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PAPER
An Algorithm for Allocating User Requests to Licenses in the OMA
DRM System∗

Nikolaos TRIANTAFYLLOY†a), Petros STEFANEAS††b), and Panayiotis FRANGOS†c), Nonmembers

SUMMARY The Open Mobile Alliance (OMA) Order of Rights Object
Evaluation algorithm causes the loss of rights on contents under certain
circumstances. By identifying the cases that cause this loss we suggest an
algebraic characterization, as well as an ordering of OMA licenses. These
allow us to redesign the algorithm so as to minimize the losses, in a way
suitable for the low computational powers of mobile devices. In addition
we provide a formal proof that the proposed algorithm fulfills its intent. The
proof is conducted using the OTS/CafeOBJ method for verifying invariant
properties.
key words: Mobile DRM, OMA, Order of Rights Object Evaluation,
CafeOBJ, Safety, Invariant properties

1. Introduction

Digital Rights Management (DRM) Systems are used by
most digital content vendors. Thus, the need to ascertain
their reliable behavior is very strong. Open Mobile Al-
liance (OMA) is an organization responsible for the defi-
nition of standards for the Mobile DRM systems [1]. The
proposed standards include OMA-DRM [2] and OMA REL
[3], where the latter specifies the language in which licenses
are written. OMA-REL is XML based and is defined as a
mobile profile of ODRL [2]. OMA’s DRM is currently im-
plemented in most mobile devices and smart phones and is
adopted by most vendors for mobile content. We demon-
strate that the OMA License Allocation Algorithm currently
in use suffers from a loss of execution permissions (or rights)
and suggest a new algorithm to overcome this. Although
this algorithm is designed to address problems of the OMA
DRM system, the proposed methodology can be applied to
other DRM domains and languages as well [4,5,6] to allow
an automated license selection with minimal loss of rights.

Barth and Mitchel [7] first identified this loss of rights
and argued that a correct algorithm should behave mono-
tonically, i.e., if a set of rights is allowed by a set of licenses
then this set is also allowed by a set of more flexible licenses
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( licenses that contain at least the same rights∗∗).
We suggest an algorithm to overcome the unintentional

loss of rights without designing complex and computation-
ally heavy DRM agents that reallocate actions to rights.
There exist some cases where our algorithm is not fully
monotonic and this is intentional. In the case where some
form of loss is inevitable we prompt the user to decide which
rights he prefers, so that we may ascertain that those to be
lost are the least desired. While this can cause the algorithm
to behave non-monotonically, we believe that in this spe-
cial case an algorithm that respects the desires of the user is
preferable to a fully monotonic one.

The paper is organized as follows: section 2 briefly
overviews related work and gives a short comparison with
ours. Section 3 presents OMAs algorithm and the loss of
execution rights. In section 4 we give an introduction to or-
der sorted algebra and present our new algorithm. Section 5
introduces the reader to the concepts of Observation Transi-
tion Systems (OTS) and the algebraic specification language
CafeOBJ. Also in section 5 a specification of a DRM agent
using the suggested algorithm is presented and used to prove
formally that such a system does not suffer from uninten-
tional loss of rights. Finally section 6 concludes the paper.

2. Related Work

DRM licenses can be regarded as special cases of authoriza-
tion policies, where the properties have been widely studied
in the literature. The discussed problem is similar to the pol-
icy reachability problem, i.e., given a policy and a domain,
what the sequence of actions that leads to a state satisfy-
ing a goal property is. In [16] the authors analyze reach-
ability and availability properties in Administrative Role-
Based Access Control policies and prove that reachability
analysis is PSPACE-complete for their domain. Dougherty
et al., [17], study reachability, availability and containment
queries for dynamic access control policies in Datalog and
prove that reachability is in NLOGSPACE . Becker [18]
presents a language for specifying dynamic authorization
policies based on transition logic. Also a method for the ver-
ification of reachability based on automated theorem prov-
ing is presented. Other related research on policies includes
[19] where the authors present static analysis methods for
the particular questions of whether policies contain gaps or

∗∗Note that in this context we are only interested in the mono-
tonicity of the existence of rights and not of the quantity of these
rights
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conflicts. In [20] a method based on Event Calculus (EC)
for policy and system specifications is presented that allows
the analysis and detection of various conflict types.

The work of Barth and Mitchell [7] is different than
the previous and is the closest to ours. They investigate the
same problem with us (i.e., losing rights in the context of
the OMA DRM) and prove that it is NP- complete. Also,
they present a formalization of licenses using linear logic
and define an algorithm that allows the revoke of the previ-
ous allocations and their reallocation to achieve monotonic
behavior. Their approach however is rather computationally
heavy and hard to implement; the DRM agent must keep
track of all past allocations for all licenses ever installed so
as to be able to revoke them if a loss occurs. The main dif-
ferences of our approach is that by using order sorted alge-
bra we were able to move the computational weight from
the DRM agent to the creator of the licenses who naturally
has more recourses available than a mobile device. Also the
computationally heavy steps need only be conducted once
at the creation of the licenses. This allowed us to design an
algorithm that behaves monotonically (when such behavior
is desired) and is more suitable for the mobile environment.

3. The OMA Allocation Algorithm

3.1 Licenses in OMA DRM/REL

Definition 1: A license written in OMA REL consists
of a set of sublicenses. Each sublicense is defined as
subl =< Cons,CPerm >, where Cons is a set of con-
straints and CPerm is a constraint permission set. The se-
mantics of a sublicense is that the set of constraint permis-
sions, CPerm, is authorized if all the constraints of Cons are
met. A set of constraints is defined as Cons =

⋃
i=1{ci|ci ∈

Constraints}, where Constraints = {count, timed-
count,Date-time; Interval,True, individual, system,
accumulated}. A Constraint permission set is defined as
CPerm =< Cons, Perm > where Perm is a set of permis-
sions. The semantics of a constraint permission set, CPerm,
is that the set of permissions (or rights), Perm, is allowed
to be executed when the set of constraints, Cons, is met.
A set of permissions is defined as Perm =

⋃
i=1{pi|pi ∈

Permissions} where Permissions = {< p, cont > |p ∈
{play, display, print, execute, export}} and cont denotes a
content protected by the DRM system.

