket polynomial of K. In fact,
the parity bracket polynomial of K coincides with its usual bracket polynomial.
On the other hand, if K is a proper knotoid diagram then K has odd crossings
by Theorem 2.50. Thus the parity states of K have components with nodes each
corresponding to an odd crossings of K. It is clear that the set of odd crossings of
K is the same with the set of odd crossings of F (K) where F (K) is the underlying
flat knotoid diagram of K. For this reason, the existence of any irreducible state
component in parity states of K would cause an irreducible state component in the
parity states of F (K). Thus to prove the theorem it is sufficient to show that any
graphical state component of a flat knotoid diagram can be reduced to a component
that is free of nodes. Proposition 2.28 implies that any flat knotoid diagram in S2

can be obtained from the trivial knotoid diagram by finitely many flat Ω-moves. We
induct on the flat knotoid diagrams.

The trivial knotoid diagram has no crossing so it has no irreducible state com-
ponent. We assume that graphical state components of all flat diagrams that are
obtained from the trivial diagram by an application of n flat Ω- moves, can be re-
duced to a component without any nodes. Let K̃ be such a flat knotoid diagram.
A single flat Ω2-move adds/removes either two odd or even crossings to K̃. Two
crossings added/removed do not change the parity of the crossings outside the flat
Ω2-move pattern, as explained in the proof of Theorem 2.53. If the crossings are even
crossings then they increase/decrease the number of state components but there is
no resulting graphical component. If the crossings (added) are odd crossings, they
are located as the vertices of a bigon (they are paired up) that can be eliminated by
the reduction rule. Two paired up odd crossings are removed by the move, and since
the rest of the odd crossings are assumed to be paired up so that they can be elimi-
nated, there is no irreducible state component created. Thus a flat knotoid diagram
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which is obtained by applying one Ω2- move to K̃, does not have any irreducible
graphical state components in its parity states.

The flat Ω3- move does not add/remove any odd or even crossings or change the
parity of the crossings outside the move pattern. Thus, the parity states of a flat
knotoid diagram obtained by applying one flat Ω3-move to K̃ are isotopic to the
parity states of K̃.

The flat Ω1-move adds/removes an even crossing which does not change the
parity of the crossings outside the move pattern and does not add any nodes to
the diagram, so there are no resulting graphical state components. This completes
the induction argument. The parity state components of any flat knotoid diagram
are reduced to state components that are free of nodes. Therefore, the parity state
components of a knotoid diagram in S2 are reducible.

Lemma 2.59. [15] Let K be a knotoid in S2. Then we have < K >P=< v(K) >P .

Proof. Let K̃ be a classical knotoid diagram representing K. The classical crossings
of v(K̃) are the same with the classical crossings of K̃. Neither the skein relations
nor the reduction rule of the parity bracket polynomial are applied to the virtual
crossings of a virtual knot diagram, so to the virtual crossings of v(K̃). By Propo-
sition 2.58 , all nodes in a parity state component of K̃ are eliminated so that each
parity state of K̃ is reduced to consist of disjoint simple closed curves and a long
segment component. If any of the virtual crossings of v(K̃) passes through a bigon
whose vertices are reducible graphical nodes of a parity state of K̃ then we can move
these virtual crossings out of the bigon by the detour move that is available for the
parity states. After moving the virtual crossings out of the bigon, we can eliminate
the nodes by the reduction rule as we do for the parity state of K̃. Therefore, any
parity state component of v(K̃) can be obtained by connecting the endpoints of the
long segment component of the corresponding parity state component of K̃ in the
virtual fashion. This shows that < K >P=< v(K) >P .

Corollary 8. [15] If there are graphical coefficients in the parity bracket polynomial
of a virtual knot K then K is not the virtual closure of a knotoid in S2.

Proof. It follows by Proposition 2.58 and Lemma 2.59.

We give a combinatorial explanation for the reducibility of a parity state in S2.
We label each edge of a given state of which we illustrate a small portion in Figure
2.44. The nodes that share exactly two edges (labeled as b and e in the figure)
form a reducible bigon if and only if the edges appear in the order e b f c during a
full tour in the counterclockwise direction around one of the nodes and in the order
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b e a d around the other node. More precisely, the shared edges b and e appear in
cyclic order around the nodes. Note that the detour moves do not change the labels.
Then up to detour moves, a parity state of a virtual knotoid diagram will have a
removable bigon between the nodes.

a

b

c

d

e

f

a
d

b

e

b
e f

c

Figure 2.44: Labels at the nodes of a reducible bigon

Example 6. Both of the classical crossings of the virtual knotoid diagram given
in Figure 2.19 are odd crossings. There is only one parity state of this diagram
that is a graphical state, obtained by replacing these crossings by nodes. As seen
in Figure 2.45, the two nodes have orders: a c b d and e b d c, respectively. Since
the shared edges b and d do not appear in the required order, the state is not
reducible. We conclude that the parity bracket polynomial consists of one summand
that is a graphical coefficient. Thus, the non-triviality of this virtual knotoid whose
virtual closure is trivial, is verified by the parity bracket polynomial. Moreover,
by Proposition 2.58, this virtual knotoid diagram is not virtually equivalent to a
classical knotoid diagram, and in fact, it represents a genus one virtual knotoid.

a

b
b

c

d d

ea

b
b

c

d d

e P

=

Figure 2.45: 1st node: acbd 2nd node: ebdc

The condition given above that is necessary for the elimination of the nodes of
a graphical state component applies in the same way to the flat case. The parity
bracket polynomial of the underlying flat diagram of the knotoid diagram given in
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Figure 2.19 is the same as the polynomial of the overlying virtual knotoid, consisting
of one graphical coefficient. Therefore, the parity bracket polynomial of this flat
virtual knotoid diagram is not trivial. This completes the argument in Section 2.2.1
that flat virtual knotoids are not necessarily trivial.

Nothe that considering planar knotoid diagrams and parity states up to the
isotopy of R2, the above condition does not apply anymore and we may observe
irreducible parity states even though the condition holds. See Figure 2.46 for the
parity state of the knotoid given. The crossings of K are both odd and the parity
bracket polynomial of K is equal to the graphical state with two nodes.

=

Figure 2.46: A planar knotoid with an irreducible parity state

Note 10. The normalized parity bracket polynomial extends to an invariant for vir-
tual multi-knotoids. Even crossings of a multi-knotoid diagram are smoothed in the
usual way. Together with odd crossings, also link crossings (crossings between dis-
tinct components) of a multi-knotoid diagram are replaced by graphical nodes. We
extend the procedure for calculation of the parity bracket polynomial to include the
link crossings as follows. The graphical state components containing the nodes cor-
responding to link crossings are eliminated by the same reduction rule. Irreducible
graphical state components contribute to the polynomial as graphical coefficients.
The parity bracket polynomial of a virtual multi-knotoid is defined in the same way
by expanding the state summation, and the normalization of the polynomial with
writhe is a virtual multi-knotoid invariant.

We have showed that the graphical components of a classical knotoid diagram
are all reduced by the reduction rule, in other words, they are free of nodes. The
parity states of a classical multi-knotoid diagram may contain irreducible graphical
states. Figure 2.47 depicts a multi-knotoid diagram with two components and one
link crossing. It is clear that the diagram has a nontrivial parity bracket polynomial
that is equal to one graphical coefficient. Thus, the multi-knotoid represented by
this diagram is a nontrivial multi-knotoid.
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Figure 2.47: A multi-knotoid with nontrivial parity bracket
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Chapter 3

On Braidoids

3.0 Introduction

Braidoids are geometric objects extending the notion of a classical braid with ‘free
strands’ and analogously to the relation of classical braids with classical knots,
forming a counterpart ‘braided’ theory to the theory of knotoids. In this chapter we
first introduce the notions of a braidoid diagram and discuss on the isotopy moves of
braidoid diagrams. We then give two algorithms turning any given (multi-)knotoid
into a braidoid diagram and define a closure operation on braidoid diagrams back to
(multi)-knotoids which is consistent with the braidoiding algorithms, so we obtain
an analog of the classical Alexander theorem for knotoids. We adapt the classical
L-moves that, together with braidoid isotopy, generate an equivalence relation on
braidoid diagrams and provide our closure map to be a bijection, in other words,
we obtain a geometrical analogue of the Markov theorem for knotoids. We provide
a list of generating blocks or braidoiding diagrams and we give a set of relations on
these blocks, reflecting the braidoid isotopy. Lastly, we make a short introduction
to the theory of tangloids.
The results of this chapter are mainly based on the techniques in [21, 82–84], while
they appear in [18,19].

3.1 Basics on braidoids

3.1.1 The definition of a braidoid diagram

Definition 3.1. [18,19] Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram
B is a system of a finite number of arcs embedded in I × I ⊂ R2 that are called the
strands of B. There are only finitely many intersection points among the strands,
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which are transversal double points endowed with over/under data, and are called
crossings. We identify R2 with the xt-plane with the t-axis directed downward.
Following the orientation of I, each strand is naturally oriented downward, with
no local maxima or minima, so that it intersects a horizontal line at most once. A
braidoid diagram has two types of strands, the classical strands and the free strands.
A classical strand is as a braid strand connecting two points, the top one that lies
in I × {0} and the bottom one that lies in I × {1}. A free strand is a strand that
either connects a point in I×{0} or in I×{1} to a point located anywhere in I× I,
called an endpoint of B, or it connects two endpoints that are not necessarily lying
in I × {0} or I × {1}. Thus a braidoid diagram has either one free strand (see for
example Figure 3.1(a)) or two free strands (see for example Figure 3.1 (b), (c), (d),
(e)) and exactly two endpoints, which are called the leg and the head, denoted by l
and h respectively, in analogy with the endpoints of a knotoid diagram. The head is
the endpoint that is terminal for a free strand with respect to the orientation, while
the leg is the starting endpoint for a free strand with respect to the orientation.
The ends of the strands of B that are not the two endpoints of B are named braidoid
ends.

l

h

1

1

2

2

l

h

1

11

l

h

1

l
h

1

1 2

l

h

2

a b c d e
Figure 3.1: Some examples of braidoid diagrams

We assume that the braidoid ends lie equidistantly on the lines {t = 0} and
{t = 1}. It is clear that the number of braidoid ends that lie at the top line is equal
to the number of braidoid ends that lie at the bottom line of the diagram and the
number of braidoid ends on top/bottom line is n− 1 for a braidoid diagram with n
strands. The braidoid ends are arranged in pairs that are vertically aligned, called
corresponding ends, and they are numerated with integers according to their order
on the lines from left to right, as seen in the examples illustrated in Figure 3.1.

