
1st Reading

September 3, 2012 10:8 WSPC/S0218-2165 134-JKTR 1240008

Journal of Knot Theory and Its Ramifications1

Vol. 21, No. 13 (2012) 1240008 (48 pages)2

c© World Scientific Publishing Company3

DOI: 10.1142/S02182165124000814

A CATEGORICAL MODEL5

FOR THE VIRTUAL BRAID GROUP6

LOUIS H. KAUFFMAN7

Department of Mathematics,8

Statistics and Computer Science,9

University of Illinois at Chicago,10

851 South Morgan St., Chicago IL 60607-7045, USA11

kauffman@math.uic.edu12

http://www.math.uic.edu/∼kauffman/13

SOFIA LAMBROPOULOU14

Departament of Mathematics,15

National Technical University of Athens,16

Zografou Campus, GR-157 80 Athens, Greece17

sofia@math.ntua.gr18

http://www.math.ntua.gr/∼sofia19

Received 23 April 201220

Accepted 1 August 201221

Published22

ABSTRACT23

This paper gives a new interpretation of the virtual braid group in terms of a strict24

monoidal category SC that is freely generated by one object and three morphisms,25

two of the morphisms corresponding to basic pure virtual braids and one morphism26

corresponding to a transposition in the symmetric group. The key to this approach is to27

take pure virtual braids as primary. The generators of the pure virtual braid group are28

abstract solutions to the algebraic Yang–Baxter equation. This point of view illuminates29

representations of the virtual braid groups and pure virtual braid groups via solutions30

to the algebraic Yang–Baxter equation. In this categorical framework, the virtual braid31

group is a natural group associated with the structure of algebraic braiding. We then32

point out how the category SC is related to categories associated with quantum algebras33

and Hopf algebras and with quantum invariants of virtual links.34
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1. Introduction39

This paper gives a new interpretation of the virtual braid group in terms of a40

tensor category SC with generating morphisms µij where this symbol denotes an41

abstract connecting string between strands i and j in a diagram that otherwise is an42
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identity braid on n strands. These µij satisfy the algebraic Yang–Baxter equation1

and they generate, in this interpretation, the pure virtual braid group. The other2

generating morphisms of this category are elements vi that are depicted as virtual3

crossings between strings i and i + 1. The generators vi have all the relations4

for transpositions generating the symmetric group. An n-strand diagram that is a5

product of these generators is regarded as a morphism from [n] to [n] where the6

symbol [n] is regarded as an ordered row of n points that constitute the top or the7

bottom of a diagram involving n strands. The virtual braid group on n strands is8

isomorphic to the group of morphisms in the String Category SC from [n] to [n].9

Given that one studies the algebraic Yang–Baxter equation, it is natural to study10

the compositions of algebraic braiding operators placed in two out of the n tensor11

lines and to let the permutation group of the tensor lines act on this algebra as the12

group generated by the virtual crossings. This construction is in sharp contrast to13

the role of the virtual crossings in the original form of the virtual knot theory.14

Figure 1 illustrates most of the issues. At the top of the figure we have illustrated
the pure virtual braid µ = σv on two strands. The permutation associated with µ is
the identity, as each strand returns to its original position. The braiding element σ

has been composed with the virtual crossing v, which acts as a permutation of the
two strands. With these conventions in place we find that µ satisfies the algebraic
Yang–Baxter equation

µ12µ13µ23 = µ23µ13µ12

and this is equivalent to the statement that σ satisfies the braiding relation

σ1σ2σ1 = σ2σ1σ2.

This relationship is well known and it is fundamental to the construction of rep-15

resentations of the Artin braid group and to the construction of quantum link16

invariants (see [29] for an account of these matters). In this paper we will detail17

this relationship once again, and we shall see that it leads to alternative ways to18

understand the concept of virtual braiding and to generalizations of the formulation19

of quantum invariants of knots and links to quantum invariants of virtual knots and20

links (taken up to rotational equivalence described below).21

Here a notational issue leads to a mathematical concept. View Fig. 1 and notice22

how we have diagrammed the algebraic Yang–Baxter relation. An element µij is23

shown as a graphical connection between vertical lines labeled i and j respectively.24

The vertical lines represent different factors in a tensor product in the usual inter-25

pretation where µ ∈ A ⊗ A where A is an algebra that carries a solution to the26

algebraic Yang–Baxter equation. We call the graphical edge representing µij a string27

connection between the strands i and j. The string connection is a topological model28

for a logical connection in the mathematics. The string going from vertical line 129

to vertical line 3 represents µ13, and it has nothing to do with strand 2 except as30

in the plane the strand 2 happens to come between strands 1 and 3. This means31

that in our diagram the graphical edge for µ13 intersects the vertical strand 2. This32
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intersection is virtual in the sense that it is just an artifact of the planar drawing.1

There is no conceptual connection between µ13 and strand 2.2

We see that virtuality in the sense of artifactual coincidence of topological enti-3

ties will be a necessity in depicting logical connection as topological connection. For4

this reason, the string diagrammatics that we have adopted for the algebraic Yang–5

Baxter equation can be taken as a starting point for the development of the virtual6

braid group. In this paper, we have started with the usual virtual braid group and7

reformulated it in this algebraic context. The attentive reader will see that one8

could start with the formalism of the algebraic Yang–Baxter equation, construct9

the appropriate categories and first arrive at the pure virtual braid group and then10

at the virtual braid group. All of these constructions come from the concept of11

making topological models for logical connections in mathematical structures.12

The Artin braid group Bn is motivated by a combination of topological consid-13

erations and the desire for a group structure that is very close to the structure of14

the symmetric group Sn. The virtual braid group VBn is motivated at first by a15

natural extension of the Artin braid group in the context of virtual knot theory. The16

virtual crossings appear as artifacts of the presentation of virtual knots in the plane17

where those knots acquire extra crossings that are not really part of the essential18

structure of the virtual knot. We add virtual crossings to the Artin braid group and19

follow the principles of virtual knot theory for handling them. These virtual cross-20

ings appear crucially in the virtual braid group, and turn into the generators of the21

symmetric group embedded in the virtual braid group. Thus we arrive at the action22

of the symmetric group in either case, but with different motivations. Seen from the23

categorical view, the virtual crossings are interpreted as generators of the symmet-24

ric group whose action is added to the algebraic structure of the pure virtual braid25

group, and they become part of the embedded symmetry of the structure of the26

virtual braid group. The pure virtual braid group is seen to be a natural monoidal27

category generated by formal elements satisfying the algebraic Yang–Baxter equa-28

tion. The virtual braid group is then an extension of the pure virtual braid group29

by the symmetric group. It has nothing to do with the plane and nothing to do with30

virtual crossings. It is a natural group associated with the structure of algebraic31

braiding. This is our motivation for constructing the category SC.32

Here is a quick technical description of our category. We define a strict33

monoidal category SC that is freely generated by one object ∗ and three mor-34

phisms µ : ∗⊗ ∗→∗⊗∗, µ′ : ∗⊗∗→∗⊗∗ and v : ∗⊗ ∗→∗⊗∗. This basic structure,35

subjected to appropriate relations can be understood via morphisms µij defined in36

terms of the generating morphisms, where the symbol µij can be interpreted as a37

connection between strands i and j in a diagram that otherwise is an identity on n38

strands. The µij satisfy the algebraic Yang–Baxter equation in the sense that for39

i < j < k, µijµikµjk = µjkµikµij . The other basic morphisms of this category are40

elements vi that can be depicted as virtual crossings between strings i and i + 1.41

The vi are obtained from v by tensoring with identity morphisms ∗ → ∗. The vi42
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generate the symmetric group Sn. The µij are obtained from µ by the action of the1

symmetric group that is generated by the vi. Composition with an individual vi2

makes a transposition of indices on the µkl, generating all of them from the basic µ3

and µ′. An n-strand diagram that is a product of basic morphisms is a morphism4

from [n] to [n] where the symbol [n] is an ordered row of n points that constitute5

the top or the bottom of a diagram involving n strands. Here [n] = ∗⊗ ∗· · ·∗ ⊗∗ for6

a tensor product of n ∗’s. In Fig. 1 we illustrate the diagrammatic interpretation of7

µ and the fundamental relation of µ and v with an elementary braiding element σ.8

The relation is µ = σv. The virtual braid σv is pure in the sense that its associated9

permutation is the identity.10

The category we describe is a natural structure for an algebraist interested in11

exploring formal properties of the algebraic Yang–Baxter equation, and it is directly12

related to more topological points of view about virtual links and virtual braids. In13

fact, a closely related category, under different motivation, was constructed in [23]

µ = σ ν

12 13 23 23 13 12
µ    µ    µ    =   µ    µ    µ

1 2 3 1 2 3

Braiding Relation

Algebraic Yang-Baxter Equation

σ   σ   σ   =  σ   σ   σ
1 2 1 212

Fig. 1. Algebraic Yang–Baxter equation and braiding relation.
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where the intent was to construct a category that would be naturally associated1

with a Hopf algebra on the one hand, and would receive topological tangles, knots2

and links under a functor from the tangle category to the Hopf algebra category. The3

present category, giving the structure of the virtual braid group, is a subcategory of4

that category associated with a general Hopf algebra. We explain this relationship5

in detail in Sec. 6 of this paper. See also [2, Remark 10] and references therein6

for another earlier observation of the relationship of the algebraic Yang–Baxter7

equation with the pure virtual braid group.8

We now describe exactly the structure of the paper. We develop our model for9

the virtual braid group by first recalling, in Sec. 2, its usual definition motivated10

by virtual knot theory. We then proceed to reformulate the virtual braid group in11

terms of the above mentioned generators. By the time we reach Theorem 1, we have12

reformulated the virtual braid group in terms of the new generators. We then use13

this approach to give a presentation of the pure virtual braid group in Theorem 3.2.14