We should note here that the count and timed-count
constraints contain a positive integer stating the number of
times the right can be executed and the DRM agent must re-
duce this number with each execution [3]. The semantics of
datetime is that the constrained right can only be exercised
within the specified date. That of interval is that the right
can only be used for the defined time period, which starts
after the first use of the right. The accumulated constraint
specifies the maximum period of metered usage time during
which the rights can be exercised over media content. The
individual constraint binds the content to a user identity. Fi-
nally the system constraint defines the system to which the

content can be exported to. For the rest of the paper we will
regard licenses that contain an accumulated constraint, as
being constrained with a count constraint which only allows
one more execution. This is due to the nature of accumu-
lated that can potentially be falsified after any execution of
the right it constrains †. Also for simplicity since individual
and system constraints are not taken into account by the orig-
inal algorithm we will consider them as true constrained,
i.e., unconstrained.

Please note that the constraints allowed by OMA REL
do not allow references to other licenses/sublicenses and
cannot express prohibition of actions. For example, it is not
possible to express the licenses: License 1: ” do A”; License
2: ”if did A or C then cannot do B”. The use of the rights in
a license only affects that license. Thus, permissions of a li-
cense can only become unavailable by using that license and
thus making some of its constraints invalid, i.e. depleting a
part of the license. ††.

3.2 The OMA Allocation Algorithm

In a DRM environment users may end up with licenses from
different sources. Thus these licenses may refer to the same
content. For example, L1: ”you may listen to songs A
or B once before the end of the month”. L2: ”you may
listen to songs A or D ten times.” A problem rises as to
what license should be considered optimal. OMA specifies
a set of rules defined in [3], that the DRM agent must ap-
ply when it automatically selects which license to use when
multiple licenses contain rights that can satisfy the user re-
quest [3]. These rules, shown in table 1, define an ordering
on the constraints of OMA REL that is applied to the con-
straint permission sets and sublicenses. Though not explic-
itly stated these rules are inevitably projected to the licenses
themselves. So for a fixed user request, applying them pro-
duces an ordering on the licenses themselves. We will refer
to them as the OMA Allocation Algorithm. In the above ex-
ample we are posed with a question; what license should the
DRM agent choose when requested to play song A? Based
on the rules imposed by OMA REL, the agent must select
the first license because it contains a date-time constraint
(for one month) which is ranked higher in the ordering than
the count constraint (ten times) of the second license. The
intent behind this is that the ten times can be used whenever
the user chooses while the date-time constraint will expire
even if it is not exercised. It is clear that this rule was cre-
ated to benefit the user. In fact all of these rules are of similar
intent; unconstraint rights are to be preferred over constraint
and so on [3]. So we can argue that the aim of this algorithm,
is to allow for an automated decision making process that
will result in protecting the interests of the user by choosing
to use, the license that maximizes the rights available to him

†the user could keep rendering the content for an amount of
time that surpasses the defined timed limit without remaking a re-
quest
††the only constraints that can display such a behavior are count,

timed-count and accumulated
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Table 1 The OMA Allocation Algorithm

-Only the rights that are valid at the given time should be taken into
account from the algorithm.
-Rights that are not constrained should always be preferred over con-
strained rights.
-Any right that includes a date-time constraint, and possibly others,
should be preferred over rights that are constrained but do not have such
a restriction.
-If there exists more than one rights with a date-time constraint, the one
with the further in the future end element should be preferred.
-If there exist a choice between many rights and none of them contains
a date-time constraint the one containing an interval constraint should
be preferred if there exists such.
Rights that contain a count constraint should be preferred after rights
that contain a timed-count constraint.

Table 2 Minimal Loss Property

For user request r the algorithm selects license l, containing ri (sat-
isfying r), such that for all other licenses l’ containing r j = ri
remnants(ls, l′, r) ⊆ remnants(ls, l, r).

after the execution of a right, although this is not explicitly
stated in [3].

3.3 Loosing Rights and Minimal Loss Properties

There exist some cases that the algorithm fails its purpose.
This is caused because the algorithm does not take into ac-
count the future requests of the user. A set of licenses ls
allows a finite set of rights, rights(ls) = {r1, . . . , rn}. Af-
ter the execution of a request r, that is satisfied by a license
l ∈ ls, the rights that are still available from ls are denoted
as remnants(ls; l; r).

Definition 2 (True Loss): A loss of rights is defined as the
case where rights(ls) \ remnants(ls; l; r) , {∅}. A true loss
of rights on the other hand, is defined as the case where
rights(ls) \ remnants(ls; l; r) ⊃ {r}. i.e., when more rights
than the request become unavailable. Using this notation we
define the Minimal Loss property of table 2†.

With the set of licenses from our previous example
we have that rights(ls) = { listen to song A,B,D }. Af-
ter a request to listen to song A the original algorithm
will select license 1. Since this license apart from the
date-time constraint is further constrained by a count con-
straint (that only allows one more execution) we have that
remnants(ls, L1, r) = { listen to songs A, D } the user loses
the right of ever listening to song B. But if the algorithm had
chosen L2 then we would have remnants(ls, L2, r) = { listen
to songs A, B, D }. It is easy to see that remnants(ls, L1, r) ⊂
remnants(ls, L2, r). So the minimal loss property does not
hold. This would not occur if the agent had selected L2.

