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0. Prologue

Consider the differential equation
Apu™ @)+ A, _ju™m D 4.4
+- + Ay () + Agu(t) = f() (1)

and the difference equation
Amujpm +Ap_1ujpm_1+- -+

+- -+ A1y + Aoy = fj (2)
where A; € C"*" wu(t),u; € C™" and det Ay, 7 0.

Applying the Laplace transformation to (1) or
the Z-transformation to (2) yields the matrix
polynomial

PO = Ap )\ + A, 2" 4 AN+ A



A 0 # zg € C" is an eigenvector of P(\)
corresponding to the eigenvalue A\g € C if

P(M\g)xg = 0 (eigenproblem).
If, in addition, xq1,xzo,...,x; € C" satisfy

S 10)
Zlﬁpj (Mo)aej =0 £€=1,2,... .k
]:

then xqg,xz1,...,x; is @ Jordan chain of P(\).

The solution of (1) is of the form

t
uw(t) = Xpet'Pe + | Xp e(t=5) Jp Yp f(s)ds
to

and the solution of (2) is of the form
v—1

wj = XpJhe+ Y XpJb ' yp f;.
1=0



1. Introduction

The spectrum of
PO\ = AN+ A, (A 4 4 A0+ Ag
is the set of all eigenvalues of P(\),

o(P) = {Ae C:det P()\) =0},

where det P()\) is a scalar polynomial of degree
nm, With leading coefficient det A,, = 0.

We are interested in the spectra of perturba-
tions of P()\) of the form

PA(N) = (Am + 2n) N+ (A1 + Ay p) AL

+ -+ (A1 + A1)+ Ag + Ao,

where Ag, Aq,..., A, € C**™ are arbitrary.



For a given ¢ > 0 and a given set of non-
negative weights w = {wq, wq,...,wn}, the &-
pseudospectrum of P(A) with respect to w
(introduced by Tisseur and Higham, 2001) is

oew(P) = {\ € C:det PA(N) =0,

||Aj|| Séwj, j=O,1,...,m}.

wo, Wi, ..., wm > 0 allow freedom in how per-
turbations are measured; for example, in an
absolute sense when wg =wy = -+ = wy,, = 1,
or in a relative sense when w; = |[|A;||. Dif-
ferent values for w; admit different levels of
confidence in Aj;.

Note that for ¢ =0, ogw(P) = o(P).



For P(A) =1IX—A (A e C" ™), o(P) coincides
with the spectrum of A, o(A). If, in addition,
w = {wg, w1} = {1,0}, then o w(P) coincides
with the e-pseudospectrum of A,

oe(A) = {AeC:reo(A+ Do), [[Aoll <e}.

For the spectral norm, defining the scalar

gw(A) = Wi\ 4w, 1A 4w + wg,

one of the main tools is the formula (Tisseur-
Higham, 2001) (smin: Min. singular value)

oew(P) = {A € C:smin(P(A)) <eqw([AD}.

As the eigenvalues of PA (M) are continuous,

9o (P) = {\ € C: sin(P(N) = caw(|AD}



2. Examples (using the spectral norm)

Example 1 (A wing problem)
The eigenproblem of the matrix polynomial

176 128 2.89

Q()\) = | 1.28 0.824 0413 | \°+
2.89 0.413 0.725

7.66 2.45 2.1 121 18.9 15.9
+ | 023 1.04 0223 |A4+| 0 27 o0.145 |.

0.6 0.756 0.658 11.9 3.64 15.5

arose from a study of the oscillations of a wing
in an airstream. The eigenvalues of Q(\) are

—0.88 £18.44, 0.09 £i2.52, -0.92+i1.76.

Perturbations are measured in the absolute
sense, i.e., wg = wy; = wp = 1.
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Example 2 (A vibrating system)
The 3 x 3 selfadjoint matrix polynomial

0 0O 0 O > —1 0
0| X+|0 3 —1|x+|-1 3 o0
5 0 -1 6 0O 0 10

GNGN
OoON O

PO = [

corresponds to a mass-spring model described
by Falk (1960). The eigenvalues of P(\) are

—0.08x£11.45, —0.754+£10.86, —0.51 =i 1.25.