More precisely, in Sec. 2 we give a presentation for the virtual braid group in terms15

of our stringy model. We start by describing the usual presentation of the virtual16

braid group in terms of classical braid generators and virtual generators that act as17

permutations between pairs of adjacent strands in the braid, and relations among18

them (see Figs. 2–6). Elementary connecting strings (see Fig. 7) are defined as ele-19

mentary pure virtual braids — products of braid generators and virtual generators20

as in Fig. 1. We then generalize the notion of connecting string and show that it has21

the formal diagrammatic property of being stretched and contracted as shown in22

Fig. 9. This property makes the string a topological model for a logical connection23

as we have advertised earlier in this introduction. With these constructions we then24

rewrite presentations for the virtual braid group and, in Sec. 3, show how the con-25

nection with strings generates the pure virtual braid group with a set of relations26

that correspond to the algebraic Yang–Baxter equation. See Theorem 3.2.27

In Sec. 4 we construct the String Category discussed in this introduction and28

we show that the virtual braid group on n strands is isomorphic to the group of29

morphisms in the String Category SC from [n] to [n] (see Theorem 4.3). In Sec. 530

we detail the relationship with the algebraic Yang–Baxter equation and show how31

to use solutions of the algebraic Yang–Baxter equation to obtain representations32

of the pure virtual braid group and virtual braid group. In Sec. 6 we discuss a33

generalization of the virtual braid group to the virtual tangle category. We show in34

this section how our work on the structure of the virtual braid group fits into the35

structure of the virtual tangle category. The virtual tangle category can be used36

for obtaining invariants of knots and links via Hopf algebras. The invariants we37

obtain are invariants of rotational virtual knots and links where the term rotational38

means that we do not allow the use of the first virtual Reidemeister move. See39

Fig. 18. For the virtual tangle category, the rules for regular isotopy of rotational40

virtuals are shown in Fig. 21. This is a most convenient category for working with41

virtual knots and links, and every quantum link invariant for classical knots and42
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links extends to an invariant for rotational virtual knots and links. In this section1

we show how a generalization of the string connectors defined previously in the2

paper enables the construction of quantum virtual link invariants associated with3

Hopf algebras. The paper ends with two sections on Hopf algebras. The concept4

of a quasi-triangular Hopf algebra creates an algebraic context for solutions to the5

algebraic Yang–Baxter equation. This algebraic context gives rise to categories and6

relationships with knot theory and virtual knot theory that connect directly with7

the contents of our investigation.8

2. A Stringy Presentation for the Virtual Braid Group9

2.1. The virtual braid group10

Let us begin with a presentation for the virtual braid group. The set of isotopy11

classes of virtual braids on n strands forms a group, the virtual braid group denoted12

VBn, that was introduced in [18]. The group operation is the usual braid multipli-13

cation (form bb′ by attaching the bottom strand ends of b to the top strand ends14

of b′). VBn is generated by the usual braid generators σ1, . . . , σn−1 and by the15

virtual generators v1, . . . , vn−1, where each virtual crossing vi has the form of the16

braid generator σi with the crossing replaced by a virtual crossing. See Fig. 2 for17

illustrations. Recall that in virtual crossings we do not distinguish between under18

and over crossing. Thus, VBn is an extension of the classical braid group Bn by19

the symmetric group Sn, whereby vi corresponds to the elementary transposition20

(i, i + 1).21

Among themselves the braid generators satisfy the usual braiding relations:

(B1) σiσi+1σi = σi+1σiσi+1,

(B2) σiσj = σjσi, for j �= i ± 1.

Among themselves, the virtual generators are a presentation for the symmetric
group Sn, so they satisfy the following virtual relations:

(S1) vivi+1vi = vi+1vivi+1,

(S2) vivj = vjvi, for j �= i ± 1,

(S3) vi
2 = 1.

,

i

i i+1 n1

......

iv

i i+1 n1

......

Fig. 2. The generators of VBn.
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The mixed relations between virtual generators and braiding generators are as
follows:

(M1) viσi+1vi = vi+1σivi+1,

(M2) σivj = vjσi, for j �= i ± 1.

To summarize, the virtual braid group VBn has the following presentation [18].

VBn =

〈
σ1, . . . , σn−1,

v1, . . . , vn−1

∣∣∣∣∣∣∣∣
(B1), (B2),

(S1), (S2), (S3),

(M1), (M2).

〉
(2.1)

It is worth noting at this point that the virtual braid group VBn does not1

embed in the classical braid group Bn, since the virtual braid group contains torsion2

elements (the vi have order two) and it is well known that Bn does not. But the3

classical braid group embeds in the virtual braid group just as classical knots embed4

in virtual knots. This fact may be most easily deduced from [26], and can also be5

seen from [8, 28]. For reference to previous work on virtual knots and braids the6

reader should consult [4, 6, 11–13, 15, 16, 18–22, 25, 26, 28, 32, 35–37] and references7

therein. For work on welded braids and welded knots, see [8, 16, 21, 22]. For Markov-8

type theorems for virtual braids (and welded braids), giving sets of moves on virtual9

braids that generate the same equivalence classes as the oriented virtual link types10

of their closures, see [16, 22]. Such theorems are important for understanding the11

structure and classification of virtual knots and links.12

The second mixed relation in the presentation of the virtual braid group will be13

called the local detour move and it is illustrated in Fig. 3. The following relations14

are also local detour moves for virtual braids and they are easy consequences of the15

above.16

vivi+1σi
±1 = σi+1

±1vivi+1,

σi
±1vi+1vi = vi+1viσi+1

±1.
(2.2)17

Fig. 3. The local detour.
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This set of relations taken together define the basic local isotopies for virtual braids.1

Each relation is a braided version of a local virtual link isotopy. The local detour2

move is written equivalently:3

σi+1 = vivi+1σivi+1vi. (2.3)4

Notice that Eq. (2.3) is the braid detour move of the ith strand around the crossing5

between the (i + 1)th and the (i + 2)th strand (see first two illustrations in Fig. 4)6

and it provides an inductive way of expressing all braiding generators in terms of7

the first braiding generator σ1 and the virtual generators v1, . . . , vn−1 (see first and8

last illustrations in Fig. 4), that is:9

σj = (vj−1 · · · v2v1)(vj · · · v3v2)σ1(v2v3 · · · vj)(v1v2 · · · vj−1). (2.4)10

In [21] we derive the following reduced presentation for VBn:

VBn =

〈
σ1,

v1, . . . , vn−1

∣∣∣∣∣∣∣∣∣∣

(S1), (S2), (S3)

σ1vj = vjσ1, for j > 2

v1σ1v1v2σ1v2v1σ1v1 = v2σ1v2v1σ1v1v2σ1v2

σ1v2v3v1v2σ1v2v1v3v2 = v2v3v1v2σ1v2v1v3v2σ1

〉
.

(2.5)

The local detour move gives rise to a generalized detour move, by which any11

box in the braid can be detoured to any position in the braid, see Fig. 5.12

Finally, it is worth recalling that in virtual knot theory there are “forbidden13

moves” involving two real crossings and one virtual. More precisely, there are two14

types of forbidden moves: One with an over arc, denoted F1 and another with an15

under arc, denoted F2. See [18] for explanations and interpretations. Variants of16

the forbidden moves are illustrated in Fig. 6. So, relations of the types:17

σivi+1σ
−1
i = σ−1

i+1viσi+1 (F1) and σ−1
i vi+1σi = σi+1viσ

−1
i+1 (F2) (2.6)18

are not valid in virtual knot theory.19

......

i i+1 i+2

= ......

i i+1 i+2

= ...

...
1 2

...

...

i i+1 i+2

Fig. 4. Detouring the crossing σi+1.

1240008-8



1st Reading

September 3, 2012 10:8 WSPC/S0218-2165 134-JKTR 1240008

A Categorical Model for the Virtual Braid Group

Fig. 5. Detouring a box.

F
1

F
2

Fig. 6. The forbidden moves.

2.2.1

We now wish to describe a new set of generators and relations for the virtual braid2

group that makes it particularly easy to describe the pure virtual braid group, VPn.3

In order to accomplish this aim, we introduce the following elements of VPn, for4

i = 1, . . . , n − 1.5

µi,i+1 := σivi. (2.7)6

We indicate µi,i+1 by a connecting string between the ith and (i + 1)th strands7

with a dark vertex on the ith strand, a dark vertex on the (i + 1)th strand, and8

an arrow from left to right. View Fig. 7. The inverses µ−1
i,i+1 = viσ

−1
i have same9

directional arrows but are indicated by using white vertices. By detouring it to the10

leftmost position of the braid, we can write µi,i+1 in terms of µ12 conjugated by a11

virtual word:12

µi,i+1 = (vi−1 · · · v2v1)(vi · · · v3v2)µ12(v2v3 · · · vi)(v1v2 · · · vi−1). (2.8)13

We also introduce the elements14

µi+1,i := viσi = viµi,i+1vi. (2.9)15

We indicate µi+1,i by a connecting string between the ith and (i + 1)th strands,16

with a dark vertex on the ith strand, a dark vertex on the (i + 1)th strand, and17

an arrow from right to left (reversing the direction from µi,i+1), view Fig. 7. An18

illustration of Eq. (2.9) (see top of Fig. 8) explains the reversing of the direction of19

1240008-9
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Fig. 7. The elementary connecting strings µi,i+1, µi+1,i and their inverses.

the arrow in the graphical interpretation of µi+1,i. The inverses µ−1
i+1,i = σ−1

i vi have1

same directional arrows but are indicated by using white vertices. An analogous2

equation to Eq. (2.8) holds:3

µi+1,i = (vi−1 · · · v2v1)(vi · · · v3v2)µ21(v2v3 · · · vi)(v1v2 · · · vi−1). (2.10)4

Definition 2.1. The pure virtual braids µi,i+1, µi+1,i and their inverses shall be5

called elementary connecting strings.6

From Eqs. (2.7) and (2.9) follow directly the relations:7

viµi+1,i = µi,i+1vi and µ−1
i+1,ivi = viµ

−1
i,i+1, (2.11)8

also illustrated in Fig. 8.9

Further, we generalize the notion of a connecting string and define, for i < j,10

the element µij (a connecting string from strand i to strand j) by the formula11

µij := vj−1vj−2 · · · vi+1µi,i+1vi+1 · · · vj−2vj−1. (2.12)12

1240008-10
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Fig. 8. Relations between the elementary connecting strings.

In a diagram µij is denoted by a connecting string from strand i to strand j, with1

dark vertices on these two strands and an arrow pointing from left to right, view2

Fig. 9.3

We also generalize, for i < j, the elements µi+1,i to the elements:4

µji := tijµijtij , (2.13)5

where tij = vivi+1 · · · vj · · · vi+1vi is the element of Sn (generated by the vi’s)6

that interchanges strands i and j, leaving all other strands fixed. We denote µji7

by a connecting string from strand i to strand j, with dark vertices, and an arrow8

pointing from right to left. Figure 10 illustrates the example µ31 = v2v1v2µ13v2v1v2.9

It is easily verified that10

µji = vj−1vj−2 · · · vi+1µi+1,ivi+1 · · · vj−2vj−1. (2.14)11

The inverses of the elements µij and µji have same directional arrows respectively,12

but white dotted vertices.13

1240008-11



1st Reading

September 3, 2012 10:8 WSPC/S0218-2165 134-JKTR 1240008

L. H. Kauffman & S. Lambropoulou

(defn)
=

Fig. 9. Connecting strings.