The endpoints of B differ conceptually from its braidoid ends. As we shall see,
the endpoints are subject to special isotopy moves unlike the braidoid ends which
are assumed to be fixed at the top and the bottom line of the diagram and they
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do not participate in the closure. To distinguish the endpoints from the braidoid
ends, we denote them by graphical nodes. See Figure 3.1 for some basic examples
of braidoids.

Definition 3.2. A braidoid diagram is a piecewise-linear braidoid diagram if all of
its strands are formed by consecutive linear segments.

As any braid diagram can be approximated by a piecewise-linear braid dia-
gram [92], any braidoid diagram can be approximated by a piecewise-linear braidoid
diagram. We shall be considering piecewise-linear braidoid diagrams in the rest of
the discussion although we give some figures in smooth category for easiness and
aesthetics.

3.1.2 Braidoid isotopy

Moves on segments of strands

As for classical braids, the following moves are allowed on segments of braidoid
strands.

Definition 3.3. A ∆-move is defined on braidoid diagrams similarly for knotoid
diagrams as follows. A ∆-move on a braidoid diagram is defined on a local region
that does not contain any of the endpoints and it replaces a segment of a strand with
two segments passing only over or only under the arcs intersecting the triangular
region of the move while the downward orientation of the strands is preserved (recall
Figure 3.2). The oriented Reidemeister moves, Ω2 and Ω3, which keep the arcs in
the move patterns directed downward, are defined on braidoid diagrams as special
cases of ∆-moves.

A

B

C

A

B

Figure 3.2: A planar ∆-move on a braidoid diagram
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Moves of endpoints

As for knotoid diagrams, we forbid the pulling of the leg and the head over or
under a strand, as shown in Figure 3.3. These are the forbidden moves of braidoid
diagrams and they are denoted Φ+ and Φ−, respectively. It is clear that allowing
both forbidden moves can cancel any braiding of the free strands.

Figure 3.3: Forbidden braidoid moves

The following moves are allowed on segments of braidoid strands containing
endpoints.

1. Vertical Moves: As shown in Figure 3.4, the endpoints of a braidoid diagram
can be pulled up or down in the vertical direction as long as they do not violate
any of the forbidden moves (that is crossing through or intersecting any strand
of the diagram). Such moves are called vertical move.

2. Swing Moves: An endpoint may also swing to the right or the left like a pen-
dulum as long as;
i. the downward orientation on the arc moving, is preserved,
ii. the endpoint does not cross through or intersect any strand of the diagram,
iii. the endpoint cannot cross to right and left across the vertical line deter-
mined by a pair of corresponding braidoid ends. See Figure 3.5.

1 l

h

1

2

l

vertical move

h

22

Figure 3.4: A vertical move on h
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Figure 3.5: Swing moves

Definition 3.4 (braidoid isotopy). It is clear that assuming braidoid ends fixed at
the top and bottom lines (t = 0 and t = 1, respectively), the Ω- moves together
with the swing and vertical moves for the endpoints generate an equivalence relation
on braidoid diagrams in R2. Two braidoid diagrams are said to be isotopic if one
can be obtained from the other by a finite sequence of Ω-moves, vertical and swing
moves. An equivalence (or isotopy) class of isotopic braidoid diagrams is called a
braidoid. Note that isotopy moves of braidoid diagrams do not change the number
of strands. Thus isotopic braidoid diagrams have the same number of strands.

3.2 From braidoids to knotoids - the closure op-
eration

In this section we define a closure operation on braidoid diagrams in analogy with
the closure of braids in handlebodies [21], in order to obtain planar knotoid or
multi-knotoid diagrams [18, 19]. In order to do this we further require to introduce
a labeling on braidoid diagrams. Also, we assume that the endpoints of a braidoid
diagram are not aligned vertically with any braidoid ends. Indeed, this can be
achieved by a swing move moving the endpoint to the left hand side of the vertical
line of the related corresponding ends (recall Figure 3.5).

Definition 3.5. A labeled braidoid diagram is a braidoid diagram such that every
pair of its corresponding ends is labeled either by o or u, standing for ‘over’ or ‘under’,
respectively. A label indicates an overpassing or an underpassing arc, accordingly,
which will take place in the closure (see Definition 3.6). We attach the labels next
to the braidoid ends lying at the top line.

Clearly, braidoid isotopy moves, described in Definition 3.4 do not change the
labeling. Two labeled braidoid diagrams are called isotopic if they are isotopic as
unlabeled braidoid diagrams and their braidoid ends admit the same labeling. The
corresponding isotopy classes are called labeled braidoids.
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Definition 3.6. Let B be a labeled braidoid diagram with n > 1 strands. The
closure of B, denoted B̂, is a planar (multi-)knotoid diagram obtained by the
following topological operation. Every pair of corresponding braidoid ends of B
is connected by an embedded arc (with slightly tilted extremes) that lies on the
right-hand side of the vertical line of the corresponding braidoid ends (the verti-
cal line passing through the pair of corresponding ends) and within a distance dj,
dj < min{ρ(leg, lj), ρ(head, lj)} for each 1 ≤ j ≤ n−1, where lj denotes the vertical
line passing through the pair of the jth braidoid ends and ρ is the usual metric of R2.
Such a connection arc goes entirely over or under the rest of the diagram accord-
ingly to the label of the ends and is oriented upward following the orientation of the
connected strands. Finally, the labels are forgotten in the resulting diagram that
is a knotoid or a multi-knotoid diagram. See Figure 3.6 for an abstract illustration
of the closure of a labeled braidoid diagram and Figures 3.7 and 3.8 for concrete
examples.

Figure 3.6: The closure of an abstract labeled braidoid diagram

Notes on the closure

1. The endpoints of B do not participate in the closure and they become the
endpoints of the resulting (multi- ) knotoid diagram B̂.

2. One reason that a joining arc is required to lie in a distance less than the
distances of the endpoints to the line of the related corresponding ends is
that, otherwise, forbidden moves may obstacle an isotopy of B̂ between any
two joining arcs.
The other reason for choosing the connection arc in relation with the distances
of the endpoints to the braidoid ends and the vertical lines passing through
them will get clear after introducing our braidoiding algorithm.
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3. A connection arc can lie on the right or on the left of the line of the corre-
sponding ends. It is a matter of preference that in this setting it is assumed to
lie on the right. Clearly both choices result in isotopic knotoids since, by def-
inition, the closure takes place sufficiently away from the endpoints avoiding
the forbidden moves and we assume the endpoints are not aligned with any of
the braidoid ends.

4. The resulting multi-knotoid depends on the labeling of the braidoid ends.
See Figure 3.8 for an example of two non-isotopic labeled braidoid diagrams
with the same underlying braidoid diagram, which give rise to non-equivalent
knotoids. This is again due to the presence of the endpoints and forbidden
moves of them. In fact we cannot simply carry connection arcs out of the strip
containing the multi-knotoid diagram so that the closure is free of labeling. To
obtain a well-defined map, we define the closure on the set of labeled braidoid
diagrams.
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closing from the left closing from the right

isotopy isotopy

u u

Figure 3.7: Non-isotopic closures in the presence of endpoint alignment
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Figure 3.8: An example of non-equivalent closures resulting from different labelings

Proposition 3.7. The closure operation induces a well-defined map from the set of
labeled braidoids to the set of planar multi-knotoids.

Proof. It is clear that labeled braidoid isotopy moves transform into isotopy moves
on the resulting multi-knotoid diagrams.

3.3 From knotoids to braidoids - two braidoiding
algorithms

In analogy with the braiding moves [83–85], in this section we define the braidoiding
moves and provide two algorithms that turn a planar (multi-) knotoid diagram into
a braidoid diagram. More precisely we obtain the following theorem.

Theorem 3.8. (An analogue of the Alexander theorem for knotoids) Any (multi-
)knotoid diagram in R2 is isotopic to the closure of a labeled braidoid diagram.

Let K be a (multi-)knotoid diagram. We shall describe below how to manipulate
K in order to obtain a labeled braidoid diagram, after equipping the plane on which
K lies with the top-to-bottom direction.
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3.3.1 Preparatory concepts for braidoiding algorithms

The basic idea of braidoiding

The basic idea in order to turn K into a braidoid diagram is to keep the arcs that are
oriented downward, with respect to the top-to-bottom direction, and to eliminate
the ones that are oriented upward (up-arcs), producing at the same time pairs of
corresponding braidoid strands, so that the resulting diagram is a (labeled) braidoid
diagram whose closure is a knotoid isotopic to K. The elimination of the up-arcs
is done by utilizing the braidoiding moves illustrated abstractly in Figure 3.9. A
braidoiding move consists of cutting an up-arc at a point and pulling the resulting
ends to top and bottom lines preserving the alignment with the cut-point. As can
be seen in Figure 3.9, closing the pair of corresponding ends obtained, according
the label of QP , results in a closed strand that is isotopic to the initial up-arc QP .
Precisely, the closed strand can be contracted back to QP by utilizing Ω- moves.

Q

P

Q

P

Q

P

cut at a point ∆-move

o

o

o

o

o

closure
Q

P

o

o

Figure 3.9: The germ of the braidoiding move and its closure

In order to implement this idea into a rigorous algorithm we need first to take
care of a few technical points.

Up-arcs and free up-arcs

It is clear that by small ∆-moves K can be assumed to be a diagram without any
horizontal arcs. Thus K consists of a finite number of arcs oriented either upward or
downward, and these arcs are separated by finitely many local maxima or minima.
The arcs of K that are oriented upward are called up-arcs and the ones oriented
downward are called down-arcs of K. An up-arc may contain crossings of different
types (over/under-crossings) or no crossing at all. See Figure 3.10. An up-arc that
contains no crossing is called a free up-arc.
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Figure 3.10: Two up-arcs containing crossings and a free up-arc

Subdivision

Subdivision is the addition or deletion of a subdividing point (recall Section 2.1.3).
Subdivision can be considered as a special ∆-move, as shown in Figure 2.6. We
start by marking the local maxima and minima of K with points, which we name
subdividing points. In the process we may need to subdivide further some up-arcs of
K.