Perturbations are measured in a relative sense,
i.e., wg = ||A0|| = 10, wy = ||A1H = 6.3 and
wp = [[Az|| = 5.
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IMAGINARY AXIS

REAL AXIS

do-w(P) for = 0.02, 0.05, 0.1.
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Example 3 (A gyroscopic system)

Let B be the 10 x 10 nilpotent matrix with
ones on the subdiagonal and zeros elsewhere.
Define M = (4I;0+ B+ B')/6, G = B — B!
K = B+ BT —2I1(, and set

M ]10®M -+ 1.30M®]10,
G = 1.35I;100G + 1.10G ® I1o,
K = 110®K —+ 1.20K®]10.

The 100x 100 matrix polynomial MA24+GA+K
corresponds to a gyroscopic system (Mehrmann-
Watkins, 2001). Adding the damping matrix
D = tridiag{—0.1,0.3,—-0.1} to G yields

R(\) = MM + (G+ D)X+ K.

Perturbations are measured in the absolute sense.
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IMAGINARY AXIS

REAL AXIS

do-w(R) for = 0.004, 0.02, 0.1.
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3. General Properties

Consider an n x n matrix polynomial

PO = A\ 4+ A, AN A+ Ap.

Proposition 1 If the coefficients of P()\) are
all real or all hermitian, then for any € > 0 and
w = {wo,w1,...,wnm}, ocew(P) is symmetric
with respect to the real axis.

Proof Based on the observation

1A = 1451 = 1Al O

14



Theorem 2 The pseudospectrum oz w(P) is
bounded if and only if 0 ¢ ocw,,(Am), i.e., if
and only if

Smin(Am) > € wm,.

Proof Suppose 0 ¢ ocw,,(Am) and define

(e = min{|det(Am + An)| : ||An|| < ewm} > O.

Then there is an M > 0 such that for any
associated perturbation

PA(N) = (Am+2Amp) A"+ -+ (A1 + A1)+ Ag+ Ag
and for any A € C with |A\| > M,

|det PA(X) — det(Am + Ap) A < G| A™

< |det(Am + Am) A",
i.e., det PA(A) # 0. Hence, o w(P) is bounded.

15



To prove the converse, assume that oc w(P) is
bounded but there is an associated

with det(4,, + A) = 0. One of the co-
efficients of det Px()), let of A7, is 3r # 0.
Construct a sequence {Am,k}keN C C™*"™ such
that limy . A, = Ay, and for every k € N,

det(Am -+ Am,k:) 7!‘é O and ||Am,k|| < € wWm.

Since o w(P) is bounded, the (nm — 7)th ele-
mentary symmetric function of the zeros of

det[(Am+ A, DA™+ -+ (A1 + A1)A+ Ag+ Ag],

which is equal to =+g;/det(An + A, 1), is
bounded for all k; this is a contradiction. [l
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Theorem 3 If 0. w(P) is bounded, then it has
no more than nm con. components, and any
associated Pa (M) has the same number (> 1)
of eigenvalues with P()\) in each one of these
components, counting multiplicities.

Proof By Theorem 2, for any associated
PA(N) = (Am+2m)N" 4+ (A1 + AN+ Ag+ Ao,

det(Am + Am) # 0. Thus, PA(M\) has ex-
actly nm eigenvalues, counting multiplicities,
as does every

Ppi(A) = (1 =t) P(A) +tPa(N) 5 t€[0,1].

As t varies from O to 1, the eigenvalues of
Pp (M) trace continuous paths from the eigen-
values of P(\) to the eigenvalues of Pa (). [
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4. A Curve-Tracing Algorithm

Recall that for the spectral norm,

Ooew(P) = {N € C:smin(P(N\)) =eqw(|A])}-

For convenience, define

gp(z,y) = smin(P(z+1iy)) ; z,ye€R

and

gp(X) = smin(P(A)) ; AxeC.

Theorem 4 (Sun, 1988) Let A\g = zg + iyg €
C\ o(P). If smin(P(Ag)) is a simple singular
value of P(\g), and wug, vg are associated left
and right singular vectors, respectively, then

Vgp(Ag) = <Re (ué (9Pa()\o) vo> ,Re (ug aPa(AO) UO>> .

L y
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Our continuation method for drawing

Ooew(P) = {A € C:gp(A) —eqw(|A]) =0}

is an extension of (Briihl, 1996), and consists
of an initial step to find a starting point on
Ooez w(P) followed by a sequence of “predictor”
steps tangential to do.w(P) and ‘‘corrector”
steps to go back to do: w(P).