Fig. 10. The exchange of labels between µij and µji.

Definition 2.2. The elements µij , µji and their inverses shall be called connecting1

strings.2

With the above conventions we can speak of connecting strings µrs for any r, s.3

It is important to have the elements µji when j > i, but in the algebra they are all4

defined in terms of the µij . The importance of having the elements µji will become5

clear when we restrict to the pure virtual braid group.6

1240008-12
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Remark 2.3. In the definition of µij if we consider µi,i+1 as a virtual box inside1

the virtual braid we can use the (generalized) detour moves to bring it to any2

position, as Fig. 9 illustrates. This means that the contraction of µij to µi,i+1 may3

be pulled anywhere between the ith and the jth strands. By the same reasoning4

the contraction of µji to µi+1,i may be also pulled anywhere between the ith and5

the jth strands.6

2.3.7

We shall next give some relations satisfied by the connecting strings. Before that8

we need the following remark.9

Remark 2.4. The symmetric group Sn clearly acts on VBn by conjugation. By10

their definition [Eqs. (2.7), (2.9), (2.12)–(2.14)], this action on connecting strings11

translates into permuting their indices, that is, a permutation τ ∈ Sn acting on12

µrs will change it to µτ(r),τ(s). This means that Sn acts by conjugation also on13

the subgroup of VBn generated by the µij ’s. Moreover, by Eqs. (2.8) and (2.9),14

all connecting strings may be obtained by the action of Sn on µ12. For σ ∈ Sn15

we regard σ both as a product of the elements vi and as a permutation of the set16

{1, 2, 3, . . . , n}.17

Further, any relation in VBn transforms into a valid relation after acting on it18

an element of Sn. In particular, a commuting relation between connecting strings19

will be transformed to a new commuting relation between connecting strings.20

Lemma 2.5. The following relations hold in VBn for all i.21

(1) viµi,i+1 = µi+1,ivi, viµi+1,i = µi,i+1vi,22

(2) vi+1µi,i+1 = µi,i+2vi+1, vi+1µi+1,i = µi+2,ivi+1,23

(3) vi−1µi,i+1 = µi−1,i+1vi−1, vi−1µi+1,i = µi+1,i−1vi−1,24

(4) vjµi,i+1 = µi,i+1vj , vjµi+1,i = µi+1,ivj , j �= i − 1, i, i + 1.25

The above local relations generalize to similar ones involving different indices. Rela-26

tions 1 are generalized by Eq. (2.13), reflecting the mutual reversing of µij and µji,27

recall Figs. 8 and 10. Relations 2 and 3 are the local slide moves, as illustrated in28

Fig. 11, and they generalize to the slide moves coming from the defining equations:29

µi+1,k = viµikvi for any k < i or k > i + 1. Relations 4 and their generalizations:30

vjµik = µikvj for any k �= i and j �= i − 1, i, k − 1, k, are all commuting relations.31

All these relations result from the action of any τ ∈ Sn on µ12:32

τ−1µ12τ = µτ(1),τ(2). (2.15)33

Proof. All relations 1, 2 and 3 follow directly from the definitions of the elements34

µij and µji. For example, vi+1µi,i+1 = µi,i+2vi+1 is equivalent to the defining35

relation µi,i+2 = vi+1µi,i+1vi+1. Figure 12 illustrates the proof of a local slide36

move. Relations 4 follow immediately from the commuting relations (S2) and (M2)37

1240008-13



1st Reading

September 3, 2012 10:8 WSPC/S0218-2165 134-JKTR 1240008

L. H. Kauffman & S. Lambropoulou

Fig. 11. Slide moves.

A

B

C

Fig. 12. Proving a local slide move.

of VBn. The generalizations of all types of moves follow from the local ones after1

using detour moves. Finally, the derivation of all relations from the action of Sn on2

µ12 is explained in Remark 2.4 and, more precisely, by the Eqs. (2.8), (2.12), (2.10)3

and (2.14).4

Lemma 2.6. The following commuting relations among connecting strings hold5

in VBn.6

(1) µ12µ34 = µ34µ12,7

(2) µ14µ23 = µ23µ14(action by (324)),8

(3) µ13µ24 = µ24µ13(action by (23)).9

The above local relations generalize to commuting relations of the form:10

µijµkl = µklµij , {i, j} ∩ {k, l} = ∅. (2.16)11

All the above commuting relations result from relation 1 by actions of permutations12

(indicated for relations 2, 3 to the right of each relation). Moreover, for any choice13
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of four strands there are exactly 24 such commuting relations that preserve the four1

strands.2

Proof. Relation 1 clearly rest on the virtual braid commuting relations (B2) and
(M2). We shall show how relation 2 reduces to relation 1. In the proof we underline
in each step the generators of VBn on which virtual braid relations are applied.

µi,i+3µi+1,i+2 = vi+2vi+1µi,i+1vi+1vi+2µi+1,i+2

detour= vi+2vi+1µi,i+1µi+2,i+3vi+1vi+2

(1)
= vi+2vi+1µi+2,i+3µi,i+1vi+1vi+2

detour= µi+1,i+2vi+2vi+1µi,i+1vi+1vi+2

= µi+1,i+2µi,i+3.

Figure 13 illustrates how relation 3 also reduces to relation 1. Notice now that3

relations 2 and 3 can be derived from relation 1 by conjugation by the permutations4

(324) and (23) respectively. Let us see how this works specifically for relation 2:5

the indices of relation 1 against the indices of relation 2 induce the permutation6

(324) = v2v3. This means that conjugating relation 1 by the word v2v3 will yield7

relation 2.8

Notice also that there are 24 commuting relations in total involving the strands9

1, 2, 3, 4 and indices in any order. Likewise for any choice of four strands. The10

derivation of all relations from the action of Sn on relation 1 is clear from11

Remark 2.4.12

Fig. 13. A local commuting relation.
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Lemma 2.7. The following stringy braid relations hold in VBn.1

(1) µ12µ13µ23 = µ23µ13µ12,2

(2) µ21µ23µ13 = µ13µ23µ21(action by (12)),3

(3) µ13µ12µ32 = µ32µ12µ13(action by (23)),4

(4) µ32µ31µ21 = µ21µ31µ32(action by (13)),5

(5) µ23µ21µ31 = µ31µ21µ23(action by (123)),6

(6) µ31µ32µ12 = µ12µ32µ31(action by (132)).7

The above relations generalize to three-term relations of the form:8

µijµikµjk = µjkµikµij , for any distinct i, j, k. (2.17)9

All six relations stated above result from the action on relation 1 by permutations10

of Sn, which only permute the indices {1, 2, 3}. These permutations are indicated to11

the right of each relation. Moreover, for any choice of three strands there are exactly12

six relations analogous to the above, which all result from relation 1 by actions of13

appropriate permutations that preserve the three strands each time.14

Proof. Figure 14 illustrates relation 1. Relation 1 rests on the braid relations (B1)
of VBn. Indeed, let us prove one relation of this type. See also Fig. 15 for a pictorial
proof.

µi+1,i+2µi,i+2µi,i+1 = (σi+1vi+1)(vi+1σivivi+1)(σivi)
(S3,M1)

= σi+1σiσi+1vivi+1vi

(B1,S1)
= σiσi+1σivi+1vivi+1

(M1,S3)
= σiσi+1vi+1vivi+1vi+1σi+1vi+1

(S1)
= σiσi+1vivi+1vivi+1σi+1vi+1

(M1)
= (σivi)(vi+1σivivi+1)(σi+1vi+1)

= µi,i+1µi,i+2µi+1,i+2.

Fig. 14. The stringy braid relation.
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Fig. 15. Proof of the stringy braid relation.

The other five stated relations follow from relation 1. Indeed, substituting the1

µji’s from Eqs. (2.9) and (2.13), and drawing the two sides of a relation we notice2

that there is always a region where, by the slide relations, all three connecting3

strings become consecutive without any of them having to be reversed, thus enabling4

application of the first relation. This diagrammatic argument confirms the fact that5

all six relations are derived from the first one by the action of appropriate elements6

of Sn. Let us see how this works specifically for relation 5: the indices of relation 17

against the indices of relation 5 induce the permutation (123) = v2v1. This means8

that conjugating relation 1 by the word v2v1 will yield relation 5. Finally, the9

derivation of all stringy braid relations from the action of Sn on relation 1 is clear10

from Remark 2.4.11

Another remark is now due.12

Remark 2.8. The forbidden moves of virtual knot theory are naturally forbid-
den also in the stringy category. For example, the forbidden relations (F1), (F2)
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(SF1) (SF2)

Fig. 16. Stringy forbidden moves.

of Eq. (2.6) translate into the following corresponding forbidden stringy relations
(SF1), (SF2):

µi,i+2µi+1,i+2 = µi+1,i+2µi,i+2 (SF1) and

µi,i+2µi,i+1 = µi,i+1µi,i+2 (SF2) (2.18)

which, together with all similar relations arising from conjugating the above by1

permutations, are not valid in the stringy category. See Fig. 16 for illustrations.2

2.4. The stringy presentation3

We will now define an abstract stringy presentation for VBn that starts from the4

concept of connecting string and recaptures the virtual braid group. By Eq. (2.7)5

we have6

σi = µi,i+1vi (2.19)7

so, the connecting strings µij can be taken as an alternate set of generators of8

the virtual braid group, along with the virtual generators vi. The relations in this9

new presentation consist the results we proved above in Lemmas 2.5–2.7 describ-10

ing the interaction of connecting strings with virtual crossings, the commutation11

properties of connecting strings, the stringy braiding relations and the usual rela-12

tions (S1), (S2), (S3) in the symmetric group Sn. For the work below, recall that13

we have defined the element tij = vivi+1 · · · vj · · · vi+1vi that corresponds to the14

transposition (ij) in Sn.15

In any presentation of a group G containing the elements {v1, . . . , vn−1} and the16

relations (S1), (S2), (S3) among them, we have an action of the symmetric group17

Sn on the group G defined by conjugation by an element τ in Sn, expressed in18

terms of the vi:19

gτ = τgτ−1
20

for g in G. In particular, we can consider tijgtij as the action by the transposition21

tij on an element g of G. We will use this action to define a stringy model of the22

virtual braid group.23
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Definition 2.9. Let V Sn denote the following stringy group presentation.1

VSn =

〈
µij , 1 ≤ i �= j ≤ n,

v1, . . . , vn−1

∣∣∣∣∣∣∣∣∣∣

τµijτ
−1 = µτ(i),τ(j), τ ∈ Sn

µ12µ13µ23 = µ23µ13µ12

µ12µ34 = µ34µ12

(S1), (S2), (S3)

〉
. (2.20)2

We can now state the following theorem.3

Theorem 2.10. The stringy group VSn is isomorphic to the virtual braid4

group VBn.5

Proof. First we define a homomorphism F : VBn → VSn by F (vi) = vi and
F (σi) = µi,i+1vi, and extend the map to be a homomorphism on words in the
generators of the virtual braid group. In order to show that this map is well-
defined, we must show that it preserves the relations in the virtual braid group.
Since F (vi) = vi, the relations among the vi with themselves are preserved identi-
cally. The commuting relations in the braid group are σiσj = σjσi when |i− j| > 2.
Thus we must show that

µi,i+1viµj,j+1vj = µj,j+1vjµi,i+1vi.

