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Abstract In this article we give a detailed overview of the Complex Multiplication 4

(CM) method for constructing elliptic curves with a given number of points. In the 5

core of this method, there is a special polynomial called Hilbert class polynomial 6

which is constructed with input a fundamental discriminant d < 0. The construction 7

of this polynomial is the most demanding and time-consuming part of the method 8

and thus the use of several alternative polynomials has been proposed in previous 9

work. All these polynomials are called class polynomials and they are generated by 10

proper values of modular functions called class invariants. Besides an analysis on 11

these polynomials, in this paper we will describe our results about finding new class 12

invariants using the Shimura reciprocity law. Finally, we will see how the choice of 13

the discriminant can affect the degree of the class polynomial and consequently the 14

efficiency of the whole CM method.AQ1 15

1 Introduction 16

Complex Multiplication (CM) method is a well-known and efficient method for the 17

construction of elliptic curves with a given number of points. In cryptographic appli- 18

cations, it is required that the order of the elliptic curves satisfies several restrictions 19

and thus CM method is a necessary tool for them. Essentially, CM method is a way

AQ2

20

The authors were partially supported by the Project “Thalis, Algebraic modeling of topological and
computational structures”. The Project “THALIS” is implemented under the Operational Project
“Education and Life Long Learning”and is co-funded by the European Union (European Social
Fund) and National Resources (ESPA).

E. Konstantinou (�)
Department of Information and Communication Systems Engineering,
University of the Aegean, Karlovassi, Samos 83200, Greece
e-mail: ekonstantinou@aegean.gr

A. Kontogeorgis
Department of Mathematics, University of Athens, Panepistimioupolis, 15784 Athens, Greece
e-mail: kontogar@math.uoa.gr

© Springer International Publishing Switzerland 2015
N.J. Daras, M.Th. Rassias (eds.), Computation, Cryptography,
and Network Security, DOI 10.1007/978-3-319-18275-9_12

mailto:ekonstantinou@aegean.gr
mailto:kontogar@math.uoa.gr


UNCORRECTED
PROOF

E. Konstantinou and A. Kontogeorgis

to use elliptic curves defined over the field of complex numbers in order to construct 21

elliptic curves defined over finite fields with a given number of points. Therefore, we 22

will begin our article by giving a brief introduction to the theory of elliptic curves 23

over a field K, which for our purposes will be either the finite field Fp or the field of 24

complex numbers C. 25

We describe the CM method using first the classical j-invariant and its cor- 26

responding Hilbert polynomial. Hilbert polynomial is constructed with input a 27

fundamental discriminant d < 0. The disadvantage of Hilbert polynomials is that 28

their coefficients grow very large as the absolute value of the discriminant D D jdj 29

increases and thus their construction requires high precision arithmetic and a huge 30

amount of disk space to store and manipulate them. 31

Supposing that f is a modular function, such that f .�/ for some � 2 Q.
p�D/ 32

generates the Hilbert class field of Q.
p�D/, then its minimal polynomial can 33

substitute the Hilbert polynomial in the CM method and the value f .�/ is called 34

class invariant. These minimal polynomials are called class polynomials, their 35

coefficients are much smaller than their Hilbert counterparts and their use can 36

considerably improve the efficiency of the whole CM method. Some well-known 37

families of class polynomials are: Weber polynomials [28], MD;l.x/ polynomi- 38

als [24], Double eta (we will denote them by MD;p1;p2 .x/) polynomials [7] and 39

Ramanujan polynomials [20]. The logarithmic height of the coefficients of all these 40

polynomials is smaller by a constant factor than the corresponding logarithmic 41

height of the Hilbert polynomials and this is the reason for their much more efficient 42

construction. 43

In what follows, we will present our contribution on finding alternative class 44

invariants (instead of the classical j-invariant) which can considerably improve the 45

efficiency of the CM method. Also we will see how the choice of the discriminant 46

can affect the efficiency of the class polynomials’ construction. 47

2 Preliminaries 48

The theory of elliptic curves is a huge object of study and the interested reader is 49

referred to [2, 30] and references within for more information. An elliptic curve 50

defined over a field K of characteristic p > 3 is the set of all points .x; y/ 2 K � K 51

(in affine coordinates) which satisfy an equation 52

y2 D x3 C ax C b (1)

where a; b 2 K satisfy 4a3 C 27b2 ¤ 0, together with at special point OE which is 53

called the point at infinity. The set E.K/ of all points can be naturally equipped with 54

a properly defined addition operation and it forms an abelian group (see [3],38] forAQ3 55

more details on this group). 56

An elliptic curve E.Fq/ defined over a finite field Fq is then a finite abelian group 57

and as such it is isomorphic to a product of cyclic groups: 58
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E.Fq/ Š
sY

iD1

Z=niZ: 59

The arithmetic complexity of this elliptic curve is reduced to the smallest cyclic 60

factor of the above decomposition. For example, we can have an elliptic curve of 61

huge order which is the product of a large amount of cyclic groups of order 2. The 62

