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Periodic Boundary Conditions (PBC) are often used for the simulation of complex physical 
systems. Using the Gauss linking number, we define the periodic linking number as a 
measure of entanglement for two oriented curves in a system employing PBC. In the case 
of closed chains in PBC, the periodic linking number is an integer topological invariant 
that depends on a finite number of components in the periodic system. For open chains, 
the periodic linking number is an infinite series that accounts for all the topological 
interactions in the periodic system. In this paper we give a rigorous proof that the periodic 
linking number is defined for the infinite system, i.e., that it converges for one, two, and 
three PBC models. It gives a real number that varies continuously with the configuration 
and gives a global measure of the geometric complexity of the system of chains. Similarly, 
for a single oriented chain, we define the periodic self-linking number and prove that it 
also is defined for open chains. In addition, we define the cell periodic linking and self-
linking numbers giving localizations of the periodic linking numbers. These can be used to 
give good estimates of the periodic linking numbers in infinite systems. We also define the 
local periodic linking number associated to chains in the immediate cell neighborhood of a 
chain in order to study local linking measures in contrast to the global linking measured by 
the periodic linking numbers. Finally, we study and compare these measures when applied 
to a PBC model of polyethylene melts.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The entanglement of filaments arises in many physical systems, such as polymer melts or fluid flows. The rheological 
properties of polymer melts are determined primarily by the random-walk-like structure of the constituent chains and the 
fact that the chains cannot cross [1]. Edwards suggested that entanglements effectively restrict individual chain conforma-
tions to a curvilinear tubelike region enclosing each chain [1]. For very short time scales, chain segments are allowed to 
freely fluctuate in all directions until their displacements become commensurate with the tube diameter, a, which is related 
to the average distance between entanglements, Ne , by a2 = Neb, where b is the bond length [2–4]. The axis of the tube is a 
coarse-grained representation of the chain, called the primitive path (PP). Several methods have been developed for extract-
ing the PP network [5–11]. Two geometrical methods capable of efficiently reducing computer generated polymer models 
to entanglement networks are the Z1-code [7,6,12,13] and the CReTA algorithm [8]. The tube model is very successful and 
provides a unified view of networks and entangled polymer melts on a mean-field level. Simulations as well as experiments 
back up the microscopic picture of a tube [14]. Despite these advances, our understanding of entanglement is incomplete 
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and it is an open question whether these simpler models can be derived from more fundamental topological considera-
tions. The reason is the difficulty to connect the entanglement properties of the chains at two different scales. Indeed, one 
can distinguish between the local obstacles to the motion of the chains, and the conformational complexity of the entire 
conformations of the chains in the melt. Similarly, vortex lines in a fluid flow may be seen as mathematical curves that 
are entangled [15–17]. Helmholtz discovered that the vortex lines move with the fluid in a perfectly inviscid flow [18]. 
Helmholtz’ theorem implied that the global topology of vortex lines remains unchanged throughout the flow evolution. The 
helicity of a fluid flow confined to a domain D (bounded or unbounded) of three-dimensional Euclidean space R3 is the in-
tegrated scalar product of the velocity field �u(�x, t) and the vorticity field �ω(�x, t) = ∇ × �u, H = ∫

D �u · �ωdV [19,20,15]. Helicity 
is important at a fundamental level in relation to flow kinematics because it admits topological interpretation in relation to 
the linking of vortex lines of the flow [15] (see discussion on the linking number in the next paragraph). Invariance of the 
helicity is then directly associated with invariance of the topology of the vorticity field. Similarly, any solenoidal vector field 
that is convected without diffusion by a flow will have conserved topology and an associated helicity invariant. Helicity 
plays a crucial role in the problem of relaxation to magnetostatic equilibrium, a problem of central importance in the con-
text of thermonuclear fusion plasmas [19,16]. Helicity is also related to transition to turbulence [21–23]. When the fluid is 
conducting, magnetic helicity is an invariant in the ideal case and is central to minimum energy equilibria in plasmas such 
as in spheromaks, or in solar coronal mass ejections. It is also known that the generation of large-scale magnetic fields oc-
curs due to small-scale mechanic helicity and that in the presence of both rotation and stratification, helicity is created and 
thus a dynamo is facilitated in a wide variety of astrophysical settings [24,22,25]. Polymer and vortex entanglement share 
some common features, especially when there is mutual interference, as in the case of polymer solutions. The addition of 
small amounts of long chain polymers to flowing fluids produces large effects on a wide range of phenomena such as the 
stability of laminar motion, transition to turbulence, vortex formation and break-up, turbulent transport of heat, mass and 
momentum, and surface pressure fluctuations [26].

Edwards first pointed out that in the case of ring polymers, the global entanglement of the chains can be studied by 
using tools from mathematical topology [27,28]. A knot (or link) is one (or more) simple closed curve(s) in space. Knots 
and links are classified with respect to their complexity by topological invariants, such as knot or link polynomials [29–31]. 
Since Edwards, many studies have been devoted to the topology of polymer rings and its relation to physical properties 
[32,5,33–35]. In [34] a direct relation between distinct topological states and Ne has been revealed. However, most of these 
methods cannot be applied to systems of open chains. The study of global entanglement has been very useful especially 
in the study of biopolymers [36,37]. Indeed, open curves are not knotted in the topological sense, but they can form 
complex conformations, which we call entangled. Unfortunately, it is not easy to relate intuitive notions of entanglement 
with topology [38,39]. A classical measure of entanglement that extends naturally to open chains is the Gauss linking 
integral, lk. In the case of closed chains the Gauss linking number is a classical topological integer invariant [40] that is 
related to the helicity of fluid flows and magnetic fields [41]. More precisely, consider an inviscid incompressible fluid, where 
the vorticity field is zero except in two closed vortex filaments of strengths (associated circulations) κ1, κ2, whose axes are 
C1, C2. Then the helicity is H = 2lk(C1, C2)κ1κ2. For pairs of “frozen” open chains, or for a mixed frozen pair, the Gauss 
linking integral can be applied to calculate an average linking number. For open or mixed pairs, the calculated quantity is 
a real number that is characteristic of the conformation and changes continuously under continuous deformations of the 
constituent chains [42]. Thus, the application of the Gauss linking integral to open chains is very clearly not a topological 
invariant, but a quantity that depends on the specific geometry of the chains. In a similar manner, the Gauss linking integral 
can be applied to calculate the writhe or the self-linking number of a “frozen” configuration of one open chain. It is true 
that a complicated tangle and a really untangled curve can have essentially the same writhe, but it takes special effort to 
construct untangled complicated looking curves with high absolute writhe. Exactly the same considerations apply for the 
linking number and the self-linking number. Indeed, computer experiments indicate that the linking number and the writhe 
are effective indirect measures of whatever one might call “entanglement”, especially in systems of “random” filaments [41,
27,43–48,42,49–54] and it has been shown that they can provide information relevant to the tube model [52,53].

One of the reasons why knots in polymer melts and turbulent flows have not been studied extensively is the problem 
of handling systems employing PBC [34,55]. Notice that the entire system is created by infinite copies of the simulation 
cell, and so, applying a traditional measure of entanglement would imply computations involving an infinite number or, at 
least, a very large number of chains. Furthermore, there exists an infinite number of pairs of chains in the same relative 
position, giving infinite repetitions of a same pattern. Ideally, one would like to compute a linking measure directly from 
one cell, but the arcs of the chains inside the cell are relatively short (see Fig. 1). In order to capture the greater degrees 
of entanglement, or even complex knotting, a large number of arcs must be employed in the creation of a complex chain. 
In [34,56] the Jones polynomial for systems employing one or two PBC was used to study entanglement in ring polymers. 
The method presented therein cannot be extended to systems employing 3 PBC. Moreover, the definition of the Jones 
polynomial is not meaningful when one deals with open chains. In this paper we propose to use the Gauss linking number 
and its extension to open chains to define a measure of entanglement for chains in one, two or three PBC. This gives a 
measure of global entanglement of the chains and could be used in the estimation of a topological energy in a system of 
open, closed or mixed chains with PBC.

In [57], the basis for the study of entanglement in systems employing PBC was introduced, and the local periodic linking 
number was defined and applied to samples of polyethylene (PE) melts. In this paper the periodic linking number is defined 
and its properties for closed, open or infinite chains, and its relation to the Gauss linking number and the local periodic 
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Fig. 1. The central cell C and a portion of the periodic system it generates in the case of closed chains in a system with 2PBC. Left: The central cell C . The 
generating chain i (resp. j) is composed by the blue (resp. red) arcs in C , i.e. the arcs i1, i2 ( j1, j2, resp.). Right: The free chain I (resp. J ) is the set of 
dotted blue (resp. red) chains in the periodic system. Highlighted are the parent images I0 and J0 and the highlighted blue and red cells are their minimal 
unfoldings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

linking number are studied. More precisely, in Section 2 the structure of the PBC model and its relation to identification 
spaces is described. In Section 3, the definitions of the periodic linking number and the periodic self-linking measures 
are introduced. In Section 4 the properties of the periodic linking number and the periodic self-linking number for closed 
chains are studied. Sections 5 and 6 deal with the properties of the periodic linking number for open or infinite chains. 
More precisely, in Section 5 a sketch of proof of convergence of the periodic linking number for open or infinite chains is 
presented and some background material is given. In Section 6 the convergence of the periodic linking number is presented 
and its properties in the case of open or infinite chains in systems employing PBC are studied. For the purpose of application 
to polymers, in Section 7, the cell periodic linking number is defined and it is compared to the periodic linking number and 
the local periodic linking number by applying them to PE melt samples in Section 8.

2. PBC systems

In this section we give some definitions that form the basis for our study of entanglement in PBC.
We study a system consisting of a collection of polygonal chains of length n (i.e. of n edges), by dividing the space into 

a family of cubic boxes of volume l3, where l is the edge length of the cube, so that the structure of the melt in each cube 
is identical, i.e. we impose PBC on the system [14]. Specifically, we make the following definition:

Definition 1. A cell consists of a cube with embedded arcs (i.e. parts of curves) whose endpoints lie only in the interior of 
the cube or on the interior of one of its faces, but not on an edge or corner, and those arcs which meet a face satisfy the 
PBC requirement. That is, to each ending point corresponds a starting point at exactly the same position on the opposite 
face of the cube. See Fig. 1 for an illustrative example.

A cell generates a periodic system in 3-space by tiling 3-space with the cubes so that they fill space and only intersect on 
their faces. This allows an arc in one cube to be continued across a face into an adjacent cube and so on. Notice that the 
resulting chains may be closed, open or infinite.

Without loss of generality, we choose a cell of the periodic system that we call generating cell. A generating chain is the 
union of all the arcs inside the cell the translations of which define a connected component in the periodic system. For each 
arc of a generating chain we choose an orientation such that the translations of all the arcs would define an oriented curve 
in the periodic system. For each generating chain we choose without loss of generality an arc and a point on it to be its 
base point in the generating cell. For generating chains we shall use the symbols i, j, . . .. For the arcs of a generating chain, 
say i, we use the symbols i1, . . ., ik . An unfolding of a generating chain is a connected arc in the periodic system composed 
by exactly one translation of each arc of the generating chain. Then an unfolding contains exactly one translation of the 
base point of the generating chain. A generating chain is said to be closed (resp. open) when its unfolding is a closed (resp. 
open) chain. The smallest union of the copies of the cell needed for one unfolding of a generating chain shall be called the 
minimal unfolding. The smaller number of copies of the cell whose union contains the convex hull of the complete unfolding 
of a generating chain shall be called the minimal topological cell.
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Fig. 2. The central cell C and a portion of the periodic system it generates in the case of closed chains in a system with 2PBC. Left: The central cell C . The 
generating chain i (resp. j) is composed by the blue (resp. red) arcs in C , i.e. the arcs i1, i2 ( j1, j2, resp.). Right: The free chain I (resp. J ) is the set of 
dotted blue (resp. red) chains in the periodic system. Highlighted are parent images I0 and J0 and the highlighted blue and red cells are their minimal 
unfoldings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The central cell C and a portion of the periodic system it generates in the case of closed chains in a system with 2PBC. Left: The central cell C . The 
generating chain i (resp. j) is composed by the blue (resp. red) arcs in C , i.e. the arcs i1, i2 ( j1, j2, resp.). Right: The free chain I (resp. J ) is composed 
by all the dotted blue (resp. red) arcs in the periodic system. Each connected component in a system of infinite free chains defines an infinite curve, which 
we call an infinite image. The images of I are now parts of infinite images. For example, the highlighted arc in blue is the parent image I0 of I and the 
dotted cyan curve of which I0 is an arc, is an infinite image of I , I0. The highlighted blue and red cells are the minimal unfoldings of the parent images 
I0 and J0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The collection of all translations of the same generating chain i shall be called a free chain, denoted I . A free chain is a 
union of connected components, each of which is equivalent to any other under translation. For free chains we will use the 
symbols I, J , . . .. An image of a free chain is any arc of a free chain that is the unfolding of a generating chain. The minimal 
unfolding of I containing an image Iu of I , will be denoted mu(Iu). For example, in Figs. 1 and 2, the blue closed curves 
are some of the images of the free chain I and the highlighted blue cells compose mu(I0). In the particular case where the 
images of a free chain form infinite components in the periodic system, this free chain shall be called infinite free chain. We 
call an infinite connected component of an infinite free chain I an infinite image of I . Note that an image of an infinite free 
chain is still a finite arc, an unfolding of a generating chain, lying on an infinite image of I . For example in Fig. 3 the infinite 
curve on which the image I0 lies is an infinite image of I , called I0. The image of I whose base point lies in the generating 
cell shall be called the parent image and it shall be denoted I0. Then any other image of I can be defined as a translation
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of I0 by a vector �v based on the base point of the parent image. That is:

I v = I0 + �v. (1)

3. Linking in PBC

In this section we use the Gauss linking number to define a new measure of linking for chains in PBC. Similarly, we 
define a new measure of self-linking of a chain in PBC. These measures capture the global entanglement of the chains. Their 
properties in the cases of closed and open or infinite chains will be discussed in Sections 4 and 6, respectively.

3.1. The Gauss linking number

The Gauss linking number is a traditional measure of the algebraic entanglement of two disjoint oriented closed curves 
that extends directly to disjoint oriented open chains [43,42,27].

Definition 2. The Gauss linking number of two disjoint (closed or open) oriented curves l1 and l2, whose arc-length 
parametrizations are γ1(t), γ2(s) respectively, is defined as a double integral over l1 and l2 [40]:

L(l1, l2) = 1

4π

∫

[0,1]

∫

[0,1]

(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))

||γ1(t) − γ2(s)||3 dtds, (2)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t) − γ2(s).

In the case of closed chains the Gauss linking number is a topological invariant. If it is equal to zero, the two chains are 
said to be algebraically unlinked. The Gauss linking number can be computed for a fixed configuration of two open chains 
to give a real number that is equal to half the average algebraic sum of crossings between the two chains over all projection 
directions.

Let � denote the space of configurations of all open chains with no intersections in general position. Then L is a 
continuous function L : � →R, and as the endpoints of the chains tend to coincide, the linking numbers tend to the linking 
numbers of the closed chains. For two open chains, the Gauss linking number may be non-zero, even if their convex hulls 
do not intersect. But as the distance between their convex hulls increases, the Gauss linking number tends to zero.

For applications, where the chains are simulated by open or closed polygonal chains which satisfy some conditions (for 
example restrictions on bond angles and length), the Gauss linking number can be used to compute an average absolute 
linking number over the space of configurations [44,48,42]. This quantity then is of special interest, since it is independent 
of any particular configuration and can be related to other physical properties of the system [27].

The Gauss linking integral can be applied to one chain to measure its entanglement with itself. The self-linking number
is defined as the linking number between a curve l and a translated image of that curve lε at a small distance ε , called the 
normal variation curve of l, that is, Sl (l) = L (l, lε) [58]. This can be expressed by the Gauss integral over [0,1]∗ × [0,1]∗ =
{(x, y) ∈ [0,1] × [0,1] |x �= y} by adding to it a correction term, so that it is a topological invariant of closed curves [59]
under regular isotopy,

Sl (l) = 1

4π

∫

[0,1]∗

∫

[0,1]∗

(γ̇ (t) , γ̇ (s) , γ (t) − γ (s))

||γ (t) − γ (s) ||3 dtds + 1

2π

∫

[0,1]

(γ ′(t) × γ ′′(t)) · γ ′′′(t)
||γ ′(t) × γ ′′(t)||2 dt. (3)

The first integral is the writhe of a chain, denoted as Wr(l), and expresses the average algebraic self-crossing number 
of the chain over all possible projection directions. The second term is the total torsion of a chain, denoted as τ (l) and 
measures the “extent” to which a curve deviates from being planar. Thus, Sl(l) = Wr(l) + τ (l).

3.2. The periodic linking number

In a periodic system we must define linking at the level of free chains (see Appendix B for an analysis of the motivation 
for this definition). Two free chains are two infinite collections of chains, so we return to the beginning of our discussion: 
how can we measure the linking of only the different pairs of chains? Looking at the periodic system we notice that, due 
to the periodicity, the linking imposed by all the images of one free chain, say J , to one image of another free chain, say I , 
are the same for any image of I . Based on this observation we give the following definition of a measure of entanglement 
between two free chains:

Definition 3 (Periodic linking number). Let I and J denote two (closed, open or infinite) free chains in a periodic system. 
Suppose that Iu is an image of the free chain I in the periodic system. The periodic linking number, LK P , between two free 
chains I and J is defined as:
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Fig. 4. A portion of a projection of a periodic system with 2 PBC generated by two open free chains. The periodic linking number LK P (I, J ) is the sum of all 
the linking numbers between I0 and every image of J . The images of J can be seen as translations of the parent image, i.e. as J0 + �v , where �v in lZ2 and 
l is the length of an edge of the simulation cell. Notice that since the chains are open, L(I0, J0 + �v) �= 0, no matter how far J0 + �v is from I0. Therefore, 
the periodic linking number of open chains is an infinite sum.