But this follows immediately from relations 4 of Lemma 2.5 and from Lemma 2.6.6

The mixed commuting relations (M2) follow also directly from relations (S2) and7

relations 4 of Lemma 2.5. This completes the verification that the commuting rela-8

tions in the virtual braid group are compatible with F .9

The detour moves (M2) in the virtual braid group go under F to the slide10

relations of Lemma 2.5. We illustrate this in Fig. 17.11

It remains to prove that the braiding relations (B1) carry over to VSn under F .
Indeed:

F (σiσi+1σi) = µi,i+1viµi+1,i+2vi+1µi,i+1vi

Lemma 2.5= µi,i+1µi,i+2µi+1,i+2vivi+1vi,

while

F (σi+1σiσi+1) = µi+1,i+2vi+1µi,i+1viµi+1,i+2vi+1

Lemma 2.5= µi+1,i+2µi,i+2µi,i+1vi+1vivi+1,

and the two expressions are equal from Lemma 2.7 and relations (S1). This com-12

pletes the proof that the mapping F is a well-defined homomorphism of groups.13

We now define an inverse mapping G : VSn →VBn by G(vi)= vi and G(µi,i+1)=14

σivi. At this stage we have two pieces of work to accomplish: We must extend G
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Fig. 17. The detour moves correspond to the slide moves in the stringy category.

to all of VBn and we must show that G is well-defined and that it preserves the1

relations in the group presentation. This will be done in the next paragraphs.2

First of all, we have the VSn relations:

τ−1µij τ = µτ(i),τ(j)

for all τ in Sn. In particular, this means that if τ(1) = i and τ(2) = j, then

µij = τ−1µ12τ.

Thus we can define

G(µij) = τ−1G(µ12)τ = τ−1σ1v1τ.

It is easy to see that this is well-defined by noting that if λ is another permutation3

such that λ(1) = i and λ(2) = j, then λ = τγ where γ is a permutation that4

fixes 1 and 2. But such a permutation commutes with σ1v1 as is easy to see in the5

virtual braid group. Hence λ can replace τ in the formula for G(µij) with no change.6

We leave it as an exercise for the reader to check that our definition of G(µi,i+1)7

in the previous paragraph agrees with the present definition. This completes the8

definition of the map G. We now need to see that it respects the other relations9

in VBn.10
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We must show that

G(µ12µ34) = G(µ34µ12).

Just note that

G(µ12µ34) = σ1v1σ3v3 = σ3v3σ1v1 = G(µ34µ12),

by the commuting relations in the virtual braid group.1

Finally, we must prove

G(µ12µ13µ23) = G(µ23µ13µ12).

Note that µ13 = v2µ12v2, so we must prove that in the virtual braid group,

σ1v1v2σ1v1v2σ2v2 = σ2v2v2σ1v1v2σ2v2.

Figure 15 illustrates how this identity follows via braiding and detour moves.2

We have verified that the mapping G is well-defined and, by definition, the3

compositions F ◦ G and G ◦ F are the identity on VSn and VBn. Therefore VSn4

and VBn are isomorphic groups. This completes the proof of the Theorem.5

Finally, we also give below a reduced presentation for VBn, which derives imme-6

diately from Eq. (2.5).7

Proposition 2.11. The following is a reduced stringy presentation for VBn:

VBn =

〈
µ12,

v1, . . . , vn−1

∣∣∣∣∣∣∣∣∣∣

µ12vj = vjµ12, for j > 2

µ12v2µ12v2v1v2µ12v2v1 = v1v2µ12v2v1v2µ12v2µ12

µ12v2v3v1v2µ12v2v1v3v2 = v2v3v1v2µ12v2v1v3v2µ12

(S1), (S2), (S3)

〉
.

(2.21)

The second relation is the stringy braid relation 1 of Lemma 2.7 and the third8

relation is the commuting relation 1 of Lemma 2.6.9

3. The Pure Virtual Braid Group10

3.1. A presentation for the pure virtual braid group11

From presentation Eq. (2.1) of VBn we have a surjective homomorphism

π : VBn → Sn

defined by

π(σi) = π(vi) = vi.

For a virtual braid b, we refer to π(b) as the permutation associated with the virtual12

braid b, and we define the pure virtual braid group VPn to be the kernel of the13
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homomorphism π. Hence, VPn is a normal subgroup of VBn of index n!. So, VPn ·1

Sn = VBn. Moreover, VPn ∩Sn = {id}. Hence, VBn = VPn � Sn. Equivalently, we2

have the exact sequence3

1 → VPn → VBn → Sn → 1.4

A presentation for VPn can be now derived immediately from the stringy presen-5

tation of VBn as an application of the Reidemeister–Schreier process [9, 27, 33]. To6

see this, we first need the following.7

Lemma 3.1. The subgroup VPn of VBn is generated by the elements µij for all8

i �= j.9

Proof. Indeed, by Eqs. (2.7) and (2.9), σi = µi,i+1vi = viµi+1,i. So, any element10

b ∈ VBn can be written as a product in the µij ’s and the vk’s. Furthermore, by the11

slide relations of Lemma 2.5, all µij ’s can pass to the top of the braid, leaving at12

the bottom a word τ in the vk’s, such that τ = π(b). Thus, if b ∈ VPn then τ must13

be the identity permutation. This completes the proof of the lemma.14

We can now give a stringy presentation of VPn.15

Theorem 3.2. The following is a presentation for the pure virtual braid group.16

VPn =

〈
µrs, r �= s

∣∣∣∣∣µijµikµjk = µjkµikµij , for all distinct i, j, k

µijµkl = µklµij , {i, j} ∩ {k, l} = ∅

〉
. (3.1)17

Proof. Having reformulated the presentation of the virtual braid group, the proof
is now a direct application of the Reidemeister–Schreier technique. The relations in
VPn arise as conjugations of the relations in VBn by coset representatives of VPn in
VBn, which are the elements of Sn. The relations (S1), (S2), (S3) describe Sn and
are used for choosing the coset representatives. We now describe the process from
the point of view of covering spaces. We have VPn ⊂ VBn as a normal subgroup
with the subgroup Sn acting on it by conjugation. VPn is the fundamental group of
the covering space E of a cell complex B with fundamental group VBn, where E has
group of deck transformations Sn. Since the elements of the symmetric group lift
to paths in the covering space, the relations τµijτ

−1 = µτ(i),τ(j) serve to describe
the action of the symmetric group on the loops in the covering space (these loops
are the lifts of the elements µij). We choose basic relations in VPn to be the lifts
at a specific basepoint of the braiding relation µ12µ13µ23 = µ23µ13µ12 and the
commuting relation µ12µ34 = µ34µ12. All other relations are obtained from these
by the action of Sn, and all relations constitute the two orbits of the basic relations
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under this action. For example the relations

µijµikµjk = µjkµikµij

constitute the orbit under the action of Sn on the single basic braiding relation

µ12µ13µ23 = µ23µ13µ12.

The same pattern applies to the commuting relations. This gives the statement of1

the Theorem and completes the proof.2

3.2. Semidirect product structure3

The virtual braid group and the pure virtual braid group can be described in terms
of semidirect products of groups, just as is begun in the paper by Bardakov [1] and
continued in [10]. In this section we remark that these decompositions are based on
the following algebra: The Yang–Baxter relation has the generic form

µi,i+1µi,i+2µi+1,i+2 = µi+1,i+2µi,i+2µi,+1

which is abstractly in the form

ABC = CBA

and can be rewritten in the form B−1ABC = B−1CBA or

AB = CBAC−1.

This allows one to rewrite some of the Yang–Baxter relations in terms of the con-4

jugation action of the group on itself, and this is the key to the structural work5

pioneered by Bardakov.6

4. A String Category for the Virtual Braid Group7

In this section we summarize our results by pointing out that the string connectors8

and the virtual crossings can be regarded as generators of a category whose algebraic9

structure yields the virtual braid group and the pure virtual braid group. There10

are many relations in the definition of this category. These relations all act to make11

the string connection a topological model of a logical connection between strands12

in this tensor category. The specific topological interpretations of all these relations13

have been discussed in the preceding sections of this paper.14

We define a strict monoidal category with generating morphisms µij where this15

symbol is interpreted as an abstract string or connection between strands i and j16

in a diagram that otherwise is an identity braid on n strands just as defined in the17

previous sections. The other generators of this category are morphisms vi that are18

interpreted as virtual crossings between strings i and i + 1. The generators vi have19

all the relations for transpositions generating the symmetric group. Compositions20

of these elements generate the morphisms of the category. The relations among21
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these morphisms are exactly the relations described for the vk and the µij in the1

previous sections. We will now define this category using a minimal number of2

generators.3

Definition 4.1. Consider the strict monoidal category freely generated by one
object ∗ and three morphisms

µ : ∗ ⊗ ∗ → ∗ ⊗ ∗,
µ′ : ∗ ⊗ ∗ → ∗ ⊗ ∗,

and

v : ∗ ⊗ ∗ → ∗ ⊗ ∗.
Let µ12 = µ ⊗ id∗, µ21 = µ′ ⊗ id∗, v1 = v ⊗ id∗, v2 = id∗ ⊗ v. Here we express
these elements in three strands (tensor factors). For an arbitrary number of tensor
factors, we write

vi = id∗ ⊗ · · · ⊗ id∗ ⊗ v ⊗ id∗ ⊗ · · · ⊗ id∗,

where v occurs in the ith place in this tensor product. More generally, it is under-
stood that