Sliding triangles and cut-points

Let QP be an up-arc of K, with respect to a given subdivision of K where Q denotes
the initial and P denotes the top-most subdivision point. A cut-point of an up-arc
is defined to be the point where the up-arc is cut to initiate a braidoiding move. We
choose the point P ∈ QP as the cut-point of QP .

Definition 3.9. There is a unique right angled triangle associated to QP with ver-
tices Q, P and R, where R is the point in the plane having the same x-coordinate
with P and t- coordinate with Q, respectively. This triangle is called the sliding tri-
angle of the up-arc QP . We denote the sliding triangle by T (P ). For an illustration
of T (P ) see Figure 3.11.

The triangular region bounded by the sliding triangle T (P ) is utilized after cut-
ting QP , for sliding the resulting lower sub-arc across the region to complete the
braidoiding move. See Figure 3.11.

Note that, if QP is itself vertical, then the sliding triangle degenerates into QP
for both cases.
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Figure 3.11: The sliding triangle of the up-arc QP

The endpoints triangle condition

In the process of the preparation of a knotoid diagram for braidoiding one may
come across the situation where one (or two) of the endpoints lies in the region of
some sliding triangle as in Figure 3.12. This is an unwanted situation since sliding
a resulting arc across such a triangle will cause a forbidden move. We impose the
following condition on a knotoid diagram.
The endpoints triangle condition: A sliding triangle of a knotoid diagram is not
allowed to contain an endpoint.
To satisfy this condition we introduce a subdivision of up-arcs into smaller up-arcs
by adding extra subdividing points. See Figure 3.12. More precisely, we have the
following proposition.

Proposition 3.10. Let K be a knotoid diagram and T (P ) be the sliding triangle
corresponding to an up-arc QP . If T (P ) contains the leg or the head of K in its
interior or boundary edges then there is a further subdivision of QP with new sliding
triangles that are disjoint from the endpoint.

Proof. We can assume that QP has a positive slope since the other case follows by
symmetry. There is unique horizontal and vertical line passing through the endpoint
in question and each intersectingQP exactly at one point, since xQ ≤ x(endpoint) ≤ xP

and tP ≤ tendpoint ≤ tQ. One can choose any point in the line segment whose
boundary is the union of the two intersection points as the new subdividing point on
QP . Let P ∗ denote the chosen point. The corresponding sliding triangles to this new
subdivision produces smaller sliding triangles that do not contain the endpoint. In
the case that T (P ) contains two of the endpoints, we introduce two new subdividing
points on QP accordingly to the choice above.
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Figure 3.12: Further subdivision of QP to satisfy the endpoints triangle condition

3.3.2 Braidoiding algorithm I

Let K be a (multi-)knotoid diagram lying in the xt-plane. Since K is compact we
can assume that it lies in the region [0, 1] × [0, 1]. For turning K into a labeled
braidoid diagram with isotopic closure we follow the steps below. These steps set
the braidoiding algorithm I.

Step 1: Arranging the crossings

Rotate all crossings that are contained in at least one up-arc to turn the neighboring
up-arcs into down-arcs. More precisely, if a crossing is contained in two up-arcs
then rotate it by 180 degrees inside a small disk neighbourhood of the crossing
intersecting K at four local strands around the crossing. See Figure 3.13. If a
crossing is contained in only one up-arc then rotate it by 90 degrees in such a small
disk. See Figure 3.14. The (multi-) knotoid diagram K ′ resulting from rotating
each such crossing in this way is isotopic to K since rotations in the plane can be
expressed as combinations of ∆-moves. Clearly, K ′ contains only free up-arcs.

Figure 3.13: Eliminating up-arcs with a full twist

85



Figure 3.14: Eliminating an up-arc with a half twist

Step 2: Arranging the endpoints

For any knotoid diagram, by small perturbations, it can be assumed that the ema-
nating arcs from the leg and the head are straight vertical arcs pointing downward
with respect to a chosen top-to-bottom direction of the plane of the knotoid. We
assume the endpoints of K lie on vertical and downward directed arcs. See Figure
3.15.
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Figure 3.15: Arranging the endpoints

Step 3: Preparation for eliminating the free up-arcs

We first mark the up-arcs of K ′ with subdividing points, starting from the local
minima and maxima. Then we shall continue with eliminating the free up-arcs of
K ′. For doing this, we first make some general positioning requirements on K ′.
Namely, we require K ′ to have no horizontal arcs, none of subdividing points are
vertically aligned with each other unless they share a common edge, or with the
endpoints or with any of the crossings, also none of the endpoints intersects with
a sliding triangle. Clearly, any (multi-)knotoid diagram can be isotoped to such a
diagram by Ω-moves including subdivision. Finally, we attach to each free up-arc
either of the labels; o or u , and we give them an order for elimination.
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Step 4: Applying the braidoiding moves

We start applying the braidoiding moves with respect to an order given to free up-
arcs. Without loss of generality, let QP be a free up-arc of K ′ that is chosen as the
first to be eliminated. We cut QP at its cut-point, namely at the point P .

If QP is labeled with o we pull the resulting two pieces, the upper upward to
the line t = 1 and the lower downward to the line t = 0, both entirely over the
rest of the diagram, by sliding them across the sliding triangles. The resulting
pieces are pulled so that their ends are kept aligned vertically with the cut-point
and by applying small planar isotopies we turn the lower and upper pieces into
down-arcs. See Figure 3.9. This operation eliminates the up-arc QP and results in
a pair of corresponding braidoid strands vertically aligned with the cut-point. For
the purpose of closure, this pair of strands is labeled o. If QP is labeled with u, the
resulting ends are pulled passing under the rest of the diagram and the new pair
of strands is labeled by u for the purpose of closure. The algorithm continues with
the elimination of remaining free up-arc as explained above. Since there is a finite
number of free up-arcs the algorithm terminates in finite step. See Figure 3.16 for
an illustration of the process of the algorithm.
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Figure 3.16: An illustration for the braidoiding algorithm I

The first proof of Theorem 3.8

Proof. It can be verified similarly as in [84, 85] that none of the orderings or the
labeling of free up-arcs can cause an obstruction for elimination. Then the algorithm
terminates at finite steps and results in a labeled braidoid diagram for any ordering
and labeling. By the discussion regarding Figure 3.9, if we close all resulting strands
accordingly to the labels assigned to them, we obtain a multi-knotoid diagram that
is isotopic to K. This comprises a proof of Theorem 3.8.

A corollary of the braidoiding algorithm I

The braidoiding algorithm I starts with rotating the crossings of a knotoid diagram
that appear on up-arcs. The up-arcs resulting by rotation of each crossing are only
free up-arcs that can be labeled either with o or u freely. Assuming that all free
up-arcs are labeled the same, it is clear that the labeled braidoid diagram obtained
by the braidoiding algorithm I contains only one type of label on its strands, say u.

89



Let us call a labeled braidoid diagram whose strands are labeled only with u (or o) a
u-labeled braidoid diagram (o-labeled braidoid diagram, respectively). Then clearly
we have a bijection,

Labelu : {Braidoids} → {u-labeled braidoids},

induced by assigning to a braidoid diagram B the u-labeled braidoid diagram Bu

obtained by attaching u labels to each braidoid end of B. Since the map Labelu is a
bijection, we can define a closure operation for braidoid diagrams without labels as
follows. Connect each pair of corresponding braidoid ends with an underpassing arc
in a distance arbitrarily close to the vertical lines of the corresponding ends. We call
this closure uniform closure of a braidoid diagram. Then Theorem 3.8 is sharpened
as follows.

Theorem 3.11. Any multi-knotoid diagram is isotopic to the uniform closure of a
braidoid diagram.

3.3.3 Braidoiding algorithm II

We shall now give another algorithm for obtaining a labeled braidoid diagram from
a (multi-)knotoid diagram K that once more utilizes the braidoiding moves. This
algorithm is more ‘rigid’than the previous one which makes it more appropriate for
proving a braidoid equivalence result analogous to the classical Markov theorem.
The algorithm runs as follows.

Step 1: Arranging the endpoints

As in Step 1 of the first braidoiding algoritm, the endpoints of K are assumed to lie
on vertical arcs that are directed downwards. This can be ensured by Ω-moves.

Step 2: Arranging the up-arcs

Subdivide the resulting up-arcs starting from local maxima and minima. If an up-arc
contains two types of crossings; both over- and under-crossings, then we subdivide
the up-arc into smaller up-arcs each containing only one type of crossings (see Figure
3.17.
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Figure 3.17: Subdividing an up-arc to contain one type of crossings

Step 3: Preparation for eliminating the up-arcs

The diagram is isotoped to satisfy the general positioning requirements given for
braidoiding algorithm I including the endpoints triangle condition. We attach a
label to each up-arc accordingly to the crossing type it contains: we attach o if the
up-arc contains over-crossing(s), u if the up-arc contains under-crossing(s). Free
up-arcs are labeled with o or u.

Step 4: Applying the braidoiding moves

We finally apply the braidoiding moves to each up-arc of K in a given order. The
resulting braidoid strands are labeled with o or u accordingly to the label of the
initial knotoid up-arcs, and give an order to them for elimination.

Obstructions for the braidoiding algorithm II and Resolutions

Now, we discuss on some bugs of the braidoiding algorithm II, as also discussed
in [84,85]. In some cases, as exemplified in Figure 3.18, the algorithm is obstructed
by a clasp occuring in the sliding triangle of an up-arc. More precisely, we see in the
figure that the braidoding move applied on the second-ordered up-arcs labeled with
o and u respectively, cannot be completed, due to the clasps in their sliding triangles.
It can be verified by checking all possible positioning and labeling/ordering of any
two up-arcs that this type of obstruction may occur only if:

i. the top-most point of the first ordered up-arc intersects the sliding triangle of the
second-ordered up-arc and,
ii. two up-arcs with intersecting sliding triangles, are labeled the same.
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Figure 3.18: Obstructions for applying braidoiding moves

Due to the conditions creating obstructions, the resolutions for them may be:

i. swapping the ordering of the up-arcs; see Figure 3.19,
ii. changing the label of the free up-arc if there is a free up-arc involved in an
obstruction; see Figure 3.20, iii. subdividing the up-arcs further to have disjoint
sliding triangles; see Figure 3.21.

o2

o1

braidoiding in
 given order

o2 o1

Figure 3.19: Swapping the order of up-arcs repairs the obstruction
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Figure 3.20: Changing the label of the free up-arc repairs the obstruction

o1
o
2

a new subdividing point o1 o3o2

o3

braidoiding

Figure 3.21: Adding a subdividing point the the upper up-arc repairs the obstruction

Moreover, the addition of subdividing points can result also that the elimination
of up-arcs takes place independently of ordering, so even simultaneously. More
precisely we can impose the following condition on knotoid diagrams which provides
a simultaneous braidoiding algorithm.
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The classical triangle condition

Two sliding triangles are said to be adjacent if the corresponding up-arcs have a
common subdidiving point, and non-adjacent otherwise.