discrete logarithm problem is trivial for this curve. For cryptographic algorithms, 63

we would like to have elliptic curves which do not admit small cyclic factors and 64

even better elliptic curves which have order a large prime number. This forces the 65

curve to consist of only one cyclic factor. 66

In order to construct an elliptic curve with a proper order, we can either generate 67

random elliptic curves, compute their order and then check their properties or we 68

can use a method which constructs elliptic curves with a given order which we 69

known beforehand that satisfies our restrictions. In this article we will use the second 70

approach and present the method of Complex Multiplication. This method uses 71

the theory of elliptic curves defined over the field of complex numbers in order 72

to construct elliptic curves over finite fields having the desired order. 73

Definition 1. A lattice L in the field of complex numbers is the set which consists 74

of all linear Z-combinations of two Z-linearly independent elements e1; e2 2 C. 75

Given a lattice L Weierstrass defined a function } depending on the lattice L 76

} W C ! C 77

by the formula: 78

}.z; L/ D 1

z2
C

X

�2L�f0g

�
1

.z C �/2
� 1

�2

�
: 79

The function } satisfies the differential equation 80

} 0.z/2 D 4}.z/3 � g2.L/}.z/ � g3.L/: 81

Therefore the pair .x; y/ D .}.z/; } 0.z// parametrizes the elliptic curve 82

y2 D 4x3 � g2.L/x � g3.L/: 83

Remark 1. The transcendental functions .x; y/ D .sin.x/; cos.x// D .sin.x/; sin0.x// 84

satisfy the equation x2 C y2 D 1, therefore they parametrise the unit circle. 85

The function } is periodic with period the lattice L, i.e. 86

.}.z C �/; } 0.z C �// D .}.z/; } 0.z// for every � 2 L: 87
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At the level of group theory this means that 88

C

L
Š E.C/: 89

From the topological viewpoint, this means that the fundamental domain of the 90

lattice, i.e. the set 91

z D ae1 C be2 W 0 � a; b < 1 92

covers the elliptic curve while the border is glued together giving to the elliptic curve 93

the shape of a “donut”. 94

The functions g2.L/; g3.L/ depend on the lattice L, and are given by the formula 95

g2.L/ D 60
X

�2L�f0g

1

�4
g3.L/ D 140

X

�2L�f0g

1

�6
: 96

2.1 Algebraic Theory of the Equation y2 D x3 C ax C b 97

In this paragraph we will study certain invariants of the elliptic curve given by the 98

equation: 99

y2 D x3 C ax C b: 100

For every polynomial of one variable f .x/ we can define the discriminant. This is a 101

generalization of the known discriminant of a quadratic polynomial and is equal to 102

zero if and only if the polynomial f has a double root. 103

For the special case of the cubic polynomial x3 Cax Cb the discriminant is given 104

by the formula: �16.4a3 C 27b2/. We observe that by definition all elliptic curves 105

have non-zero discriminant. 106

The j-invariant of the elliptic curve is defined by: 107

j.E/ D .4a/3

4a3 C 27b2
D � 4a3

�.E/
: 108

Proposition 1. Two elliptic curves defined over an algebraically closed field are 109

isomorphic if and only if have the same j-invariant. 110

This proposition does not hold if the elliptic curves are considered over a non- 111

algebraically closed field k. They became isomorphic over a quadratic extension 112

of k. 113

Proposition 2. For every integer j0 2 K there is an elliptic curve E defined over K 114

with j-invariant equal to j0. 115
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Proof. If j ¤ 0; 1728, then the elliptic curve defined by 116

E W y2 C xy D x3 � 36

j0 � 1728
x � 1

j0 � 1728
117

has discriminant 118

�.E/ D j30
.j0 � 1728/3

and j.E/ D j0: 119

When j0 D 0 we consider the elliptic curve: 120

E W y2 C y D x3; with �.E/ D �27 and j D 0 121

while for j0 we consider the elliptic curve: 122

E W y2 D x3 C x; with �.E/ D �64 and j D 1728: 123

Proposition 3. Every element in the finite field Fp is the j-invariant of an elliptic 124

curve defined over Fp. For j ¤ 0; 1728 this elliptic curve is given by 125

y2 D x3 C 3kc2x C 2kc3; 126

for k D j=.1728�j/ and c an arbitrary element in Fp. There are two non-isomorphic 127

elliptic curves E, E0 over Fp which correspond to different values of c. They have 128

orders 129

jEj D p C 1 � t and jEj D p C 1 C t: 130

In this section we consider the lattices generated by 1; � , where � D a C ib is a 131

complex number with b > 0. The set of such �’s is called the hyperbolic plane and 132

it is generated by H. In this setting the Eisenstein series, the discriminant and the 133

j-invariant defined above (which depend on L) can be seen as functions of � . 134

Proposition 4. The functions g2; g3; �; j seen as functions of � 2 H remain 135

invariant under transformations of the form: 136

� 7! a� C b

c� C d
;