µ12 = µ ⊗ id∗ ⊗ · · · ⊗ id∗

and that

µ21 = µ′ ⊗ id∗ ⊗ · · · ⊗ id∗

for an arbitrary number of tensor factors.4

For each natural number n, the symbols

[n] = ∗ ⊗ ∗ ⊗ · · · ⊗ ∗
with n ∗’s are the objects in the category. One can regard [n] as an ordered row of5

n points that constitute the top or the bottom of a diagram involving n strands.6

Now quotient this category by the following relations (compare with the reduced7

presentation of the virtual braid group in Proposition 2.11).8

(1) µµ′ = id∗⊗∗ = µ′µ,9

(2) vv = id∗,10

(3) µ12vj = vjµ12, for j > 2,11

(4) µ12v2µ12v2v1v2µ12v2v1 = v1v2µ12v2v1v2µ12v2µ12,12

(5) µ12v2v3v1v2µ12v2v1v3v2 = v2v3v1v2µ12v2v1v3v2µ12,13

(6) vivi+1vi = vi+1vivi+1,14

(7) vivj = vjvi, for j �= i ± 1.15

This quotient is called the String Category and denoted SC. The category SC is16

still strict monoidal.17
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To recapture the connecting string morphisms µij in the String Category con-
text, we follow the formalism of the previous sections. Define

µi,i+1 = id∗ ⊗ · · · ⊗ id∗ ⊗ µ ⊗ id∗ ⊗ · · · ⊗ id∗,

where µ occurs in the i and i + 1 places in the tensor product and define

µi+1,i = id∗ ⊗ · · · ⊗ id∗ ⊗ µ′ ⊗ id∗ ⊗ · · · ⊗ id∗,

where µ′ occurs in the i and i + 1 places in the tensor product. Define, for i < j,1

the element µij by the formula2

µij = vj−1vj−2 · · · vi+1µi,i+1vi+1 · · · vj−2vj−1, (4.1)3

and define4

µji = vj−1vj−2 · · · vi+1µi+1,ivi+1 · · · vj−2vj−1. (4.2)5

Remark 4.2. In this notation, relation (4) in Definition 4.1 becomes the algebraic
Yang–Baxter equation

µ12µ13µ23 = µ23µ13µ12,

and relation (5) becomes the commuting relation

µ12µ34 = µ34µ12.

Then one has, as consequences, the general algebraic Yang–Baxter equation and
commuting relations, as we have described them in earlier sections of the paper:

µijµikµjk = µjkµikµij , for all distinct i, j, k

and

µijµkl = µklµij , {i, j} ∩ {k, l} = ∅.
Diagrammatically, µij consists in n parallel strands with a string connector6

between the ith and jth strands directed from i to j. Similarly, vi corresponds7

to a diagram of n strands where there is a virtual crossing between the ith and8

(i + 1)th strands. An n-strand diagram that is a product of these generators is9

regarded as a morphism from [n] to [n] for n any natural number. We interpret µij10

and vi diagrammatically according to the conventions previously established in this11

paper.12

The morphisms vi effect the action of the symmetric group and the category13

models the virtual braid group in the following precise sense.14

Theorem 4.3. The virtual braid group on n strands is isomorphic to the group of15

morphisms from [n] to [n] in the String Category.16
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Proof. By Proposition 2.11, for any positive integer n, the group of endomorphisms1

of the object [n] = ∗⊗n is isomorphic to VBn.2

The point of this categorical formulation of the virtual braid groups is that we3

see how these groups form a natural extension of the symmetric groups by formal4

elements that satisfy the algebraic Yang–Baxter equation. The category we describe5

is a natural structure for an algebraist interested in exploring formal properties of6

the algebraic Yang–Baxter equation. It should be remarked that the relationship7

between the relations in the virtual pure braid group and the algebraic Yang–8

Baxter equation was also pointed out in [3]. See also [2, Remark 10]. We have9

taken this observation further to point out that the virtual braid group is a direct10

result of forming a convenient category associated with the algebraic Yang–Baxter11

equation.12

For the reader who would like to take the String Category SC as a starting13

point for the theory of virtual braids, here is a description of how to read our fig-14

ures for that purpose. Figure 2 illustrates the permutation generators vi for the15

String Category. The braiding elements σi will be defined in terms of the string16

generators. Elementary connecting strings are given in Fig. 7. It is implicit in Fig. 717

how to define the braiding elements σi by composing string generators with per-18

mutations (virtual crossings). See also Fig. 8, which illustrates basic relationships19

among string generators, permutations and braiding operators. Figure 9 illustrates20

the general connecting strings and their relations with the permutation operators.21

In particular, Fig. 9 shows how any string connection can be written in terms of a22

basic string generator and a product of permutations. Figure 10 illustrates how µij23

and µji are related diagrammatically. Figures 11–13 show the basic slide relations24

between string connections and permutations. Figure 14 illustrates the algebraic25

Yang–Baxter relation as it occurs for the string connectors.26

5. Representations of the Virtual and Pure Virtual Braid Groups27

5.1.28

Let A be an algebra over a ground ring k. Let ρ ∈ A⊗A be an element of the tensor29

product of A with itself. Then ρ has the form given by the following equation30

ρ =
N∑

i=1

ei ⊗ ei, (5.1)31

where ei and ej are elements of the algebra A. We will write this sum32

symbolically as33

ρ =
∑

e ⊗ e′, (5.2)34

where it is understood that this is short-hand for the above specific summation.35
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We then define, for i < j, ρij ∈ A⊗n by the equation1

ρij =
∑

1A ⊗ · · · ⊗ 1A ⊗ e ⊗ 1A ⊗ · · · ⊗ 1A ⊗ e′ ⊗ 1A ⊗ · · · ⊗ 1A, (5.3)2

where the e occurs in the ith tensor factor and the e′ occurs in the jth tensor factor.3

With i < j we also define ρji by reversing the roles of e and e′ as shown in the4

next equation5

ρij =
∑

1A ⊗ · · · ⊗ 1A ⊗ e′ ⊗ 1A ⊗ · · · ⊗ 1A ⊗ e ⊗ 1A ⊗ · · · ⊗ 1A, (5.4)6

where e′ occurs in the ith tensor factor and e occurs in the jth tensor factor.7

We say that ρ is a solution to the algebraic Yang–Baxter equation if it satisfies,8

in A⊗n for n ≥ 3, the equation9

ρ12ρ13ρ23 = ρ23ρ13ρ12. (5.5)10

It is immediately obvious that if ρ satisfies the algebraic Yang–Baxter equation,11

then, for any pairwise distinct i, j, k we have12

ρijρikρjk = ρjkρikρij . (5.6)13

This gives all possible versions of the algebraic Yang–Baxter equation occurring in14

the tensor product A⊗n.15

The following proposition is an immediate consequence of our presentation for16

the pure virtual braid group.17

Proposition 5.1. Let VPn denote the pure virtual braid group with generators
µij and relations as given in Theorem 3.2 of Sec. 3. Let A be an algebra with an
invertible algebraic solution to the Yang–Baxter equation denoted by ρ ∈ A ⊗ A as
described above. Define

rep : VPn → A⊗n

by the equation18

rep(µij) = ρij .19

Then rep extends to a representation of the virtual braid group to the tensor20

algebra A⊗n.21

Proof. It follows at once from the definitions of the ρij that ρijρkl = ρklρij when-22

ever the sets {i, j} and {k, l} are disjoint. Thus, we have shown that the ρij satisfy23

all the relations in the pure virtual braid group. This completes the proof of the24

proposition.25

Next, we show how to obtain representations of the full virtual braid group.
To this purpose, consider the algebra Aut(A⊗n) of linear automorphisms of A⊗n

as a module over A. Assume that we are given an invertible solution to the alge-
braic Yang–Baxter equation, ρ ∈ A ⊗ A, and define ρ̃ij :A⊗n → A⊗n by the equa-
tion ρ̃ij(α) = ρijα where α ∈ A⊗n. Since ρ is invertible, ρ̃ij ∈ Aut(A⊗n). Let
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Pij : A⊗n → A⊗n be the mapping that interchanges the ith and jth tensor factors.
Note that Pij ∈ Aut(A⊗n). We let Pi denote Pi,i+1. We now define

Rep : VBn → Aut(A⊗n)

by the equations

Rep(µij) = ρ̃ij and Rep(vi) = Pi.

The next proposition is a consequence of presentation (2.20) for the virtual braid1

group.2

Proposition 5.2. The mapping Rep : VBn → Aut(A⊗n), defined above, is a rep-3

resentation of the virtual braid group to a subgroup of Aut(A⊗n).4

Proof. It is clear that the elements Pi obey all the relations in the symmetric
group Sn. By presentation (2.20) it remains to show that letting λ = Rep(τ) where
τ is an element of Sn, the relations

λρijλ
−1 = ρ̃τ(i),τ(j), τ ∈ Sn

are satisfied in Aut(A⊗n). Since ρij is defined via the placement of the e and e′5

factors in the summation for ρ on the ith and jth strands, these relations are6

immediate. This completes the proof of the proposition.7

Remark 5.3. The method we have described for constructing a representation of
the virtual braid group from an algebraic solution to the Yang–Baxter equation
generalizes the well known construction of a representation of the classical Artin
braid group from a solution to the Yang–Baxter equation in braided form. In the
usual method for constructing the classical representation, one composes the alge-
braic solution with a permutation, obtaining a solution to the braiding equation
(B1). This composition is the same as our relation