†since we are only interested in the existence of rights and not
their quantity, the choice of a license of the form L ={up to ten
times play songs A or B}, gives the set rights(l)={play A, play B}.
Thus, its use does not cause a loss of rights; remnants(l; l; r) = {
play A, play B }

This clearly can be seen as against the best interest of the
user, which as we argued is the intent of this algorithm and
in [7] is characterized as an infuriating situation.

Consider now a new set of licenses. L1: ”you can listen
to songs A or B once”. L2: ”you can listen to songs A or C
or D once”. Assume a user request to listen to song A. Here
all the licenses that contain the request cause a true loss of
rights. How should an algorithm decide in this case? One
option would be to simply allocate the request to the license
that causes the smallest loss of rights possible. But the user
might value the right to listen to song B more than the rights
to listen to songs C or D combined. Thus we believe that
in the cases where a true loss is inevitable the final decision
should rest on the user.

Based on these observations we argue that a correct
allocation algorithm must satisfy the following property:
”For a user request r if ∃l ∈ ls such that l satifsies r, and
rights(ls) \ remnants(ls; l; r) ⊆ {r} then the algorithm must
select l′ ∈ ls containing r, such that for all other licenses
l′′ ∈ ls that contain r it holds that remnants(ls; l′′; r) ⊆
remnants(ls; l′; r)” ††. We will refer to this property as the
Weak Minimal Loss (WML) Property.

4. Redesigning the Algorithm

4.1 Order Sorted Algebra

An order sorted algebra (OSA) [11] is a partial ordering ≤ on
a set of sorts, i.e. a set of names for data types. An s-sorted
algebra A is a mapping between the sort names and subsets
from the set A. This subsort relation imposes a restriction on
an s-sorted algebra A, if s ≤ s′ then As ⊆ A′s where As de-
notes the elements of sort s in A. Order sorted algebra [11]
provides a way for several forms of polymorphism and over-
loading, error definition, detection and recovery, multiple in-
heritance, selectors when there are multiple constructors and
many more [11]. Formally, given a partially ordered sort set
S, an S-sorted set A is just a family of sets As for each sort
s ∈ S . A many-sorted signature is a pair (S, Σ) where S is
called the sort set and Σ is an S ∗ × S -sorted family of func-
tions {Σw,s|w ∈ S ∗ands ∈ S }. An order sorted signature is
a triple (S ,≤,Σ) such that (S, Σ) is a many-sorted signature,
(S ,≤) is a poset, and the operations satisfy the following
monotonicity condition; σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2
imply s1 ≤ s2. Given a many-sorted signature an (S, Σ)-
algebra A is a family of sets {As|s ∈ S } called the carriers of
A, together with a function Aσ : Aw → As for each σ ∈ Σw,s,
where Aw = As1 × . . . × Asn, w = s1 . . . sn.

4.2 Labeling Licenses and the Proposed Algorithm

Licenses are basically a data type. Consecutively, there ex-
ists a set of sort names S, that can be used to represent these
licenses. In addition, based on the rights object evaluation
††i.e., that a correct allocation algorithm must satisfy the min-

imal loss property of table 2, when a true loss of rights is not in-
evitable
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provided by the OMA Allocation Algorithm an ordering on
these sorts can be defined. So if we identify the order sorted
algebra that is ”hidden” in the definition of licenses we can
create an algorithm. The basic idea is to apply this ordering
to decide which is the most suitable license to use. For a loss
of rights to occur, some constraints of the licenses must no
longer hold after the satisfaction of a user request. From the
semantics of the constraints supported by OMA REL given
in section 2.1, it is clear that the only constraints that can
be falsified by the satisfaction of a request are the count and
timed-count constraints†††. According to this, we can argue
that each license should be characterized by the following
observations:

• Some part of the license becomes depleted after the ex-
ecution of a right

• The license contains more than one permission ele-
ments

• The characterizing constraint based on the OMA con-
straint ordering

So in order to meet the conditions of the first bullet a
license must contain either a count constraint, or a timed-
count constraint (both with only one more execution left).
The second bullet can be easily checked at the level of the
creation of a license. The characterization of the last bullet
can be made with a simple search on the constraints of the
licenses. We can now define an order sorted signature for
OMA REL licenses as (S 1 × S 2 × S 3,≤,Σ) with Σ = {∅}

and S 3 = {Count,Timed-count,Date-time, Interval,True}
the names of the various constraints allowed by OMA REL
(we omit the constraints individual and system because they
do not play any part in the decision made by the original
algorithm). S 1 = {Once,Many} denoting whether the li-
cense will allow more than one execution of its permissions.
Finally S 2 = {Complex, S imple}, denoting if the license
contains more than one permissions.

For example, a label l = Once×S imple×Count, states
that the license allows only one more execution of a right,
it contains only one right and the dominant constraint of the
license is a count constraint. The ordering comes from the
predefined ordering of the rights object evaluation in con-
junction with the following definitions: once < many and
simple < complex. So, formally we have that s1 × s2 × s3 ≤

s′1 × s′2 × s′3 implies that s1 < s′1 or ( s1 = s′1 and s2 < s′2
or (s2 = s′2 and s3 ≤ s′3)) . Using this ordering on licenses
we will present in the next section a new algorithm for the
decision problem of the optimal license.