LK P (I, J ) =
∑

v

L(Iu, J v), (4)

where the sum is taken over all the images J v of the free chain J in the periodic system.

The periodic linking number has the following properties with respect to the structure of the cell, which follow directly 
by its definition:

(i) LK P captures all the linking that all the images of a free chain impose to an image of the other.
(ii) LK P is independent of the choice of the image Iu of the free chain I in the periodic system.

(iii) LK P is independent of the choice, the size and the shape of the generating cell.

From observation (ii) above, the definition of the periodic linking number is equivalent to using the parent image I0 for 
the free chain I:

LK P (I, J ) =
∑

v

L(I0, J v) =
∑

v

L(I0, J0 + �v). (5)

We notice that the periodic linking number is an infinite summation of Gauss linking numbers (see Fig. 4 for an il-
lustrative example). In the case of closed chains we observe in Section 4.1 that LK P is reduced to a finite summation and 
in Appendix C we show that it is equal to the linking number of two chains in a manifold other that R3. However, the 
periodic linking number of open or infinite chains is indeed an infinite summation since the Gauss linking number is in 
general non-zero even if the chains are far from each other. Thus, the definition of the periodic linking number for open or 
infinite chains is meaningful only if the infinite summation converges. In Section 6 we show that LK P indeed converges and 
that it is a continuous function of the chain coordinates.

The following important property holds for closed, open or infinite free chains and it shows that the periodic linking 
number is appropriate for the study of pairwise linking between free chains:

Proposition 4. The periodic linking number, LK P , between two free chains I and J of a system with PBC is symmetric.

Proof. For any pair of images I0, J0 + �v in Eq. (5), then the pair of images I0 − �v , J0 are in the same relative position. Thus 
L(I0, J0 + �v) = L(I0 − �v, J0), and we have:

LK P (I, J ) =
∑

�v
L(I0, J0 + �v) =

∑
�v

L(I0 − �v, J0) = LK P ( J , I). � (6)

3.2.1. The periodic self-linking number
As we discussed in the Introduction, the periodic system consists of an infinite number of chains. Measuring the self-

linking number of all the chains in the system requires an infinite calculation. However, infinitely many chains have the 
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Fig. 5. A projection of a periodic system with 2 PBC generated by one chains. The periodic self-linking number SLP (I, J ) is the sum of the self-linking of I0

and all the linking numbers between I0 and every other image of I . The images of I can be seen as translations of the parent image by vectors, �v , in lZ2, 
where l is the length of an edge of the simulation cell.

same conformation, thus their self-linking is the same and we would like to compute only the self-linking number of all 
the different conformations. On the other hand we know that the periodic system is generated by one cell, containing only 
a finite number of generating chains. These give rise to a finite number of free chains in the periodic system. Inspired by 
the definition of the periodic linking number at the level of free chains we define a measure of self-linking number at the 
level of free chains. We notice that an image of a free chain may be entangled with other images of itself (see Fig. 5 for an 
illustrative example). Thus a measure of self-entanglement of a free chain must capture this information. We introduce the 
following definition of self-linking for chains in PBC:

Definition 5 (Periodic self-linking number). Let I denote a free chain in a periodic system and let Iu be an image of I , then 
the periodic self-linking number of I is defined as:

SLP (I) = Sl(Iu) +
∑
v �=u

L(Iu, I v), (7)

where the index v runs over all the images of I , except Iu , in the periodic system.

The periodic self-linking number has the following properties with respect to the structure of the cell, which follow 
directly by its definition:

(i) SLP captures the linking that all the images of a free chain impose to one image of it.
(ii) SLP is independent of the choice of the image Iu of the free chain I in the periodic system.

(iii) SLP is independent of the choice, the size and the shape of the generating cell.

From observation (ii) above, the definition of the periodic self-linking number is equivalent to using the parent image I0
for the free chain I:

SLP (I) = Sl(I0) +
∑

v

L(I0, I v) = Sl(I0) +
∑

�v
L(I0, I0 + �v). (8)

We give the following definition:

Definition 6 (Periodic linking with self-images). The periodic linking with self-images of a free chain I is defined as:

SLK P (I) =
∑

�v
L(I0, I0 + �v). (9)

We notice that the periodic self-linking number can be expressed as

SLP (I) = Sl(I0) + SLK P (I) = Wr(I0) + τ (I0) +
∑

L(I0, I0 + �v), (10)

�v
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where the sum Wr(I0) + ∑
v L(I0, I0 + �v) is equal to the average algebraic self-crossing number of an image of I with itself, 

and with the other images of I . So, it measures the average algebraic self-crossing number of a free chain I . We give the 
following definition

Definition 7 (Periodic writhe). The periodic writhe of a free chain I is defined as:

WRP (I) = Wr(I0) +
∑

�v
L(I0, I0 + �v). (11)

Thus, SLP (I) = WRP (I) + τ (I0).

4. Properties of LK P for closed free chains

In this section we study some properties of the periodic linking number and the periodic self-linking number in the 
case of closed free chains. Namely, that the periodic linking number is a topological invariant and that it coincides with the 
linking number of the corresponding realized chains and that of the corresponding identification chains. These properties 
are rather obvious, resulting from the use of the Gauss linking number in the definition. Throughout this section I and J
denote closed free chains.

4.1. Connecting LK P with the Gauss linking number

We recall that for any closed curve in S3 or R3 there is a surface of which it is the boundary. Thus there is a surface 	, 
such that ∂	 = I0. Then for each image of J , say Jk , that does not intersect 	, L(I0, Jk) = 0. Thus the periodic linking 
number of closed chains can be expressed in terms of the Gauss linking number as

LK P (I, J ) =
∑
�v∈S

L(I0, J0 + �v), (12)

where S denotes the set of vectors for which J0 + �v , intersects 	.
It follows that the periodic linking number has the following properties in the case of closed free chains:

(i) LK P is a topological invariant.
(ii) LK P is an integer and it is equal to half the algebraic number of intersections between the projection of an image of I

and the projection of all the images of J in any projection direction.
(iii) When the chains do not touch the faces of the cell, then LK P equal to the linking number of their parent images.

The following proposition shows that in the case of one and two PBC, it is possible to compute LK P only from the 
generating chains. In the following let us call the pair of right–left faces x-faces and the closing arcs that connect endpoints 
on these faces x-closing arcs. Similarly we define the y-faces and the y-closing arcs, and the z-faces and the z-closing arcs.

Proposition 8. Let us consider a cell with one or two PBC imposed on the x- or/and y-faces of the cell. Then the following holds:

LK P (I, J ) =
(

L(i, j)
)

xy
, (13)

where 
(

L(i, j)
)

xy
is equal to half the algebraic sum of crossings between i and j when projected on the xy-plane.

Proof. We will focus in the case of two PBC, since, the result for a system with one PBC follows easily from this case. Let 
us project the periodic system on the xy-plane. In the following let cr( f , g) denote the crossings between the projections 
of two arcs f and g to the xy-plane. We notice that the base point of I0 is also the base point of the generating chain in 
the generating cell. Then we can define a translation of the generating chain in any other cell in the periodic system with a 
vector based on that base point. Let i1, . . ., ik denote the arcs that compose the generating chain i, and let j1, . . ., jl denote 
the arcs that compose the generating chain j. We can also define a base point on each arc of a generating chain in order to 
determine their translation. Let then i1 + �u1, . . ., ik + �uk denote the translations of the arcs of the generating chain i that 
compose the image I0 and let j1 + �v1, . . ., jk + �vl denote the translations of the arcs of the generating chain j that compose 
the image J0. (By definition, there is exactly one translation of an arc of i (resp. j) in I0 (resp. J0).) Then

LK P (I, J ) =
∑

�v
L(I0, J0 + �v) = 1

2

∑
�v

∑
c∈cr(I0, J0+�v)

sign(c)

= 1

2

∑
�

∑
1≤m≤l

∑
�

sign(c). (14)

v c∈cr(I0, jm+v)
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Let mu(I0) denote the minimal unfolding of I0. We denote j + �v ∈ mu(I0) if the translation of the arc j by �v lies in the 
minimal unfolding of I0. We notice that at the chosen projection direction, it is impossible to have crossings between I0
and translations of arcs of j that do not lie in mu(I0), thus the LK P is equal to the following summation:

LK P (I, J ) =
∑

�v
j+�v∈mu(I0)

∑
1≤m≤l

∑
c∈cr(I0, jm+�v)

sign(c)

=
∑

�v
j+�v∈mu(I0)

∑
1≤m≤l

∑
1≤n≤k

∑
c∈cr(in+�un, jm+�v)

sign(c). (15)

But we notice that the projection of in + �un may intersect the projection of jm + �v on the xy-plane if and only if they lie in 
the same cell, that is, if �un = �v . Thus

LK P (I, J ) =
∑

1≤m≤l

∑
1≤n≤k

∑
c∈cr(in+�un, jm+�un)

sign(c)

=
∑

1≤m≤l

∑
1≤n≤k

∑
c∈cr(in, jm)

sign(c) =
∑

c∈cr(i, j)

sign(c) =
(

L(i, j)
)

xy
. � (16)

4.2. Properties of SLP for closed free chains

We notice that for closed chains, the periodic self-linking number can be expressed as

SLP (I) = Sl(I0) + SLK P (I) = Sl(I0) +
∑
�v∈S

L(I0, I0 + �v), (17)

where S contains all the vectors �v for which I0 + �v intersects 	.
It follows that the periodic self-linking number has the following properties in the case of closed free chains:

(i) SLP is a finite summation.
(ii) If the chain I0 does not touch the faces of the cell, then SLP (I) = Sl(I0).

(iii) SLP is an integer invariant up to regular isotopy.

In Section 3.2.1 we mentioned that the self-linking number of a closed chain l is equal to the linking number between l
and its normal variation curve lε , i.e. Sl (l) = L (l, lε) [58,59]. Let us give the corresponding definition in PBC:

Definition 9. Let I denote a free chain in a periodic system. We define its normal variation free curve to be the free chain Iε
in the periodic system, such that every translated image of Iε is the normal variation curve of a translated image of I .

Then in analogy with the Calugareanu formula for chains in R3, the following holds for chains in PBC:

Corollary 10. Let I denote a closed free chain in PBC, and let Iε denote its free variation curve. Then SLP (I) = LK P (I, Iε).

Proof. By Definition 9 we have

LK P (I, Iε) =
∑

�v
L
(

I0, (I0)ε + �v) = L(I0, (I0)ε) +
∑

�v
L(I0, (I0)ε + �v)

= Sl(I0) +
∑

�v
L(I0, (I0)ε + �v). (18)

We notice that we can choose ε small enough so that the deformation of the link I0, I0 + �v to I0, (I0)ε + �v is an isotopy. 
So, L(I0, I0 + �v) = L(I0, (I0)ε + �v) for all �v . Thus we have the following expression for the periodic self-linking number of 
the free chain I in the periodic system

LK P (I, Iε) = Sl(I0) +
∑

�v
L(I0, (I0)ε + �v) = Sl(I0) +

∑
�v

L(I0, I0 + �v) = SLP (I). � (19)

Remark 11. Corollary 10 implies that the Fuller–White formula [60,61] can be extended to a closed ribbon in a system with 
PBC as follows:

LK P (I, Iε) = WRP (I) + τ (I0). (20)

Similarly, one could envision that some generalizations of the Fuller spherical area formula, and the Fuller Writhe differ-
ence formula [62] are possible in PBC.
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4.2.1. Properties of SLK P for closed free chains
Notice that the periodic linking number with self images can be expressed as

SLK P (I) =
∑
�v∈S

L(I0, I0 + �v), (21)

where S contains all the vectors �v for which I0 + �v intersects 	.
It follows that the periodic linking number with self-images has the following properties in the case of closed free 

chains:

(i) SLK P is a finite summation.
(ii) If the chain I0 does not touch the faces of the cell, then SLKP(I) = 0.

(iii) SLK P is an integer invariant.

Corollary 12. SLK P is an even number.

Proof. We have that SLK P (I) = ∑
�v∈S L(I0, I0 + �v). Notice that for every image of I that intersects 	, say I0 + �v , then the 

image I0 − �v also intersects 	. More precisely, the pairs I0, I0 + �v and I0, I0 − �v are in the same relative position, thus 
L(I0, I0 + �v) = L(I0, I0 − �v). �
5. Sketch of proof and basic tools for the convergence of LK P for open or infinite free chains

In this section we study the convergence of the periodic linking number of open or infinite free chains and we show 
that LK P indeed converges. We observe first that if LK P of two free chains in three PBC converges, then it also converges 
in one and two PBC. Similarly, convergence in two PBC implies convergence in one PBC. Indeed, LK P in one and two PBC 
is computed from Eq. (5) by using only the terms that correspond to the vectors that lie on a line (say the x-axis), or the 
vectors that lie in a plane (say the xy-plane), respectively. The proof of convergence in three PBC is gradually built up from 
the proofs of convergence in one and two PBC using a collection of lemmas and observations. We chose to present our 
proof for three PBC gradually from that of one and two PBC for the following reasons: There are physical problems that 
involve only one or two PBC. As we show here convergence in one PBC is straightforward while for showing convergence in 
two PBC we need to use additional geometric methods. Finally, convergence in two PBC plays an important role for proving 
convergence in three PBC. Moreover, in the course of our proof we give explicit upper bounds for LK P (I, J ) in one, two and 
three PBC, we denote LK(1)

P , LK(2)
P and LK(3)

P respectively, which give an estimate on the amount of global entanglement of 
the system and on how LK P compares to the Gauss linking number of two chains in 3-space.

As the proofs are rather technical and elaborate we shall first give a sketch of our proofs. The detailed proofs are 
presented in Section 6.

Let I and J denote two free chains. Also let lZ3 denote the integer lattice of unit length l, where l is the edge-length of the 
cubic cell. Thus one can express the periodic linking number (Eq. (5)) as:

LK P (I, J ) =
∑
�v∈lZ3

L(I0, J0 + �v) (22)

In our study, we will focus on the case where I and J are formed by piecewise linear arcs, edges, of length bI = b J =
b < l/2 each. Let ei,1, e j,1 be a pair of edges in i and j respectively, and consider the cell with only those edges inside. The 
periodic space generated by this cell contains translations of these two edges. Then the linking of ei,1 with each one of the 
translations of e j,1 must be taken into consideration in LK P (I, J ). Therefore, if we imagine ei,1, e j,1 as generating chains 
of free chains Ei,1, E j,1, we notice that LK P (Ei,1, E j,1) must be contained in LK P (I, J ). We will show that LK P (I, J ) is the 
summation of the periodic linking numbers between the edges that form I and J .

Lemma 13. Let ei,k, k = 1, . . . , ni be the edges that form the generating chain i and let e j,k′ , k′ = 1, . . . , n j be the edges that form the 
generating chain j. Two edges ei,k, e j,k′ generate two free chains Ei,k, E j,k′ resp. in the periodic system. LK P is expressed as:

LK P (I, J ) =
∑

k

∑
k′

LK P (Ei,k, E j,k′). (23)

Proof. Let βi,k , β j,k′ denote the base points of the edges ei,k , e j,k′ , k = 1, . . . , ni , k′ = 1, . . . , n j . Let also ei,1 +�u1, . . ., ei,ni +�uni

denote the images of the free chains Ei,k , k = 1, . . . , ni , that form I0, and let e j,1 + �w1, . . ., e j,n j + �wn j denote the images of 
the free chains E j,k′ , k′ = 1, . . . , n j , that form J0 (see Fig. 6 for an illustrative example). Then LK P (I, J ) can be expressed as

LK P (I, J ) =
∑
� 3

∑
1≤k≤n

∑
1≤k′≤n

L(ei,k + �uk, e j,k′ + �wk′ + �v)
v∈lZ i j
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Fig. 6. An image of J contains translations of edges of j by different vectors. In this example J0 is composed by the arcs e j,1, e j,2 + l(0, 1), e j,3 + l(0, 1),

e j,4 + l(0, 1), e j,5, e j,6.

=
∑

1≤k≤ni

∑
1≤k′≤n j

∑
�v∈lZ3

L(ei,k + �uk, e j,k′ + �wk′ + �v). (24)

Since the lengths of I0 and J0 are finite (i.e. ni, n j < ∞), in order to prove convergence of LK P it suffices from Eq. (24)
to prove convergence for every summand of the form∑

�v∈lZ3

L(ei,k + �uk, e j,k′ + �wk′ + �v), (25)

which is equal to the periodic linking number of the free chains Ei,k , E j,k′ , LK P (Ei,k, E j,k′). �
Notation 14. For the rest of the proof, in order to avoid unnecessarily complicated indices we will use the notation I , J for 
the free chains Ei,k , E j,k′ . Notice that these are free chains whose images are straight arcs (edges). We will call such free 
chains free edges.