�
a b
c d

�
2 SL.2;Z/: 137

In particular these functions remain invariant under the transformation � 7! � C 1 138

so they are periodic. Hence they admit a Fourier expansion. In the coefficients of 139

the Fourier expansion there is “hidden arithmetic information”. For example, the 140

Fourier expansion of the j-invariant function is given by: 141
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j.�/ D 1

q
C 744 C 196884q C 21493760q2 C 864299970q3 C � � � ; 142

where q D e2� i� . 143

Definition 2. We will say that the function f W E ! E is an endomorphism of 144

the elliptic curve if it can be expressed in terms of rational functions and moreover 145

f .OE/ D OE, where OE is the neutral element of the elliptic curve. 146

The set of endomorphisms will be denoted by End.E/ and it has the structure 147

of a ring where addition is the natural addition of functions and multiplication is 148

composition of functions. 149

If we fix an integer n 2 Z, then we can define the endomorphism sending P 2 E to 150

nP. In this way Z becomes a subring of End.E/. 151

For most elliptic curves defined over fields of characteristic 0, End.E/ D Z. For 152

elliptic curves defined over the finite field Fq, there is always an extra endomorphism 153

the so-called Frobenious endomorphism �, which is defined as follows: 154

The element P 2 E with coordinates .x; y/ is mapped to the element �.P/ with 155

coordinates .xq; yq/. This endomorphism is interesting because we know that x 2 NFq 156

is an element in Fq if and only if xq D x. So the elements which remain invariant 157

under the action of the Frobenious endomorphism are exactly the points of the 158

elliptic curve over the finite field Fp. 159

Proposition 5. The Frobenious endomorphism ˚ satisfies the relation 160

�2 � t� C q D 0; (2)

where t is an integer called the “trace of Frobenious”. 161

Theorem 1 (H. Hasse). The trace of Frobenious satisfies 162

jtj � 2
p

q: 163

Proposition 6. For a general elliptic curve if there is an extra endomorphism � 164

then it satisfies an equation of the form: 165

�2 C a� C b D 0; 166

with negative discriminant (the term “complex multiplication” owes his name to 167

this fact). 168

Remark 2. The bound of Hasse is equivalent to the fact that the quadratic equation 169

(2) satisfied by Frobenious has negative discriminant. 170

Let � 2 H, for example the one which satisfies the relation 171

�2 � t� C q D 0 172
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for a negative discriminant D. The theorem of complex multiplication asserts that 173

j.�/ satisfies an a polynomial f .x/ 2 ZŒx� end that the elliptic curve E� , has 174

j-invariant j.�/ end endomorphism ring End.E� / D ZŒ� �. 175

Moreover, if we reduce the polynomial f .x/ modulo p, then the roots of the 176

reduced polynomials are j-invariants which correspond to elliptic curves Fp with 177

Frobenious endomorphisms � satisfying �2 � t� C q D 0. 178

K.F. Gauss in his work Disquisitiones Arithmeticae [9] studied the quadratic 179

forms of discriminant D of the form 180

ax2 C bxy C cy2I b2 � 4ac D �D; a; b; c 2 Z .a; b; c/ D 1; 181

up to the following equivalence relation which in modern language can be defined 182

as: two quadratic forms f .x; y/ and g.x; y/ are equivalent if there is a transformation 183

� 2 SL.2;Z/ such that 184

� D
�

a b
c d

�
and f .x; y/ D g.ax C by; cx C dy/: 185

For more information on this classical subject, we refer to [6]. 186

A full set of representatives CL.D/ of the equivalence classes are the elements 187

.a; b; c/ such that 188

jbj � a �
r

D

3
; a � c; .a; b; c/ D 1; b2 � 4ac D �D 189

if jbj D a or a D c then b � 0. 190

Theorem 2. Consider � 2 H which satisfies a monic quadratic polynomial in ZŒx�. 191

Consider the elliptic curve E� D C=.Z C �Z/ which has j-invariant j.�/. 192

The complex number j.�/ satisfies an algebraic equation given by: 193

HD.x/ D
Y

Œa;b;c�2CL.D/

 
x � j

 
�b C p�D

2a

!!
2 ZŒx�: 194

Moreover a root of the reduction of the polynomial HD.x/ modulo p corresponds 195

to an elliptic curve with Frobenious endomorphism sharing the same characteristic 196

polynomial with � . 197

Example. For D D 491 we have compute the following equivalence classes for 198

quadratic forms of discriminant �491 199

CL.D/ D Œ1; 1; 123�; Œ3; ˙1; 41�; Œ9; ˙7; 15�; Œ5; ˙3; 25�; Œ11; ˙9; 3�: 200

For each of the above Œa; b; c� we compute the root 201
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� D �b C i
p