We augment a license to contain these sort names by
using labels that will be added in two points: the sublicenses
as a top label and to the constraint permission sets as a local
label. This should be done simultaneously with the creation
of the licenses to reduce the computational cost on the mo-
bile devices. In addition we assume that the DRM agent is
enhanced so as to be able to update these labels after the

†††as well as accumulated, but we equated it with a count once
constraint

execution of permissions as necessary. Meaning that if a
sublicense after the execution of right allows only one more
use its label should be updated to Once × S imple × True
from Many×S imple×True. Our approach does not require
any knowledge on behalf of the agent on the future or past
actions of the users as in [7]. Also we retain the OMA al-
location algorithm in the core, so the implementation of the
proposed algorithm to the existing DRM agents should have
minimal cost.

Definition 3 (Labeled Licenses): A labeled license con-
sists of a set of sublicenses. Each sublicense is a triplet
sub-l =< Cons,CPerm, label > such that subl′ =<
Cons,CPerm > is an OMA REL sublicense and la-
bel a label. We define operators to retrieve them as
Constraints(sub-l), CPS(sub-l) and label(sub-l) respec-
tively.

Each constraint permission set is a triplet, CP =<
Cons, Perm, label >, with CP′ =< Cons, Perm >, a OMA
REL constraint permission set and label a label. These are
retrieved by Constraints(CP), Perm(CP) and label(CP) re-
spectively.

Assuming variables complexity ∈ S 1, times ∈ S 2
and constraint ∈ S 3, we define that, label(CP) = times ×
S imple × constraint iff #(Perm(CP)) = 1. Meaning that a
set of constraint permissions is labeled as times × S imple ×
constraint iff it contains only one permission. Else it is la-
beled times × Complex × constraint. Also, label(CP) =

Once × complexity × constraint if the execution of any
permissions in Perm(CP) causes some constraint in Con-
straints(CP) to fail. Denoting that CP can only be used
one more time. Else label(CP) = Many × complexity ×
constraint. A sublicense now is labeled as, label(sub-
l) = times × S imple × constraint if #(CPS (sub-l)) = 1.
This means that the sub-license contains only one constraint
permission set. Else lable(sub-l) = times × Complex ×
constraint. Finally label(sub-l) = Once × complexity ×
constraint if the execution of a permission belonging to
any of the constraint permission sets of the sub-license,
CPS (sub-l), causes Constraints(sub-l) to no longer hold.
Else label(sub-l) = Many × complexity × constraint.

For example consider the sublicense: sub-l ={{Once
before the end of the month} either {up to ten times play
songs A or B} or {once print document C} }. Here,
Constraint(sub-l)={one time,before the end of the month }.
CPS(sub-l)={CP1;CP2} where CP1 ={ up to ten times, play
either song A or B} and Constraints(CP1) = {up to ten
times}, Perm(CP1) = {play song A, play song B}. Likewise
CP2 ={one time,print document C}. So here #(CPS (sub-l))
= 2.

Definition 4 (Satisfiability): For a permission P and a re-
quest r we define that sat(P, r) = true iff P = r. For a con-
straint permission set CP, we define that sat(CP, r) = true
iff there exists a permission P ∈ CP such that sat(P, r).
For a sublicense subl, we define sat(subl, r) = true iff ∃
CP ∈ subl such that sat(CP, r). For a license l sat(l, r) =
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Table 3 The Proposed Algorithm

1. Input: a user request r, a set of licenses ls
2. Store all licenses l ∈ ls for which sat(ls,r) holds. If only one such
license exists return that license.
3. Else, store all licenses, l, from step 2, for which it holds
that sat(subl, r) ∧ subl ∈ l ∧ ¬(times(label(subl)) = once ∧
comp(label(subl)) = complex).
4. Search the licenses from step 3, and store all licenses l, such that
sat(CP, r) ∧ CP ∈ subl ∧ subl ∈ l for which ¬(times(label(CP)) =

once ∧ compl(label(CP)) = complex).
5. If the result of step 4 is not the empty set, then run the original OMA
allocation algorithm on only those licenses and return the result.
6. Else prompt the user to select a license from step 2.

true iff ∃ subl ∈ l such that sat(subl, r). Finally for a
set of licenses ls, sat(ls, r) = true iff ∃ l ∈ ls such that
sat(l, r). Also for label l = complexity× times× constraint,
we define times(l) = times, comp(l) = complexity and
cons(l) = constraint.

An abstract version of the proposed algorithm using
this notation is shown in Table 3. A true loss of rights will
occur when the selected license contains the user request in
a constraint permission set CP, of a sublicense subl, such
that either label(subl) = Once × Complex × Constraint or
label(CP) = Once × Complex × Constraint. The goal of
the algorithm is to avoid such selections if that is possible.
Else, the user is prompted to ensure the satisfaction of his
preference on the available rights.

Using the above algorithm there exist only two ways
for a permission other than the request to get lost. The first
case is when all the licenses for which sat(l, r) holds cause a
true loss. In this case the user is prompted by the algorithm
as to which rights he prefers to lose. Here it is clear that
the algorithm protects the preferences of the users and we
consider this loss as intentional. The second case occurs
when there exists only one license l such that sat(l, r) and l
causes a true loss of rights. But as we must always satisfy
the request if there exists a suitable license, this loss is also
considered intentional.

An implementation of this algorithm for labeled li-
censes was created in Java and several case studies were
conducted. In all cases when a true loss of rights was not
inevitable the algorithm correctly selected the license that
caused no true loss.

5. Verification of the proposed algorithm

In this section we present a formal proof that the proposed
algorithm of table 3, satisfies the WML property. The proof
was conducted by specifying an arbitrary OMA DRM sys-
tem that uses this algorithm, as an Observation Transition
System (OTS) [12] expressed in CafeOBJ terms [13].