5.1. Sketch of proof of convergence

Let � denote the space of all possible configurations of two disjoint oriented edges in general position. Let �x = (I0, J0)

denote a point in �. Then the Gauss linking integral is a function L : � → R.
Grouping together in Eq. (22) all the terms with vectors �v ∈ lZ3 that have the same norm, ||�v||2 = n ∈ N, results in the 

following expression for LK P (I, J ):

LK P (I, J ) = L(I0, J0) +
∑
n∈N

∑
�v∈lZ3

||�v||2=l2n

L(I0, J0 + �v). (26)

Denoting:

qn(�x) :=
∑
�v∈lZ3

||�v||2=l2n

L(I0, J0 + �v), (27)

we obtain:

LK P (I, J ) = L(I0, J0) +
∑

n

qn(�x). (28)

Thus LK P is a series over n of the functions qn : � → R. By using bounding expressions Q n that depend only on n such 
that |qn(�x)| < Q n for all �x ∈ �, we prove the convergence of LK P by proving the convergence of the series 

∑
n Q n . Thus the 

proof of convergence of LK P is reduced to finding appropriate upper bounds Q n of qn(�x), for which 
∑

n Q n converges. For 
this purpose, one needs to know the number of terms in qn(�x) and upper bounds of each one of these terms.

Concerning the number of terms in qn(�x): In the case of a system with one PBC where there are translations along 
the x-axis, we have qn = L(I0, J0 + l

√
n(1, 0, 0)) + L(I0, J0 − l

√
n(1, 0, 0)) if n = m2, m ∈ N and qn = 0 if n is squarefree. In 
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the case of systems with two (resp. three) PBC, where we consider translations in a plane (resp. in 3-space), the vectors 
�v ∈ lZ3 such that ||�v||2 = n ∈ N, correspond to lattice points on a circle (resp. sphere) of radius 

√
n with unit length l. 

More precisely, they correspond to representations of a number n ∈ N as a sum of two (resp. three) squares, denoted r2(n)

(resp. r3(n)), which is the number of terms in qn(�x). The estimation of r2(n) and r3(n) is an old and challenging problem in 
number theory and will be discussed in Section 5.2. We will see that r2(n) ≈ O (n7/22) and r3(n) ≈ O (

√
n(log n)2).

Concerning upper bounds for qn(�x): We will show in Lemma 17 that each term in qn is bounded by:

|L(I0, J0 + �v)| < O
( 1

||�v||2
)

= O
( 1

l2n

)
. (29)

This upper bound proves convergence in the case of one PBC, since Eq. (29) then gives Q (1)
n = O

(
1

l2n

)
and for n = m2, 

m ∈ N, Q (1)
n = O

(
1

l2n

)
= O

(
1

l2m2

)
= Q (1)

m . Thus LK(1)
P (I, J ) < L(I0, J0) + ∑

n,n=m2 Q (1)
n = L(I0, J0) + ∑

m Q (1)
m = L(I0, J0) +∑

m O
(

1
l2m2

)
which converges.

In the case of systems with two or three PBC, Eq. (29) gives Q (1)
n = O

(
r2(n)

n

)
and Q (1)

n = O
(

r3(n)
n

)
respectively. Unfor-

tunately, 
∑

n Q (1)
n diverges. So, in order to prove convergence in two and three PBC, a stronger upper bound must be used. 

This is achieved by taking into consideration the signs of the terms in qn(�x) (Eq. (27)). For this purpose, in Section 6.2, qn(�x)
is expressed as:

qn(�x) = 1

2

∑
�v∈lZ3

|�v|2=l2n

(L(I0, J0 + �v) + L(I0, J0 − �v)). (30)

Note that, even though all translation vectors appear in opposite pairs, the linking numbers of these pairs in Eq. (30) do 
not cancel, as shown in Fig. 10. We show (Lemma 23) that there exists a natural number n0 ∈ N such that for all �v with 
||�v||2 = n > n0

|L(I0, J0 + �v) + L(I0, J0 − �v)| < O
( 1

n
√

n

)
. (31)

Thus for n > n0, the following upper bound of qn(�x) can be used:

Q (2)
n = O

( r2(n)

n
√

n

)
and Q (2)

n = O
( r3(n)

n
√

n

)

in the case of two and three PBC respectively. Then

LK(2)
P (I, J ) <

∑
n≤n0

Q (1)
n +

∑
n>n0

Q (2)
n ,

which converges (Theorem 24) but, unfortunately, this estimation is not strong enough to prove convergence in the case of 
three PBC.

Thus another method is needed in order to prove convergence of LK(3)
P . Indeed, the proof of convergence in three PBC is 

given in two steps: first we prove that LK(3)
P (�x0) converges for all �x0 ∈ �1 ⊂ �, where �1 is a subset of the configuration 

space, defined in Section 6.3.1, and, next, using this, we prove that LK(3)
P converges for all �x ∈ �. More precisely, we show 

(Lemma 27) that for �x0 = (I ′, J ′) ∈ �1 we have:

qn(�x0) ≈
∑
�v /∈V

L(I ′0, J ′
0 + �v), (32)

where V denotes the set of vectors �v = (v1, v2, v3) ∈ lZ3 for which |v1|, |v2|, |v3| > l
√

n0, and such that not all |v1| =
|v2| = |v3|. Now the upper bounds Q (1)

n and Q (2)
n are sufficient to prove that LK(3)

P (�x0) converges (Lemma 29). For the next 
step we prove (Lemma 32) that for any given configuration, �x = (I, J ) ∈ �, there exists a configuration �x0 ∈ �1 such that:

|LK(3)
P (�x) − LK(3)

P (�x0)| < R ∈R. (33)

Hence, LK P (I, J ) converges in three PBC (Theorem 33).

Remark 15. Notice that the proof in one, two or three PBC would be simplified if one could prove convergence of 
DLK(3)

P (�r(t)) in the space �′ of configurations of polygonal chains of three edges. Then, starting from two unlinked closed 
polygons, say �x0 ∈ �′ , one could find a path �r(τ ) ∈ �′ , τ ∈ [0, 1] to any two straight arcs �x ∈ � by opening the polygons and 
straightening them. Then, since LK P (�x0) = 0 we could prove convergence of LK P (�x) by proving convergence of DLK(3)

P (�r(t)). 
The proof of convergence of DLK(3)

P (�r(t)) however, is not yet possible.
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5.2. Arithmetic functions

In this section we give some known results on arithmetic functions that will be used in the following sections to prove 
convergence.

Lattice points on a circle or a sphere
Let us denote r2(n) = �{(v1, v2) ∈ Z

2|v2
1 + v2

2 = n}, the number of representations of a natural number as a sum of two 
squares, R2(n) = �{(v1, v2) ∈ Z

2| gcd(v1, v2) = 1, v2
1 + v2

2 = n} the number of primitive representations of a number as a sum 
of two squares, r3(n) = �{(v1, v2, v3) ∈ Z

3|v2
1 + v2

2 + v2
3 = n} the number of representations of a number as a sum of three 

squares, and R3(n) = �{(v1, v2, v3) ∈ Z
3| gcd(v1, v2, v3) = 1, v2

1 + v2
2 + v2

3 = n}, the number of primitive representations of 
a number as a sum of three squares. Recall that r2(n) and r3(n) were used in Section 5.1 and will also be used in Section 6
in the proof of convergence. Analytic expressions for these functions can be found in [63–67]. More precisely, Jacobi [66]
proved that

r2(n) = 4(d1(n) − d3(n)), (34)

where di(n) = i mod 4, and Bateman in 1950 [63] has proved that

r3(n) = 16

π

√
n L(1,χ)q(n) P (n), (35)

where n = 4an1, for a, n1 ∈ N; q(n) = 0, if n1 = 7 mod 8, or q(n) = 2−a if n1 = 3 mod 8, or q(n) = 3 · 2−a−1 if n1 = 1, 2, 5 or 
6 mod 8; and finally

P (n) =
∏

p2b |n
podd

[
1 +

b−1∑
j=1

p− f + p−b
(

1 −
[ (−n/p2b)

p

] 1

p

)−1]
, (36)

where P (n) = 1 for square-free n. Also, χ(m), is the Legendre–Jacobi–Kronecker symbol defined as χ(m) =
(−4

m

)
, χ(m) = 1

if m = 1 mod 4, χ(m) = 0 if m = 0 mod 2 and χ(m) = −1 if m = 3 mod 4, and finally, L(S, χ) = ∑∞
m=1 χ(m)m−S .

For R2(n), R3(n), let the prime factorization of n be given by

n = 2λ2
∏

p

pλp , (37)

where the product is taken over all odd primes p which divide n. Then

R2(n) = c2(n)
∏

p

(1 + (−1)(p−1)/2), (38)

where c2(n) = 0 if n = 0 mod 4 and c2(n) = 4 if n �= 0 mod 4, [67].

Let m denote the square-free part of n, let k ≥ 1 and let 
(

a
p

)
denote the Legendre symbol: 

(
a
p

)
= 1 if a is a quadratic 

residue modulo p and a �≡ 0 mod p, 
(

a
p

)
= −1 if a is a quadratic non-residue modulo p and 

(
a
p

)
= 0 if a ≡ 0 mod p. Then

R3(n) = c3(n)R3(m)
n1/2

m1/2

∏
p| n

m

(
1 −

(−m
p

)

p

)
, (39)

where c3(n) = 1 if n �= 0 mod 4 or c3(n) = 0 if n = 0 mod 4, [67]. Moreover, r3(n) and R3(n) are related by the following 
[63]:

r3(n) =
∑
d2|n

R3(n/d2). (40)

In the proof of convergence we will be interested in the growth of these functions, something that is not evident in 
the previous expressions of r2(n), R2(n), r3(n), R3(n). A naive approach for finding the order of magnitude of rd(n) for 
d = 2, 3, is to take the volume of the ball of radius 

√
n divided by the number of spheres of radius 

√
m, m ∈ N, contained 

in the ball. The volume of a ball of radius 
√

n grows as nd/2 whilst the number of concentric spheres of radius 
√

m, m ∈ N, 
enclosed in the ball of radius 

√
n is n. For d = 2 this leads us to expect a constant number of lattice points on a circle, while 

for d = 3 we expect a growth proportional to 
√

n. However, as it is shown in Eq. (34), the growth is quite irregular and 
depends on the divisor structure of n. For example, for d = 2, most circles of radius 

√
n have no lattice points at all. In fact, 

Landau proved that the number of circles with at least one lattice point, of integer squared radius smaller than x, grows as 
Cx/

√
log x [68]. Moreover, there are infinite families of circles with very few lattice points. On the other hand, the number 
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of lattice points on a circle of radius 
√

n is not bounded. For d = 3, the ratio between the number of points and the naive 
estimate above is bounded, up to constants only depending on ε , from above by nε and from below by n−ε , for all ε > 0. 
More precisely, in [69], we see that

r3(n) = O (
√

n(log n)2). (41)

It has been shown that the distribution of the lattice points on the sphere of radius 
√

n is uniform [70–73].

Lattice points inside a circle or a sphere
A related problem is the estimation of the number of lattice points inside a circle or a sphere. Estimates for the number 

of lattice points inside a circle or sphere can be found in [74,75]. More precisely, by [74] we know that the number of 
lattice points inside the circle of radius 

√
n is:∑

1≤m≤n

r2(m) = πn + O (n7/22). (42)

Also, by [74] we know that the number of primitive lattice points inside a circle of radius 
√

n is:
∑

1≤m≤n

R2(m) = 6

π
n + O (n(51+ε)/100), (43)

for all ε > 0. By [75] we know that the number of lattice points inside a sphere of radius 
√

n is equal to:
∑

1≤m≤n

r3(m) = 4π

3
n
√

n + O (n21/32+ε), (44)

for all ε > 0. Again, by [75] we know that the number of primitive lattice points inside a sphere of radius 
√

n is:
∑

1≤m≤n

R3(m) = 4π

3ζ(3)
n
√

n + O (
√

n(log
√

n)1/2), (45)

where ζ is the Riemann zeta function.

Remark 16. Using the above estimates, we obtain rough estimates for r2(n), R2(n) as follows:

r2(n) =
∑

1≤m≤n

r2(m) −
∑

1≤m≤n−1

r2(m) = π + O (n7/22) − O ((n − 1)7/22)

< π + O (n7/22), (46)

and:

R2(n) =
∑

1≤m≤n

R2(m) −
∑

1≤m≤n−1

R2(m) <
6

π
+ O (n(51+ε)/100), (47)

which we will use in our proof of convergence.
For our numerical estimates in Remarks 25, 31 and 34, we will use the averaging process described above to make 

the following approximations for large n: r2(n) ≈ π , R2(n) ≈ 6
π , r3(n) = 4π

3

√
n and R3(n) ≈ 4π

3ζ(3)

√
n, where ζ denotes the 

Riemann zeta function.

5.3. The Gauss linking integral of two edges

Let e1, e2 denote two edges in 3-space with arc-length parametrizations γ1(t), γ2(s), t, s ∈ [0, 1], and let �α denote the 
vector that connects the base point of e1 to the base point of e2. Let us assume that e1, e2 have the same length, b. By 
definition, the Gauss linking integral of e1, e2 is expressed by

L(e1, e2) = 1

4π

∫ ∫
(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))

||γ1(t) − γ2(s)||3 dt ds

= 1

4π

∫ ∫ ||γ̇1(t)||||γ̇2(s)||||γ1(t) − γ2(s)|| sin φ cos θ(s, t)

||γ1(t) − γ2(s)||3 dt ds

= 1

4π

∫ ∫
sinφ cos θ(s, t)

||γ1(t) − γ2(s)||2 dt ds, (48)

where φ is the angle between the two edges and θ(s, t) is the angle between γ̇1 × γ̇2 and γ1(t) − γ2(s). A general upper 
bound for L is: |L(e1, e2)| < 1/2. Next, we can give an estimate of an upper bound depending on the distance of the base 
points of the two edges.
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Fig. 7. The projection of two free edges in a system employing one PBC. For the computation of LK(1)
P (I, J ) we add the linking numbers of I0 with all the 

images of J .

Lemma 17. For two edges e1 , e2 of length b whose base points are connected by a vector �α, such that || �α|| > b, then

|L(e1, e2)| ≤ 1

4π

1

(|| �α|| − b)2
. (49)

Proof. By Eq. (48),

|L(e1, e2)| ≤ 1

4π

1

mint,s{||γ1(t) − γ2(s)||2}
∣∣∣
∫ ∫

sinφ cos θ(s, t)dt ds
∣∣∣

≤ 1

4π

1

(|| �α|| − b)2
. � (50)

6. Convergence of LK P for open and infinite free chains

In this section we present the convergence of LK P for open or infinite free chains. In the following, let I , J denote two 
free edges whose images are straight arcs of length b < l/2, where l is the length of an edge of the cubic cell. (The analysis 
follows similarly when the edges do not have the same length.)

6.1. Convergence in one PBC

Without loss of generality, let us consider the case of one PBC imposed on the x-axis (right–left faces of the cell). Then 
the periodic linking number of two free edges, we denote LK(1)

P , can be expressed as (see Fig. 7)

LK(1)
P (I, J ) =

∑
m∈Z

L(I0, J0 + m(l,0,0)). (51)

Let �α denote the vector that connects the base point of I0, βi , to the base point of J0, β j . Let γ1(t), γ2(s), t, s ∈ [0, 1] denote 
the arc-length parametrizations of the images I0 and J0 respectively. Then,

Proposition 18. The periodic linking number between two free edges, I and J , in one PBC, denoted LK(1)
P (I, J ), converges uniformly 

and is bounded above by

LK(1)
P (I, J ) < L(I0, J0) + 1

2π

∑
m∈N

1

(ml − ||�α|| − b)2
, (52)

where �α is the vector that connects the base points of the parent images, I0 and J0 , b is the length of an image of I and J , and l is the 
length of an edge of the cell.

Proof. The periodic linking number is bounded above by

LK(1)
P (I, J ) ≤

∑
m∈Z

|L(I0, J0 + ml(1,0,0))|

=
∑
m∈N

|L(I0, J0 − ml(1,0,0))| + |L(I0, J0)| +
∑
m∈N

|L(I0, J0 + ml(1,0,0))|. (53)

Note that ||γ1(t) − γ2(s) ± ml�v|| ≥ mint,s{||γ1(t) − γ2(s) ± ml�v||} ≥ ml||�v|| − ||�α|| − b. So, by Eq. (50)

|L(I0, J0 + ml(1,0,0))| ≤ 1

4π

1

(ml − ||�α|| − b)2

∣∣∣
∫ ∫

sinφ cos θ(s, t)dtds
∣∣∣

≤ 1

4π

1

(ml − ||�α|| − b)2
= Q (1)

m , (54)

and similarly for |L(I0, J0 − ml(1, 0, 0))|. So,
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Fig. 8. The projection of two free edges in a system employing two PBC. For the computation of LK(1)
P (I, J ) we add the linking numbers of I0 with all the 

images of J .

∑
m∈Z

|L(I0, J0 + ml(1,0,0))| < L(I0, J0) +
∑

m∈Z,m �=0

Q (1)
m

≤ L(I0, J0) + 1

2π

∑
m∈N

1

(ml − ||�α|| − b)2
, (55)

which converges and the convergence is uniform. �
Remark 19. Notice that for a system with one PBC we can adjust the position of the cell to ensure that || �α|| < 3l

2 . In 
applications to polymers, where the edges correspond to monomer bonds, || �α|| > b. Notice that L(I0, J0) increases as || �α||
decreases, and the same holds for LK(1)

P (I, J ). For || �α|| = b we obtain the following upper bound

LK(1)
P (I, J ) <

1

2
+ 1

2π l2

∑
m∈N

1

(m − 2b/l)2
(56)

Notice that for a cell employing one PBC of edge length l = 50 and for edges of length b = 1 (which are reasonable sizes 
for simulation of polymer melts), Eq. (56) gives LK(1)

P (I, J ) < 0.500111.