The classical triangle condition says that non-adjacent sliding triangles are al-
lowed to intersect only if the up-arcs of the triangles have different labels. This
condition can always be satisfied by the following lemma.

Figure 3.22: The classical triangle condition

Lemma 3.12. Let K be a knotoid diagram. There exists a subdivision of K, for
appropriate choices of labels for the free up-arcs, satisfying both classical triangle
condition and the endpoints triangle condition.

Proof. This lemma is proved similarly with Lemma 1 in [84]. We adapt the proof
here, for completeness. We want to subdivide all up-arcs of K in a way that none
of two having the same labels, have intersecting sliding triangles. Let d1 be the
minimum distance between any two crossings appearing on the up-arcs ofK. Choose
some r, 0 < r < d1 so that the disk of radius r centered at a crossing contained in an
up-arc, intersects the up-arc at only four local strands around the crossing. Let d2

be the minimum distance between any two disjoint points that are located outside
the disks of radius r around the crossings and on different segments. Letting ε <
1/2min{d1, d2} be the distance between any two subdivision points on K provides a
subdivision ofK satisfying the classical triangle condition and the endpoints triangle
condition. Each sub-arc of length ε is also labeled according to the crossing type it
contains, or if some become free, they are labeled freely.

Second proof of Theorem 3.8

Proof. The proof follows similarly with the first proof. With the discussion above
we know that there is always a choice for ordering and labeling up-arcs of a (multi)-
knotoid diagram and, moreover, we can impose the classical triangle condition to
make the algorithm free of ordering. This is sufficient for ensuring that the algorithm
II terminates at a finite step and always results in a labeled braidoid diagram. See
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Figure 3.23 for an illustration of the algorithm II. It is clear from Figure 3.9 that if
the strands obtained when the algorithm terminates are closed accordingly to their
label, then they can be contracted back to initial up-arcs all over or under the rest
of the diagram, depending on the label of the strand. Such contraction utilizes the
Ω-moves of knotoids, thus the closure of the resulting braidoid diagram is isotopic
to K.

U2
U3

U4
U1

u u u u u u u u

arrange the endpoints

  1.subdivide K 

           apply
braidoiding moves

isotopy

1 2 3 4 2.order and label 
   the up-arcs

Figure 3.23: An illustration for the algorithm II

3.4 L-equivalence on braidoid diagrams

The L-moves were originally defined in 1993 by Lambropoulou for classical braids
[83–85]. They were used for proving a one-move analogue of the classical two-move
Markov theorem [2, 71, 72, 87, 88, 91, 94], which relates braids that close to isotopic
knots or links. The L-moves are defined on braidoid diagrams analogousl and we
shall use them for formulating a geometric analogue of the classical Markov theorem,
even though we do not have an algebraic structure for braidoids.
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3.4.1 L-moves

Definition 3.13. An L-move on a braidoid diagram B is the following operation.

1. Cut a strand of B at some point which could be an interior point or an end-
point, that is not vertically aligned with a braidoid end or an endpoint or a
crossing of B. This can be ensured by small braidoid isotopies.

2. Pull the resulting ends away from the cut-point to the top and bottom lines
of B respectively, keeping them vertically aligned with the cut-point, so as to
create a new pair of strands with corresponding braidoid ends, and so that the
new strands run both entirely over or under the rest of the braidoid diagram.
In the case that an endpoint is contained in a vertical segment of a strand
and the strand is cut at the endpoint then the resulting strands are created in
a distance arbitrarily close to the vertical line of the endpoint, either on the
right or the left of this line. See Figures 3.24 and 3.25 for abstract illustrations
of L-moves.

3. From the above, there are two types of L-moves, namely Lover and Lunder-
moves, denoted by Lo and Lu, respectively. An Lo-move comprises pulling
the resulting sub-strands entirely over the rest of the diagram. An Lu-move
comprises pulling the sub-strands entirely under the rest of the diagram. See
Figure 3.24. Moreover, an L-move applied on an interior point can be isotoped
to having a small crossing on the resulting strands [84,85]. See Figure 3.26.

The L-moves can be applied on labeled braidoid diagrams by labeling a pair of
corresponding strands with ‘o’ if they are resulting from an Lo-move and with ‘u’
otherwise. As can be seen by Figure 3.24 the closure of the labeled braidoid strand
resulting from an L-move is isotopic to the closure of the initial arc.
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Figure 3.24: The closure of strands resulting by L-moves are isotopic to the initial
strand
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Figure 3.25: L-moves applied at the endpoints

97



  Lo-move

o o

isotopy

Figure 3.26: A crossing on the resulting strands

Definition 3.14. The L-moves together with labeled braidoid isotopy generate an
equivalence relation on labeled braidoid diagrams that is called the L-equivalence.
The L-equivalence is denoted by ∼L.

Clearly, the L-equivalence does not preserve the number of strands or labels on
the strands. Figure 3.27 illustrates a sequence of L-equivalence on labeled braidoid
diagrams and how the L-equivalence affects the labeling.

u u u u u u

P1

1 2 3

Lo-move at P1

o
1 2 3

 R-II-move

u u uo1 2 3 4

deletion of Lo and Lu-moves

uo1 2

Lu- move at P2

P2

uo1 2

and 
isotopy

u 3

Figure 3.27: L-equivalence

It is also clear that a labeled braidoid diagram obtained by applying a braidoding
algorithm to a knotoid diagram depends on the choices made for bringing the knotoid
diagram to satisfy the general position requirements before starting the braidoiding
algorithms, such as: arrangement of the endpoints, subdivision chosen and labeling
of up-arcs. In other words, the labeled braidoid diagram associated to a knotoid
via a braidoiding algorithm, is not unique up to the braidoid isotopy. Moreover,
a knotoid diagram may also change by isotopy. Yet, the L-equivalence provides a
one-to-one correspondence of multi-knotoids to labeled braidoids as we show in the
sequel. More precisely, we will prove now the following theorem.

Theorem 3.15. [18](An analogue of the Markov theorem for braidoids) The clo-
sures of two labeled braidoid diagrams are isotopic (multi-)knotoids in R2 if and only
if the labeled braidoid diagrams are L-equivalent.
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The part of the proof of Theorem 3.15 not involving the endpoints are analogous
to the case of classical knots and braids [83, 84]. We adapt these parts here and
focus on the situations involving the endpoints. Before starting the proof we give
the following definition.

Definition 3.16. A multi-knotoid diagram K in the xt-plane, with a subdivision
and labeling on its up-arcs, is said to be in general position if
i. it has no horizontal arcs,
ii. no two disjoint subdividing points are vertically aligned with each other or a
crossing or an endpoint,
iii. the arcs adjacent to the endpoints of K are vertical down-arcs.
iv.no sliding triangles intersect with an endpoint,
v.sliding triangles satisfy the classical triangle condition.

Note that a multi-knotoid diagram can always be perturbed to take its in general
position by small Ω-moves. For the proof of Theorem 3.15, we assume that multi-
knotoid diagrams are in general position.

Proof. If part:
Let B1, B2 be any two labeled braidoid diagram such that B1 ∼L B2. Let the arc,
illustrated in Figure 3.24, be a segment of a strand of B1 on which an L-move
is applied. It can be observed by the same figure that the closure of the resulting
strands labeled accordingly to the type of the L-move applied, is isotopic to this arc.
More precisely, the resulting closed strand can be contracted over the rest of the
diagram back to the initial arc as seen in Figure 3.24. This suffices to tell that the
closures of B1 and B2 are isotopic. This also shows that the closure map extends to
a well-defined map clL on the set of of all L-equivalence classes of labeled braidoids.

clL : {L-classes of labeled braidoid diagrams}→ {Multi-knotoids}.

Only if part:
For showing the only if part, we need to show that the map clL is a bijection.

The braidoiding algoritm II induces a mapping br,

br: {(Multi-)knotoids in R2} → {L-classes of labeled braidoid diagrams},

that associates a (multi-)knotoid K in R2 to the L-class of the braidoid diagram
obtained from K by the algorithm II. We call this map the braidoiding map.

99



Now we show the map br is well-defined, that is, up-to the L-equivalence, the
labeled braidoid assigned to K, is independent of the choices of subdivision of up-
arcs and labeling of free up-arcs, and also invariant under the Ω-moves of knotoids.

Lemma 3.17. Let K be a (multi-)knotoid diagram. Addition of subdividing points
to K yields L-equivalent braidoid diagrams.

Proof. Let QP denote an up-arc of K as depicted in Figure 3.28. First, let us
assume that the vertical line passing through one of the endpoints of K intersects
QP . Let P1 denote the new subdividing point on QP that is chosen so that it is
not vertically aligned with another subdivision point, a crossing, or an endpoint,
and also it does not lie on the local component of the plane containing P that is
determined by the vertical line passing through the endpoint. We label the sub-
arcs resulting from the new subdivision according to the initial labeling, here in the
figure they are free up-arcs and are labeled with o. It can be verified by Figure
3.28 that the braidoid diagram resulting from the initial subdivision on K (that
is by applying a braidoiding move at P ) can be turned into the braidoid diagram
resulting from the latter subdivision (that is by applying braidoiding moves at the
points P and P1) by an L-move that is applied at the point Q∗ , where Q∗ denotes
the intersection point of the vertical line passing through P1 and the lower strand
containing Q that has been obtained by the initial braidoiding of QP . Note that
an arbitrarily small neighborhood of Q containing Q∗ is perturbed to slope slightly
downwards for applying the L-move. For the case of adding a subdividing point
that is located on the same local component with P with respect to the vertical line
of an endpoint, the proof follows similarly as for classical knots and braids [84].
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Figure 3.28: Adding a subdividing point on the up-arc yields L-equivalence

Lemma 3.18. The choice of labeling a free up-arc does not change the resulting
braidoid diagram up to the L-equivalence.