If for a request r there exists at least one l ∈ ls such that
sat(l, r) = true, then there exist three cases under which the
selection of a license satisfies the WML property:

1. Only one license exists such that sat(l, r).
2. All the licenses for which sat(l, r) cause a true loss of

rights.
3. There exists l ∈ ls such that sat(l, r) and l does not

cause a true loss of rights. Then one of the following
must hold:

a. No part of l gets depleted.
b. If 3a) does not hold then, remants(ls,l,r)= {r}.

Based on this observation we define a coloring on the
rights, that changes every time a request is satisfied by the
DRM agent. Using this coloring we then transform the
WML property into a formula that is easier to verify with
the OTS/CafeOBJ method.

Definition 5 (Coloring): For a set of licenses ls we define
that ∀p ∈ rights(ls) initially color(p) = white. After a re-
quest r, the selection of license l by the algorithm and the
execution of a right if no part of l is depleted, then the col-
oring of the rights remains unchanged. If some part of l
gets depleted, causing the rights rights(ls)\remnants(ls, l, r)
to become unavailable, we define that the color of p ∈
{rights(ls)\remnants(ls, l, r)} becomes black: if l is the only
license such that sat(l, r) or, if all the other licenses l’ for
which sat(l′, r) holds also cause a true loss of rights or, if
p matches the user request r. Else the color of p remains
unchanged.

We denote by depleted(ls, r∗) the set of permis-
sions lost by a sequence of satisfied requests r∗ =

r0, . . . , rn−1 from the set ls. Formally, depleted(ls, r∗) =

{rights(ls) \ remnants(ls; l0; r0)}
⋃
. . .
⋃
{rights(ls(n−1)) \

remnants(ls(n−1); ln−1; rn−1)}, where li is the license chosen
to satisfy the request ri, Also ls(i) is the set of licenses after
the satisfactions of i-1 requests.

Proposition 1: The WML is equivalent to the safety prop-
erty: (p ∈ rights(ls)∧ p ∈ depleted(ls, r∗))→ ¬(color(p) =

white)

Proof(Sketch) If the safety property does not hold af-
ter an arbitrary number of requests n, then ∃p ∈

rights(ls) ∧p ∈ depleted(ls, r∗) such that color(p) =

white. But, p ∈ depleted(ls, r∗) implies that ∃i ≤
n, li ∈ ls, such that li was selected for a request ri
and some part of li got depleted. Also since, sat(li, ri)
then ri, p ∈ {rights(ls(i)) \ remannts(ls(i); li; ri)}. How-
ever, color(p) = white, so from the coloring definition
p , ri ∧ ∃l′ ∈ ls(i) such that sat(l′, ri) ∧ l′ , li∧
{rights(ls(i))\ remnants(ls(i); l′; ri)} ⊆ {ri}. So, {rights(ls(i))\
remnants(ls(i); l′; ri)} ⊂ {rights(ls(i)) \ remnants(ls(i); li; ri)}
which implies that remnants(ls(i), l′, ri) ⊃ remnants(ls(i); li; ri),
i.e., the WML property does not hold. If the WML prop-
erty does not hold, then for some request ri,∃l ∈ ls(i) such
that sat(l, ri) ∧ {rights(ls(i)) \ remnants(ls(i); l; ri)} ⊆ {ri}

and the algorithm selects l′ ∈ ls(i) such that ∃l′′ ∈ ls(i) ∧

sat(l′′, ri) ∧ remnants(ls(i); l′′; ri) ⊃ remnants(ls(i); l′; ri).
This implies that {rights(ls) \ remnants(ls, l′′, ri)} ⊂

{rights(ls) \ remnants(ls, l′, ri)}. Because sat(l′, ri), then
ri ∈ {rights(ls(i)) \ remnants(ls(i); l′; ri)}. Also, ri ∈

{rights(ls(i)) \ remnants(ls(i); l′′; ri)}. But, {rights(ls(i)) \



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

remnants(ls(i); l′′; ri)} ⊂ {rights(ls(i))\remnants(ls(i); l′; ri)}.
So there exists p ∈ {rights(ls(i)) \ remnants(ls(i), l′, ri)},
p , ri. However due to the existence of l, from the defi-
nition of the coloring we have that color(p) = white, so the
safety property does not hold.

5.1 Observational Transition Systems and CafeOBJ

An Observation Transition System (OTS) is a transition sys-
tem that can be written in terms of equations. Assuming a
universal state space Y, an OTS S is a triplet S =< O, I,T >
where I ⊆ Y is the set of initial states of the system and
O is a set of observation operators. Each observer in O is
a function that takes a state of the system and possibly a
series of other data type values (visible sorts) and returns
a value of a data type that is characteristic to that state of
the system. Given an OTS S and two states u1, u2 ∈ Y , the
equivalence (u1 =s u2) between them w.r.t. S is defined
as ∀o ∈ O, o(u1) = o(u2). The previous equality creates the
equivalence classes, Y/ =S , on the states of an OTS. Finally,
T is the set of transition, conditional functions (or actions).
Each transition takes as input a state of the system (hidden
sort) and possibly a set of data-type values and returns a new
state of the system. If τ ∈ T then τ(u1) =s τ(u2) for each
u1, u2 ∈ Y/ =S . For each u ∈ Y , τ(u) is called the succes-
sor state of u. The condition cτ of τ is called the effective
condition. Also, for each u ∈ Y ,τ(u) = u if ¬cτ(u).

An OTS defines a Behavioral Object (BO), BO Com-
position has been defined formally in [14]. From the state of
the composite object we can retrieve the state of the compo-
nent objects via Projection Operators [14]. There are several
ways to compose an object from component objects. Paral-
lel Composition without Synchronization, if the changes on
the states of an object do not affect the states of the other
objects of the same level. Parallel Composition with Syn-
chronization when the changes in the state of one object may
alter the state of an object in the same level. In respect to the
number of objects that compose a composite object, we have
Dynamic Composition if that number of component objects
is not fixed and Static if it is.