Corollary 20. The periodic linking number of two open or infinite chains in one PBC is a continuous function almost everywhere in the 
space of configurations.

Proof. Since the convergence of LK P is uniform, it follows from the fact that the Gauss linking integral is a continuous 
function almost everywhere in the space of configurations. �

6.2. Convergence in two PBC

Without loss of generality, let us consider the case of two PBC imposed on the x- and y-axis (right–left and top–bottom 
faces of the cell). In order to prove convergence of LK P (I, J ) in the case of two PBC we need to take into consideration 
the signs of the linking numbers involved in its computation (see Fig. 8). In the following the translations of J0 by �v and 
by −�v shall be called opposite translations, and the pairs of edges (I0, J0 + �v), (I0, J0 − �v) will be called a pair of opposite 
translations. As we shall see, the linking number of I0 with these may have opposite sign.

Lemma 21. Let e1 , e2 denote two edges whose base points get connected by a vector �α, then L(e1, e2) = −L(e1, e2 − 2�α).

Proof. Let us consider a mirror M placed on the plane with normal vector �α which contains β1, as shown in Fig. 9, and let 
(e1)M and (e2)M denote the mirror images of e1 and e2 (shown in blue in Fig. 9). Then L

(
(e1)M , (e2)M

)
= −L(e1, e2).

Next we rotate (e1)M and (e2)M by π around the axis that contains �α. Let ((e2)M)R and ((e1)M)R denote the re-
sulting edges (shown in light blue in Fig. 9). During the rotation the relative position of the two edges does not change, so 
L
(
((e1)M)R , (((e2)M)R)

)
= L

(
(e1)M , (e2)M

)
= −L(e1, e2). Notice that ((e2)M)R and ((e1)M)R , lie exactly on the edges e2 −2�α
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Fig. 9. Above: L(e1, e2) = −L((e1)M , (e2)M ). Below: L((e1)M , (e2)M ) = L(((e1)M )R , ((e2)M )R ) = L(e1, e2 − 2�α). (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

and e1 respectively, but they have opposite orientation compared to e2 − 2�α and e1. If the orientation on both ((e2)M)R

and ((e1)M)R is reversed, their linking number does not change. Thus L(e1, e2 − 2�α) = L
(
−((e1)M)R , −(((e2)M)R)

)
=

L
(
((e1)M)R , (((e2)M)R)

)
= −L(e1, e2). �

Corollary 22. Let e1 , e2 denote two edges whose base points are connected by a vector �α, then

L(e1, e2 + �v) + L(e1, e2 − �v) = L(e1, e2 + �v) − L(e1, e2 + �v − 2�α). (57)

Proof. Notice that the base points of the edges e1 and e′
2 = e2 − �v get connected by a vector �α′ = �α − �v (see Fig. 10). Thus, 

by Lemma 21

L(e1, e2 − �v) = L(e1, e′
2) = −L(e1, e′

2 − 2 �α′) = −L(e1, e2 − �v − 2 �α′)

= −L(e1, e2 − �v − 2(�α − �v)) = −L(e1, e2 + �v − 2�α). � (58)

For the sum of the linking integrals of two opposite translations, we have the following important lemma:

Lemma 23. Let e1 , e2 denote two edges whose base points are connected by a vector �α, then for ||�v|| >> || �α||,

|L(e1, e2 + �v) + L(e1, e2 − �v)| < 2

π
|| �α|| 1

(||�v|| − ||�α||)3
(59)

Proof. Let γ1(τ ), γ2(s), t, s ∈ [0, 1] denote the arc-length parametrizations of the edges e1, e2 respectively. By Lemma 22:

L(e1, e2 + �v) + L(e1, e2 − �v)

= L(e1, e2 + �v) − L(e1, e2 + �v − 2�α)

= 1

4π

(∫ ∫
(γ̇1 × γ̇2) · (γ1(t) − γ2(s) + �v)

||γ1(t) − γ2(s) + �v||3 dsdt −
∫ ∫

(γ̇1 × γ̇2) · (γ1(t) − γ2(s) + �v − 2�α)

||γ1(t) − γ2(s) + �v − 2�α||3 dsdt
)
. (60)

For ||�v|| large, the integrands can be approximated, for all (s, t) values, by their values at (t1, s1), where γ1(t1) = β1 and 
γ2(s1) = β2. For simplicity we will denote γ1(t1) = γ1, γ2(s2) = γ2. Notice that �α = γ1 − γ2, so Eq. (60) becomes:

L(e1, e2 + �v) − L(e1, e2 + �v − 2�α)

= 1

4π

( (γ̇1 × γ̇2) · (�α + �v)

|| �α + �v||3 − (γ̇1 × γ̇2) · (�α + �v − 2�α)

|| �α + �v − 2�α||3
)

= 1

4π

( (γ̇1 × γ̇2) · (�α + �v)

|| �α + �v||3 − (γ̇1 × γ̇2) · (�α + �v)

|| �α + �v − 2�α||3 + (γ̇1 × γ̇2) · 2�α
|| �α + �v − 2�α||3

)

= 1 (
(γ̇1 × γ̇2) · (�α + �v)

( 1
3

− 1
3

)
+ (γ̇1 × γ̇2) · 2�α

3

)
. (61)
4π || �α + �v|| || �α + �v − 2�α|| || �α + �v − 2�α||
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Fig. 10. The base points of the translations of e2 by ±�v , get connected to the base point of e1 by �v + �α and −�v + �α. Thus, in general, they do not have the 
same distance from the base point of e1, and thus L(e1, e2 + �v) �= L(e1, e2 − �v). By Lemma 21, L(e1, e2 + �v) + L(e1, e2 − �v) = L(e1, e2 + �v) − L(e1, e2 + �v −2�α).

Then, using the Mean Value Theorem of Calculus, for the function

h(�v) = 1

|| �α + �v||3 (62)

for ||�v|| >> || �α||, the expression 1
||�α+�v||3 − 1

||�α+�v−2�α||3 in Eq. (61) can be approximated by the directional derivative of h(�v)

with respect to �a:

2|| �α||D �α(h(�v)) ≈ −6|| �α|| cos θ1

|| �α + �v||4 , (63)

where θ1 denotes the angle between �α and �α + �v . Thus:

L(e1, e2 + �v) + L(e1, e2 − �v)

≈ 1

4π

(
(γ̇1 × γ̇2) · (�α + �v)

−6|| �α|| cos θ1

|| �α + �v||4 + (γ̇1 × γ̇2) · 2�α
|| �α + �v − 2�α||3

)

= 1

4π

(
sinφ cos θ

−6|| �α|| cos θ1

|| �α + �v||3 + sinφ cosψ
2|| �α||

||�v − �α||3
)
, (64)

where φ denotes the angle between γ̇1 and γ̇2, θ denotes the angle between γ̇1 × γ̇2 and �α + �v , and ψ denotes the angle 
between γ̇1 × γ̇2 and �α. So,

|L(e1, e2 + �v) + L(e1, e2 − �v)|
<

1

2π
|| �α|| | sinφ|

(3| cos θ cos θ1|
||�v + �α||3 + | cosψ |

||�v − �α||3
)

<
1

2π
|| �α|| | sinφ|

( 3| cos θ cos θ1|
(||�v|| − ||�α||)3

+ | cosψ |
(||�v|| − ||�α||)3

)

≤ 2

π
|| �α|| 1

(||�v|| − ||�α||)3
. � (65)

Using these results, convergence in two PBC is proved in the next theorem:

Theorem 24. The periodic linking number between two free edges I and J in a system with two PBC, denoted LK(2)
P (I, J ), converges 

uniformly and is bounded above by

LK(2)
P (I, J )

< L(I0, J0) +
(

LK(1)
P (I, J ) − L(I0, J0)

) ∑
n≤n0

R2(n) + 1

π
|| �α||2

∑
n>n0

r2(n)

(l
√

n − ||�α||)3

< L(I0, J0) +
( 1

2π

∑
m∈N

1

(ml − ||�α|| − b)2

) ∑
n≤n0

R2(n) + 1

π
|| �α||2

∑
n>n0

r2(n)

(l
√

n − ||�α||)3
, (66)

where �α is the vector that connects the base points of the parent images, I0 and J0 , b denotes the length of an image of I and J , l

denotes the length of an edge of the cubic cell and n0 >>
( ||�α||)2 ∈N.
l
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Proof. Let �α denote the vector that connects the base points of the parent images of I and J . Let n0 ∈ N be such that

n0 >>
( ||�α||

l

)2
. Then LK P can be expressed as:

LK(2)
P (I, J ) = L(I0, J0) +

∑
n≤n0∈N

∑
�v∈lZ2

||�v||2=l2n

L(I0, J0 + �v) + 1

2

∑
n>n0∈N

∑
�v∈lZ2

||�v||2=l2n

(L(I0, J0 + �v) + L(I0, J0 − �v)). (67)

Let us denote these sums as 	1, 	2 respectively.
For the terms in 	2 Lemma 23 can be applied, giving∑

�v∈lZ2

||�v||2=l2n

|L(I0, J0 + �v) + L(I0, J0 − �v)| =
∑
�v∈Z2

||�v||2=n

|L(I0, J0 + l�v) + L(I0, J0 − l�v)|

≤
∑
�v∈Z2

||�v||2=n

( 2

π
|| �α|| 1

(l||�v|| − ||�α||)3

)
= 2

π
|| �α|| r2(n)

(l
√

n − ||�α||)3
= Q (2)

n . (68)

By Eq. (46), r2(n) < O (n7/22), thus 	2 < 1
2

∑
n>n0

Q (2)
n < ∞, and the convergence is uniform.

Notice that, 	1 is a finite summation, thus we have proved that LK(2)
P converges uniformly.

To find an upper bound for 	1 we proceed as follows: Note that any non-zero vector �v in lZ2 can be expressed as 
�v = ml(v1, v2) where m ∈N, vi ∈ Z and gcd(v1, v2) = 1, where by gcd(v1, v2) we mean the gcd of the non-zero coordinates 
among the v1, v2. Thus we can express 	1 as:

	1 =
∑

n≤n0∈N

∑
�v∈lZ2

||�v||2=l2n

L(I0, J0 + �v)

=
∑
n≤n0

∑
�v∈Z2

||�v||2=n,gcd(v1,v2)=1

∑
m∈N

L(I0, J0 + ml�v)

<
∑
n≤n0

∑
�v∈Z2

||�v||2=n,gcd(v1,v2)=1

∑
m∈N

Q (1)
m , (69)

where Q (1)
m was defined in the proof of Theorem 18 as 

∑
m∈N Q (1)

m = LK(1)
P (I, J ) − L(I0, J0) < ∞, and thus:

	1 <
∑
n≤n0

∑
�v∈Z3

||�v||2=n,gcd(v1,v2)=1

(
LK(1)

P (I, J ) − L(I0, J0)
)

=
(

LK(1)
P (I, J ) − L(I0, J0)

) ∑
n≤n0

R2(n). (70)

Thus LK P converges uniformly, and is bounded above by:

LK(2)
P (I, J ) < L(I0, J0) +

(
LK(1)

P (I, J ) − L(I0, J0)
) ∑

n≤n0

R2(n) + 1

π
|| �α||2

∑
n>n0

r2(n)

(l
√

n − ||�α||)3

< L(I0, J0) +
( 1

2π

∑
m∈N

1

(ml − ||�α|| − b)2

) ∑
n≤n0

R2(n) + 1

π
|| �α||2

∑
n>n0

r2(n)

(l
√

n − ||�α||)3
. � (71)

Remark 25. Notice that in a system with two PBC, we can adjust the position of the cell to ensure that || �α|| <
√

3
2 l. In 

applications to polymers, where the edges correspond to monomer bonds, || �α|| > b. Notice that L(I0, J0) increases as || �α||
decreases, and the same holds for LK(2)

P (I, J ). For || �α|| = b we get the following upper bound

LK(2)
P (I, J ) < 1/2 +

( 1

2π l2

∑
m∈N

1

(m − 2b/l)2

) ∑
n≤n0

R2(n) + 2b

π l3

∑
n>n0

r2(n)

(
√

n − b/l)3
. (72)

Using the approximations r2(n) ≈ π , 
∑

n≤n R2(n) ≈ 6 n0, Eq. (72) becomes:

0 π
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LK(2)
P (I, J ) < 1/2 +

( 1

2π l2

∑
m∈N

1

(m − 2b/l)2

) 6

π
n0 + 2b

l3

∑
n>n0

1

(
√

n − b/l)3
. (73)

For l = 50, b = 1 (which are reasonable sizes for the simulation of PE melts) and for n0 = 10 (which is much larger than 
(b/l)2 = 4 ∗ 10−4), Eq. (73) gives LK(2)

P (I, J ) < 0.502133.

Corollary 26. For two open or infinite chains in two PBC, LK P is a continuous function almost everywhere in the space of configurations.

6.3. Convergence in three PBC

In order to prove convergence of the periodic linking number of two free edges in three PBC, we denote LK(3)
P , the 

convergence of LK(3)
P for a special type of configuration of two free edges is proved first and then this result is used to 

prove convergence for an arbitrary configuration of two free edges.

6.3.1. Convergence for two special free edges
Let �1 denote the subset of � composed by pairs of edges, say (I ′0, J ′

0), whose arc-length parametrizations are γ1(t), 
γ2(s), t, s ∈ [0, 1] respectively, such that γ̇1 × γ̇2 is parallel to the x-axis, that is, γ̇1 × γ̇2 = (||γ̇1 × γ̇2||, 0, 0) (see Fig. 11 for 
an illustrative example). Let I ′ , J ′ be two free edges in three PBC with parent images (I ′0, J ′

0) ∈ �1. In this section we prove 
that LK(3)

P (I ′, J ′) converges.
For any vector �v = (v1, v2, v3) ∈ lZ3, let us group together all the distinct vectors whose coordinates are permutations 

of the coordinates of �v with all possible combinations of signs. For any �v let pm(�v) denote this collection of vectors. Then 
LK(3)

P (I ′, J ′) can be expressed as:

LK(3)
P (I ′, J ′) = L(I ′0, J ′

0) +
∑
�v∈lN3

v2
1=v2

2=v2
3

L(I ′0, J ′
0 + �v) +

∑
�v∈lN3

v1≤v2≤v∗
3

∑
�u∈pm(�v)

L(I ′0, J ′
0 + �u)

= L(I ′0, J ′
0) +

∑
�v∈lN3

v2
1=v2

2=v2
3

L(I ′0, J ′
0 + �v) +

∑
�v∈lN3

v1≤v2≤v∗
3

G �v(I ′0, J ′
0), (74)

where v1 ≤ v2 ≤ v∗
3 denotes all the vectors with v1 ≤ v2 ≤ v3 except those with v1 = v2 = v3, and G �v(I ′0, J ′

0) =∑
�u∈pm(�v) L(I ′0, J ′

0 + �u).
This can be expressed more precisely as follows: Let ρ(�v) denote a vector whose coordinates result from a combination 

of signs of the coordinates of �v without changing the absolute values of the coordinates. For each vector there are 8 
such combinations. Let ρ1(�v) = (v1, v2, v3) = −ρ5(�v), ρ2(�v) = (v1, v2, −v3) = −ρ6(�v), ρ3(�v) = (v1, −v2, v3) = −ρ7(�v), 
ρ4(�v) = (v1, −v2, −v3) = −ρ8(�v). Next, let τ denote a cyclic permutation in S3. Then for a vector �v let τ1(�v) = (v1, v2, v3), 
τ2(�v) = (v2, v3, v1) and τ3(�v) = (v3, v1, v2). Let also �z = (v1, v3, v2). Then LK P can be expressed as

LK(3)
P (I ′, J ′) = L(I ′0, J ′

0) +
∑
�v∈lN3

v2
1=v2

2=v2
3

L(I ′0, J ′
0 + �v)

+ 1

2

∑
�v∈lN3

v1≤v2≤v∗
3

( 4∑
j=1

3∑
i=1

(
L(I ′0, J ′

0 + lτi(ρ j(�v))) + L(I ′0, J ′
0 − lτi(ρ j(�v)))

)

+
4∑

j=1

3∑
i=1

(
L(I ′0, J ′

0 + lτi(ρ j(�z))) + L(I ′0, J ′
0 − lτi(ρ j(�z)))

))

= L(I ′0, J ′
0) +

∑
�v∈lN3

v2
1=v2

2=v2
3

L(I ′0, J ′
0 + �v) + 1

2

∑
v1≤v2≤v∗

3∈lN

( 4∑
j=1

	(ρ j(�v)) +
4∑

j=1

	(ρ j(�z))
)
, (75)

where 	(ρ j(�v)) = ∑3
i=1

(
L(I ′0, J ′

0 + lτi(ρ j(�v))) + L(I ′0, J ′
0 − lτi(ρ j(�v)))

)
and 	(ρ j(�z)) = ∑3

i=1

(
L(I ′0, J ′

0 + lτi(ρ j(�z))) +
L(I ′0, J ′

0 − lτi(ρ j(�z)))
)

. So, G �v(I ′0, J ′
0) = 1

2

(∑4
j=1 	(ρ j(�v)) + ∑4

j=1 	(ρ j(�z))
)

. (Notice that the vectors in 	(ρ j(�v)), j =
1, . . . , 4, are the only vectors in pm(�v) in the case where two coordinates of �v are the same.)