491

2s
; 202

of positive imaginary part. 203

This computation is summarized to the following table:

t3.1Œa; b; c� Root j-invariant

t3.2Œ1; 1; 123� �1 D .�1 C i
p

491/=2 �1:7082855E30

t3.3Œ3; 1; 41� �2 D .�1 C i
p

491/=6 5.977095 E9 + 1.0352632 E10I

t3.4Œ3; �1; 41� �3 D .1 C i
p

491/=6 5.9770957 E9 � 1.0352632 E10I

t3.5Œ9; 7; 15� �4 D .�7 C i
p

491/=18 �1072.7816 + 1418.3793I

t3.6Œ9; �7; 15� �5 D .7 C i
p

491/=18 �1072.7816 �1418.3793I

t3.7Œ5; 3; 25� �6 D .�3 C i
p

491/=10/ �343205.38 + 1058567.0I

t3.8Œ5; �3; 25� �7 D .3 C i
p

491/=10 �343205.38 � 1058567.0I

t3.9Œ11; 9; 13� �8 D .�9 C i
p

491/=22 6.0525190 + 170.50800I

t3.10Œ11; �9; 13� �9 D .9 C i
p

491/=22 6.0525190 � 170.50800I

204

We can now compute the polynomial 205

f .x/ D
9Y

iD1

.x � j.�i// 206

with 100-digit precision and we arrive at 207

x^9 + (1708285519938293560711165050880.0 + 0.E-105*I)*x^8 + 208
(-20419995943814746224552691418802908299264.0 + 5.527 E-76*I)*x^7 + 209
(244104497665432748158715313783583130211556702289920.0 - 3.203 E-66*I)*x^6 + 210
(168061099707176489267621705337969352389335280404863647744.0 - 8.477 E-61*I)*x^5 + 211
(302663406228710339993356777425938984884433281603698934574743552.0 + 1.179E-53*I)*x^4 + 212
(645485900085616784926354786035581108920923697188375949395393249280.0 + 5.552 E-50*I)*x^3 + 213
(957041138046397870965520808576552949198885665738183643750394920697856.0 - 1.530 E-47*I)*x^2 + 214
(7322862871033784419236596129273250845529108502221762556507445472002048.0 + 4.458 E-45*I)*x + 215
(27831365943253888043128977216106999444228139865055751457267582234307592192.0 - 3.587 E-43*I) 216

which we recognize as a polynomial with integer coefficients (all complex coeffi- 217

cients multiplied by 10�40 or a smaller power are considered to be zero and are just 218

floating point approximation garbage). 219

3 Complex Multiplication Method and Shimura 220

Reciprocity Law 221

We would like to construct an elliptic curve defined over the finite field Fp with 222

order p C 1 � m. For this case, we must construct the appropriate j 2 Fp. The bound 223

of Hasse gives us that Z WD 4p � .p C 1 � m/2 � 0. We write Z D Dv2 as a square 224

v2 times a number D which is squarefree. 225
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The equation 4p D u2 C Dv2 for some integer u satisfies m D p C 1 ˙ u. The 226

negative integer�D is called the CM-discriminant for the prime p. 227

We have x2 � tr.�/x C p 7! � D �.F/2 � 4p D �Dv2: 228

Algorithm: 229

1. Select a prime p. Select the least D together with u; v 2 Z such that 4p D 230

u2 C Dv2. 231

2. If one of the values p C 1 � u, p C 1 C u is a prime number, then we proceed to 232

the next steps, otherwise we go back to step 1. 233

3. We compute the Hilbert polynomial HD.x/ 2 ZŒx� using floating approxima- 234

tions of the j-invariant. 235

4. Reduce modulo p and find a root of HD.x/modp. This root is the desired j- 236

invariant. The elliptic curve corresponding to j-invariant j ¤ 0; 1728 is 237

y2 D x3 C 3kc2x C 2kc3; k D j=.1728 � j/; c 2 Fp: 238

To different values of c correspond two different elliptic curves E; E0 which 239

have orders p C 1 ˙ t. One is 240

y2 D x3 C ax C b 241

and the other is 242

y2 D x3 C ac2x C bc3; 243

where c is a quadratic non-residue in Fp. In order to select the elliptic curve 244

with the correct order we choose a point P in one of them and we compute its 245

order, i.e. the natural number n such that nP D OE. This order should divide 246

either p C 1 � t or p C 1 C t. 247

The CM method for every discriminant D requires the construction of polynomial 248

HD.x/ 2 ZŒx� (called the Hilbert polynomial) 249

HD.x/ D
Y

�

.x � j.�//; 250

for all values � D .�b C p�D/=2a for all integers Œa; b; c� running over a set of 251

representatives of the group of equivalent quadratic forms. 252

Let h be the order of Cl.D/. It is known that the bit precision required of the 253

generation of HD.x/ (see [23]): 254

H � Prec.D/ Š ln 10

ln 2
.h=4 C 5/ C �

p
D

ln.2/

X

�

1

a
: 255
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The most demanding step of the CM-method is the construction of the Hilbert 256

polynomial, as it requires high precision floating point and complex arithmetic. As 257

the value of the discriminant D increases, the coefficients of the grow extremely 258

large and their computation becomes more inefficient. 259

In order to overcome this difficulty, alternative class functions were proposed by 260

several authors. It was known in the literature [14, 32, 33] that several other complex 261

valued functions can be used in order to construct at special values the Hilbert class 262

field. Usually one tries functions of the form 263

	.p�/

	.�/
or

	.p�/	.q�/

	.pq�/	.�/
; 264

where 	 is the Dedekind zeta function defined by 265

	.�/ D e2� i�=24
Y

n�1

.1 � qn/; � 2 C; Im.�/ > 0; q D e2� i� : 266

All such constructions have the Shimura reciprocity law as ingredient or can be 267

written in this language. This technique was proposed by Shimura [29], but it was 268