CafeOBJ is an algebraic specification language
[13].An OTS can be written in CafeOBJ in a natural way.
Moreover, hierarchical behavioral object composition, has
already been defined in [14] with the use of CafeOBJ. The
universal state space Y is denoted in CafeOBJ by a hidden
sort, while each observer by an observation operator. As-
suming visible sorts Vi j, V that correspond to the data types
Dk, D, where k = i1, . . . , im, and a hidden sort H, the obser-
vation operator denoting oi1,...,im is declared as follows; bop
o: Vi1 . . .VimH → V . Any state in I is denoted by a constant,
say init, which is declared as: op init: → H. A transition
τ j1,..., jn ∈ T is denoted by a CafeOBJ action operator; bop
τ : V j1 . . .V jm H → H, with Vk a visible sort correspond-
ing to the data type Dk and k = j1, . . . , jn. Each transition
is defined by stating the value returned by each observer
in the successor state, when τ j1,..., jn is applied in a state u
when c-τ j1,..., jn(u) holds. The value returned by oi1,...,im is

Table 4 CafeOBJ module defining the ADT of Labels

mod* Label{ [type1 , type2 ,type3 < label]

op _=_ : label label -> Bool {comm}

ops simple complex : -> type1

ops count datetime true : -> type2

ops once many : -> type3

op _ & _ & _ : type1 type2 type3 -> label

op type1?_ : label -> type1

op type2?_ : label -> type2

op type3?_ : label -> type3

var t1 : type1

var t2 : type2

var t3 : type3

eq type1?(t1 & t2 & t3) = t1 .

eq type2?(t1 & t2 & t3) = t2 .

eq type3?(t1 & t2 & t3) = t3 .

eq (t1 = t1 ) = true .

eq (t2 = t2 ) = true .

eq (t3 = t3 ) = true . }

not changed if τ j1,..., jn is applied in a state u such that ¬c-
τ j1,..., jn(u). The basic building blocks of a CafeOBJ specifi-
cation are modules. Each module defines a sort. CafeOBJ
provides built in modules for the most commonly used data-
types (visible sorts) like BOOL, NAT and so on. An under-
score in the definition of an operator indicates the place
where an argument is put. The keyword mod! (mod*) in-
dicates that the module defined has tight (loose) semantics.
Visible (hidden) sorts are denoted by enclosing them within
[and ] ( *[and ]*). The keyword eq is used to denote an
equation and ceq to denote a conditional equation. Modules
can be imported using the keyword pr. Finally the key word
bop is declares observation and action operators.

5.2 OTS specification of a DRM agent using the proposed
Algorithm

Before introducing the OTSs that specify the system, we
need first to specify the data types required. These
specifications consist of modules that define visible sorts,
corresponding to a data type. The following data
types were required; Content, Permission, Request,
Colors, Label, SET, Constraint, ConstraintSet,
ConstraintPermission, SetOfCP, License and finally
LicSet. In table 4 the specification of the ADT of La-
bels is shown. The operator & & takes as input elements
of S 1, S 2 and S 3 respectively and returns a label. Opera-
tors type1?, type2? and type3? can be used to retrieve
these elements and are the specifications of the operators
comp, cons and times from section 4.2 respectively.

Using the above ADTs we define the hidden sorts for
our OTS. Each such sort defines the state space of an abstract
machine. In our specification we used two such sorts. The
first sort, Lsys, specifies a system that consists of a set of
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Table 5 Observers and Transitions of the component OTS

Observers
Signature Description
validsublic : Lsys subLic→ Bool Returns true if the constraints of the

sublicense are met at the given state
validCP : Lsys cPerm→ Bool Returns true if the constraints of the

constraint permission set are met at
the given state

installed : Lsys→ licS et Returns the set of installed licenses
Transitions

depleteS L : Lsys subLic→ Lsys Models the transition that occurs
when the whole of the given license
becomes depleted

depleteCP : Lsys cPerm→ Lsys Models the transition that occurs
when a constraint permission set of
a sublicense becomes depleted.

licenses that can deplete a whole sublicense or a constraint
permission set after a relative request. This system is de-
fined in module LOTS. The observers and transitions used to
define it can be found in table 5. In this OTS all the installed
licenses have their constraints met at the initial state of the
system.

To specify a DRM agent that uses the new algorithm
this OTS does not suffice. A DRM system that uses the pro-
posed algorithm should be able to handle:

- the receipt of a user request
- the selection of an appropriate license (using the pro-

posed algorithm)
- the satisfaction of the request.

We define an OTS specifying the above using the OTS de-
fined in module LOTS as a component object. This new com-
posite OTS defines a novel state space denoted by the hidden
sort sys and for its definition the observers of table 6 were
used.

In order to derive the state of the component object
from the composite object we use projection operators.
Since in this specification we have one component we only
define one projection: bop license : sys → Lsys.
For example assuming that init is a CafeOBJ constant that
denotes an arbitrary initial sate of the composite OTS, we
derive the state of the component system with the following
equation, stating that the component object will be at an ar-
bitrary initial state as well: eq license(init) = initl.

In OTS terms the functionalities required by a DRM
system that uses the proposed algorithm are naturally ex-
pressed and modeled as transitions. In our specification the
first two are defined through the request and choose tran-
sitions. The request transition can successfully change the
state of the system only if there is no pending user request.
If the transition is successful it stores the new request, using
the observer useReq. The second transition defines the se-
lection process of the proposed algorithm. This is achieved
using the possLic and finalLic observers. The first ob-
server returns the set of licenses from the third step of the
algorithm. The second observer returns the set of licenses
from the fourth step of the algorithm. The values of these

observers are calculated using the operators build3 and
build respectively. These take as input a set of licenses
and check each license to see if some conditions hold. Fi-
nally, they return those that satisfy them. The selection of
the algorithm is the application of the original ordering to
the finalLic set, if it is not empty (using the OMA operator
that simulates the selection of the original algorithm). This
was defined with the following equation:

ceq best(choose(S)) = OMA(useReq(S) , finalLic(choose(S)))

if (#finalLic(choose(S)) >= 1) and c-choose(S).