Then:
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Fig. 11. In this configuration γ̇1 × γ̇2 is parallel to the x-axis. Let �v = (v1, v2, v3), then for the angle θ1 between γ̇1 × γ̇2 and �α + �v , we have cos θ1 =
v1+α1

(v1+α1)2+(v2+α2)2+(v3+α3)2 .

Lemma 27. Let I ′ , J ′ be two free edges with parent images I ′0, J ′
0 with arc-length parametrizations γ1(t), γ2(s) t, s ∈ [0, 1] respectively, 

such that γ̇1 × γ̇2 = (γ , 0, 0), where γ = ±||γ̇1 × γ̇2||. Let the base points of I ′0, J ′
0 be connected by a vector �α = (α1, α2, α3) and let 

�v = (v1, v2, v3) be a vector such that v1, v2, v3 >> α = max{|α1|, |α2|, |α3|} and not all v2
1 = v2

2 = v2
3 . Then G �v(I ′0, J ′

0) ≈ 0.

Proof. In the following we prove that 
∑4

j=1 	(ρ j(�v)) ≈ 0. Similarly one can prove that 
∑4

j=1 	(ρ j(�z)) ≈ 0, thus 
G �v(I ′, J ′) ≈ 0.

Notice that 	(ρ j(�v)) is equal to

	(ρ j(�v)) = L(I ′0, J ′
0 + τ1(ρ j(�v))) + L(I ′0, J ′

0 − τ1(ρ j(�v))) + L(I ′0, J ′
0 + τ2(ρ j(�v)))

+ L(I ′0, J ′
0 − τ2(ρ j(�v))) + L(I ′0, J ′

0 + τ3(ρ j(�v))) + L(I ′0, J ′
0 − τ3(ρ j(�v))), (76)

which is a sum of linking numbers of three pairs of opposite translations.
Recall that the sign of L(I ′0, J ′

0 + τi(ρ j(�v))) is positive/negative if the projection of �α + τi(ρ j(�v)) on γ̇1 × γ̇2 has the 
same orientation/or not, as γ̇1 × γ̇2. For this special type of configuration, where γ̇1 × γ̇2 = (γ , 0, 0), this can be determined 
by examining the first coordinate of �α + τi(ρ j(�v)) and γ . Let τi(ρ j(�v)) = (wx, w y, wz), then L(I0, J0 + τi(ρ j(�v))) > 0 if 
and only if (wx + a1)γ > 0, that is, if γ and wx + a1 have the same sign. Since v1, v2, v3 > |α1| and wx = v1, v2, or v3, 
L(I0, J0 + τi(ρ j(�v))) and L(I0, J0 − τi(ρ j(�v))) have opposite signs for all i, j. Without loss of generality, let us suppose that 
γ < 0, then L(I0, J0 + τi(ρ j(�v))) < 0 and L(I0, J0 − τi(ρ j(�v))) > 0.

Thus the sum of opposite translations can be expressed as:

L(I ′0, J ′
0 + τi(ρ j(�v))) + L(I ′0, J ′

0 − τi(ρ j(�v)))

= − 1

4π

∫ ∫ ( | cos θ+
i j (t, s) sin φ|

||γ1(t) − γ2(s) + τi(ρ j(�v))||2 − | cos θ−
i j (t, s) sin φ|

||γ1(t) − γ2(s) − τi(ρ j(�v))||2
)

dsdt, (77)

where θ+
i j (t, s) is the smallest angle between γ1(t) − γ2(s) + τi(ρ j(�v)) with γ̇1 × γ̇2, and similarly θ−

i j (t, s) is the smallest 
angle between γ1(t) − γ2(s) − τi(ρ j(�v)) with γ̇1 × γ̇2 and φ is the angle between I ′0 and J ′

0.
For v1, v2, v3 >> α the value of the integrands in Eq. (77) for all s, t can be approximated by the value for (s1, t1), 

where γ1(t1) is the base point of I0 and γ2(s1) is the base point of J0, as follows:

L(I ′0, J ′
0 + τi(ρ j(�v))) + L(I ′0, J ′

0 − τi(ρ j(�v))) ≈ − 1

4π
sinφ

( | cos θ+
i j |

|| �α + τi(ρ j(�v))||2 − | cos θ−
i j |

|| �α − τi(ρ j(�v))||2
)
. (78)

Thus,

	(ρ j(�v)) ≈ − 1

4π

[( | cos θ+
1 j|

|| �α + τ1(ρ j(�v))||2 − | cos θ−
1 j|

|| �α − τ1(ρ j(�v))||2
)

+
( | cos θ+

2 j|
|| �α + τ2(ρ j(�v))||2 − | cos θ−

2 j|
|| �α − τ2(ρ j(�v))||2

)

+
( | cos θ+

3 j|
|| �α + τ3(ρ j(�v))||2 − | cos θ−

3 j|
|| �α − τ3(ρ j(�v))||2

)]
. (79)

Without loss of generality, let us suppose that α1, α2, α3 > 0, then (see for example Fig. 11)
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| cos θ+
11(t1, s1)| = v1 + α1

|| �α + �v|| = v1 + α1√
(v1 + α1)2 + (v2 + α2)2 + (v3 + α3)2

, (80)

and

| cos θ−
11(t1, s1)| = v1 − α1

|| �α − �v|| = v1 − α1√
(v1 − α1)2 + (v2 − α2)2 + (v3 − α3)2

. (81)

Thus Eq. (79) can be expressed as:

	(ρ1(�v)) = − 1

4π

( v1 + α1

((v1 + α1)2 + (v2 + α2)2 + (v3 + α3)2)3/2
− v1 − α1

((v1 − α1)2 + (v2 − α2)2 + (v3 − α3)2)3/2

+ v2 + α1

((v2 + α1)2 + (v3 + α2)2 + (v1 + α3)2)3/2
− v2 − α1

((v2 − α1)2 + (v3 − α2)2 + (v1 − α3)2)3/2

+ v3 + α1

((v3 + α1)2 + (v1 + α2)2 + (v2 + α3)2)3/2
− v3 − α1

((v3 − α1)2 + (v1 − α2)2 + (v2 − α3)2)3/2

)
. (82)

Let f : R3 → R be defined as f (x, y, z) = − 1
||(x,y,z)|| . Then the first two terms in Eq. (82) can be expressed as ∂ f

∂x (v1 +
α1, v2 + α2, v3 + α3) − ∂ f

∂x (v1 − α1, v2 − α2, v3 − α3). For v1, v2, v3 >> α, this can be approximated by the directional 
derivative of ∂ f

∂x in the direction �α by applying the Mean Value Theorem of calculus:

v1 + α1

((v1 + α1)2 + (v2 + α2)2 + (v3 + α3)2)3/2
− v1 − α1

((v1 − α1)2 + (v2 − α2)2 + (v3 − α3)2)3/2

= ∂ f

∂x
(v1 + α1, v2 + α2, v3 + α3) − ∂ f

∂x
(v1 − α1, v2 − α2, v3 − α3)

≈ −2|| �α||∇
(∂ f

∂x

)
(v1, v2, v3) · �α. (83)

Using the same method for the next pairs of terms in Eq. (82), for v1, v2, v3 >> α, Eq. (82) can be approximated by:

	(ρ1(�v)) ≈ ||�α||
2π

(
∇

(∂ f

∂x

)
(�v) · (α1,α2,α3) + ∇

(∂ f

∂ y

)
(�v) · (α3,α1,α3) + ∇

(∂ f

∂z

)
(�v) · (α2,α3,α1)

)
. (84)

Following the same method,

	(ρ2(�v)) ≈ ||�α||
2π

(
∇

(∂ f

∂x

)
(�v) · (α1,α2,−α3) + ∇

(∂ f

∂ y

)
(�v) · (α3,α1,−α2) − ∇

(∂ f

∂z

)
(�v) · (α2,α3,−α1)

)
, (85)

	(ρ3(�v)) ≈ ||�α||
2π

(
∇

(∂ f

∂x

)
(�v) · (α1,−α2,α3) − ∇

(∂ f

∂ y

)
(�v) · (α3,−α1,α2) + ∇

(∂ f

∂z

)
(�v) · (α2,−α3,α1)

)
, (86)

and

	(ρ4(�v)) ≈ ||�α||
2π

(
∇

(∂ f

∂x

)
(�v) · (α1,−α2,−α3) − ∇

(∂ f

∂ y

)
(�v) · (α3,−α1,−α2) − ∇

(∂ f

∂z

)
(�v) · (α2,−α3,−α1)

)
.

(87)

Finally, adding together Eq. (84), (85), (86) and (87):

4∑
j=1

	(ρ j(�v)) ≈ 0. (88)

Similarly, 
∑

�e′∈p(1)(�v) 	(�e′) ≈ 0, thus G �v (I ′0, J ′
0) ≈ 0. �

Remark 28. Notice that the function f (x, y, z) = − 1
||(x,y,z)|| defined in the proof of Theorem 27 is the opposite of the electric 

potential created by a point charge at distance ||(x, y, z)||.

Now we can prove the following:

Lemma 29. Let I ′ , J ′ be two free edges in three PBC, with parent images I ′0, J ′
0 with arc-length parametrizations γ1(t), γ2(s) t, s ∈

[0, 1] respectively, such that γ̇1 × γ̇2 = (γ , 0, 0), where γ = ±||γ̇1 × γ̇2||. Then their periodic linking number, denoted LK(3)
P (I ′, J ′), 

converges uniformly.
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Proof. Let n0 ∈ N be such that n0 >>
( ||�α||

l

)2
. Let V denote the set of vectors �v = (v1, v2, v3) ∈ lZ3, with |v1|, |v2|, |v3| >

l
√

n0, and such that not all |v1| = |v2| = |v3|. Then LK(3)
P can be expressed as

LK(3)
P (I ′, J ′) =

∑
�v∈V

L(I ′0, J ′
0 + �v) +

∑
�v /∈V

L(I ′0, J ′
0 + �v). (89)

By Lemma 27 this can be expressed as

LK(3)
P (I ′, J ′) ≈

∑
�v /∈V

L(I ′0, J ′
0 + �v). (90)

Notice that the terms that do not belong in V correspond to the lattice points in the regions A = {−l
√

n0 ≤ x ≤ l
√

n0}, 
B = {−l

√
n0 ≤ y ≤ l

√
n0} and C = {−l

√
n0 ≤ z ≤ l

√
n0}, and all vectors (v1, v2, v3), such that |v1| = |v2| = |v3|. Notice that 

these regions contain points that lie in planes parallel to the xy-, xz- and yz-planes around the origin. The sum of the terms 
that correspond to the lattice points in A are bounded above by 2n0LK(2)

P (I ′, J ′), since there are 2n0 planes containing these 
lattice points. Also, there are 8 vectors with |v1| = |v2| = |v3| = 1. Thus, the terms in the direction of these vectors are 
bounded above by LK(1)

P (I ′, J ′). Thus, we have the following upper bound

LK(3)
P (I ′, J ′) < L(I ′0, J ′

0) + 4(LK(1)
P (I ′, J ′) − L(I ′0, J ′

0)) +
∑
�v∈A

L(I ′0, J ′
0 + �v) +

∑
�v∈B

L(I ′0, J ′
0 + �v) +

∑
�v∈C

L(I ′0, J ′
0 + �v)

< L(I ′0, J ′
0) + 4(LK(1)

P (I ′, J ′) − L(I ′0, J ′
0)) + 6n0

(
LK(2)

P

(
I ′, J ′) − L

(
I ′0, J ′

0

))
. (91)

Since LK(1)
P (I ′, J ′) and LK(2)

P (I ′, J ′) converge uniformly (Theorems 18 and 24), LK(3)
P (I ′, J ′) is uniformly convergent. �

Notice that in the above proof of a finite upper bound of LK(3)
P (I ′, J ′), some terms are encountered several times. The 

following lemma provides a smaller upper bound of LK(3)
P (I ′, J ′):

Lemma 30. Let I ′ , J ′ be two free edges in three PBC, with parent images I ′0, J ′
0 with arc-length parametrizations γ1(t), γ2(s) t, s ∈

[0, 1] respectively, such that γ̇1 × γ̇2 = (γ , 0, 0), where γ = ±||γ̇1 × γ̇2||. Then LK(3)
P (I ′, J ′) is bounded above by

LK(3)
P (I ′, J ′)

< L(I ′0, J ′
0) + 6(LK(1)

P (I ′0, J ′
0) − L(I ′0, J ′

0)) + 3

π
|| �α||n0

∑
n>n0

r2(n) + 2n0

(l
√

n − ||�α||)3
+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2

< L(I ′0, J ′
0) + 3

π

∑
m∈N

1

(ml − ||�α|| − b)2
+ 3

π
|| �α||n0

∑
n>n0

r2(n) + 2n0

(l
√

n − ||�α||)3
+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2
, (92)

where �α is the vector that connects the base points of the parent images, I ′0, J ′
0 , b is the length of an image of I , J , l is the length of an 

edge of the cell and n0 >>
( ||�α||

l

)2 ∈N.

Proof. The periodic linking number can be expressed as:

LK(3)
P (I ′, J ′) =

∑
�v /∈V

L(I ′0, J ′
0 + �v) (93)

where V is defined as in the proof of Lemma 29. This can be expressed as

LK(3)
P (I ′, J ′) ≈ L(I ′0, J ′

0) +
∑
�v∈lZ3

v2
1=v2

2=v2
3

L(I ′0, J ′
0 + �v) +

∑
�v∈V 1

L(I ′0, J ′
0 + �v)

+
∑
�v∈V 2

L(I ′0, J ′
0 + �v) +

∑
�v∈lZ3

(v2
1,v2

2,v2
3≤l2n0)∗

L(I ′0, J ′
0 + �v), (94)

where V 1 is the set of vectors in lZ3 with one coordinate of absolute value smaller than or equal to l
√

n0 and two of 
absolute value larger than l

√
n0, a V 2 is the set of vectors in lZ3 with two coordinates of absolute value smaller than or 

equal to l
√

n0 and one of absolute value larger than l
√

n0. The expression (v2
1, v

2
2, v

2
3 ≤ l2n0)

∗ denotes the vectors with 
v2

1, v
2
2, v

2
3 ≤ l2n0, where not all v1 = v2 = v3. Let us denote these sums as U0, U1, U2, U3 respectively. For U0 we have 

U0 < 4(LK(1)
(I ′, J ′) − L(I ′ , J ′ )).
P 0 0
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To obtain an upper bound for U1, U2, we will apply Lemma 23. More precisely, we can bound U1 by:

U1 <
1

2

( ∑
�v∈lZ3

v2
1≤l2n0,v2

2,v2
3>l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)| +
∑
�v∈lZ3

v2
2≤l2n0,v2

1,v2
3>l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)|

+
∑
�v∈lZ3

v2
3≤l2n0,v2

1,v2
2>l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)|
)

(95)

By Lemma 23 we have:

U1 <
1

2

( ∑
�v∈lZ3

v2
1≤l2n0,v2

2,v2
3>l2n0

2

π
|| �α|| 1

(l||�v|| − ||�α||)3
+

∑
�v∈lZ3

v2
2≤l2n0,v2

1,v2
3>l2n0

2

π
|| �α|| 1

(l||�v|| − ||�α||)3

+
∑
�v∈lZ3

v2
3≤l2n0,v2

1,v2
2>l2n0

2

π
|| �α|| 1

(l||�v|| − ||�α||)3

)

<
3

2

∑
�v∈Z2

v2
1,v2

2>n0

2

π
|| �α|| 1

(l||�v|| − ||�α||)3

<
3

2
n0

∑
�v∈Z2

v2
1,v2

2>n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)|

<
3

2
n0

∑
�v∈Z2

v2
1,v2

2>n0

2

π
|| �α|| 1

(l||�v|| − ||�α||)3
<

3

2
n0

∑
n>2n0

∑
�v∈Z2

||�v||2=n

2

π
|| �α|| 1

(l
√

n − ||�α||)3

= 3

π
|| �α||n0

∑
n>2n0

r2(n)

(l
√

n − ||�α||)3
= 3

2
n0

∑
n>2n0

Q (2)
n <

3

2
n0

∑
n>n0

Q (2)
n (96)

Similarly, for U2 we have:

U2 <
1

2

( ∑
�v∈lZ3

v2
3>l2n0,v2

1,v2
2≤l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)| +
∑
�v∈lZ3

v2
2>l2n0,v2

1,v2
3≤l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)|

+
∑
�v∈lZ3

v2
1>l2n0,v2

2,v2
3≤l2n0

|L(I ′0, J ′
0 + �v) + L(I ′0, J ′

0 − �v)|
)

<
3

2
n2

0

∑
v1∈lZ

v2
1>l2n0

|L(I ′0, J ′
0 + (v1,0,0)) + L(I ′0, J ′

0 − (v1,0,0))|

<
3

π
n2

0|| �α||
∑

n>n0∈N

1

(l
√

n − ||�α||)3
(97)

For the terms in U3, we apply Lemma 17 to get:

U3 <
∑
�v∈lZ3

v2
1,v2

2,v2
3≤l2n0

|L(I ′0, J ′
0 + �v)|

<
∑

n≤3n0

∑
�v∈lZ3

||�v||2=l2n

|L(I ′0, J ′
0 + �v)| < 1

4π

∑
n≤3n0

∑
�v∈lZ3

||�v||2=l2n

1

(||�v|| − ||�α|| − b)2

= 1

4π

∑ r3(n)

(l
√

n − ||�α|| − b)2
(98)
n≤3n0
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Thus LK(3)
P (I ′, J ′) ≈ U0 + U1 + U2 + U3 < ∞ converges uniformly and is bounded by:

LK(3)
P (I ′, J ′) < L(I ′0, J ′

0) + 2

π

∑
m∈N

1

(ml − ||�α|| − b)2
+ 3

π
|| �α||n0

∑
n>n0

r2(n) + n0

(l
√

n − ||�α||)3

+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2
. � (99)

Remark 31. Notice that in a system with three PBC we can adjust the position of the cell to ensure that || �α|| <
√

3l
2 . In 

applications to polymers, where the edges correspond to monomer bonds, || �α|| > b. Notice that L(I ′0, J ′
0) increases as || �α||

decreases, and the same holds for LK(3)
P (I ′, J ′). For || �α|| = b and using the approximations r2(n) ≈ π , r3(n) ≈ 4π

3

√
n, we 

have the following upper bound:

LK(3)
P (I ′, J ′) < 1/2 + 3

π l2

∑
m∈N

1

(m − 2b/l)2
+ 3b

l3π
n0(π + n0)

∑
n>n0

1

(
√

n − b/l)3
+ 1

3l2

∑
n≤3n0

√
n

(
√

n − 2b/l)2
. (100)

Notice that for l = 50, b = 1 (which is a reasonable size for the simulation of polymer melts) and for n0 = 10 (which is 
much larger than (b/l)2 = 10−4), Eq. (100) gives LK(3)

P (I ′, J ′) < 0.502386.