Gee and Stevenhagen [10–12, 31] who put it in form suitable for applications. In 269

order to define Shimura reciprocity law, we have to define some minimum amount 270

of the theory of modular functions. 271

Consider the group SL.2;Z/ consisted by all 2 � 2 matrices with integer entries 272

and determinant 1. It is known that an element 273


 WD
�

a b
c d

�
2 SL.2;Z/ 274

acts on the upper complex plane H WD fz 2 C W Im.z/ > 0g by Möbious 275

transformations by 276


z D az C b

cz C d
: 277

Moreover it is known that SL.2;Z/ can be generated by the elements S W z 7! � 1
z 278

and T W z 7! z C 1. Let � .N/ be the kernel of the map SL.2;Z/ 7! SL .2;Z=NZ/. 279

Let H� be the upper plane H[P
1.Q/. One can show that the quotient � .N/nH�

280

has the structure of a compact Riemann surface which can be described as an 281

algebraic curve defined over the field Q.�N/, where �N is a primitive N-th root of 282

unity. We consider the function field FN of this algebraic curve defined over Q.�N/. 283

The function field FN is acted on by 284

� .N/=f˙1g Š Gal.FN=F1.�N//: 285
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For an element d 2 �
Z

NZ

��
we consider the automorphism 
d W �N 7! �d

N . Since the 286

Fourier coefficients of a function h 2 FN are known to be in Q.�N/, we consider the 287

action of 
d on FN by applying 
d on the Fourier coefficients of h. In this way we 288

define an arithmetic action of 289

Gal.F1.�N/=F1/ Š Gal.Q.�N/=Q/ Š
�

Z

NZ

��
; 290

on FN . We have an action of the group GL
�
2; Z

NZ

�
on FN that fits in the following 291

short exact sequence. 292

1 ! SL

�
2;

Z

NZ

�
! GL

�
2;

Z

NZ

�
det�!

�
Z

NZ

��
! 1: 293

The following theorem by A. Gee and P. Stevehagen is based on the work of 294

Shimura: 295

Theorem 3. Let O D ZŒ� be the ring of integers of an imaginary quadratic 296

number field K of discriminant d < �4. Suppose that a modular function h 2 FN 297

does not have a pole at  and Q.j/ � Q.h/. Denote by x2 C Bx C C the minimum 298

polynomial of  over Q. Then there is a subgroup WN; � GL
�
2; Z

NZ

�
with elements 299

of the form: 300

WN; D
��

t � Bs �Cs
s t

�
2 GL

�
2;

Z

NZ

�
W t C s 2 .O=NO/�

�
: 301

The function value h./ is a class invariant if and only if the group WN; acts trivially 302

on h. 303

Proof. [10, cor. 4]. 304

The above theorem can be applied in order to show that a modular function gives 305

rise to a class invariant and was used with success in order to prove that several 306

functions were indeed class invariants. Also A. Gee and P. Stevenhagen provided us 307

with an explicit way of describing the Galois action of Cl.O/ on the class invariant 308

so that we can construct the minimal polynomial of the ring class field. 309

The authors have used in [19] this technique in order to prove a claim of S. 310

Ramanujan that the function 311

R2.�/ D 	.3�/	.�=3 C 2=3/

	2.�/
312

gives rise to class invariants. Ramanujan managed somehow (we are only left with 313

the final result written in his notebook) to compute the first class polynomials 314

corresponding to this class invariant and many years later, Berndt and Chan [4] 315

proved that these first polynomials where indeed class invariants and the class 316
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polynomials written by Ramanujan were correct. We would like to notice that 317

these Ramanujan invariants proved to be one of the most efficient invariants for 318

the construction of prime order elliptic curves [20, 21] if one uses the CM method. 319

We will present now an algorithm which will allow us not only to check that a 320

modular function is a class invariant but also to find bases of vector spaces of them. 321

Let V be a finite dimensional vector space consisting of modular functions of level 322

N so that GL.2;Z=NZ/ acts on V . 323

Example 1 (Generalized Weber Functions). An example of such a vector space of 324

modular form is given by the generalized Weber functions defined as: 325

�N;0 WD p
N

	 ı
�

N 0

0 1

�

	
and �k;N WD

	 ı
�

1 k
0 N

�

	
; 0 � k � N � 1: (3)