σi = µi,i+1vi

between the braiding element σi and the stringy generator µi,i+1 for the pure virtual8

braid group. Without the concept of virtuality, the direct relationship of the alge-9

braic Yang–Baxter equation with the braid groups would not be apparent. We see10

that, from an algebraic point of view, the virtual braid group is an entirely natural11

construction. It is the universal algebraic structure related to viewing solutions to12

the algebraic Yang–Baxter equation inside tensor products of algebras and endow-13

ing these tensor products with the natural permutation action of the symmetric14

group.15

Solutions to the algebraic Yang–Baxter equation are usually thought of as16

deformations of the identity mapping on a two-fold tensor product A ⊗ A. We17

think of a braiding operator as a deformation of a transposition, and so one goes18
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between the algebraic and braided versions of such operators by composition with1

a transposition.2

The Artin braid group Bn is motivated by a combination of topological con-3

siderations and the desire for a group structure that is very close to the structure4

of the symmetric group Sn. We have seen that the virtual braid group VBn is5

motivated at first by a natural extension of the Artin braid group in the context6

of virtual knot theory, but now we see a different motivation for the virtual braid7

group. Given that one studies the algebraic Yang–Baxter equation in the context8

of tensor powers of an algebra A, it is thoroughly natural to study the composi-9

tions of algebraic braiding operators placed in two out of the n tensor lines (the10

stringy generators) and to let the permutation group of the tensor lines act on this11

algebra. As we have seen in (2.20), this is precisely the virtual braid group. Viewed12

in this way, the virtual braid group has nothing to do with the plane and nothing13

to do with virtual crossings. It is a natural group associated with the structure of14

algebraic braiding.15

5.2. A representation category for the string category16

We now give a categorical interpretation of virtual knot theory and the virtual17

braid group in terms of representation modules associated to an algebra A over18

a commutative ring k with an algebraic Yang–Baxter element ρ as above. Let19

End(A⊗n) denote the linear endomorphisms of A⊗n as a module over A. View20

End(A⊗n) as the set of morphisms in a category Modn
k with A⊗n as the single21

object. We single out the following morphisms in this category:22

(1) α1 ⊗ α2 ⊗ · · · ⊗ αn ∈ A⊗n acting on A⊗n by left multiplication,23

(2) the elements of the symmetric group Sn, generated by transpositions of adjacent24

tensor factors.25

In making the representation of VBn we have used the stringy generators µij and26

mapped them to sums of morphisms of the first type above. The virtual braid27

group VBn described via (2.20), can be viewed as a category with one object and28

generators µij and vk. We let Modk denote the category that is obtained by taking29

all of the categories Modn
k together with objects A⊗n for each natural number n30

and morphisms from all of the End(A⊗n).31

Remark 5.4. Of course any associative algebra can be seen as a single object32

category with morphisms the elements of the algebra. But here we have a pictorial33

representation of the morphisms as stringy braid diagrams. These diagrams, which34

capture the pure virtual braid group so far, can be generalized by taking the trans-35

positions of the form Pi,i+1 via a diagram of lines i and i + 1 crossing through one36

another to form virtual crossings vi. Seen from the categorical view that we have37

developed in these last sections, the virtual crossings are interpreted as generators38

of the symmetric group whose action is added naturally to the algebraic structure of39
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the pure virtual braid group. By bringing in this action, we expand the pure virtual1

braid group to the virtual braid group. The virtual crossings have thus become part2

of the embedded symmetry of the structure of the virtual braid group. This is in3

sharp contrast to the role of the virtual crossings in the original form of the virtual4

knot theory. There the virtual crossings appear as artifacts of the presentation of5

virtual knots in the plane where those knots acquire extra crossings that are not6

really part of the essential structure of the virtual knot. Nevertheless, these same7

crossings appear crucially in the virtual braid group, and turn into the generators8

of the symmetric group embedded in the virtual braid group. With the use of the9

full set of µij in (2.20) the detour moves and other remnants of the virtual cross-10

ings as artifacts have completely disappeared into the permutation action. We will11

continue the categorical discussion for the virtual braid group, after first discussing12

certain aspects of knot theory and the tangle categories.13

We can now state a general representation theorem.14

Theorem 5.5. Any monoidal functor

F : SC → Modk

gives rise to a representation of VBn:

f ∈ EndSC([n]) � VBn −→ F (f) ∈ Endk(A⊗n),

where A = F (∗).15

Proof. The proof follows from the previous discussion.16

The representations of VBn that we have here derived can be interpreted as17

follows.18

Theorem 5.6. Let ρ ∈ A⊗A be a solution of the algebraic Yang–Baxter equation,

where A is an algebra over a commutative ring k. One can then define a monoidal
functor

FA : SC → Modk

by setting FA(∗) = A, FA(µ) = ρ̃, and FA(vi) = P, where the endomorphisms ρ̃

and P of A ⊗ A are given by

ρ̃(x ⊗ y) = ρ(x ⊗ y)

and

P (x ⊗ y) = y ⊗ x

for all x, y ∈ A.19

Proof. The proof follows from the previous discussion.20
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5.3. Virtual Hecke algebra1

From the point of view of the theory of braids the Hecke algebra Hn(q) is a quotient2

of the group ring Z[q, q−1][Bn] of the Artin braid group by the ideal generated by3

the quadratic expressions4

σ2
i − zσi − 1 (5.7)5

for i = 1, 2, . . . , n−1, where z = q−q−1. This corresponds to the identity σi−σ−1
i =6

z1, which is sometimes regarded diagrammatically as a skein identity for calculating7

knot polynomials. By the same token, we define the virtual Hecke algebra VHn(q) to8

be the quotient of the group ring Z[q, q−1][VBn] by the ideal generated by Eqs. (5.7).9

There are difficulties in extending structure theorems for the Hecke algebra to
corresponding structure theorems for the virtual Hecke algebra, such as finding
normal forms, studying the representation theory and constructing Markov traces.
Yet, some matters of representations do generalize directly. In particular, let W be
a module over Z[q, q−1] and let I :W → W be the identity operator. If R : W ⊗W →
W ⊗ W is a solution to the Yang–Baxter equation satisfying

R2 = zR + I,

then one has a corresponding representation T : VHn(q) → Aut(W⊗n). This repre-10

sentation is specified as follows.11

T (σi) =
∑

1 ⊗ · · · ⊗ 1 ⊗ R ⊗ 1 ⊗ · · · ⊗ 1, (5.8)12

where R operates on the ith and (i + 1)th tensor factors, and13

T (vi) =
∑

1 ⊗ · · · ⊗ 1 ⊗ P ⊗ 1 ⊗ · · · ⊗ 1, (5.9)14

where P acts by permuting the ith and (i + 1)th tensor factors. It is easy to see15

that this gives a representation of the virtual Hecke algebra.16

One can hope that the presence of such representations would shed light on17

the existence of a generalization of the Ocneanu trace [14] on the Hecke algebra to18

a corresponding trace and link invariant using the virtual Hecke algebra. At this19

point there is an issue about the nature of the generalization. One can aim for a20

trace on the virtual Hecke algebra that is compatible with the Markov Theorem for21

virtual knots and links as formulated in [16, 22]. This means that the trace must22

be compatible with both classical and virtual stabilization. This is a trace that is23

difficult to achieve. A simpler trace is possible by working in rotational virtual knot24

theory where virtual stabilization is not allowed [18]. See Sec. 6 for a discussion of25

unoriented quantum invariants for rotational virtuals. We will report on the relation26

of this approach with the Markov Theorem for virtual knots and links in a separate27

paper.28

Another line of investigation is suggested by translating the basic Hecke algebra
relation into the language of stringy connections. We have σ = µv for the abstract
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relation between a braiding generator, a connector and a virtual element. Thus, the
virtual Hecke relation σ2 = zσ + 1 becomes

µvµ = zµ + v,

and it is possible to work in the presentation (2.20) of the virtual braid group to1

find a structure theory for the virtual Hecke algebra.2

6. Rotational Virtual Links, Quantum Algebras, Hopf Algebras3

and the Tangle Category4

This section will show how the ideas and methods of this paper fit together with5

representations of quantum algebras (to be defined below) and Hopf algebras and6

invariants of virtual links. We begin with a quick review of the theory of virtual7

links (in relation to virtual braids), and we construct the virtual tangle category.8

This category is a natural generalization of the virtual braid group. A functor9

from the virtual tangle category to an algebraic category will form a generalization10

of the representations of virtual braid groups that we have discussed in Sec. 5.11

This functor is related to (rotational) invariants of virtual knots and links. It is12

not hard to see that the construction given in this section defines a category (for13

arbitrary Hopf algebras) that generalizes the String Category given earlier in this14

paper. The category that we define here contains virtual crossings, special elements15

that satisfy the algebraic Yang–Baxter equation and also cup and cap operators.16

The subcategory without the cup and cap operators and without any (symbolic)17

algebra elements except those involved with the algebraic Yang–Baxter operators18

is isomorphic to the String Category.19

A word to the reader about this section: In one sense this section is a review20

of known material in the form that Kauffman and Radford [23] have shaped the21

theory of quantum invariants of knots and three-manifolds via finite-dimensional22

Hopf algebras. On the other hand, this theory is generalized here to invariants of23

rotational virtual knots and links. This generalization is new, and it is directly24

related to the structure of the virtual braid group as described in the earlier part25

of this paper. We have given a complete sketch of this generalization. The reader26

should take the word sketch seriously and concentrate on the sequence of diagrams27

that depict the ingredients of the theory. Taking this point of view, the reader can28

see that the appearance of the algebraic Yang–Baxter element in our diagrams (see29

Fig. 28) is aided by using a connecting string exactly analogous to the connecting30

string in the earlier part of the paper. The generalization follows by taking the31

functorial image of the virtual tangle category defined in this section.32

6.1. Virtual diagrams33

We begin with Fig. 18. This figure illustrates the moves on virtual knot and link34

diagrams that serve to define the theory of virtual knots and links. Two knot or35
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(a) (b)

(c)

Fig. 18. Virtual moves.

link diagrams with virtual and classical crossings are said to be virtually isotopic1

if one can be obtained from the other by a finite sequence of these moves. In the2

figure the moves are divided into type (a), (b) and (c) moves. Moves of type (a) are3

the classical Reidemeister moves. These are essentially the same as corresponding4

moves in the Artin braid group except for the boxed move involving a loop in5

the diagram. The move involving this loop is usually called the first Reidemeister6

move. When we forbid the first Reidemeister move, the equivalence relation is called7

regular isotopy. The moves of type (b) are purely virtual and (except for the move8

involving a virtual loop) correspond to the properties of virtual crossings in the9

virtual braid group. We call the equivalence relation that forbids both the virtual10

loop move and the classical loop move virtual regular isotopy. Finally, we have11

moves of type (c). These are the local detour moves, and they correspond to the12

mixed moves in the virtual braid group.13

In this section we will work with virtual knots and links up to virtual regular14

isotopy. In addition to the usual kinds of virtual phenomena, we will see some extra15

features in looking at this equivalence relation. Two virtual knot or link diagrams16

are said to be rotationally equivalent if they are equivalent under virtual regular17

isotopy. Rotational virtual knot theory is the study of the rotational equivalence18

classes of virtual knot and link diagrams. Studied under this equivalence relation,19
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Fig. 19. A rotational virtual knot.