6.3.2. Convergence for any two free edges
In the following, we will prove that for any configuration I , J with parent images in � there exists a configuration I ′ , 

J ′ with parent images in �1, with |LK(3)
P (I, J ) − LK(3)

P (I ′, J ′)| < R ∈ R. Since by Theorem 30, LK(3)
P (I ′, J ′) converges, LK(3)

P
converges for any configuration.

Lemma 32. Let I ′ , J ′ be two free edges in three PBC, with parent images I ′0, J ′
0 having arc-length parametrizations γ1(t), γ2(s)

t, s ∈ [0, 1] respectively, such that γ̇1 × γ̇2 = (γ , 0, 0), where γ = ±||γ̇1 × γ̇2||. For any configuration of two free edges, I , J there 
exists a configuration I ′ , J ′ such that

|LK(3)
P (I, J ) − LK(3)

P (I ′, J ′)| < 1

4π

∑
n≤n0

r3(n)

(l
√

n − ||�α|| − b)2

+
∑

n>n0

3r3(n)|| �α||
π

1

(l
√

n − ||�α|| − b)3

( 6

n1/2
+

√
6

n1/4

)
(101)

Proof. Let � denote the space of all possible configurations of two generating edges in a cell. Let (I0, J0) ∈ � denote the 
parent images of the free edges I , J , with arc-length parametrizations γ1(t), γ2(s) t, s ∈ [0, 1] respectively. We can transform 
a configuration of two free edges, I , J , in time τ ∈ [0, 1], by transforming the configuration of their parent images, I0, J0, 
so that for any τ , any image of I(τ ) ( J (τ ), resp.) is a translation of I0(τ ) ( J0(τ ), resp.). Any two free edges I , J can be 
transformed to two special free edges I ′ , J ′ (i.e. such that (I ′0, J ′

0) ∈ �1) by rigid rotation of I0, J0 around the base point 
of J0, until γ̇1 × γ̇2 becomes perpendicular to the yz-plane. Equivalently, the configuration I ′ , J ′ described above can also 
be derived by leaving I , J fixed in space and rotating the coordinate axes x, y, z, to x′ , y′ , z′ , until γ̇1 × γ̇2 becomes 
perpendicular to the y′z′-plane. Then we have

LK(3)
P (I, J ) = L(I0, J0) +

∑
n

∑
�v∈lZ3

||�v||2=n

L(I0, J0 + �v) (102)

and

LK(3)
P (I ′, J ′) = L(I0, J0) +

∑
n

∑
�v ′∈lZ3

||�v ′||2=n

L(I0, J0 + �v ′), (103)

where �v ′ denotes a vector in the xyz-coordinate system from the origin to a lattice point in the x′ , y′ , z′ coordinate system.
The number of lattice points on a sphere of radius 

√
n, denoted S√

n , can be approximated by r3(n) = 4π
3

√
n. By [70–73]

it is known that, as n → ∞, the lattice points on S√
n are uniformly distributed. Thus, for n large enough, we may parti-

tion S√
n , into elementary areas, of size l2Area of S√

n/r3(n) ≈ 3l2
√

n each of which contains one lattice point of the xyz
coordinate system (where l denotes the unit length of the lattice of our system). Similarly, each lattice point of the x′ y′z′
coordinate system on S√

n , will lie in exactly one of these elementary areas and will be of distance less than 
√

6ln1/4 from 
a lattice point of the xyz coordinate system. Therefore, we can express every vector �v ′ as �v ′ = �v + �h, where ||�h|| ≤ √

6ln1/4.
We can write the periodic linking number as:
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LK(3)
P (I, J ) = L(I0, J0) + 1

2

∑
n

∑
�v∈lZ3

||�v||2=n

(
L(I0, J0 + �v) + L(I0, J0 − �v)

)
. (104)

By the proof of Lemma 23, Eq. (64), we have

L(I0, J0 + �v) + L(I0, J0 − �v) = 1

4π

(
sinφ cos θ

−6|| �α|| cos θ1

|| �α + �v||3 + sinφ cosψ
2|| �α||

||�v − �α||3
)
, (105)

where φ denotes the angle between γ̇1 and γ̇2, θ denotes the angle between γ̇1 × γ̇2 and �α + �v , θ1 denotes the angle 
between �α and �α + �v , and ψ denotes the angle between γ̇1 × γ̇2 and �α.

Thus, we want to compare the terms

S1 = 1

4π

(
sinφ cos θ

−6|| �α|| cos θ1

|| �α + �v||3 + sinφ cosψ
2|| �α||

||�v − �α||3
)

(106)

and

S2 = 1

4π

(
sinφ cos θ ′ −6|| �α|| cos θ ′

1

|| �α + �v + �h||3 + sinφ cosψ
2|| �α||

||�v + �h − �α||3
)
, (107)

where θ ′ denotes the angle between γ̇1 × γ̇2 and �α + �v + �h, θ ′
1 denotes the angle between �α and �α + �v + �h. Note that φ

and ψ are the same for both configurations.
For n large enough, we may assume that || �α + �v + �h|| ≈ ||�α + �v||. Thus we have

S2 ≈ sinφ

4π

(
cos θ ′ −6|| �α|| cos θ ′

1

|| �α + �v||3 + cosψ
2|| �α||

||�v − �α||3
)
. (108)

Let θε denote the angle between �v and �v ′ . Then θε ≤
√

6
n1/4 and we have |θ − θ ′| = x, where 0 ≤ x ≤ θε . Without loss 

of generality, we assume that θ ′ > θ and θ ′
1 > θ1. Thus, θ ′ ≈ θ + x. Similarly, we have θ ′

1 ≈ θ1 + x. Thus, we have cos θ ′ =
cos θ cos x − sin θ sin x and similarly, cos θ ′

1 = cos θ1 cos x − sin θ1 sin x. For large n, θε << 1, we may assume that the signs of 
S1 and S2 are the same. Thus, we have

|S1 − S2| ≈ 3|| �α|| sin φ

2π || �α + �v||3
∣∣∣cos θ cos θ1 − cos θ ′ cos θ ′

1

∣∣∣
= 3|| �α|| sin φ

2π || �α + �v||3
∣∣∣cos θ cos θ1 − (cos θ cos x − sin θ sin x)(cos θ1 cos x − sin θ1 sin x)

∣∣∣
= 3|| �α|| sin φ

2π || �α + �v||3
∣∣∣(cos θ cos θ1 − cos θ cos θ1 cos2 x)

− (− cos θ sin θ1 cos x sin x − sin θ cos θ1 sin x cos x + sin θ sin θ1 sin2 x)
∣∣∣

≤ 3|| �α|| sin φ

2π || �α + �v||3
(
| cos θ cos θ1|(1 − cos2 x)

+ | cos θ sin θ1 cos x sin x| + | sin θ cos θ1 sin x cos x| + | sin θ sin θ1 sin2 x|
)

≤ 3|| �α|| sin φ

2π || �α + �v||3
(
| cos θ cos θ1| sin2 θε

+ | cos θ sin θ1|| sin θε | + | sin θ cos θ1|| sin θε | + | sin θ sin θ1| sin2 θε

)

≤ 3|| �α|| sinφ

π || �α + �v||3 (| sin θε | + sin2 θε). (109)

For n large we can use the small angle approximation: sin θε = sin
√

6
n1/4 ≈

√
6

n1/4 . (Note that a lower upper bound could be 
obtained by using the small angle approximation for cos θε .)

Thus, we have

|S1 − S2| ≤ 3|| �α||
π || �α + �v||3

( 6

n1/2
+

√
6

n1/4

)

≤ 3|| �α|| 1√
3

( 6
1/2

+
√

6
1/4

)
. (110)
π (l n − ||�α|| − b) n n
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So, we have

|LK(3)
P (I, J ) − LK(3)

P (I ′, J ′)| ≤ 1

4π

∑
n≤n0

r3(n)

(l
√

n − ||�α|| − b)2

+
∑

n>n0

3r3(n)|| �α||
π

1

(l
√

n − ||�α|| − b)3

( 6

n1/2
+

√
6

n1/4

)
. � (111)

Theorem 33. The periodic linking number of two free edges I , J in three PBC, we denote LK(3)
P , converges uniformly and is bounded 

above by

LK(3)
P (I, J ) < L(I0, J0) + 3

π

∑
m∈N

1

(ml − ||�α|| − b)2
+ 3

π
|| �α||n0

∑
n>n0

r2(n) + n0

(l
√

n − ||�α||)3

+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2
+ 1

4π

∑
n≤n0

r3(n)

(l
√

n − ||�α|| − b)2

+
∑

n>n0

3r3(n)|| �α||
π

1

(l
√

n − ||�α|| − b)3

( 6

n1/2
+

√
6

n1/4

)
(112)

where �α is the vector that connects the base points of the parent images, I0, J0 , b is the length of an image of I , J , l is the length of an 

edge of the cell and n0 >>
( ||�α||

l

)2 ∈N.

Proof. By Lemma 32, we know that there exists a configuration I ′ , J ′ such that

LK(3)
P (I ′, J ′) < L(I0, J0) + 2

π

∑
m∈N

1

(ml − ||�α|| − b)2
+ 3

π
|| �α||n0

∑
n>n0

r2(n) + n0

(l
√

n − ||�α||)3

+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2
(113)

and

|LK(3)
P (I, J ) − LK(3)

P (I ′, J ′)| ≤ 1

4π

∑
n≤n0

r3(n)

(l
√

n − ||�α|| − b)2

+
∑

n>n0

4r3(n)|| �α||
3π

1

(l
√

n − ||�α|| − b)3

( 6

n1/2
+

√
6

n1/4

)
(114)

Thus, we have

LK(3)
P (I, J ) ≤ L(I0, J0) + 2

π

∑
m∈N

1

(ml − ||�α|| − b)2
+ 3

π
|| �α||n0

∑
n>n0

r2(n) + n0

(l
√

n − ||�α||)3

+ 1

4π

∑
n≤3n0

r3(n)

(l
√

n − ||�α|| − b)2
+ 1

4π

∑
n≤n0

r3(n)

(l
√

n − ||�α|| − b)2

+
∑

n>n0

3r3(n)|| �α||
π

1

(l
√

n − ||�α|| − b)3

( 6

n1/2
+

√
6

n1/4

)
(115)

So, LK(3)
P converges uniformly. �

Remark 34. Notice that in a system with three PBC we can adjust the position of the cell to ensure that || �α|| <
√

3l
2 . In 

applications to polymers, where the edges correspond to monomer bonds, || �α|| > b. Notice that L(I0, J0) increases when 
|| �α|| decreases, and the same holds for LK(3)

P (I, J ). For || �α|| = b and using the approximations r2(n) ≈ π and r3(n) ≈ 4π
3

√
n, 

the following approximate upper bound results

LK(3)
P (I, J ) < 1/2 + 2

π l2

∑
m∈N

1

(m − 2b/l)2
+ 3b

π l3
n0

∑
n>n0

π + n0

(
√

n − b/l)3

+ 1

3l2

∑ √
n

(
√

n − 2b/l)2
+ 1

3l2

∑
n≤n

1

(
√

n − 2b/l)2
+ 4b

l3

∑
n>n

6 + √
6n1/4

(
√

n − 2b/l)3
(116)
n≤3n0 0 0
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Fig. 12. The linking number between the two infinite lines I and J is related to the periodic linking number in one PBC as: LK P (I, J ) = limT →∞ L(IT ,J )
T , 

where IT is the arc formed by T concatenated copies of I1.

Notice that for l = 50, l = 1 (which are appropriate sizes for the simulation of polymer melts) and n0 = 10 (which is much 
larger than (b/l)2 = 10−4), Eq. (116) gives LK(3)

P (I, J ) < 0.502824.

Corollary 35. The periodic linking number of open or infinite free chains is a continuous function almost everywhere of the chains 
coordinates.

Corollary 36. The periodic self-linking number and the periodic linking number with self-images of a chain in one, two, or three PBC 
converges and are continuous functions almost everywhere of the chain coordinates.

6.4. The periodic linking number of infinite free chains

The study of linking of infinite chains in PBC is a difficult topological problem. The periodic linking number is a well-
defined measure for two infinite free chains in PBC. In this section the periodic linking number of infinite chains is studied.

6.4.1. Connection of LK P of infinite free chains with the Gauss linking number
There is a connection between the periodic linking number of two infinite free chains and the Gauss linking number of 

two infinite images of these free chains.
Consider the example of two infinite free chains I , J in a system with one PBC shown in Fig. 12. Let I , J denote two 

infinite images of I and J respectively. Then:

L(I,J ) =
∞∑

t=1

∞∑
u=1

L(It , Ju) = lim
T →∞

T∑
t=1

∞∑
u=1

L(It , Ju) = lim
T →∞

T∑
t=1

LK P (I, J ), (117)

since LK P (I, J ) is independent of the image of I (or J ) used for its computation. Thus, in this example, the periodic linking 
number between I and J is related to the linking number of I , J as follows:

LK P (I, J ) = lim
T →∞

L(IT ,J )

T
, (118)

where IT denotes the arc that is formed by taking T consecutive copies of I1 in I . Notice that by Theorem 18 we know 
that for finite T , L(IT , J ) is a real number.

In the general case of a system with two or three PBC, where the system is composed by translations of infinite images 
of I , J , then an analogous expression is

LK P (I, J ) =
∑

k

lim
T →∞

L(IT ,Jk)

T
, (119)

where Jk denotes an infinite image of J .

6.4.2. Connection of LK P of infinite free chains with the intersection number in identification spaces
If the free chains are infinite then they represent non-trivial elements in H1(R3) and they project to non-trivial elements 

in the identification space (ST , T 2 × I , or T 3). In that case, σ Ī (or σ J̄ ) are not contained in the identification space, and we 
say that Ī (or J̄ ) is an essential knot in ST , T 2 × I , or T 3 respectively. Then the usual definition of intersection number 
cannot be applied to measure the linking between Ī and J̄ . In that case ī, j̄ are intrinsically linked with the auxiliary curves 
that represent the identification space. Thus L(ī, ̄j) is not sufficient to describe the linking between Ī and J̄ . This is why a 
relative intersection number with respect to the manifold is needed [76–82].

The periodic linking number provides an alternative definition of linking number in the identification space that is 
computed in the universal cover of the identification space. In Appendix C we saw that the periodic linking number of 
closed chains is equal to the linking number of two chains in the identification space (ST , T 2 × I , or T 3). It would be 
interesting to examine if the periodic linking number of infinite free chains is an integer topological invariant and how it 
may be related to the alternative definitions of linking number in manifolds.
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6.5. Helicity in periodic domains

The Gauss linking number is related to the helicity of a fluid flow as follows [16]: Let �u(�x, t) be the velocity field in an 
inviscid incompressible fluid, and let �ω(�x, t) = ∇ × �u be the corresponding vorticity field, which is zero except in two closed 
vortex filaments of strengths (associated circulations) κ1, κ2, whose axes are C1, C2. Let S be any closed orientable surface, 
bounding a volume V , moving with the fluid on which �u · �n = 0. Then the helicity is

H =
∫

V

�u · �ωdV = 2lk(C1, C2)κ1κ2. (120)

For the simulation of turbulence periodic boundary conditions are applied and one needs to measure helicity in periodic 
domains [16,55]. For a system of two closed vortex filaments in PBC the helicity in a volume bounded by a surface on which 
�u · �n = 0, inside the identification space is related to the periodic linking number as follows [51]:

H =
∫

V

�u · �ωdV = 2LK P (C1, C2)κ1κ2. (121)

In the case of vortices that form infinite free chains in [55] is shown that in general, the total helicity is not even 
definable, much less conserved. It was believed that expressions based on linking numbers fail when confronted with 
periodic field lines. So the question remained whether some new quantity, H P , exists which extends helicity to a periodic 
domain. For two infinite vortex lines, C1, C2 of strength κ1, κ2, we propose to define the periodic helicity as:

H P = 2κ1κ2LK P (C1, C2). (122)

The periodic helicity reduces to the usual H for a field without periodic lines, since LK P reduces to the Gauss linking 
number in the case of chains that do not touch the faces of the cell. It would be interesting to examine its relation with the 
asymptotic linking number [83].