These are known to be modular functions of level 24N [11, th5. p.76]. Notice that 326p
N 2 Q.�N/ � Q.�24�N/ and an explicit expression of

p
N in terms of �N can be 327

given by using Gauss sums [8, 3.14 p. 228]. 328

The group SL.2;Z/ acts on the .N C 1/-th dimensional vector space generated 329

by them. In order to describe this action we have to describe the action of the two 330

generators S; T of SL.2;Z/ given by S W z 7! � 1
z and T W z 7! z C 1. Keep in mind 331

that 332

	 ı T.z/ D �24	.z/ and 	 ı S.z/ D ��1
8

p
iz	.z/: 333

We compute that (see also [11, p.77]) 334

�N;0 ı S D �0;N and �N;0 ı T D �N�1
24 �N;0;

�0;N ı S D �N;0 and �0;N ı T D ��1
24 �1;N ;

for 1 � k < N � 1 and N is prime 335

�k;N ı S D
��c

n

	
i

1�n
2 �

N.k�c/
24 and �k;N ı T D ��1

24 �kC1;N ; 336

where c D �k�1 mod N. The computation of the action of S on 	 is the most 337

difficult, see [14, eq. 8 p.443]. 338

Notice that every element a 2 GL.2;Z=NZ/ can be written as b �
�

1 0

0 d

�
, 339

d 2 Z=NZ
� and b 2 SL.2;Z=NZ/. The group SL.2;Z=NZ/ is generated by 340

the elements S and T. The action of S on functions g 2 V is defined to be 341

g ı S D g.�1=z/ 2 V and the action of T is defined g ı T D g.z C 1/ 2 V . 342

So in order to define the action of SL.2;Z=NZ/ we first use the decomposition 343

based on Chinese remainder theorem: 344
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GL.2;Z=NZ/ D
Y

pjN
GL.2;Z=pvp.N/

Z/; 345

where vp.N/ denotes the power of p that appears in the decomposition in prime 346

factors. Working with the general linear group over a field has advantages and 347

one can use lemma 6 in [10] in order to express an element of determinant one 348

in SL.2;Z=pvp.N/
Z/ as word in elements Sp; Tp where Sp and Tp are 2 � 2 matrices 349

which reduce to S and T modulo pvp.N/ and to the identity modulo qvq.N/ for prime 350

divisors q of N, p ¤ q. 351

This way the problem is reduced to the problem of finding the matrices Sp; Tp 352

(this is easy using the Chinese remainder Theorem), and expressing them as 353

products of S; T. For more details and examples, the reader is referred to the article 354

of the second author [22]. 355

The action of the matrix

�
1 0

0 d

�
is given by the action of the elements 356


d 2 Gal.Q.�N/=Q/ 357

on the Fourier coefficients of the expansion at the cusp at infinity [10]. 358

4 Class Invariants and Invariant Theory 359

Since every element in SL.2;Z=NZ/ can be written as a word in S; T we obtain a 360

function � 361

(4)

where � is the natural homomorphism given by Theorem 3. 362

The map � defined above is not a homomorphism but a cocycle. Indeed, if 363

e1; : : : ; em is a basis of V , then the action of 
 is given in matrix notation as 364

ei ı 
 D
mX

�D1

�.
/�;ie�; 365

and then since .ei ı 
/ ı � D ei ı .
�/ we obtain 366

ei ı .
�/ D
mX

�;�D1

�.
/�
�;i�.�/�;�e�: 367
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Notice that the elements �.
/�;i 2 Q.�N/ and � 2 GL.2;Z=NZ/ acts on them as 368

well by the element 
det.�/ 2 Gal.Q.�N/=Q/. So we arrive at the following: 369

Proposition 7. The map � defined in Eq. (4) satisfies the cocycle condition 370

�.
�/ D �.�/�.
/� (5)

and gives rise to a class in H1.G; GL.V//, where G D .O=NO/�. The restriction of 371

the map � in the subgroup H of G defined by 372

H WD fx 2 G W det.�.x// D 1g 373

is a homomorphism. 374

The basis elements e1; : : : em are modular functions. There is a natural notion 375

of multiplication for them so we consider them as elements in the polynomial 376

algebra Q.�N/Œe1; : : : ; em�. The group H acts on this algebra in terms of the linear 377

representation � (recall that � when restricted to H is a homomorphism). 378

Classical invariant theory provides us with effective methods (Reynolds operator 379

method,linear algebra method [17]) in order to compute the ring of invariants 380

Q.�N/Œe1; : : : ; em�H . Also there is a well-defined action of the quotient group G=H Š 381

Gal.Q.�N/=Q/ on Q.�N/Œe1; : : : ; em�H . 382

Define the vector space Vn of invariant polynomials of given degree n: 383

Vn WD fF 2 Q.�N/Œe1; : : : ; em�H W deg F D ng: 384

The action of G=H on Vn gives rise to a cocycle 385

�0 2 H1.Gal.Q.�N//=Q/; GL.Vn//: 386

The multidimensional Hilbert 90 theorem asserts that there is an element P 2 387

GL.Vn/ such that 388

�0.
/ D P�1P
 : (6)