Proof. This is verified in Figure 3.29. For simplicity we illustrate a case where the
sliding triangle of the up-arc does not intersect with any other arcs of the diagram.
Note also that the Lo-move is applied (at the top line) at a point that is arbitrarily
close to P so that there is no other vertical strands between the vertical lines pass-
ing through P and P ∗. Note that the point Q∗ in the figure denotes a point that
is the vertical projection of the point P on the lower sub-strand containing Q, and
the L-move is applied at Q∗ when a small neighborhood of it is assumed to slope
downwards.
If the sliding triangle of QP intersects with other arcs of the diagram then we sub-
divide QP into small enough sub-arcs to ensure the corresponding sliding triangles
are all clear of arcs. We label each small up-arcs in the same way with QP , say
o. Then from the discussion above we can change the labeling of each up-arc to u
and by Lemma 3.17 we delete all further subdividing points and have Q and P as
subdividing points for the up-arc labeled now with u. See Figure 3.30.
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Figure 3.29: The L-class of the resulting braidoid is independent of labeling of free
up-arcs

Figure 3.30

Proposition 3.19. Given any two subdivision S1, S2 of a knotoid diagram K the
resulting braidoid diagrams are L-equivalent.

Proof. It is clear that any subdivision further than S1 or S2 satisfies both triangle
conditions. Consider the further subdivision S1 ∪ S2 of both S1 and S2 on K. By
Lemma 3.17 that takes care of the choices of labels for the resulting free up-arcs, the
resulting braidoid diagram by the subdivision S1∪S2 is L-equivalent to the braidoid
diagrams resulting from the subdivision S1 and S2. Since the L-equivalence is an
equivalence relation, the proposition follows.

Now we shall show the invariance under the Ω-moves.
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Lemma 3.20. Planar isotopy moves and the Reidemeister moves on knotoid dia-
grams correspond to the L-moves on the braidoid diagrams obtained.

Proof. Let us starting with the observation that by imposing the classical triangle
condition, we can assume the isotopy moves to take place locally without affecting
or conflicting with the braidoiding of the rest of the diagrams that lie outside the
regions of the moves. In fact we can assume the rest of the diagram is already to be
already turned into a braidoid and the arcs taking place in an isotopy move are left
for elimination.

The examination of planar isotopy moves on up-arcs that do not contain any of
the endpoints and the Reidemeister moves that take place away from the endpoints,
follows similarly with the examination of these moves on classical knots/links, that
appears in [84,85]. Here in Figure 3.31 we give an illustration for an Ω1- move.

uo uo

isotopy

o

Ω 1 

braidoiding

o u
o

delete an Lu-move isotopy

o

Figure 3.31: An Ω1-move under braidoiding

The choices of planar isotopies applied for preparation to turn a vertical up-arc
adjacent to an endpoint are realized as L-equivalence as seen in Figure 3.32.
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Corollary 9. The braidoing map is a well-defined map.

Lastly it needs to be showed that br is the inverse map of clL.
Let B be a labeled braidoid diagram. It is clear that the closure diagram of B, B̂,
is a knotoid diagram in general position whose only up-arcs are the connection arcs
taking place in closing B. Then the braidoding algorithm II turns B̂ into a braidoid
diagram which is L-equivalent to the braidoid diagram B. Thus,

br ◦ clL = id

.
Given a knotoid diagram K in general position, applying the braidoiding algorithm
II, we obtain a labeled braidoid diagram B. It is clear from the discussion above
that the closure of the the diagrams in the L-class of B is isotopic to K. From this,
it follows

clL ◦ br = id

.
By the above the proof of Theorem 3.15 is completed.

Corollary 10. The braidoiding algorithm I utilizes rotation of crossings which can
be expressed as a combination of planar isotopy moves and the rest of the algorithm
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follows the same with braidoiding algorithm II. Then by Lemma 3.18 and Lemma
3.20 , the two braidoiding algorithms given in Section 3.3 result in L- equivalent
labeled braidoid diagrams.

Proposition 3.21. Any labeled braidoid diagram is L-equivalent to a u-labeled
braidoid diagram.

Proof. Let B a labeled braidoid diagram and B̂ be its closure. The braidoiding
algorithm I turns B̂ to a u-labeled braidoid diagram Bu by the choice of labeling all
free up-arcs with u (recall discussion in Section 3.3.2). Since the L-equivalences of
labeled braidoids are in one-to-one correspondence with multi-knotoids, by Theorem
3.15, it follows that B and Bu are L -equivalent.

Then Theorem 3.15 can be reformulated according to the discussion above, as
follows.

Theorem 3.22. The closures of two u-labeled braidoid diagrams are isotopic (multi-
)knotoid diagrams if and only if these braidoid diagrams are L-equivalent.

From braidoids to classical braids

Two endpoints of a braidoid diagram can be joined to obtain a (classical) braid
diagram in the following way. Let B be a braidoid diagram with n strands. The two
endpoints of B can be connected with an embedded arc or a pair of strands in the
plane, resulting in a classical braid diagram. There are two cases for the connection.

If the head of B appears before the leg (as t increases), then a downward directed
embedded arc is chosen to connect them, running under each piece of the strands
which it meets during the connection. Two such embedded arcs are clearly isotopic.
The resulting diagram is a classical braid diagram on n strands. See the top of
Figure 3.33 for an abstract illustration of this case.

If, however, the leg of B appears before the head, then any arc connecting them
is oriented upward in order to be consistent with the orientation of the free strands.
That is, it is an ‘up-arc’ in the resulting tangle diagram. We apply a braiding move
(which is also available for tangle diagrams, see [83–85]) on such a connection arc
to turn the resulting up-arc into a pair of braid strands. The resulting diagram is a
classical braid diagram on n+ 1 strands.

We call this closure defined on braidoid diagrams the underpass connection of a
braidoid diagram, in analogy with the underpass closure of a knotoid diagram that
results in a knot diagram.
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Figure 3.33: Underpass connection

Proposition 3.23. [18,19] The operation of turning a braidoid diagram into a braid
diagram induces a surjective map from the set of braidoids to the set of L-equivalence
classes of braids. Furthermore, this map is not injective.

Proof. We examine the isotopy moves on braidoid moves under the underpass con-
nection. The Ω-moves take place away from the endpoints so it is clear that they are
transformed to the Reidemeister moves on the resulting braid diagram. The swing
moves of the endpoints are transformed to braid isotopy moves in which a connect-
ing arc is involved. The vertical move can cause a change in relative positioning of
the endpoints so a connecting arc may change direction. In this case resulting braid
diagrams are L- equivalent to each to other as it is shown in Figure 3.34. The map
is surjective since cutting any underpassing arc from a braid diagram results in a
braidoid diagram which will be taken to the braid diagram via the map. Further,
the fact that the underpass connection is not an injective map is evident by the fact
that joining the endpoints with an underpassing arc corresponds to allowing the
braidoid forbidden move that slides the free up-arc under transversal strands.
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Figure 3.34: The choice of the arc connecting the endpoints does not affect the
resulting braid up to L-equivalence

3.5 On the way to an algebraic structure

3.5.1 Combinatorial braidoid diagrams

In order to express braidoids in terms of basic generating blocks, we introduce
an auxiliary combinatorial structure for braidoid diagrams so called the implicit
points [18, 19].

Implicit points and indexing

It is clear that right after or just before an appearance of an endpoint, the number
of points on the horizontal levels of a braidoid diagram (that is, intersections of
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the diagram with lines t = ti, 0 ≤ ti ≤ 1) may increase or decrease by one. In
order to regard a braidoid diagram as a composition of blocks we fill the braidoid
diagram at discrete horizontal levels with the implicit points, denoted by empty
dots. Implicit points hold the positions of braidoid ends and the endpoints along
their vertical line. Assuming that the endpoints and braidoid ends occupy different
vertical positions, it is clear that a braidoid diagram with n strands can determine
at least n vertical positions in the case that the endpoints can be brought to be
aligned vertically, and at most n+1 vertical positions in the case that the endpoints
appear in different vertical alignments. In this setting we require that the endpoints
lie on vertical segments of the free strands which can be achieved by the braidoid
swing moves and if both endpoints can be brought to be aligned vertically with each
other without violating the braidoid isotopy, we assume them aligned before filling
a braidoid diagram to minimize the number of points in blocks.

See Figure 3.35 for the braidoid diagrams of Figure 3.1 completed with implicit
points.

1
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1

2

22

1

11

1 1

1 3

2 3

a b c d e

2

2
2

2 3

3

3

3
4

4

Figure 3.35: Filling braidoid diagrams with implicit points

After the completion of the diagram with implicit points, all points appearing in
a horizontal level (braidoid ends, endpoints, implicit points) get indexed by consec-
utive natural numbers, starting from 1, according to their horizontal positions from
left to right. Note that some indices of braidoid ends may now be shifted from the
previous numbering with the appearance of the implicit points. Clearly the number
of strands or crossings do not change. See Figure 3.35.

Definition 3.24. A braidoid diagram filled in with implicit points and indexed
accordingly shall be called a combinatorial braidoid diagram.

Elementary k-blocks of braidoid diagrams

Definition 3.25. Let B be a combinatorial braidoid diagram with k points at each
horizontal level. An elementary k-block of B is a union of 2k-points positioned at
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top and bottom lines parallel to each other, k of which at the top and kof which at
the bottom, together with descending strands connecting top points to bottom ones
accordingly to the following rules. A top point is connected to at most one bottom
point that lies at the same position or at a successive position. There may be points
both at top and bottom lines that are not connected to a point; the number of
isolated points can be at most two at each line. The isolated points correspond to
implicit points of B. See Figure 3.36.

The elementary blocks fall into the following four types.

1. The identity and crossing k- blocks: They consist of blocks 1k and σ±1
i that

are the identity braid on k strands and the elementary braidings, respectively,
and augmentations of these blocks with one or two pairs of vertically aligned
implicit points as shown in Figure 3.36. The position of implicit points are
indicated inside a parenthesis on the right upper part of the corresponding
symbol.