7. Computation of the periodic linking number: the cell periodic linking number and the local periodic linking number

The estimation of the periodic linking number in the case of open or infinite chains is computationally difficult since 
it consists of infinite summations requiring us to use numerical methods and analyze the convergence of the infinite sum-
mation. In studies of polymer physics, the influence of chains in a neighborhood of another is of greater interest than the 
contribution of distant chains. Moreover, in turbulent flows, turbulent activity is concentrated at locations where the vortex 
lines are closer. Thus, we may be more interested in the flow lines that are in a neighborhood of a given flow line. In 
this section we propose two methods which are now going to focus on the contribution of entanglement arising by nearby 
chains. We propose the cell periodic linking number, which is a rather symmetric cut-off of the contributions around one 
chain, and the local periodic linking number, which is rather focused on the contributions of the chains in a neighborhood 
of one chain. We will propose approximations of the periodic linking number that have the following properties: (i) provide 
a good estimation of the periodic linking number in the case of open or infinite free chains and (ii) are equal to the periodic 
linking number in the case of closed chains.

7.1. The cell periodic linking number LKC

The first method to approximate the periodic linking number is based on a symmetric cell containing the chain:

Definition 37 (Chain cell). Let I denote a free chain in the periodic system. We define the Chain Cell, SC(Iu), to be the union 
of the minimum number of cells that are needed in order to create a larger cubic cell that contains an image of I , say Iu , 
and whose center cell contains the center of mass of Iu .

Definition 38 (Cell periodic linking number). Let J1, J2, . . . , Jm denote the images of J that intersect the chain cell of an 
image of I , say I0. The cell periodic linking number between I and J, LKC (I, J ), is defined as:

LKC (I, J ) =
∑

1≤v≤m

L(Iu, J v).′′ (123)

Properties of the cell periodic linking number, LKC :

(i) LKC is independent of the choice of the image Iu of the free chain I in the periodic system.
(ii) For closed chains the cell periodic linking number is equal to the (global) periodic linking number, that is, LKC (I, J ) =

LK P (I, J ). Thus LKC is an integer topological invariant for closed chains.
(iii) LKC captures all the linking that one free chain imposes on an image of the other and does not depend on the image 

of I used for its computation or on the minimal unfolding of the chain.
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(iv) Two drawbacks of the cell periodic linking number are that in the case of open chains, LK C depends on SC(Iu) and it 
is not symmetric, i.e. LKC (I, J ) �= LKC ( J , I). However, we shall see that LKC provides a good approximation of LK P for 
open chains and thus, LKC (I, J ) ≈ LK P (I, J ) = LK P ( J , I) ≈ LKC ( J , I), so LKC (I, J ) ≈ LKC ( J , I).

From observation (i) above, the definition of the cell periodic linking number is equivalent to using the parent image I0
for the free chain I:

LKC (I, J ) =
∑

1≤v≤m

L(I0, J v) =
∑

1≤v≤m

L(I0, J0 + �v). (124)

Remark 39. Similarly, we define the cell periodic self-linking number, the cell periodic linking with self-images and the cell 
periodic writhe.

The computation of LKC can be done following the pseudocode described in Algorithm 3.

Algorithm 1: Computation of mu(I0).

mu(I0) = {(0,0,0)} ***the first node of I0 lies in the (0,0,0) cell***.
nI = number of vertices in I0

for i = 2 to nI
�i = the position vector of the cell in which lies the vertex i
if �i /∈ mu(I0) then

append �i to mu(I0)

endif
end

Algorithm 2: Computation of SC(I0).
�m = the cell in which lies the center of mass of I0

SC(I0) = { �m}
d = 0
for i = 1 to |mu(I0)|

�i = i-th vector in mu(I0)
�d =�i − �cm
for j = 1 to 3

if abs(�d( j)) > d *** where �d( j) = j-th coord. of �d***
d = abs(�d( j))

endif
end

end
for x = �m(1) − d to �m(1) + d

for y = �m(2) − d to �m(2) + d
for z = �m(3) − d to �m(3) + d

Append (x, y, z) to SC(I0)

end
end

end

7.2. The local periodic linking number

Another approximation of the periodic linking number comes from focusing only on the local topological constraints 
seen in a cell. For this purpose in [57] we defined the following measure:

Definition 40 (Local periodic linking number). Let I and J denote two free chains in the periodic system. Let J1, J2, . . ., Jk
denote the images of J that intersect the minimal unfolding of an image of I , say Iu . The local periodic linking number, LK , 
between two free chains I and J is defined as:

LK(I, J ) =
∑

1≤v≤k

L(Iu, J v). (125)

Example 41. Consider the system shown in Fig. 4. Then for the computation of LK(I, J ) we need to consider the images of J
which intersect the minimal unfolding of I0: LK(I, J ) = L(I0, J0) + L(I0, J0 + l(1, 0)) + L(I0, J0 + l(1, 1)) + L(I0, J0 + l(0, 1)).
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Algorithm 3: Computation of LKC (I, J ).

1. Find the minimal unfoldings of I0, mu(I0), and J0, mu( J0) (see Algorithm 1).
2. Find the chain cell of I0, SC(I0) (see Algorithm 2).
3. Find the images of J which intersect the chain cell of I0:
Img = {(0,0,0)} *** J0 always intersects SC(I0)***
for i = 1 to |SC(I0)|

�i = i-th vector in SC(I0)

for j = 1 to |mu( J0)|
�j = the j-th vector in mu( J0)

�v =�i + �j *** J0 + �v intersects SC(I0) ***
if �v /∈ Img then

append �v to Img
endif

end
end
4. Compute the cell periodic linking number:
LKC = 0
n J = number of vertices in J0

for k = 1 to |Img|
�k = k-th vector in Img
*** define Jk = J0 + �k ***
for j = 1 to n J

�j0 = j-th vertex of J0
�jk = �j0 + �k *** this is the j-th vertex of Jk ***

end
Compute L(I0, Jk)

LKC = LKC + L(I0, Jk)

end

The properties of LK were studied in [57]. We stress the following:

(i) LK is independent of the choice of the image Iu of the free chain I in the periodic system.
(ii) LK is symmetric, that is, LK(I, J ) = LK( J , I).

(iii) LK captures all the local topological constraints (TCs) that one free chain imposes on an image of the other and is 
independent of the image used for its computation.

(iv) A drawback of the local periodic linking number is that LK depends on the size of the cell both in the case of open 
and infinite and in the case of closed chains. However, for most physical systems the size of the cell is such that LK is 
a topological invariant for closed chains.

From observation (i) above, the definition of the local periodic linking number is equivalent to using the parent image I0
for the free chain I:

LK(I, J ) =
∑

1≤v≤k

L(I0, J v) =
∑

1≤v≤k

L(I0, J0 + �v). (126)

The computation of LK for two free chains I and J can be done by following Algorithm 4.

Remark 42. Similarly, we define the local periodic self-linking number, the local periodic linking with self-images and the 
local periodic writhe

Remark 43. Notice that LKC (I, J ) and LK(I, J ) differ on the images of J used for their computation (see Algorithms 3 and 4). 
The images of J are those which intersect the chain cell of I0, denoted SC(I0), or the minimal unfolding of I0, denoted 
mu(I0), respectively. Notice that mu(I0) ⊆ SC(I0). Therefore, the images taken into consideration in LK(I, J ) are also in the 
sum of LKC (I, J ), but LKC (I, J ) takes into consideration more images of J . Both measures capture all the linking with images 
that may impose TCs to I0. Moreover, for closed chains, LKC is a topological invariant and LKC = LK P . On the other hand, 
one can imagine conformations for which LK is not a topological invariant even for closed chains and LK �= LK P , but, for the 
simulations of the physical systems under study it is expected that for closed chains LK is a topological invariant and it is 
equal to LK P . Notice also that LKC is not symmetric, while LK is symmetric both for open or closed chains. Comparing LKC

and LK with respect to computational cost, we notice that LK requires less computational effort. Recall that for two chains of 
n edges each, the computation of the Gauss linking number is of the order O (n2). Let k and m denote the number of pairs 
of chains (i.e. pairs I0, J v ) used in the definition of LK(I, J ) and LKC (I, J ) respectively. Then the computation of LK is of the 
order O (kn2) and that of LKC of the order O (mn2). Notice that I0 has length nb, where b is the bond length. Therefore its 
minimal unfolding (used for the computation of LK) may consist of up to �nb/l� cells, where l is the length of an edge of 
the cubic simulation cell. This occurs when I0 has a rod-like conformation. The chain cell (used for the computation of LKC ) 
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Algorithm 4: Computation of LK(I, J ).

1. Find the minimal unfoldings of I0, mu(I0), and J0, mu( J0) (see Algorithm 1).
2. Find the images of J which intersect the minimal unfolding of I0:
Img = {(0,0,0)} *** J0 always intersects mu(I0) ***
for i = 1 to |mu(I0)|

�i = the i-th vector in mu(I0)

for j = 1, to |mu( J0)|
�j = the j-th vector in mu( J0)

�v =�i + �j *** J0 + �v intersects mu(I0) ***
if �v /∈ Img then

append �v to Img
endif

end
end
4. Finally, compute the local periodic linking number:
LK = 0
n J =number of vertices in J0

for k = 1 to |Img|
�k = k-th vector in Img
*** define Jk = J0 + �k ***
for j = 1 to n J

�j0 =the j-th vertex of J0
�jk = �j0 + �k ***this is the j-th coordinate of Jk***

end
Compute L(I0, Jk)

LK = LK + L(I0, Jk)

end

Fig. 13. (a) Representative atomistic PE sample and (b) the corresponding reduced network.

consists of at most �(nb/2)2/l� cells (again when I0 has a rod-like conformation). The same holds for J0. Therefore, there are 
at most �nb/l� images of J0 intersecting each cell of the minimal unfolding or the chain cell of I0. Thus, k ≤ �(nb)2/l2� and 
m ≤ �(nb)3/4l2�. So, in the worst case, the computation of LK , resp. LKC , is of the order O (n4), resp. O (n5). The density of a 
system of two generating chains of n +1 vertices each is ρ = (2n+2)b

l3
. It follows, that the computation of LK , resp. LKC , scales 

in a way that depends on the density and the length of the chains as: O (ρ2/3n3n1/3), resp. O (ρ2/3n4n1/3), in the worst 
case. We notice that, since the Gauss linking number of two edges is bounded above by 1/2, then the Gauss linking number 
of two images is bounded above by n2/2. This indicates that some very rough upper bounds of LK and LKC in the worst 
case are LK ≤ �n4b2/l2�/2 and LKC ≤ �n5b3/4l2�/2. We could get an average upper bound as 〈|LK|〉 ≤ �(nb)2/l2�〈|L|〉 and 
〈|LKC |〉 ≤ �(nb)3/4l2�〈|L|〉. This suggests that 〈|LKC |〉 − 〈|LK|〉 ≤

(
�(nb)3/4l2� − �(nb)2/l2�

)
〈|L|〉 ≈ (nb/4 − 1)�(nb)2/l2�

)
〈|L|〉. 

However, these are very rough upper bounds for 〈|LK|〉, 〈|LKC |〉 and 〈|LKC |〉 −〈|LK|〉, and in order to obtain meaningful upper 
bounds or even approximations, further study is needed.

8. Application to polymers

In this section we apply the cell and the local periodic linking number to samples of polyethylene (PE) frames. First, we 
examine how the local periodic linking number captures the entanglement complexity in a polymer melts and use it to 
estimate the effect of the CReTA (Contour Reduction Topological Analysis) [8] algorithm to the linking of the chains.

Next, we compare the cell periodic linking number and the local periodic linking number to the (global) periodic linking 
number for the same systems. The data analyzed concerns 80 PE frames [8] of density ρ ≈ 0.77 − 0.78 g/cm3. Each frame 
is generated by 8 PE chains of 1000 beads each, so finally our results on LK are based on 2240 distinct pairs of PE chains.
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Fig. 14. Figure A shows the normalized probability distribution of LK for the original and the corresponding reduced chains in a PE-1000 melt and Figure B 
the probability distribution of the corresponding differences. Figure C shows the normalized probability distribution of LK for the original and reduced 
chains after end-to-end closure and Figure D shows the corresponding differences.

8.1. The CReTA algorithm and the local periodic linking number

To study the entanglement complexity present in a given polymer system, one has to coarse grain the polymer chains at 
a level where certain geometrical characteristics relevant to entanglement become evident. The CReTA (Contour Reduction 
Topological Analysis) [8] algorithm fixes chain ends in space, and while prohibiting chain crossing, it minimizes (shrinks) 
simultaneously the contour lengths of all chains, until they become sets of rectilinear strands coming together at the nodal 
points (TCs) of a network of primitive paths. When there are no possible alignments left, then shrink the diameter of the 
beads of each chain and continue the same process, until a minimum thickness is achieved and no alignment moves are 
possible. Fig. 13 shows an atomistic polymer sample and the corresponding reduced network.

The CReTA algorithm has been shown [8,84] to give a meaningful representation of the underlying topology of a polymer 
melt by comparing it to experimental data. In [57], by using the local periodic linking number LK , we examined the extent to 
which the CReTA method preserves that linking measure of entanglement in PE melts, or if critical entanglement information 
is lost in the reduction process. To do this, we computed the normalized probability distribution of LK for pairs of PE chains 
in a frame and compared it to the LK for the corresponding reduced pairs. Fig. 14(A) shows the probability distribution of 
the pairwise local periodic linking numbers for the original and CReTA reduced PE chains. The two distributions are quite 
similar and normal centered, as expected for random coils. The mean absolute value of LK is 1.97 and the mean absolute 
value of LK of pairs of reduced chains is 2.01. These findings suggest that the TCs present in the system do not only have a 
local character but the system is non-trivially linked. Moreover, we observe that the maximum value of LK is approximately 
10, suggesting the presence of pairs with significant linking. Fig. 14(B) shows the probability distribution of the difference 
of LK before and after the application of the CReTA algorithm, i.e. D = LKoriginal − LKreduced . We note that the distribution 
is quite narrow (with standard deviation 0.30), has mean −0.19, and mean absolute difference (i.e. < |D| >) of the local 
periodic linking between original and reduced chains of 0.29, indicating that LK is about the same for original and reduced 
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Fig. 15. Figure A shows the normalized probability distribution of LK for the original chains before and after end-to-end closure and Figure B the proba-
bility distribution of the corresponding differences. Figure C shows the normalized probability distribution of LK for the reduced chains before and after 
end-to-end closure and Figure D shows the corresponding differences.

pairs of chains. Thus, at least with respect to the local linking, one can study the entanglement of a PE melt in its reduced 
representation after the application of the CReTA algorithm.

Since a popular method to study the entanglement of linear polymers is to perform direct end-to-end closure [33,85,86]
of the chains and study them topologically, by using LK we have tested whether the method of direct end-to-end closure 
is reliable and if LK can detect topological differences between the open and closed original and reduced systems. In [57]
we showed that the method of end-to-end closure retains much but not all the topological information from the original in 
the reduced systems, by computing the local periodic linking number LK after performing end-to-end closure to the original 
chains and comparing it to the LK after performing end-to-end closure to the corresponding reduced chains. Fig. 14(C) shows 
the normalized LK for the end-to-end closures of the original and the corresponding reduced chains. We notice a smaller 
overlap of the two distributions. The mean absolute value of LK for the original closed chains is 2.01 and the mean absolute 
value of LK for the reduced closed chains is 1.86. Fig. 14(D) shows the normalized probability distribution of the difference 
D = LKOrgClosed − LKRedClosed . We can see that the distribution is a bit broader having standard deviation 0.92 in comparison 
with the open data. The mean absolute difference is 0.57. We could expect LK to be invariant for closed chains in most 
cases. The end-to-end closure is performed, in this case, before and after the application of the CReTA algorithm. Thus 
the observed differences between the original and reduced chains are most likely due to movements during the reduction 
algorithm in which a chain crossed the path of the end-to-end closure.

Next we compute the difference between the LK for open and closed original chains and the difference between 
the LK for open and closed reduced chains. Figs. 15(A) and 15(C) show the normalized LK for the original open and 
the corresponding original closed chains and the normalized LK for the reduced open and the corresponding reduced 
closed chains respectively. In both cases, we notice an even smaller overlap between the two distributions. In Figs. 15(B) 
and 15(D) we show the normalized probability distribution of the difference LKOrgOpen − LKOrgClosed and of the difference 
LKRedOpen − LKRedClosed respectively. We can see that the distributions are broader, with standard deviations 2.00 and 1.91, 
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Fig. 16. Approximations of the periodic linking number of chain 1 with chains 2, 3, 4 and 5 in a PE frame. The point at k = 0 corresponds to the local 
periodic linking number. The point at k = 1, corresponds to the cell periodic linking number and for k ≥ 2, LKkC (I, J ), is computed by increasing the chain 
cell of I0 by one in each direction at every iteration. Thus, as k increases, LKkC becomes a better approximation of LK P .

respectively. The mean absolute difference is 1.57 and 1.52 respectively. This shows that the local periodic linking number 
retains similar but distinct information for open and closed chains.

8.2. Comparison of the local and cell periodic linking number to the (global) periodic linking number

In this section we compare the local and cell periodic linking number to the global periodic linking number. To do this, 
for each PE frame we compute LKC for an increasing size of chain cell. Let LKkC denote the cell periodic linking number for 
a chain cell increased by k cells in each direction to form a larger cell. Notice that as k increases, more and more images are 
taken into consideration in the computation of LKkC symmetrically around the central cell, and, thus, LKkC tends to LK P . In 
order to reduce computational cost, we use the reduced frames which approximate the polymer configurations. Our results 
indicate that LKkC ≈ LKC , ∀k. Fig. 16(a)–(d) shows the linking of a chain with other chains in a melt. For cell size 0, the 
data points correspond to the local periodic linking number of I with J , LK(I, J ). For cell size 1 the data points correspond 
to the cell periodic linking number of I with J , LKC (I, J ). For cell size greater than one the data points show LKkC (I, J ), 
k = 2, . . . , 15.