Let v1; : : : ; v` be a basis of Vn. The elements vi are by construction H invariant. The 389

elements wi WD viP�1 are G=H invariant since 390

.viP
�1/ ı 
 D .vi ı 
/.P�1/
 D vi�.
/.P�1/
 D viP

�1P
 .P�1/
 D viP
�1: 391

The above computation together with Theorem 3 allows us to prove 392

Proposition 8. Consider the polynomial ring Q.�N/Œe1; : : : ; em� and the vector 393

space Vn of H-invariant homogenous polynomials of degree n. If P is a matrix such 394

that Eq. (6) holds, then the images of a basis of Vn under the action of P�1 are class 395

invariants. 396
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For computing the matrix P so that Eq. (6) holds one can use the probabilistic 397

algorithm of Glasby-Howlett [13]. In this method one starts with the sum 398

BQ WD
X


2G=H

�.
/Q
 : (7)

We have to find 2 � 2 matrix in GL.2;Q.�N// such that BQ is invertible then 399

P WD B�1
Q . Indeed, we compute that 400

B�
Q D

X


2G=H

�.
/� Q
� ; (8)

and the cocycle condition �.
�/ D �.
/� �.�/, together with Eq. (8) allows us to 401

write: 402

B�
Q D

X


2G=H

�.
�/�.�/�1Q
� D BQ��1
� 403

i.e. 404

�.�/ D BQ
�
B�

Q

��1
: 405

We feed Eq. (8) with random matrices Q until BQ is invertible. Since non invertible 406

matrices form a Zariski closed subset in the space of matrices practice shows that 407

we obtain an invertible BQ almost immediately. For examples on this construction 408

we refer to [22]. 409

This method does not give us only some class invariants but whole vector spaces 410

of them. For example for the space of the generalized Weber functions g0; g1; g2; g3 411

defined in the work of Gee in [11, p. 73] as 412

g0.�/ D 	. �
3
/

	.�/
; g1.�/ D ��1

24

	. �C1
3

/

	.�/
; g2.�/ D 	. �C2

3
/

	.�/
; g3.�/ D p

3
	.3�/

	.�/
; 413

which are the functions defined in Example 1 for N D 3. We find first that theAQ4 414

polynomials 415

I1 WD g0g2 C �6
72g1g3; I2 WD g0g3 C .��18

72 C �6
72/g1g2 416

are indeed invariants of the action of H. Then using our method 417

e1 W D .�12�18
72 C 12�6

72/g0g3 C 12�6
72g0g3 C 12g1g2 C 12g1g3;

e2 W D 12�6
72g1g2 C .�12�18

72 C 12�6
72/g0g3 C .�12�12

72 C 12/g1g3 C 12�12
72g1g3
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Table 1 Minimal polynomials using the g0; : : : ; g3 functions

t6.1Invariant Polynomial

t6.2Hilbert t5 C 400497845154831586723701480652800t4 C
t6.3818520809154613065770038265334290448384t3 C
t6.44398250752422094811238689419574422303726895104t2 �
t6.516319730975176203906274913715913862844512542392320tC
t6.615283054453672803818066421650036653646232315192410112

t6.7e1 t5 � 936t4 � 60912t3 � 2426112t2 � 40310784t � 3386105856

t6.8e2 t5 � 1512t4 � 29808t3 C 979776t2 C 3359232t � 423263232

generate a Q-vector space of class invariants. All Q linear combinations of the form 418

�1e1 C �2e2 also provide class invariants. Finding the most efficient class invariant 419

among them is a difficult problem which we hope to solve in the near future. For 420

comparison we present in Table 1 the polynomials generating the Hilbert class field 421

using the j invariant and the two class functions we obtained by our method. 422

5 Selecting the Discriminant 423

We have seen in the previous sections that the original version of the CM method 424

uses a special polynomial called Hilbert class polynomial which is constructed with 425

input a fundamental discriminant d < 0. A discriminant d < 0 is fundamental if 426

and only if d is free of any odd square prime factors and either �d � 3 .mod 4/ or 427

�d=4 � 1; 2; 5; 6 .mod 8/. The disadvantage of Hilbert class polynomials is that 428

their coefficients grow very large as the absolute value of the discriminant D D jdj 429

increases and thus their construction requires high precision arithmetic. 430

According to the first main theorem of complex multiplication, the modular 431

function j./ generates the Hilbert class field over K. However, the Hilbert class field 432

can also be generated by modular functions of higher level. There are several known 433

families of class polynomials having integer coefficients which are much smaller 434

than the coefficients of their Hilbert counterparts. Therefore, they can substitute 435

Hilbert class polynomials in the CM method and their use can considerably 436

improve its efficiency. Some well-known families of class polynomials are: Weber 437

polynomials [28], MD;l.x/ polynomials [24], Double eta (we will denote them by 438

MD;p1;p2 .x/) polynomials [7] and Ramanujan polynomials [20]. The logarithmic 439

height of the coefficients of all these polynomials is smaller by a constant factor 440

than the corresponding logarithmic height of the Hilbert class polynomials and this 441

is the reason for their much more efficient construction. 442

A crucial question is which polynomial leads to the most efficient construction. 443

The answer to the above question can be derived by the precision requirements 444

of the polynomials or (in other words) the logarithmic height of their coefficients. 445