Please note that because CafeOBJ is executable if we
defined a set of licenses and request in its terms by using
these operators CafeOBJ would return a license matching
the output of the algorithm, thus simulating its execution.

We need one final transition that models the satisfac-
tion of the request. This must deplete the chosen licenses as
necessary and change the color of the rights based on the de-
fined coloring. However, the complexity of the verification
of this transition would be very high. We can however split
it into sub transitions based on the conditions of the deple-
tion of the chosen license and the coloring of the lost rights.
That is, we use some of these conditions to define the effec-
tive conditions of the transitions. In this way we reduce the
complexity of the observers’ definition.

Assume that the value of the observer (best) return-
ing the output of the algorithm is L, and that the request
belongs to the subl, sublicense of L and in the cp, con-
straint permission set of subl. For the coloring of the rights
the following sentence will either hold or not: ”there is
only one license satisfying the request or all such licenses
cause a true loss of rights” (we abbreviate this property as
Q). Also, for the depletion of the license we want to dis-
criminate whether the constraint permission set, cp, and the
sublicense, subl, become depleted. Namely, if Q holds we
have the following cases; times(cp) = Once and times(subl)
= Many. This situation is defined by the transition use1.
Next, times(cp) = Once and times(subl)= Once. This is de-
fined by the use3 transition. Also, times(cp)=Many and
times(subl)=Once, is defined by the use3 transition as well.
Finally, times(cp)=Many and times(subl)=Many, is defined
by the use2 transition. Now, if Q does not hold, the corre-
sponding subcases are defined using the transitions use4,
use5, use5 and use2 respectively.

So in this way we split the desired transition into five
sub-transitions. However, these sub-transitions are charac-
terized by the conditions we would have to consider in the
equations defining the coloring and the depletion of the se-
lected license for the original transition. Also, please note
that these conditions are checked against the license that
the OTS selects as the optimum to use (as part of the ef-
fective conditions of the transition rules). Thus, these sub-
transitions are simply a convenient way to define after the
selection of the optimum license by the algorithm, what
parts of it become depleted and also the coloring of the
lost rights. Concluding no additional information is used
by these sub-transitions and thus the OTS remains a strict
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Table 6 Observers of the composite OTS

Signature Description
licIns : sys→ licS et Returns the set of installed licenses
useReq : sys→ reqErr Returns the request of the user at the given

state, if it exists. Else returns an error con-
stant

best : sys→ lic Returns the license the algorithm selects for
the user request

color : sys perm→ color Returns the color of the given permission
possLic : sys→ licS et Returns a set of licenses that contain the user

request in a constraint permission set that is
not labeled as Once or is labeled as Simple.

f inalLic : sys→ licS et Returns a set of licenses that belong to
possLic and the labels of the sublicenses
where the request belongs are not labeled as
Once or are labeled as Simple.

allowed : sys→ permS et Returns the set of permissions allowed by the
installed licenses initially.

depleted : sys→ permPS et Returns the set of permissions lost after the
satisfaction of a request

license : sys→ Lsys The projection operatro

Table 7 Transition use4 in CafeOBJ

op c-use4 : sys -> Bool

eq c-use4(S) = ((not(useReq(S) = null) and

(not (best(S) = emptyLic))) and (type3?(labelCP?(

find3(useReq(S),best(S)))) = once))and not(type3?(

label?(find4(useReq(S),best(S)))) = once) and ( not

(# build2(useReq(S),licIns(S),license(S))== 1) and

(not(possLic(S) = emptyLic) and not(finalLic(S) =

emptyLic))) .

ceq license(use4(S)) = depleteCP(license(S),

find3(useReq(S),best(S)) ) if c-use4(S) .

ceq useReq(use4(S)) = null if c-use4(S) .

ceq color(use4(S) , P) = black if

(P = perm3?(useReq(S),find3(useReq(S),best(S))))

and (P /in allowed(use4(S))) and c-use4(S) .

ceq color(use4(S) , P) = color(S , P) if not

(P = perm3?(useReq(S),find3(useReq(S),best(S))))

and (P /in allowed(use4(S))) and c-use4(S) .

specification of a DRM system that uses the proposed algo-
rithm.

For example the definition of the observers that are
changed when use4 is applied as well as its effective con-
dition is given in table 7 †. In table 7, labelCP? is an op-
erator that returns the label of a constraint permission set,
find3 an operator that returns the constraint permission set
that the request belongs given a license. Similarly, find4
returns the sub-license that the request belongs to. Also,
build2 returns the set of licenses that contain a permission
matching the request, # returns the number of elements in a
set and finally, perm3? returns the permission matching a
request.

†the full specification can be found at cafeobjntua.wordpress.com/

5.3 Verification of the Safety Property

The safety property of Proposition 1 (that is equivalent to
WML) was verified for the system described in the previous
section, using the proof score method [12] for the CafeOBJ
specification of the composite OTS. A safety or invariant
[15] property in the OTS/CafeOBJ framework is a property
that holds for all reachable states of an OTS. A state u is
reachable for an OTS S =< O, I,T > if u ∈ I or for a
reachable state u’, u =s τ(u′) for τ ∈ T . The first step of
the verification is to define the property in CafeOBJ terms
(usually in a module called INV that imports the OTS):

module INV{

pr(OTS)

op inv1 : sys perm -> Bool

var S : sys

var P : perm

eq eq inv1(S,P) = (P /in allowed(S)) and

(P /in depleted(S)) implies not (color(S,P) = white) .