We observe that for all pairs of chains, LKkC converges to a limiting value, as expected that LKkC tends to LK P . Also we 
notice that almost for all pairs of chains, LKC is within an error of 0.1 from the limiting value. This suggests that LKC is 
a good approximation of LK P . So, we expect that LKC (I, J ) ≈ LKC ( J , I), since LKC (I, J ) ≈ LK P (I, J ) = LK P ( J , I) ≈ LKC ( J , I). 
Moreover, since LKC ≈ LK P , we expect that the dependence of LKC on SC(I) in the case of open chains is weak.

Our numerical results indicate that the number of images used for the computation of LK , k, are related to the number of 
images used for the computation of LKC , m, by 〈m〉 ≈ 10〈k〉, in accordance with the predictions in Remark 43 for n = 1000, 
b = 1, l = 62.35. We find 〈|LKC |〉 − 〈|LK|〉 = −0.0072. Therefore, on extracting average information from the melt, both 
measures give similar averages. A more informative quantity however, is the mean absolute difference between the two 
measures, which is equal to 〈|LKC − LK|〉 = 0.4020 for this system. This suggests that there exist some pairs of chains for 
which the values can differ significantly. Indeed, we observe that 〈|LKC (I, J )| − 1 ≤ |LK(I, J )| ≤ |LKC (I, J )| + 1. This indicates 
that the local entanglement is similar, but different than the global entanglement.
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Fig. 17. Approximations of the periodic linking number with self-images of chain 1 in a PE frame. The point at k = 0 corresponds to the local periodic linking 
number with self-images. The point at k = 1, corresponds to the cell periodic linking number with self-images and for k ≥ 2, SLKkC (I, J ), is computed by 
increasing the chain cell of I0 by one in each direction at every iteration. Thus, as k increases, SLKkC becomes a better approximation of SLK P .

By computing LK and LKC after performing end-to-end closure of the chains, the numerical results show that the two 
measures coincide (results not shown here). By definition, we know that for closed chains LK P = LKC , but it is possible that 
LK �= LK P . Thus, our results suggest that, for closed chains, for most practical purposes, one may consider that LK = LKC =
LK P .

Fig. 17 shows the cell periodic linking number with self-images of I , for increasing cell size, SLKkC (I). Again, the data 
point at cell size 0 is the local periodic linking number with self-images, SLK(I). The data point at cell size 1 is the cell 
periodic linking number with self-images, SLKC (I) and the data points at larger cell size are SLKkC (I), k = 3, . . . , 15. The data 
are very similar to that of the periodic linking number of I and J . We observe that SLKkC (I) converges to a limiting value 
and, as expected that SLKkC (I) tends to SLK P (I). We notice that |SLKC (I)| ≈ |SLK16C (I)| − 0.2 and |SLK(I)| = |SLKC (I)| − 0.3. 
Thus, SLKC is a good approximation of SLK P and SLK captures similar but different information than SLKC .

9. Conclusions

Systems employing PBC are often used in applications. Due to the PBC, measuring the entanglement in these systems is 
more complicated. In this study we defined the periodic linking number, LK P , and the periodic self-linking number, SLP , as 
measures of entanglement of chains in a system employing PBC and we studied their properties. Systems employing one, 
two or three PBC are related to 3-manifolds, ST , T 2 × I and T 3, respectively. In the case of closed chains, LK P is an integer 
topological invariant which is equal to the intersection number of two closed chains in ST , T 2 × I or T 3, respectively (Propo-
sition 44). Also, it can be computed using only one simulation cell (Proposition 8). In the case of open or infinite chains 
(the latter correspond to homologically non-trivial chains in ST , T 2 × I or T 3, respectively), LK P is an infinite summation 
which we proved converges (Theorems 18, 24, 33). For open and infinite chains LK P is a real number that is a uniformly 
continuous function almost everywhere of the chains coordinates.

For the purpose of applications to polymers, where the short range interactions may be more relevant, we defined two 
approximations of the periodic linking number, the cell periodic linking number, LKC , and the local periodic linking number, 
LK , and we applied them to PE melt samples. The numerical results suggest that LK and LKC capture similar entanglement 
information, but LKC provides a better approximation of LK P than LK .
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Fig. 18. In the case of 3 PBC, there are three auxiliary curves that represent the Borromean rings. Surgery along the Borromean rings gives T 3.

Appendix A. Identification spaces

We notice that a generating cell with one, two, or three PBC defines an identification space that is created by identifying 
the opposite faces of the cell with respect to the PBC. This space is the solid torus, ST = S1 × D , in the case of one PBC, 
the thickened torus, T 2 × I = S1 × S1 × I , in the case of two PBC, or the three torus, T 3 = S1 × S1 × S1, in the case of 
three PBC respectively. Upon identification of the cell with respect to the PBC all the arcs of a generating chain, say i, get 
connected to form a closed or open knotted curve in the identification space, ST , T 2 × I or T 3, in case of one, two or three 
PBC respectively, which we shall call identification chain and shall be denoted as Ī .

The identification of two opposite faces can be realized via a simple arc that does not intersect the cell joining the middle 
points of the opposite faces. This arc shall be called generic closing arc. Giving natural orientations, front–back, right–left and 
top–bottom to the faces of the cell, it induces a natural orientation on the generic closing arcs. For each generating chain, 
say i, in the cell, we define a closing arc, as an oriented arc that connects a pair of corresponding endpoints of i on opposite 
faces of the cell, such that it does not intersect the cell, it is parallel to the corresponding generic closing arc and such 
that it inherits the orientation of the arcs of i that it connects. Then, the arcs that compose the generating chain i together 
with all closing arcs get connected to form one curve in R3 that we shall call realized chain, and shall be denoted as ī (see 
Fig. 18).

Note that the realized chain ī is not sufficient to unambiguously represent, in R3, the identification chain Ī in the 
identification space. In order to do this we use auxiliary curves to represent the identification space, following the method 
of [87], see also [56]. Namely, by contracting the cell to a point, an oriented generic closing arc with that point bounds a 
disc. A simple closed curve piercing that disc at the center once with positive orientation shall be called an auxiliary curve. 
In this manner, we define the auxiliary curves α1, α2, α3 for the three pairs of opposite faces. In the case of two PBC, 
there are only two auxiliary curves, which form the Hopf link, and in the case of three PBC, the three auxiliary curves form 
the Borromean rings [79]. Let L denote the link in R3 that is formed by the auxiliary curves, that is, L = α1 or α1 ∪ α2 or 
α1 ∪ α2 ∪ α3. Then we can unambiguously represent the identification chain Ī by the mixed realized link ī ∪ L in R3 (see 
Fig. 18).

Appendix B. Linking numbers from the cell

As we discussed in the introduction, the periodic system consists in an infinite number of chains. So, measuring the 
linking number of all the pairs of chains in the system requires an infinite calculation. However, infinitely many pairs of 
chains are in the same relative position, thus their linking is the same. We would like to compute the linking number of 
all the different pairs of chains. On the other hand we know that the periodic system is generated by one cell, containing 
only a finite number of generating chains. These give rise to a finite number of identification chains in the identification 
space, to a finite number of realized chains in R3 and to a finite number of free chains in the periodic system. We would 
like to extend the Gauss linking number to chains in PBC and retain its main properties. Namely, that it is symmetric, that, 
when the generating chains in the cell form closed chains in the periodic system, it is a topological invariant and that, 
when the generating chains in the cell form open chains in the periodic system it is a continuous function of the chains 
coordinates. Let us examine the different definitions of linking number that occur for these different types of chains. These 
give a number of alternatives that will lead to the appropriate definition of linking in PBC. Namely:

Linking between two generating chains, L(i, j). Ideally, one would like to measure the linking in the system directly from 
the cell. Indeed, let i, j be two generating chains in the cell. These may not form a link, since each one may 
consist of many disconnected arcs. Let i1, . . ., ik denote the arcs that compose the generating chain i, and let j1, 
. . ., jl denote the arcs that compose the generating chain j. Then one can compute the linking integral over i and 
j by summing up the linking numbers of each pair of arcs. That is, we define the generating linking number as 
L(i, j) = ∑k

m=1
∑l

n=1 L(im, jn). We notice that this is finite, but it may not be a topological invariant even if the 
generating chains were closed (see Fig. 19 for an illustrative example). Moreover, this measure of entanglement 
would not capture the global entanglement between any two complete unfoldings of the two generating chains in 
the periodic system.
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Fig. 19. Example of two cells which generate topologically equivalent closed chains in the periodic system. Above is shown a cell with gen-
erating chains i and j formed by the arcs: ei,1 = {(0.3, 0.5, 0.4), (0.3, 0.5, 1)}, ei,2 = {(0.3, 0.5, 0), (0.3, 0.5, 0.2), (0.9, 0.5, 0.2), (0.9, 0.5, 0)}, ei,3 =
{(0.9, 0.5, 1), (0.9, 0.5, 0.4), (0.3, 0.5, 0.4)} and e j,1 = {(0.7, 0.3, 0.5), (1, 0.3, 0.5)}, e j,2 = {(0, 0.3, 0.5), (0.5, 0.3, 0.5), (0.5, 0.8, 0.5), (0, 0.8, 0.5)}, e j,3 =
{(1, 0.8, 0.5), (0.7, 0.8, 0.5), (0.7, 0.3, 0.5)}, respectively. Then, L(i, j) = 0.0932. Below is shown a topologically equivalent system, where j is re-
placed by j′ formed by the arcs: e j′,1 = {(0.7, 0.3, 0.5), (1, 0.1, 0.5)}, e j′,2 = {(0, 0.1, 0.5), (0.5, 0.3, 0.5), (0.5, 0.8, 0.5), (0, 0.8, 0.5)} and e j′,3 =
{(1, 0.8, 0.5), (0.7, 0.8, 0.5), (0.7, 0.3, 0.5)}. Then, L(i, j′) = 0.0759 �= L(i, j), indicating that the linking number between two closed generating chains is 
not a topological invariant.

Linking between two realized chains, L(ī, j̄). Two realized chains, ī, j̄, form a 2-component link in R3 for which we can 
compute their usual linking number, L(ī, ̄j), that we call realized linking number. This is a topological invariant for 
closed and infinite generating chains. However, we notice that for infinite generating chains the corresponding 
realized chains are intrinsically linked with the auxiliary curves that represent the identification space, so we 
need to take into consideration also the linking of ī , j̄ with the auxiliary link that represents the identification 
space [87,76,77]. This is not going to be pursued here. In the case of open generating chains L(ī, ̄j) is not even 
well-defined since the Gauss linking integral of open chains depends strongly on the geometry of the chains. Thus, 
L(ī, ̄j) will attribute different values for different choices of closing arcs, even if the generating chains are fixed.

Linking between two identification chains, int(σ , J ). Two identification chains, Ī , J̄ , form a 2-component link in the iden-
tification space. Then we can define their linking number, called identification linking number, as int(σ , J̄ ), where 
σ denotes a homological surface (a 2-chain) whose boundary is Ī , and “int” denotes the intersection number be-
tween J̄ and σ . This is meaningful and well-defined only in the case of closed generating chains. In the case 
of open chains it is not possible to define a 2-chain with boundary an open identification chain. In the case of 
infinite generating chains a more complex definition of intersection number, relative to the identification space, 
can be used in order to measure their linking.
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Notice that all the linking numbers defined above are clearly symmetric and finite, but they fail to retain main properties 
of the Gauss linking number.

Appendix C. Connecting LK P with the linking number in identification spaces

In this section we relate the periodic linking number of two closed free chains to the linking numbers of related con-
figurations. We will show that the periodic linking number of two closed free chains coincides with the linking number of 
two closed chains that lie in another manifold than R3.

There is a correspondence between the periodic system and the identification space via a covering map. Let M denote the 
identification space (ST , T 2 × I or T 3). Then R3 is the universal cover of M , so, there is a local homeomorphism p : R3 → M
such that p(Iu) = Ī and p( J v) = J̄ for all images Iu of I and all images J v of J . Then there exist induced homomorphisms 
p∗

1 : H1(R
3) → H1(M) and p∗

2 : H2(R
3) → H2(M). Thus, homologically trivial elements in R3 are mapped to homologically 

trivial elements in M .
We notice that, if the free chains I , J in R3 are closed, their images can be viewed as 1-cycles which represent trivial 

elements in H1(R
3). Thus Ī , J̄ represent also trivial elements in H1(M), so there exist 2-chains σ Ī , σ J̄ in T 3 for which 

∂σ Ī = Ī and ∂σ J̄ = J̄ .
For two 1-cycles in an oriented 3-manifold, we can define their intersection number as the algebraic sum of intersections 

between the one 1-cycle and the 2-chain in the 3-manifold that is bounded by the other [88]. This number is equal to the 
linking number between the two cycles seen as curves in R3 [88].

For our case of closed free chains, the following holds:

Proposition 44. Let I , J denote two closed free chains in a system with PBC. Then

LK P (I, J ) = int(σ , J̄ ) = L(ī, j̄), (C.1)

where σ denotes the 2-chain in T 3 with boundary Ī and int denotes the intersection number of a 2-chain with a 1-cycle.

Proof. Let 	 denote the 2-chain in R3 whose boundary is I0. Then ∂σ = Ī = p(I0) = p(∂	) = ∂ p(	). Thus p(	) is homolo-
gous to σ , and by definition of the intersection number we know that int(σ , J̄ ) = int(p(	), J̄ ). Thus each intersection point 
of J̄ with σ lifts to exactly one point in 	 and one point on an image of J . So LK P (I, J ) = ∑

v L(I, J v) = ∑
v int(	, J v) =

int(σ , J̄ ).
Since both Ī , J̄ represent trivial elements in H1(M), then int( J̄ , σ Ī ) = L(ī, ̄j). �
Using the same method as in the proof of Proposition 8 we can provide a combinatorial proof of Proposition 44 for 

systems employing one or two PBC. First we will need the following Lemma:

Lemma 45. A generating chain i is closed if and only if there is an even number of intersection points on each face, and half of them 
are starting points of arcs in the cell and half are endpoints of arcs in the cell.

Proof. Let us project the periodic system on the xy-plane. Then with probability one the projection of I0 is a collection 
of simple closed curves, say bi , in the xy-plane which share one or more common points (the self-intersections of the 
projection of I0). By Jordan’s theorem, each one of these curves divides the xy-plane into an interior and exterior region. 
The projections of the x- and y-faces of the cells of the periodic system are lines, say εx , εy , parallel to the x- and y-axis. If 
a line coming from the exterior region, intersects a curve and enters the interior region, then it must cross it again in order 
to return to the exterior region. Thus a line may intersect a curve bi an even number of times, half towards the interior 
of the region that bi bounds, and the other half towards the exterior. For a line εx (resp. εy) parallel to the x-axis (resp. 
y-axis), each intersection corresponds to an intersection of an arc of I0 with the x-face (resp. y-face) of the cell in which it 
lies in the periodic system. Then the translation of this arc of I0 in the generating cell intersects the x-face (resp. y-face) of 
the generating cell. In order to see the result for the z-faces, we follow the same thinking by projecting the periodic system 
towards the zy-plane. �
Alternative proof of Proposition 43 for one and two PBC. Let us project the realized chains to the xy-plane. We can trans-
form the x- and y-closing arcs so that when projected towards �k, they do not intersect the projection of the cell. Then,

L(ī, j̄) = 1

2

∑
c∈cr(ī, j̄)

sign(c) = 1

2

( ∑
c∈cr(i, j)

sign(c) +
∑

c∈cr(closure arcs i,
closure arcs j)

sign(c)
)
, (C.2)

where cr is defined as in the proof of Proposition 8. Let us focus on the second term. By the definition of closing arcs 
follows that to this term contribute only the crossings between the x-closing arcs of ī (or j̄) and y-closing arcs of j̄ (or ī). 
Also, by the definition of closing arcs follows that the projection of each x-closing arc of ī (or j̄) intersects the projection of 
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every y-closing arc of j̄ (or ī) exactly once and either the projection of all the x-closing arcs are “over” the projection of the 
y-closing arcs or they are all “under”. By Lemma 45 for each x-closing arc of ī there exists another x-closing arc of ī with 
the opposite orientation. Since they both intersect a y-closing arc of j̄ (if there is one), and they are both over or under it, 
the algebraic sum of these crossings is zero. Thus

L(ī, j̄) = 1

2

∑
c∈cr(i, j)

sign(c) =
(

L(i, j)
)

xy
. (C.3)

By Proposition 8 follows that LK P (I, J ) =
(

L(i, j)
)

xy
= L(ī, ̄j). �

By Proposition 44 and Corollary 10 we have the following connection of SLP to the self-linking number in identification 
spaces:

Corollary 46. Let I denote a closed free chain in PBC and ̄i the corresponding realized chain, then SLP (I) = Sl(ī).

Proof. Let ī and īε denote the realized chains of the free chains I and Iε respectively. Then by definition of Iε , the arcs 
of īε inside the cell are the normal push-offs of īε . We can choose the closure arcs of īε so that they are also the normal 
pusf-offs of the closure arcs of ī. Thus īε is also the variation free curve of ī. We have that

SLP (I) = LK P (I, Iε) = L(ī, īε) = Sl(ī). � (C.4)
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