There are asymptotic bounds which estimate with remarkable accuracy the precision 446
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requirements for the construction of the polynomials. The polynomials with the 447

smallest (known so far) asymptotic bound are Weber polynomials constructed with 448

discriminants d satisfying the congruence D D jdj � 7 .mod 8/. Naturally, this 449

leads to the conclusion that these polynomials will require less precision for their 450

construction than all other class polynomials constructed with values D0 close 451

enough to the values of D. 452

In what follows, we will show that this is not really true in practice. Clearly, 453

the degrees of class polynomials vary as a function of D, but we will see that on 454

average these degrees are affected by the congruence of D modulo 8. In particular, 455

we prove theoretically that class polynomials (with degree equal to their Hilbert 456

counterparts) constructed with values D � 3 .mod 8/ have three times smaller 457

degree than polynomials constructed with comparable in size values of D that satisfy 458

the congruence D � 7 .mod 8/. Class polynomials with even discriminants (e.g., 459

D � 0 .mod 4/) have on average two times smaller degree than polynomials 460

constructed with comparable in size values D � 7 .mod 8/. This phenomenon 461

can be generalized for congruences of D modulo larger numbers. This leads to 462

the (surprising enough) result that there are families of polynomials which seem to 463

have asymptotically larger precision requirements for their construction than Weber 464

polynomials with D � 7 .mod 8/, but they can be constructed more efficiently than 465

them in practice (for comparable values of D). 466

The degree of every polynomial generating the Hilbert class field equals the class 467

number hD which for a fundamental discriminant �D < 4 is given by [25, p. 436] 468

hD D
p

D

2�
L.1; �/ D

p
D

2�

Y

p

�
1 � �.p/

p

��1

; 469

where � is the quadratic character given by the Legendre symbol, i.e. �.p/ D
�

�D
p

	
. 470

Let us now consider the Euler factor 471

�
1 � �.p/

p

��1

D

8
ˆ̂<

ˆ̂:

1 if p j D
p

p�1
if
�

�D
p

	
D 1

p
pC1

if
�

�D
p

	
D �1:

(9)

Observe that smaller primes have a bigger influence on the value of hD. For example, 472

if p D 2, then we compute 473

�
1 � �.2/

2

��1

D
8
<

:

1 if 2 j D
2 if D � 7 .mod 8/
2
3

if D � 3 .mod 8/:

(10)

This leads us to the conclusion that on average the degree of a class polynomial with 474

D � 3 .mod 8/ will have three times smaller degree than a polynomial constructed 475

with a comparable value of D � 7 .mod 8/. Similarly, the degree of a polynomial 476
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constructed with even values of D � 0 .mod 4/ will have on average two times 477

smaller degree than a polynomial with D � 7 .mod 8/. 478

Going back to Eq. (9), we can see that for discriminants of the same congruence 479

modulo 8, we can proceed to the next prime p D 3 and compute 480

�
1 � �.3/

3

��1

D
8
<

:

1 if 3 j D
3
2

if
��D

3

� D 1
3
4

if
��D

3

� D �1:

481

This means that for values of D such that
��D

3

� D �1 the value of hD is on average 482

two times smaller than class numbers corresponding to values with
��D

3

� D 1. 483

Consider for example, the cases D � 3 .mod 8/ and D � 7 .mod 8/. If we 484

now include in our analysis the prime p D 3, then we can distinguish 6 different 485

subcases D � 3; 11; 19 .mod 24/ and D � 7; 15; 23 .mod 24/. Having in mind 486

the values
�
1 � �.2/

2

	�1

and
�
1 � �.3/

3

	�1

, we can easily see, for example, that the 487

polynomials with D � 19 .mod 24/ will have on average 6 times smaller degrees 488

than the polynomials with D � 23 .mod 24/. 489

What happens if we continue selecting larger primes p? Equation (9) implies that 490

if we select a discriminant �D such that for all primes p < N we have
�

�D
p

	
D 491

�1 then the class number corresponding to D has a ratio that differs from other 492

discriminants by a factor of at most 493

Y

p<N

�
p � 1

p C 1

�
D
Y

p<N

�
1 � 2

p C 1

�
: (11)

Since the series
P

p
2

pC1
diverges (p runs over the prime numbers), the product in 494

Eq. (11) diverges as well [1, p.192 th. 5]. Therefore, the product in Eq. (11) can have 495

arbitrarily high values for sufficiently large values of N. This also means that if D is 496

sufficiently big we can choose discriminants that correspond to class numbers that 497

have an arbitrarily high ratio with respect to other discriminants of the same size. 498

6 Conclusions 499

In this paper, we have given a detailed overview of the CM method for the construc- 500

tion of elliptic curves. We have presented the necessary theoretical background and 501

we have described our published results on finding new class invariants using the 502

Shimura reciprocity law. The proper selection of a suitable discriminant D for the 503

construction of class polynomials, combined with the above results, will hopefully 504

lead us to more efficient constructions in the future using new families of class 505

polynomials. 506
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