The next step is to show that the property holds for an ar-
bitrary initial state, the inductive base. This is achieved by
opening the module that defines the invariant and asking the
CafeOBJ system to reduce the given expression using the
equations that constitute the specification to either true or
false, denoting that the property holds or not respectively.
This is done using the red command of CafeOBJ. Here true
was returned for the following proof passage, where p is a
CafeOBJ constant denoting an arbitrary permission:

open INV

red inv1(init,p) .

close

To complete the verification we must show that the safety
property is preserved by the inductive steps, i.e. by all of
the transition functions. In a module, usually called ISTEP
(importing INV) we define a generic operator to denote this.
Next we must instantiate that operator for each transition
and reduce it to true or false.

module ISTEP{

pr(INV)

ops s’ s : -> sys

op p : -> perm

op r : -> reqErr

op l : -> lic

op istep1 : -> Bool

eq istep1 = inv1(s,p) implies inv1(s’,p) .}

When we instantiate s′ and ask CafeOBJ to reduce the
inductive step, it is possible that it will return neither true nor
false. Instead an expression might be returned that signifies
it cannot reduce some of the equations required. The user
must then select one of these equations and use it to split
this case to two subcases, one denoting that the equation
holds and one that it does not. The most typical example
of this procedure is the effective condition of the transition
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rule. Usually CafeOBJ cannot reduce it to either true or
false when the transition is applied to an arbitrary state. For
example during the reduction of the request transition the
case was split into two subcases (lines beginning with -- are
comments ignored by CafeOBJ):

open ISTEP

op r : -> req .

-- CASE SPLITTING

eq c-request(r,s) = false .

eq s’ = request(r,s) .

red istep1 .

close

open ISTEP

op r : -> req .

-- CASE SPLITTING

-- eq c-request(r,s) = true .

eq useReq(s) = null .

eq belong7?(r,licIns(s)) = true .

eq (r = null) = false .

eq best(s) = emptyLic .

eq s’ = request(r,s) .

red istep1 .

close

During the verification of a property, it is likely that we
reach a case where CafeOBJ returns false. This means that
either we have reached a state where the desired property
does not hold, or the state that returned false is not reach-
able w.r.t. our OTS. In the first case we are presented with
a counterexample, in the second case we must prove it is
not reachable. This is done by using the equations defining
this state to create a lemma that usually states that not all
of those equations can hold simultaneously. Attention must
be taken though as those lemmas must now be verified as
well as new invariant properties. During the verification of
the safety property the state that is defined by the follow-
ing equations was reached: c − use1(s)∧ (p ∈ allowed(s))∧
¬(p = perm3?(useReq(s), f ind3(useReq(s), best(s)))) ∧
(belong3?(makeReq(p), f ind3(useReq(s), best(s))))∧ (color
(s , p) = white) ∧ ¬p ∈ depleted(s) ∧ ¬(p ∈ buildPS 1
(find3 (useReq (s) , best(s)))) and CafeOBJ returned true for
all symmetrical subcases and false for this case. Due to the
interactive nature of the proving procedure we were able to
deduce that this case should not be reachable under our OTS
and lemma inv2 defined below was used to discard the case
using the following proof score.

eq inv2(P,R,L) = P /in buildPS1(find3(R,L)) implies

belong3?(makeReq(P), find3(R,L)) .

open ISTEP

eq s’ = use1(s) .

eq (useReq(s) = null) = false .

eq (best(s) = emptyLic) = false .

eq type3?(labelCP?(find3(useReq(s),best(s))))= once .

eq (type3?(label?(find4(useReq(s),best(s))))= once)= false .

eq possLic(s) = emptyLic .

eq p /in allowed(s) = true .

eq (p= perm3?(useReq(s),find3(useReq(s),best(s))))= false .

eq (belong3?(makeReq(p),find3(useReq(s),best(s))))= false .

eq color(s,p) = white .

eq p /in depleted(s) = false .

eq p /in buildPS1(find3(useReq(s),best(s)))= true .

red inv2(p,useReq(s),best(s)) implies istep1 .

close

For the complete proof four lemmas were required to
discard cases that returned false and for the verification of
those lemmas thirteen new lemmas were needed. Those
lemmas were verified as well, which concludes the verifi-
cation that the proposed algorithm satisfies the WML prop-
erty†.

6. Conclusions

We redesigned the OMA rights allocation Algorithm by in-
troducing labels on some parts of the licenses that allow
the algorithm to enjoy a monotonic behavior when such be-
havior is desired. Non-monotonic behavior may only occur
when all licenses that satisfy the request cause a loss. Then
the user is prompted to ensure that the rights lost will be
the ones valued less by him, which in our opinion is prefer-
able to full monotonicity. Such an algorithm would be NP-
complete [7], but we shift the extra computational cost to
the creation of the licenses, which are produced by comput-
ers with much higher computational power. Tools that take
as input a license written in OMA REL and produce labeled
licenses will be easy to implement. To prove that the algo-
rithm behaves as desired, an Observational Transition Sys-
tem (OTS) specification written in CafeOBJ terms of a DRM
system using the suggested algorithm was presented. This
allowed the verification of a property that expresses the de-
sired behavior of such an algorithm. With small alterations
the same algorithm could be used to solve the problem of
monotonically allocating a user request to a license in other
DRM enviroments as well, since their licenses share com-
mon attributes. This work is in the spirit of our previous
efforts in the formal verification of mobile systems and al-
gorithms [8, 9 and 10].
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