2. The endpoints k-blocks: These are identity blocks augmented with a graphical
node at the top/bottom ith position that is connected to the ith bottom/top
row. The graphical nodes are regarded as the endpoints of B and these el-
ementary blocks are denoted by hi and li, respectively. The endpoint blocks
may be augmented with one pair of vertically aligned (at top and bottom row)
implicit points whose positions are denoted inside a parenthesis on the right
upper part of the corresponding symbol.

3. The shifting k-blocks: They are denoted by λi+1i and λii+1. In the shifting
block λi+1i, k − 2 points at the top row is connected to their corresponding
points at the bottom row and the top ith point is connected to the bottom
(i + 1)st point, while the top (i + 1)st and the bottom ith points are not
connected to a point, left as implicit points. The shifting block λii+1 similarly
comprises identity braid on k− 2 strands but this time the top (i+ 1)st point
is connected to the bottom (i+ 1)st point and the top ith point together with
the bottom (i+1)st are left as implicit points. The shifting elements represent
the shifting of the index of a strand adjacent to a free strand that may happen
before or after the appearance or disappearance of an endpoint. The set of
shifting k-blocks may be augmented by elementary blocks containing one pair
of vertically aligned implicit points.

It is clear that, by small braidoid isotopies we can arrange B, so that it is divided
into finitely many horizontal stripes, each containing exactly one of the elementary
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k - blocks. Note that, unlike the case of braids, an elementary block of a braidoid
diagram is not itself a braidoid diagram.

Figure 3.36: Elementary k-blocks

A product of elementary blocks

We define a product operation on the set of elementary k-blocks to obtain combina-
torial braidoid diagrams. This product is induced by placing one elementary k-block
below another elementary k-block and concatenating the ends of the blocks in the
following way [18,19]:

1. We call the ends of strands in elementary blocks usual ends if they are not the
endpoints. Usual ends can be concatenated with only usual ends at the same
position so that the resulting diagram contains strands emanating from top to
bottom row. See top illustration of Figure 3.37.

2. An endpoint can be multiplied with either another endpoint or with implicit
points. Two multiplied endpoints remain at their vertical position as two
disjoint endpoints. See the middle and the bottom illustrations of Figure 3.37.
When an endpoint is multiplied with an implicit point, the endpoint remains
as itself, while the implicit point is annihilated.

3. Two implicit points meeting in the middle row annihilate each other.
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4. Exactly two endpoints block take place in final products; one is hi, the other
one is lj, for some 1 ≤ i, j ≤ k. The usual ends in a final product appear in
pairs at the same vertical position, at top and bottom rows.

1 2 3 4

λ32 =

h
(3)
2 =

1 2 3 4

1 2 3 4

h2

l2

1 2 3 4

=

=

1 2 3 4

1(2)

h2

1 2 3 4

1(2)

l2

=

1 2 3 4

=

Figure 3.37: The product of 4-blocks containing endpoints and implicit points

It is clear that any such product of elementary blocks is a combinatorial braidoid
diagram. Since any combinatorial braidoid diagram uniquely defines a braidoid
diagram by forgetting its implicit points, any braidoid diagram with n strands can
be seen as a finite product of elementary n- or (n + 1)-blocks. By regarding a
braidoid diagram as a product of elementary blocks one can read the diagram from
top to bottom, as a word consisting of symbols corresponding to factor elementary
blocks. To give an example, the braidoid diagram in Figure 3.35(d) is a product of
3-blocks and the corresponding word is 1(1)

3 λ21h
(2)
1 l

(2)
1 λ12(σ(1)

2 )−1.
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Relations on the product

The product operation defined on the elementary blocks is subjected to the following
relations that extends the braid group relations and corresponds to braidoid isotopy
moves. More precisely, one can verify by simply drawing the diagrams, that the
relations 1, 2, 3, and 4 correspond to Ω2 and Ω3 moves, relations 5, 6, 7 correspond
to the vertical moves of braidoids, relations 8, 9, 10, 11, and 12 are due to planar
isotopy moves.

1. σiσ−1
i = 1k = σ−1

i σi for all 1 ≤ i ≤ k − 1

2. σ(j)
i (σ(j)

i )−1 = 1(j)
k for some j such that, 1 ≤ j ≤ i− 1 or i+ 2 ≤ j ≤ k.

3. σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < k.

4. σ(j)
i σ

(j)
i+1σ

(j)
i = σ

(j)
i+1σ

(j)
i σ

(j)
i+1 for some j such that 1 ≤ j ≤ i− 1 or i+ 3 ≤ j ≤ k.

5. σ±1
i lj = lj(σ(j)

i )±1, for some j, i+ 2 ≤ j ≤ k or 1 ≤ j ≤ i− 1.

6. σ±1
i hj = hj(σ(j)

i )±1, for some j, i+ 2 ≤ j ≤ k or 1 ≤ j ≤ i− 1.

7. h(j)
i l

(i)
j = ljhi, for |i− j| ≥ 1.

8. λii+1λi+1i = 1(i+1)
k .

λi+1iλi+1i = 1(i)
k .

9. λ(j)
i+1iλ

(i+1)
j+1j = λ

(i)
j+1jλ

(j+1)
i+1i , for |j − i| ≥ 2.

10. λ(j+1)
ii+1 λ

(i)
jj+1 = λ

(i+1)
jj+1 λ

(j)
ii+1, for |j − i| ≥ 2.

11. λ(j+1)
i+1i λ

(i+1)
jj+1 = λ

(i)
jj+1λ

(j)
i+1i, for |j − i| ≥ 2.

12. λ(i+2)
ii+1 λ

(i)
i+1i+2σ

(i,i+1)
i+2 λ

(i)
i+2i+1λ

(i+2)
i+1i = λ

(i+2)
ii+1 λ

(i)
i+3i+2σ

(i,i+3)
i+1 λ

(i+3)
i+1i λ

(i+1)
i+2i+3

13. λ(i+2)
ii+1 λ

(i)
i+1i+2σ

(i,i+1)
i+2 λ

(i)
i+2i+1λ

(i+2)
i+1i = λ

(i+1)
i+3i+2λ

(i+2)
i+2i+1σ

(i+2,i+3)
i λ

(i+3)
i+1i+2λ

(i+1)
i+2i+3.
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Figure 3.38: Diagrammatic pictures of relations; 5, 6, 8 and 10

We can conclude that the set of all final products of elementary blocks taken up to
the relations above is in one-to-one correspondence with the set of braidoid diagrams
taken up to braidoid isotopy.

3.5.2 Discussion/ further questions on braidoids

1. One natural way of closing a braidoid diagram is to connect each pair of
corresponding ends with an embedded arc that lies away from a disk containing
the braidoid diagram. This closure can be illustrated as in Figure 3.39. Let us
name this closure as classical closure of a braidoid diagram. It is clear that the
classical closure of a braidoid diagram is a (multi-)knotoid diagram. However,
the braidoid algorithms that we have discussed previously, may turn a knotoid
diagram into a braidoid diagram whose end-to-end closure is not isotopic to
the knotoid diagram we started with. See Figure 3.39 again for an example.
This is once more due to the presence of the endpoints and restricted moves
of them.

l
  h

1 2 3

l
  h

braidoiding end-to-end closure isotopy

Figure 3.39: Classical closure does not induce an inverse map for the braidoiding
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A natural question arising here is: Is there an algorithm turning a (multi-
)knotoid diagram into a braidoid diagram whose classical closure is isotopic to
the (multi-)knotoid diagram? This question is left open for now.

2. There is also the question of understanding the algebraic structure on the set
of braidoid diagrams. Defining a multiplication operation on set of braidoid
diagrams with n strands that yields an algebraic structure on the set is not yet
visible due to the endpoints. The question of a possible algebraic structure of
braidoid diagrams will be worked within the context of a future work.

3. The elementary blocks of a braidoid diagram are in resemblance with Rook
diagrams [3, 89] with an extension by the endpoint blocks. The question fol-
lows: Is there an association of the set of braidoids with a diagram algebra
such as Rook or, Motzkin algebras [2, 3] ?. This question is left as a proposal
for a future work.

4. As we mentioned before, the notion of a knotoid extends the notion of a 1−1-
tangle by having its endpoints that are not necessarily fixed at top and bottom
lines. In fact, a new category extending the category of tangles can be defined
via the notion of a tangloid. A tangloid can be defined as in the following.

Definition 3.26. Let I denote the unit interval in R. An (unoriented) tan-
gloid diagram T is a generic immersion of k > 0 intervals and a number of
disjoint unit circles in I × I ⊂ R2 such that 0 ≤ n ≤ k of them have fixed
ends on I × {0} and I × {1} and k− n of them can have their ends anywhere
in I × I as disjoint from each other and from other points and not necessarily
fixed at their position. T has only a finite number of singular points that are
transversal double intersection points each endowed with under-/over-data.
The ends of immersed arcs which that are not necessarily fixed on I×{0} and
I × {1} are denoted by a graphical node as for braidoid endpoints.
A oriented tangloid diagram is a tangloid diagram with an orientation assigned
for each of its arcs.

Figure 3.40: An oriented tangloid
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Examples. (a) An (n,m)- tangle is a tangloid that has n + m ends fixed
on the top and m points fixed on the bottom and a number of circular
components.

(b) A knotoid diagram is an oriented tangloid diagram with one arc whose
ends do not necessarily lie on I × {0} and I × {1}.

(c) A braidoid diagram with n usual strands and two free strands is an ori-
ented (with descending orientation) tangloid with n+ 2 arcs, n of which
have their ends fixed on I × {0} and I × {1} and two of which have one
of its ends fixed on I × {0} or I × {1} and the other ends appearing
anywhere in I × I and also a braidoid diagram does not have any cups
or caps (see Figure 3.41 for cups and caps).

The ∆-moves defined for tangle diagrams can directly be applied to tangloid
diagrams under the condition that no ends of arcs can slide across (over or
under) some other transversal arc. We can define the isotopy relation for
tangloid diagrams as generated by these moves.

A composition on tangloid diagrams extending the composition of tangles, can
be defined as follows. The composition of the ends that lie fixed on top and
bottom line are concatenated and the composition of the ends that are denoted
by graphical nodes (that are necessarily fixed on top and bottom lines) can be
defined by leaving them disjoint, see Figure 3.42.