Initial Step: For calculation of a first point on
Ooew(P), let A\g € oe,w(P)\o(P) and dg € C be
nonzero. T hen use Newton’s method to solve

gp(Mo +tdg) —eqw(|hg +tdo]) = O

along the straight line {\g+tdp :t € R}. Set
to = 0, and assume that gp is differentiable
at Ap and Vgp(\g) is given by Theorem 4.
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The first Newton iterate gives

B gp(Xo) —egw(|Aol)
(gp(Ao +tdg) —egqw(|Ao + tdgl))
and the point

t1 =

gp(Xo) —eqw(Xo)

" (Redo,Imdo) - Vigp(Ao) — eqw<|Ao(>3])d0'

Since Ag € o.,w(P), for suitable direction do,
we estimate a point of Odo.w(P) by repeat-
ing (3) until |smin(P(z)) — eqw(|z])| is small
enough. In our examples, only a few iterations
are required.

Z1 = Ao

For do = Vigp(A\o) —eqw(|Xp])], (3) implies

21 = Mo — (9p(No) —eaw((Mo]))do 1. (4)
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Prediction: Assuming that zp_1 € 0o w(P)
has been computed and 7. is the corresponding
step-length, the (tangential) prediction for the
kth boundary point of ocw(P), 2, iS

Vgp(zg—1) —eaw(|zr—1])] )
'V lgp(zp_1) —eaw(lzp_1D]l/

Zy = Zp—1 T Tk (i

Correction: For small 7, the correction step
IS a single Newton iterate for the equation
gp(Zp + tdy) — 8qw(\,§k -+ tde = 0, with an ap-
propriate direction d; and initial tg = 0. In
our examples, has been found that one Newton
step gives satisfactory performance, although
the effect of taking more steps could be a sub-
ject for further investigation.
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A natural choice for d; € C is

di, = VIgp(Zk) — e qw(|Zk)].

In this case, the step (4) is written

2 = 2 — (9p(zp—1) — eaqw(zp_1])) di*
and the estimation of z;, requires the compu-
tation of smin(P(zr_1)), smin(P(Zx)) and their
associated left and right singular vectors.

Choosing the direction d; in the correction step.
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The computation of spin(P(Z;)) and the cor-
responding singular vectors can be avoided
(and the computational cost of the algorithm
reduced by about a half) if the correction step
is taken in the direction of

di = V[gp(zr—1) — e qw(|z_1])]

and (4) is written in the form

2 = 2 — (9p(zp—1) —eaw(|ze—_1])) di 1.

Choosing the direction d; in the correction step.
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5. Comments on the Algorithm

(a) It tracks the boundary of that con. com-
ponent of ocw(P) containing Ag. For a com-
plete picture, it may be necessary to repeat the
procedure for several values of .

(b) It does not require a priori knowledge of
the size of o.w(P), since it sketches the con.
components of o: w(P) one after the other by
using starting points close to eigenvalues.

(c) The size of the step-lengths, 74, in the
prediction step affects the accuracy and the
computational cost of the algorithm, and it is
important to obtain criteria for their selection
(Bekas-Gallopoulos, 2001).
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(d) The algorithm may lose its path near bound-
ary points where V [gp(A) — eqw(|A\|)] does not
exist or it is zero, and near points where the
distance between con. components of o¢ w(P)

becomes small. Some of these difficulties can

be solved by choosing a smaller step-length

(increasing the cost). See below o w(P) of
Example 2, for € = 0.06.

n
¥
[%) [%) 4
3 3
< <
> >
x L x oL
< <
Z Z
Q Q
< <
= + =
=-1r 0.06 =-1r 0.06
+
+
2k 2k

I I I I I I I ) I I I I I I I )
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
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Constant step-lengths = 0.03 and = = 0.003.
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6. Some Open Questions

(a) What else can we say about the topological
and geometrical properties of o:w(P) and its
con. components?

(b) When o:w(P) is unbounded, how many
con. components it may have?

(c) Is it true that a bounded con. component
G of ocw(P) contains 2 eigenvalues of P(\)
if and only if an associated perturbation Pa ()
has a multiple eigenvalue in g7

(d) How can ocw(P) be used in studying the
stability of the spectral factorization of P(\)?

(e) Can the path-tracing algorithm be a part
of a parallel algorithm 7
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