Fig. 20. A rotational virtual link.

virtual knot and link diagrams are called rotational virtuals. We shall say that a1

virtual knot or link is rotationally knotted or rotationally linked if it is not equivalent2

to an unknot or an unlink under virtual regular isotopy. View Figs. 19 and 20.3

In the first figure we illustrate a rotational virtual knot, and in the second we4

show a rotational virtual link. Both the knot and the link are kept from being5

trivial by the presence of flat loops as discussed above. There is much more to say6

about rotational virtuals, and we refer the reader to [18] for some steps in this7

direction.8

6.2. The virtual tangle category9

The advantage in studying virtual knots up to virtual regular isotopy is that all10

so-called quantum link invariants generalize to invariants of virtual regular isotopy.11

This means that virtual regular isotopy is a natural equivalence relation for studying12

topology associated with solutions to the Yang–Baxter equation.13

Here we create a context by defining the Virtual Tangle Category, VTC, as14

indicated in Fig. 21. The tangle category is generated by the morphisms shown15

in the box at the top of this figure. These generators are: a single identity line,16
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II

III

IV

V

Fig. 21. Regular isotopy with respect to the vertical direction.

right-handed and left-handed crossings, a cap and a cup, a virtual crossing. The1

objects in the tangle category consist in the set of [n]’s where n = 0, 1, 2, . . . . For a2

morphism [n] → [m], the numbers n and m denote, respectively, the number of free3

arcs at the bottom and at the top of the diagram that represents the morphism.4

The morphisms are like braids except that they can (due to the presence of the5

cups and caps) have different numbers of free ends at the top and the bottom of6

their diagrams.7

The sense in which the elementary morphisms (line, cup, cap, crossings) gener-8

ate the tangle category is composition as shown in Fig. 22. For composition, the9

segments are matched so that the number of lower free ends on each segment is10

equal to the number of upper free ends on the segment below it. The Fig. 22 shows11

a virtual trefoil as a morphism from [0] to [0] in the category. The tensor product12

of morphisms is the horizontal juxtaposition of their diagrams. Each of the seven13

horizontal segments of the figure represents one of the elementary morphisms ten-14

sored with the identity line. Consequently there is a well-defined composition of all15

of the segments and this composition is a morphism [0] → [0] that represents the16

knot.17
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[0]

[2]

[4]

[4]

[4]

[2]

[0]

[4]

Fig. 22. Virtual trefoil as a morphism in the tangle category.

The basic equivalences of morphisms are shown in Fig. 21. Note that II, III, V1

are formally equivalent to the rules for unoriented virtual braids. The zeroth move is2

a cancellation of consecutive maxima and minima, and the move IV is a swing move3

in both virtual and classical relations of crossings to maxima and minima. It should4

be clear that the tangle category is a generalization of the virtual braid group with5

a natural inclusion of unoriented virtual braids as special tangles in the category.6

Standard braid closure and the plat closure of braids have natural definitions as7

tangle operations. Any virtual knot or link can be represented in the tangle category8

as a morphism from [0] to [0], and one can prove that two virtual links are virtually9

regularly isotopic if and only if their tangle representatives are equivalent in the10

tangle category. None of the rules for equivalence in the tangle category involve11

either a classical loop or a virtual loop. This means that the virtual tangle category12

is a natural home for the theory of rotational virtual knots and links.13

6.3. Quantum algebra and category14

Now we shift to a category associated with an algebra that is directly related to our
representations of the virtual braid group. We take the following definition [17, 23]:
A quantum algebra A is an algebra over a commutative ground ring k with an
invertible mapping s : A → A that is an antipode, that is s(ab) = s(b)s(a) for all a

and b in A, and there is an element ρ ∈ A⊗A satisfying the algebraic Yang–Baxter
equation as in Eq. (5.5):

ρ12ρ13ρ23 = ρ23ρ13ρ12.
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We further assume that ρ is invertible and that

ρ−1 = (1A ⊗ s) ◦ ρ = (s ⊗ 1A) ◦ ρ.

The multiplication in the algebra is usually denoted by m :A ⊗ A → A and is1

assumed to be associative. It is also assumed that the algebra has a multiplicative2

unit element. The defining properties of a quantum algebra are part of the properties3

of a Hopf algebra, but a Hopf algebra has a comultiplication ∆ :A → A⊗A that is a4

homomorphism of algebras, plus a list of further relations, including a fundamental5

relationship between the multiplication, the comultiplication and the antipode. In6

the interests of simplicity, we shall restrict ourselves to quantum algebras here, but7

most of the remarks that follow apply to Hopf algebras, and particularly quasi-8

triangular Hopf algebras. Information on Hopf algebras is included at the end of9

this section. See [23] for more about these connections.10

We construct a category Cat(A) associated with a quantum algebra A. This
category is a very close relative to the virtual tangle category. Cat(A) differs from
the tangle category in that it has only virtual crossings, and there are labeled
vertical lines that carry elements of the algebra A. See Fig. 23. Each such labeled
line is a morphism in the category. The virtual crossing is a generating morphism
as are the cups, caps and labeled lines. The objects in this category are the same
entities [n] as in the tangle category. This category is identical in its framework to
the tangle category but the crossings are not present and lines labeled with algebra
are present. Given a, b ∈ A we compose the morphisms corresponding to a and b

by taking a line labeled ab to be their composition. In other words, if 〈x〉 denotes
the morphism in Cat(A) associated with x ∈ A, then

〈a〉 ◦ 〈b〉 = 〈ab〉.
As for the additive structure in the algebra, we extend the category to an additive11

category by formally adding the generating morphisms (virtual crossings, cups,12

caps and algebra line segments). In Fig. 23 we illustrate the composition of such13

morphisms and we illustrate a number of other defining features of the category14

Cat(A).15

In the same figure we illustrate how the tensor product of elements a ⊗ b is
represented by parallel vertical lines with a labeling the left line and b labeling the
right line. We indicate that the virtual crossing acts as a permutation in relation
to the tensor product of algebra morphisms. That is, we illustrate that

〈a〉 ⊗ 〈b〉 ◦ P = P ◦ 〈b〉 ⊗ 〈a〉.
Here P denotes the virtual crossing of two segments, and is regarded as a morphism16

P : V ⊗ V → V ⊗ V (see remark below). Since the lines interchange, we expect P17

to behave as the permutation of the two tensor factors.18

In Fig. 23 we show the notation V for the object [1] in this category and we
use V ⊗ V = [2], V ⊗ V ⊗ V = [3] and so on for all the natural number objects
in the category. We write [0] = k, identifying the ground ring with the “empty
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==a s(a)
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V

a
b

a b a b =a
b a

b

V V

k V V

k

< a >

< a b > = < a  > <  b > ab

Fig. 23. Morphisms in Cat(A).

object” [0]. It is then axiomatic that k ⊗ V = V ⊗ k = V. Morphisms are indicated
both diagrammatically and in terms of arrows and objects in this figure. Finally,
the figure indicates the arrow and object forms of the cup and the cap, and crucial
axioms relating the antipode with the cup and the cap. A cap is regarded as a
morphism from V ⊗ V to k, while a cup is regarded as a morphism form k to
V ⊗ V. The basic property of the cup and the cap is the Antipode Property: if one
“slides” a decoration across the maximum or minimum in a counterclockwise turn,

then the antipode s of the algebra is applied to the decoration. In categorical terms
this property says

Cap ◦ (〈1〉 ⊗ a) = Cap ◦ (〈sa〉 ⊗ 1)

and

(〈a〉 ⊗ 1) ◦ Cup = (1 ⊗ 〈sa〉) ◦ Cup.

Here 1 denotes the identity morphism for [0]. These properties and other naturality1

properties of the cups and the caps are illustrated in Figs. 23 and 24. The naturality2

properties of the flat diagrams in this category include regular homotopy of immer-3

sions (for diagrams without algebra decorations), as illustrated in these figures.4

In Fig. 24 we see how the antipode property of the cups and caps leads to a dia-
grammatic interpretation of the antipode. In the figure we see that the antipode s(a)
is represented by composing with a cap and a cup on either side of the morphism
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= =a
s(a) s(a)

a s  (a)2

G
-1

G

= = GaG -1

Fig. 24. Diagrammatics of the antipode.

for a. In terms of the composition of morphisms this diagram becomes

〈sa〉 = (Cap ⊗ 1) ◦ (1 ⊗ 〈a〉 ⊗ 1) ◦ (1 ⊗ Cup).

Similarly, we have

〈s−1a〉 = (1 ⊗ Cap) ◦ (1 ⊗ 〈a〉 ⊗ 1) ◦ (Cup ⊗ 1).

This, in turn, leads to the interpretation of the flat curl as an element G in A1

such that s2(a) = GaG−1 for all a in A. G is a flat curl diagram interpreted as a2

morphism in the category. We see that, formally, it is natural to interpret G as an3

element of A. In a so-called ribbon Hopf algebra there is such an element already in4

the algebra. In the general case it is natural to extend the algebra to contain such5

an element.6

6.4. The basic functor and the rotational trace7

We are now in a position to describe a functor F from the virtual tangle category
VTC to Cat(A). (Recall that the virtual tangle category is defined for virtual link
diagrams without decorations. It has the same objects as Cat(A).)

F : VTC → Cat(A).

The functor F decorates each positive crossing of the tangle (with respect to the8

vertical — see Fig. 26) with the Yang–Baxter element (given by the quantum alge-9

bra A) ρ = Σe ⊗ e
′

and each negative crossing (with respect to the vertical) with10

ρ−1 = Σs(e)⊗ e
′
. The form of the decoration is indicated in Fig. 26. Since we have11
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labeled the negative crossing with the inverse Yang–Baxter element, it follows at1

once that the two crossings are mapped to inverse elements in the category of the2

algebra. This association is a direct generalization of our mapping of the virtual3

braid group to the stringy connector presentation.4

We now point out the structure of the image of a knot, link or tangle under this
functor. The key point about this functor is that, because quantum algebra elements
can be moved around the diagram, we can concentrate all the image algebra in one
place. Because the flat curls are identified with either G or G−1, we can use regular
homotopy of immersions to bring the image under F of each component of a virtual
link diagram to the form of a circle with a single concentrated decoration (involving
a sum over many products) and a reduced pattern of flat curls that can be encoded
as a power of the special element G. Once the underlying curve of a link component
is converted to a loop with total turn zero, as in Fig. 25, then we can think of such

a
b

s(s(a))

b
a

b

TR(ab) TR(ba)

TR(ab) = TR(ba)

Fig. 25. Formal trace.

e e'

s(e)
e'

F

F

s(e) e'

s  (e')2

s(e)

F = s  (e')2

s(e)

=

Fig. 26. The functor F : VTC → Cat(A).
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a loop, with algebra labeling the loop, as a representative for a formal trace of that
algebra and call it TR(X) as in the figure. In the figure we illustrate that for such
a labeling