A tangloid diagram T can be arranged with respect to the height function of
the plane so that, each horizontal line intersects T at a finite number of points.
According to the definition above, a tangloid diagram can be then regarded as
the composition of basic tangloids that are shown in Figure 3.41.

capcup

Figure 3.41: Basic tangloids
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Figure 3.42: Composition of tangloid ends specified with graphical nodes

Constructing a category for tangloids and working on topological properties
of tangloids will be the subject of a future work.
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Chapter 4

On Applications

4.0 Introduction

Given a smooth open oriented curve C embedded in R3. We define P(C) to be
the set of all knotoid equivalence classes obtained from the generic projection of
C onto planes in R3 that are outside a sufficiently large radius ball containing
C. We suggest [15] to take P(C) as a measure of the knottedness of C. This
proposes a new and more realistic way to measure the knottedness of an open
curve and may have significant applications in the study of tangled physical
systems. In the direction of this proposal, this chapter inclues our results
obtained by the topological modeling of knotted and bonded linear protein
chains by using knotoids and bonded knotoids. The results of this chapter
appear in [18,23].

4.1 Studies on protein chains

A protein is a linear bio-polymer chain composed of different amino-acid
residues covalently linked together by peptide bonds arranged in order from the
N -terminus to the C-terminus (a terminus is an end of the protein chain) [81].
Proteins appear in various and quite often in very complicated conformations.
In order to determine the entanglement type of a protein in terms of topology,
one usually considers its backbone as an open polygonal curve and then simpli-
fies it by applying an algorithm that preserves the underlying topology. One of
the the most well-known techniques in the literature is the triangle elimination
or KMT algorithm [11, 42, 43]. Up to time, the entanglement type of protein

117



chains has been tried to be understood by relating the chain with classical
knots. In this direction, many suggestions have been made on how to close
an open 3D curve and they all fall into two big categories [43, 60–64, 78, 79].
First are the single closure techniques, such as the direct closure [43] and the
out of the center of mass closure [78], where the chain is closed by a single arc
that connects the endpoints. These methods are computationally fast but de-
pending on the particular closure recipe the same protein may end up forming
different knots. The second category comprises the probabilistic methods such
as the uniform closure technique [61,63,64], where the chain is first placed in-
side a large enough ball (usually a radius of twice the length of the chain will be
sufficient) and a simplification algorithm is applied. Each point of the sphere
is now a possible closure point of the open chain. The closure is achieved by
picking a point and then extending two rays, one from each endpoint of the
chain, towards the chosen point and connecting them. Such methods are less
biased but they are more computationally intensive as the knot type of each
closure has to be computed. Both categories have the disadvantage of altering
the geometry of the studied object.

4.1.1 Analyzing open protein chains using knotoids

In the direction of the geometric interpretation of planar knotoids that was
discussed in Section 2.1.3, one can study the entanglement of the protein
backbone by knotoids as follows.

Similarly to the case of the uniform closure, the protein chain is assumed to
lie into a 3- ball of sufficiently large radius, but in this case each point of the
boundary of the ball corresponds to a projection direction on a plane that lies
outside the ball. When the projection direction is determined, two lines that
pass through the termini of the protein chain and are perpendicular to the
determined plane are introduced. A simplification algorithm that eliminates
the triangular regions is applied on the chain in a way that the lines introduced
are never crossed. Notice that such a simplification on the chain corresponds
to the line isotopy on space curves we introduce in Section 2.1.3. Finally the
protein chain is projected to the plane and the projection is regarded as a
planar knotoid diagram that is subject to knotoid equivalence moves. The
diagrams resulting from projecting a protein chain can be considered also as
spherical knotoids as it is studied in [22]. See [7] for another recent study
suggesting to consider the ‘virtual closure"’ of the projections of a protein
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chain.

The results then can be summarized on an atlas that identifies regions on
a sphere and each distinct region corresponds to the projection directions in
spherical coordinates that produce the same knotoid type. Moreover, each
distinct region is color coded according to the knotoid type it carries. We
shall call such a map the projection globe of a protein.

Coming back to the discussion in Section 2.1.2, one can obtain a wider spec-
trum of knotoid types by considering projections of the chain on a plane in-
stead of a 2-sphere. This allows projections that were previously detected as
unknotted to emerge as non-trivial planar knotoids. In [23], we apply this ap-
proach to the protein with PDB entry 3KZN (N-acetyl-L-ornithine) [74], see
Figure 4.1. This protein is known to form a trefoil knot via closures or a k3.1◦

knot-type knotoid when projected as a knotoid in S2. Recall that knot-type
knotoids have both endpoints in the same region of the diagram and if one
decides to close the diagram with an arc, the newly introduced arc may not
create any additional crossings to the diagram, we apply this definition for
planar knotoids as well. In our notation, a knotoid is represented by kX.Y ,
where X is the number of crossings of the knotoid diagram in question and Y
corresponds to the position of the knotoid in our table among knotoids with
the same number of crossings. Moreover, an exponent ◦ indicates a knot-type
knotoid, an exponent p a planar knotoid, and an exponent − a knotoid with
its crossings inverted. Comparing now the projection globe obtained from the
planar knotoids approach to the one derived from the spherical knotoids ap-
proach, as well as to the one that is derived from the uniform closure technique,
we can see that new regions are gradually emerging as we move from knots
to spherical knotoids and then to planar knotoids (see Figure 4.2). In fact,
we observe that the grey regions of the uniform closure globe corresponding
to trivial results are replaced by red regions corresponding to non-trivial kno-
toids with two crossings and as we go from the spherical knotoids globe to the
planar knotoids globe, there are more knotoid types corresponding to 3KZN
are captured. The reason behind this is that the number of classes of planar
knotoids is larger than the number of classes of spherical knotoids due to the
restricted isotopy in the plane, as discussed in Section 2.1.2. Figure 4.3 shows
equirectangular projections of each projection globe shown in Figure 4.2. From
this study we can conclude that following.

Corollary 11. Analyzing open protein chains as planar knotoids reveals more
details of their topology.
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Figure 4.1: The protein chain with entry 3KZN and its simplified backbone
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Figure 4.2: Projection globes obtained by uniform closure, spherical knotoid projec-
tion and planar knotoid projection; figure taken from [23].
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4.1.2 A topological model for bonded open protein chains

Motivated by the ideas in [80], we introduce a purely topological model for
analyzing the topology of bonded open protein chains in terms of planar (multi-
) knotoids [23].

A bonding site of a protein chain consists of two local strands of the chain and
a bonding arc with its ends based on these strands, as illustrated in Figure
4.4. We adapt the projection of a space curve into planes resulting in knotoid
diagrams, to a projection for a bonded protein chain. More precisely, we
choose a projection direction determined by two parallel (infinite) lines passing
through the termini of the chain and we project the protein chain into the plane
that is orthogonal to these lines. We only consider projection directions that
give a generic diagram, in the sense that we have only finitely many transversal
self-crossing points and that a bonding site is represented in the projection in
parallel or in anti-parallel fashion. The information of each bond is represented
with dotted segments connecting the two ends involved. Endowing each self-
intersection point with the weaving information of the chain in the space, we
obtain an open-ended knotted diagram in the projection plane with the extra
information of bonds. We call such a diagram a bonded knotoid diagram.

We consider each bonding site in a bonded knotoid diagram locally as a rigid
planar formation. As such, a bonding arc in a diagram is not subjected to any
topological deformations in the plane such as bending, shrinking or enlarging,
and any twisting of the bonding arc is avoided. On the other hand, local
strands of bonding sites are topologically flexible. More precisely, we allow
on bonded knotoid diagrams, the usual Reidemeister moves for knotoids away
from the bonds and away from any of the endpoints, and also we allow the
bonded moves illustrated in Figure 4.4, each of which is realized in bonding
sites. As seen in Figure 4.4a-d, the first two moves, namely bonded twist moves
1 and 2, introduce a twisting in the strands neighboring the bonds. These
moves are resulting from a 180-degree turn of the bond, about a vertical and
a horizontal axis, respectively. The bonded Reidemeister three move allows
an edge of the diagram to slide over or under a bond as a whole without any
other change in the bonded knotoid diagram. An edge may be located over
or under a bonding arc. The bonded slide moves illustrated in Figure 4.4e,f
allow the movement of such an edge located in between the local strands of
the bonding site, so that the bonding site is free from any edges other than
the bonding arc. The above moves generate an isotopy relation for bonded
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knotoid diagrams and an isotopy class of bonded knotoid diagrams is a bonded
knotoid. The isotopy moves of bonded knotoid diagrams are analogous to what
is known in graph theory as rigid vertex isotopy moves [75], if one replaces a
bonding site with a rigid vertex.

In order to obtain a (multi-)knotoid diagram from a bonded knotoid diagram,
we substitute each bonding site by a chosen full twist (a 360-degree twist)
using the following convention. If the local strands are directed anti-parallel
then we substitute the bonding site by a full twist of the strands along the
bonding arc, as illustrated in Figure 4.5a,b, and the substitution is called of
type D. If the local strands are directed parallel then we substitute the site
by a full twist of the strands, as shown in Figure 4.5c,d, and the substitution
is called of type C. Note that insertions of type D make disconnections in the
diagram, while of type C retain connectivity. Either type of full twists can be
positive (right-handed) or negative (left-handed). In this paper, all full-twist
substitutions are of positive type. After replacing all bonding sites we end up
with a planar (multi-) knotoid diagram. Besides, the isotopy moves defined
on bonded knotoid diagrams are consistent with the isotopy moves defined
on knotoid diagrams after making the twist substitutions. It follows that
if two bonded knotoid diagrams are isotopic then the corresponding fknotoid
diagrams obtained by full-twist substitutions are isotopic. This means that any
topological invariant of knotoids can be used for analyzing the topological type
of a knotted bonded open protein chain modeled by bonded knotoid. There
are mainly three types of protein bonds: sequential, nested and pseudoknot-
like type bonds, as illustrated in Figure 4.5e,f,g. As we see in the figure, all
these types of bonds are detected by type D substitutions as compared to the
same formations with the bonds ignored. This fact can be proved by applying
knotoid invariants such as the Turaev loop bracket polynomial and the arrow
polynomial.