TR(ab) = TR(ba),

thus one can take a product of algebra elements on a zero-rotation loop up to cyclic1

order of the product. In situations where we choose a representation of the algebra2

or in the case of finite-dimensional Hopf algebras where one can use right integrals3

[23], there are ways to make actual evaluations of such traces. Here we use them4

formally to indicate the result of concentrating the algebra on the loop.5

One further comment is in order about the antipode. In Fig. 27 we show that6

our axiomatic assumption about the antipode (the sliding rule around maxima and7

minima) actually demands that the inverse of ρ is (s ⊗ 1A) ◦ ρ = (1A ⊗ s) ◦ ρ.8

This follows by examining the form of the inverse of the positive crossing in the9

tangle category by turning that crossing to produce an identity between the positive10

crossing and the negative crossing twisted with additional maxima and minima.11

This relationship shows that if we set the functor F on a right-handed crossing as12

we have done, then the way it maps the inverse crossing is forced and that this13

inverse corresponds to the inverse of ρ in the quantum algebra. Thus the quantum14

algebra formula for the inverse of ρ is forced by the topology.15

In Fig. 28 we illustrate the entire functorial process for the virtual trefoil of
Fig. 22. The virtual trefoil is denoted by K, and we find that F (K) reduces to

e e'

s(e) e'

F
e e'

Fig. 27. Inverse and antipode.
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F

e e' f f'

e e' f f '

s  (e)

e'
s(f)

s  (f')
2
3

K

s  (e)

e'
s(f)

s  (f')
2
3

G2

F(K) = TR[e' s(f) s(s(e)) s(s(s(f'))) GG]

Fig. 28. The functor F : T → Cat(A) applied to a virtual trefoil.

a zero-rotation circle with the inscription e′s(f)s2(e)s3(f ′)G2. We can, therefore,
write the equation

F (K) = TR[e′s(f)s2(e)s3(f ′)G2].

Another way to think about this trace expression is to regard it as a Gauss code for1

the knot that has extra structure. The chords in the Gauss diagram are the string2

connectors of the beginning of this paper, generalized to the algebra category Cat(A).3

The powers of the antipode and the power of G keep track of rotational features4

in the diagram as it lives in the tangle category up to regular isotopy. We now5

see that the mapping of the virtual braid group to the braid group generated by6

permutations and string connectors has been generalized to the functor F taking the7

virtual tangle category to the abstract category of a quantum algebra. We regard8

this generalization as an appropriate context for thinking about virtual knots, links9

and braids.10
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The category Cat(A) of a quantum algebra A can be generalized to an abstract1

category with labels, virtual crossings, and with stringy connections that satisfy2

the algebraic Yang–Baxter equation. Each such stringy connection has a left label3

e or s(e) and a right label e′. We retain the formalism of the antipode as a formal4

replacement for adjoining a label with a cup and a cap. The resulting abstract5

algebra category will be denoted by Cat(A). Since we take this category with no6

further relations, the functor F : VTC → Cat(A) is an equivalence of categories.7

This functor is the direct analog of our reformulation of the virtual braid group in8

terms of stringy connectors.9

6.5. Virtual braids and their closures10

The functor F : VTC → Cat(A) defined in the last subsection can be restricted
to the category of virtual (unoriented) braids that we will denote here by VB.

If the reader then examines the result of this functor he will see that the image
of a virtual crossing is a virtual crossing, and the image of a braid generator is
a string connection (expressed in terms of Cat(A).). If we use the corresponding
functor

F : VB ↪→ VTC → Cat(A),

then the image F (VB) is an abstract category of string connections and permu-11

tations that is (up to orientation) identical with our String Category SC studied12

throughout this paper. This remark brings us full circle and shows how the String13

Category fits in the context of the quantum link invariants discussed in this part14

of the paper. In particular, view the bottom part of Fig. 29 where we have illus-15

trated the image under F of a particular virtual braid. Each classical crossing in16

the braid is replaced by a string connector followed by a virtual crossing. The string17

connector is interpreted as in the abstract Hopf algebra category, but in the braid18

image there is no other structure than the connectors and the virtual crossings.19

This shows how the braid lands in a subcategory that is isomorphic with our main20

category SC.21

Now recall that one can move from virtual braids to virtual knots and links by22

taking the braid closure. The closure b of a braid b is obtained by attaching planar23

disjoint arcs from the outputs of a braid to its inputs as illustrated in Fig. 29. The24

result of the closure is a virtual knot or link. In particular, this means that we can25

express rotational quantum link invariants by applying F to the closure of virtual26

braid and then taking the trace TR described in the last section. Alternatively, one27

can regard the invariant as A-valued where A is the quantum algebra that supports28

the functor F. Altogether, this section and the examples in Fig. 29 indicate the close29

relationship of the different constructions that have been outlined in this paper and30

how the structure of the virtual braid group is intimately related to quantum link31

invariants for rotational virtual links.32
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b
b
_

F
_

Fig. 29. Virtual braid and closure.

6.6. Hopf algebras and Kirby calculus1

In Fig. 30 we illustrate how one can use this concentration of algebra on the loop
in the context of a Hopf algebra that has a right integral. The right integral is a
function λ : A → k satisfying

λ(x)1A = Σλ(x1)x2,

where the coproduct in the Hopf algebra has formula ∆(x) = Σx1 ⊗ x2. Here
we point out how the use of the coproduct corresponds to doubling the lines in
the diagram, and that if one were to associate the function λ with a circle with
rotation number one, then the resulting link evaluation will be invariant under the
so-called Kirby move. The Kirby move replaces two link components with new ones
by doubling one component and connecting one of the components of the double
with the other component. Under our functor from the virtual tangle category to
the category for the Hopf algebra, a knot goes to a circle with algebra concentrated
at x. The doubling of the knot goes to concentric circles labeled with the coproduct
∆(x) = Σx1 ⊗ x2. Figure 30 shows how invariance under the handle-slide in the
tangle category corresponds the integral equation

λ(x)y = Σλ(x1)x2y.
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y

x x x
1 2

y

Λ(x)y   = Λ(x  ) x   y1 2Σ

x

Λ(x)

HS

Fig. 30. The Kirby move.

It turns out that classical framed links L have an associated compact oriented1

three manifold M(L) and that two links related by Kirby moves have homeomor-2

phic three-manifolds. Thus the evaluation of links using the right integral yields3

invariants of three-manifolds. Generalizations to virtual three-manifolds are under4

investigation [7]. We only sketch this point of view here, and refer the reader to [23].5

6.7. Hopf algebra6

This section is added for reference about Hopf algebras. Quasitriangular Hopf alge-7

bras are an important special case of the quantum algebras discussed in this section.8

Recall that a Hopf algebra [34] is a bialgebra A over a commutative ring k that
has an associative multiplication m :A ⊗ A → A, and a coassociative comultiplica-
tion, and is equipped with a counit, a unit and an antipode. The ring k is usually
taken to be a field. The associative law for the multiplication m is expressed by the
equation

m(m ⊗ 1A) = m(1A ⊗ m),

where 1A denotes the identity map on A.9

The coproduct ∆ : A → A⊗A is an algebra homomorphism and is coassociative
in the sense that

(∆ ⊗ 1A)∆ = (1A ⊗ ∆)∆.

The unit is a mapping from k to A taking 1k in k to 1A in A and, thereby,10

defining an action of k on A. It will be convenient to just identify the 1k in k and11

the 1A in A, and to ignore the name of the map that gives the unit.12
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The counit is an algebra mapping from A to k denoted by ε :A → k. The
following formula for the counit dualize the structure inherent in the unit:

(ε ⊗ 1A)∆ = 1A = (1A ⊗ ε)∆.

It is convenient to write formally

∆(x) =
∑

x1 ⊗ x2 ∈ A ⊗ A

to indicate the decomposition of the coproduct of x into a sum of first and second
factors in the two-fold tensor product of A with itself. We shall often drop the
summation sign and write

∆(x) = x1 ⊗ x2.

The antipode is a mapping s : A → A satisfying the equations

m(1A ⊗ s)∆(x) = ε(x)1A and m(s ⊗ 1A)∆(x) = ε(x)1A.

It is a consequence of this definition that s(xy) = s(y)s(x) for all x and y in A.1

A quasitriangular Hopf algebra [5] is a Hopf algebra A with an element ρ ∈ A⊗A2

satisfying the following conditions:3

(1) ρ∆ = ∆′ρ where ∆′ is the composition of ∆ with the map on A ⊗ A that4

switches the two factors.5

(2)

ρ13ρ12 = (1A ⊗ ∆)ρ,

ρ13ρ23 = (∆ ⊗ 1A)ρ.

The symbol ρij denotes the placement of the first and second tensor factors of
ρ in the i and j places in a triple tensor product. For example, if ρ =

∑
e⊗ e′ then

ρ13 =
∑

e ⊗ 1A ⊗ e′.

Conditions (1) and (2) above imply that ρ has an inverse and that

ρ−1 = (1A ⊗ s−1)ρ = (s ⊗ 1A)ρ.

It follows easily from the axioms of the quasitriangular Hopf algebra that ρ

satisfies the Yang–Baxter equation

ρ12ρ13ρ23 = ρ23ρ13ρ12.

A less obvious fact about quasitriangular Hopf algebras is that there exists an6

element u such that u is invertible and s2(x) = uxu−1 for all x in A. In fact, we7

may take u =
∑

s(e′)e where ρ =
∑

e ⊗ e′. This result, originally due to Drinfeld8

[5], follows from the diagrammatic categorical context of this paper.9

An element G in a Hopf algebra is said to be grouplike if ∆(G) = G ⊗ G10

and ε(G) = 1 (from which it follows that G is invertible and s(G) = G−1). A11

quasitriangular Hopf algebra is said to be a ribbon Hopf algebra [23, 30] if there exists12
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a grouplike element G such that (with u as in the previous paragraph) v = G−1u1

is in the center of A and s(u) = G−1uG−1. We call G a special grouplike element2

of A.3

Since v = G−1u is central, vx = xv for all x in A. Therefore G−1ux = xG−1u.4

We know that s2(x) = uxu−1. Thus s2(x) = GxG−1 for all x in A. Similarly,5

s(v) = s(G−1u) = s(u)s(G−1) = G−1uG−1G = G−1u = v. Thus, the square of the6

antipode is represented as conjugation by the special grouplike element in a ribbon7

Hopf algebra, and the central element v = G−1u is invariant under the antipode.8

This completes the summary of Hopf algebra properties that are relevant to the9

last section of the paper.10
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