An application of our model is illustrated in Figure 4.6 where we consider
the protein with PDB entry 2LFK (NMR solution structure of native TdPI-
short) [96]. This protein contains two cysteine bridges that appear between
residues 24 and 51 (shown as green beads), and between 52 and 69 (shown
as red beads) in Figure 4.6a,b. For demonstrative reasons we will discuss the
application of our model on a single fixed projection, however one has to have
in mind that, following Section 4.1.1, several projections of the backbone have
to be analyzed in order to obtain an accurate overview of the topology of
the chain. We consider the projection of the protein chain that is shown in
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Figure 4.6c, which is a bonded knotoid diagram with two bonding sites. Notice
that in the green bonding site an arc of the diagram crosses over the bonding
arc and so an immediate application of a full-twist is not possible at this state.
An application though of a bonded Reidemeister III move, pushes the arc to
the left allowing now the application of a type C+ full-twist since the green
bonding site is in parallel fashion. The situation for the red bonding site is
straight forward. Here we observe that the bonding site is in anti-parallel
fashion and so a type D+ full-twist substitution is immediately applied giving
rise to a multi-knotoid diagram with two components that can be evaluated
with any invariant for knotoids such as the Turaev loop bracket polynomial or
the arrow polynomial. The vital notice here is that if one drops the bonding
information, the structure becomes unknotted. We note here that the same
protein has been analyzed in [76,77] for the existence of links where the cysteine
bridges are closed with a direct line instead of a full-twist substitution. This
explains the difference in the detected link type.

or

Bonded twist move II

bonded Reidemeister III

a b

c

Bonded twist move I

or

d

bonded sliding move I

or

e

bonded sliding move II

f

or

Figure 4.4: The bonded moves, figure taken from [23].
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Figure 4.5: Type D (a and b), and type C (c and d) substitutions. Type D sub-
stitutions distinguish (e) sequential, (f) nested and (g) pseudoknot-like bonds by
applying to the substitution a polynomial invariant for knotoids like the Turaev
loop bracket polynomial or the arrow polynomial, figure taken from [23].

a b

c

bRIII D+

C+

Figure 4.6: The Protein 2LFK as (a) a cartoon, (b) a polygonal curve. A pair of same
coloured beads indicate the bonding site . More precisely, the green dots correspond
to the pair of residues with indices 24 and 51, while the red to the pair 52 and
69. Below (c) is the corresponding bonded knotoid diagram and the appropriate
substitutions. In the diagram the bonds are represented by colored dashed lines;
figure taken from [23].
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Corollary 12. [23] Twist substitutions at bonding sites of a bonded protein
chain provides detection of sequential, nested and pseaudoknot-like bonds by
using a knotoid invariant such as the Turaev loop bracket polynomial or the
arrow polynomial.

4.1.3 An algebraic encoding of protein chains

We finalize this chapter with a proposal for a possible application of braidoids
in direction of the above discussion.

As we showed in Section 3.3, any knotoid diagram can be turned into a labeled
braidoid diagram. The resulting braidoid diagram can be made algebraic by
braidoid isotopy, and can be represented by an expression in terms of ele-
mentary blocks. This suggests a possible algebraic encoding for open protein
chains or, in general, of linear polymer chains as follows. A polymer chain can
be projected to a plane as a knotoid diagram then can be turned into braidoid
diagrams by utilizing one of the braidoing algorithms. Finally, one can read
the algebraic expression given in terms of the elementary blocks correspond-
ing to the resulting braidoid diagram. An example is illustrated in Figure 4.7,
where the knotoid corresponding to the protein 3KZN is turned into a braidoid
diagram, which is represented by the word l2σ3

1h2 in elementary blocks.

1 l2

1 h2

Figure 4.7: A corresponding braidoid diagram to the protein 3KZN

An important topological and computational project is to enumerate all braidoid
forms related to a protein form, up to braidoid isotopy and cyclic permuta-
tion (preserving braidoid closure). Having such an algebraic tabulation avail-
able, would prove useful in the study of proteins, and elements in the protein
database could be encoded in this formalism. This project would have a strong
impact both on the theory and applications of braidoids.
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More precisely, the implementation of such a project would require the follow-
ing steps:

Step 1: A protein is taken from the Protein Database (PDB) [70]. It is con-
verted to xyz-coordinates and its backbone is extracted (namely, the coordi-
nates of the Cα atoms).

Step 2: The reconstructed protein chain is placed inside a large enough sphere
and it is projected to, say, 100 different planes perpendicular to corresponding
fixed directions evenly distributed on the sphere. The projections are pla-
nar knotoid diagrams. We take the dominant knotoid diagram, which is the
one with the highest probability of appearance. The steps so far have been
implemented in [23].

Step 3: We turn the dominant knotoid diagram into a dominant braidoid
diagram using the most efficient braidoiding algorithm for the specific knotoid
diagram. It would be very useful to automatize this step through a computer
program. We then fill in the braidoid diagram with implicit points and we
index accordingly, obtaining the combinatorial dominant braidoid diagram.

Step 4: We list all combinatorial braidoid diagrams that are obtained from the
dominant braidoid diagram by braidoid isotopy and cyclic permutation (that
preserves braidoid closure). These all have isotopic closures. We then note all
words in elementary blocks that our combinatorial braidoid diagrams stand
for. This list of words is associated to the original protein form.

Step 5: Any given protein can be then identified by comparing its associated
set of algebraic words against the tabulated lists that we produce. The last
two steps can be easily implemented to a computer program.

It would be meaningful to generalize the above to the mathematical project of
tabulating planar knotoids through their corresponding sets of algebraic ex-
pressions. Using braidoids instead of knotoids gives more control and offers the
possibility of employing more algebraic techniques in the topological study of
proteins and in general of knotoids, as supposed to the diagrammatic methods
used so far.
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Appendix A

Appendix

A.1 Classical Knots and Braids

In this section, we recall the fundamental definitions/notions of classical knots/links,
braids and tangles.

A.1.1 Classical knots and links

Definition A.1. A classical link is a smooth embedding of a finite number of
disjoint circles in R3 or S3.
Specifically, a classical knot is a smooth embedding of one circle in R3 or S3.

Definition A.2. Two (classical) links are said to be equivalent if there is an
orientation preserving homeomorphism of R3 taking one link to the other.
Equivalently, two classical knots/links are said to be isotopic if there is an
ambient isotopy of R3 taking one knot to the other.

Definition A.3. A knot/link diagram is a projection of a knot/link to a plane
that is generic in the sense that only transversal double points are allowed as
intersection points. The intersection points are endowed with over/under-data
accordingly to the weaving of the link in 3-dimensional space.

It is well-known that any classical knot/link admits a diagram. Moreover, the
Reidemeister theorem allows us to work with knots/links by their diagram
representations in planes.

Theorem A.4. (Reidemeister theorem) Two knot/link diagrams represent
equivalent classical knots/links if and only if they can be obtained by from each

129



other by a finite sequence of Reidemeister moves and planar isotopy moves
(see Figure 2.2b).

A.1.2 Classical braids

Definition A.5. An n- strand geometric braid is a union of n disjoint arcs
γ1, ..., γn in R2× [0, 1] such that γi connects (i, 0, 1) to (f(i), 0, 0) where f is a
permutation of {1, ..., n}, and for every z0 in [0, 1], the intersection of γi with
the plane t = t0 is exactly one point.

Definition A.6. Two n- strand geometric braids, b, b′ are said to be equivalent
or isotopic if there is a continous map F : b× I → R2 × I such that for each
s ∈ I, the map Fs : b→ R2× I taking x ∈ b to F (x, s) is an embedding whose
image is an n- strand braid, F0 = idb and F1(b) = b′.

A braid whose projection has only double transversal crossings is a regular
braid. Any geometric braid is isotopic to a regular one.

Definition A.7. A braid diagram is the y- projection of a regular n- strand
gometric braid satisfying the following:

• The projections of strands are topological intervals each of which is also
called a strand.

• Every point of {1, ..., n} × {0, 1} is the endpoint of a unique strand.

• Every point in R × [0, 1] belongs to at most two strands. The strands
may intersect each other at a finite number of transversal points that are
endowed with over-/under- data accordingly to the weaving of the braid.
The intersection points are called crossings of the braid diagram.

The oriented Ω2 and Ω3 moves (all arcs in the region of moves are directed
downward) together with planar isotopies generate an equivalence relation on
braid diagrams. We have an analogue of the Reidemeister theorem for braids.
That is, two braid diagrams represent isotopic geometric braids if and only
if these diagrams are related to each other by a finite sequence of oriented
Ω2,Ω3, and planar isotopy moves.

Any braid diagram is equivalent to a braid diagram in general position that
is, a braid diagram with top-to-bottom direction and, in addition no crossings
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are on the same horizontal level. A n-braid diagram in general position can
be sliced up so that it can be seen as a word on the basic crossings σ±1

i for
i = 1, 2, ..., n− 1 at every horizontal strip. The set of n-braids modulo isotopy
gives rise to the braid group Bn with presentation:

Bn =< σ1, ..., σn−1|σiσj = σjσifor|i− j| > 1, σiσi+1σi = σi+1σiσi+1 > .

The group operation in the group is concatenation (we place one braid on top
of the other), and the identity element is the n-braid with no braiding among
its strands.

A.1.3 Braids vs Links

The closure of a braid diagram

Any braid diagram determines a link when its ends are connected with em-
bedded arcs in the plane. J. W. Alexander proved in 1923 that in fact any
knot/link can be represented as the closure of a braid diagram.

Theorem A.8. ( Alexander theorem) [65] Any oriented classical knot/link
can be represented by an isotopic knot/link diagram in braided form.

Various proofs of the Alexander theorem can be found in [65,71,82,83,85,88,93,
95]. The proof appearing in [85] utilizes braiding moves that were introduced
by Lambropoulou [83,84].

Theorem A.9. (Markov theorem) [87] The closures of two braid diagrams
b, b′ in ∪∞n=1Bn, represent isotopic links in R3 if and only if these braids are
equivalent by the following operations.

• Conjugation: For b, b′ ∈ Bn, b′ = gbg−1 for some g ∈ Bn.

• Stabilization: For b ∈ Bn, b′ ∈ Bn+1, b′ = σ±n b .

Theorem A.10. (One move Markov theorem) [84, 85] There is a bijection
between the set of L-equivalence classes of braids and the set of isotopy classes
of (oriented) link diagrams.
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