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0. Prologue

Consider the differential equation

Am u(m)(t) + Am−1 u(m−1) + · · ·+

+ · · ·+ A1 u′(t) + A0 u(t) = f(t) (1)

and the difference equation

Am uj+m + Am−1 uj+m−1 + · · ·+

+ · · ·+ A1 uj+1 + A0 uj = fj, (2)

where Aj ∈ Cn×n, u(t), uj ∈ Cn and detAm 6= 0.

Applying the Laplace transformation to (1) or

the Z-transformation to (2) yields the matrix

polynomial

P (λ) = Amλm + Am−1λm−1 + · · ·+ A1λ + A0.
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A 0 6= x0 ∈ Cn is an eigenvector of P (λ)

corresponding to the eigenvalue λ0 ∈ C if

P (λ0)x0 = 0 (eigenproblem).

If, in addition, x1, x2, . . . , xk ∈ Cn satisfy

ξ∑

j=1

1

j!
P (j)(λ0)xξ−j = 0 ; ξ = 1,2, . . . , k,

then x0, x1, . . . , xk is a Jordan chain of P (λ).

The solution of (1) is of the form

u(t) = XP et JP c +
∫ t

t0
XP e(t−s) JP YP f(s) ds

and the solution of (2) is of the form

uj = XP J
j
P c +

ν−1∑

i=0

XP Jν−i−1
P YP fi .
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1. Introduction

The spectrum of

P (λ) = Amλm + Am−1λm−1 + · · ·+ A1λ + A0

is the set of all eigenvalues of P (λ),

σ(P ) = {λ ∈ C : detP (λ) = 0} ,

where detP (λ) is a scalar polynomial of degree

n m, with leading coefficient detAm 6= 0.

We are interested in the spectra of perturba-

tions of P (λ) of the form

P∆(λ) = (Am + ∆m)λm + (Am−1 + ∆m−1)λ
m−1

+ · · ·+ (A1 + ∆1)λ + A0 + ∆0,

where ∆0,∆1, . . . ,∆m ∈ Cn×n are arbitrary.
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For a given ε > 0 and a given set of non-

negative weights w = {w0, w1, . . . , wm}, the ε-

pseudospectrum of P (λ) with respect to w

(introduced by Tisseur and Higham, 2001) is

σε,w(P ) = {λ ∈ C : detP∆(λ) = 0,

‖∆j‖ ≤ ε wj, j = 0,1, . . . , m}.

w0, w1, . . . , wm ≥ 0 allow freedom in how per-

turbations are measured; for example, in an

absolute sense when w0 = w1 = · · · = wm = 1,

or in a relative sense when wj = ‖Aj‖. Dif-

ferent values for wj admit different levels of

confidence in Aj.

Note that for ε = 0, σ0,w(P ) = σ(P ).
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For P (λ) = Iλ−A (A ∈ Cn×n), σ(P ) coincides

with the spectrum of A, σ(A). If, in addition,

w = {w0, w1} = {1,0}, then σε,w(P ) coincides

with the ε-pseudospectrum of A,

σε(A) = {λ ∈ C : λ ∈ σ(A + ∆0), ‖∆0‖ ≤ ε} .

For the spectral norm, defining the scalar

qw(λ) = wmλm + wm−1λm−1 + · · ·+ w1λ + w0,

one of the main tools is the formula (Tisseur-

Higham, 2001) (smin: min. singular value)

σε,w(P ) = {λ ∈ C : smin(P (λ)) ≤ ε qw(|λ|)} .

As the eigenvalues of P∆(λ) are continuous,

∂σε,w(P ) = {λ ∈ C : smin(P (λ)) = ε qw(|λ|)} .

6



2. Examples (using the spectral norm)

Example 1 (A wing problem)

The eigenproblem of the matrix polynomial

Q(λ) =




17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725


 λ2+

+




7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658


 λ +




121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5


 .

arose from a study of the oscillations of a wing

in an airstream. The eigenvalues of Q(λ) are

−0.88± i 8.44, 0.09± i 2.52, −0.92± i 1.76.

Perturbations are measured in the absolute

sense, i.e., w0 = w1 = w2 = 1.
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Example 2 (A vibrating system)

The 3× 3 selfadjoint matrix polynomial

P (λ) =




1 0 0
0 2 0
0 0 5


 λ2+




0 0 0
0 3 −1
0 −1 6


 λ+




2 −1 0
−1 3 0
0 0 10




corresponds to a mass-spring model described

by Falk (1960). The eigenvalues of P (λ) are

−0.08± i 1.45, −0.75± i 0.86, −0.51± i 1.25.

Perturbations are measured in a relative sense,

i.e., w0 = ‖A0‖ = 10, w1 = ‖A1‖ = 6.3 and

w2 = ‖A2‖ = 5.
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Example 3 (A gyroscopic system)

Let B be the 10 × 10 nilpotent matrix with

ones on the subdiagonal and zeros elsewhere.

Define M̂ = (4I10 + B + BT )/6, Ĝ = B − BT

K̂ = B + BT − 2I10, and set

M = I10 ⊗ M̂ + 1.30M̂ ⊗ I10,

G = 1.35I10 ⊗ Ĝ + 1.10Ĝ⊗ I10,

K = I10 ⊗ K̂ + 1.20K̂ ⊗ I10.

The 100×100 matrix polynomial Mλ2+Gλ+K

corresponds to a gyroscopic system (Mehrmann-

Watkins, 2001). Adding the damping matrix

D = tridiag{−0.1,0.3,−0.1} to G yields

R(λ) = Mλ2 + (G + D)λ + K.

Perturbations are measured in the absolute sense.
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3. General Properties

Consider an n× n matrix polynomial

P (λ) = Amλm + Am−1λm−1 + · · ·+ A1λ + A0.

Proposition 1 If the coefficients of P (λ) are

all real or all hermitian, then for any ε > 0 and

w = {w0, w1, . . . , wm}, σε,w(P ) is symmetric

with respect to the real axis.

Proof Based on the observation

‖∆j‖ = ‖∆j‖ = ‖∆∗
j‖. ¤
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Theorem 2 The pseudospectrum σε,w(P ) is

bounded if and only if 0 /∈ σεwm(Am), i.e., if

and only if
smin(Am) ≥ ε wm.

Proof Suppose 0 /∈ σεwm(Am) and define

ζε = min{|det(Am + ∆m)| : ‖∆m‖ ≤ ε wm} > 0.

Then there is an Mε > 0 such that for any

associated perturbation

P∆(λ) = (Am+∆m)λm+ · · ·+(A1+∆1)λ+A0+∆0

and for any λ ∈ C with |λ| > Mε,

|detP∆(λ)− det(Am + ∆m)λnm| < ζε|λmn|

≤ |det(Am + ∆m)λmn|,
i.e., detP∆(λ) 6= 0. Hence, σε,w(P ) is bounded.
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To prove the converse, assume that σε,w(P ) is

bounded but there is an associated

P∆̂(λ) = (Am+∆̂m)λm+ · · ·+(A1+∆̂1)λ+A0+∆̂0,

with det(Am + ∆̂m) = 0. One of the co-

efficients of detP∆̂(λ), let of λτ , is βτ 6= 0.

Construct a sequence {∆̂m,k}k∈N ⊂ Cn×n such

that limk→∞ ∆̂m,k = ∆̂m, and for every k ∈ N,

det(Am + ∆̂m,k) 6= 0 and ‖∆̂m,k‖ ≤ ε wm.

Since σε,w(P ) is bounded, the (nm− τ)th ele-

mentary symmetric function of the zeros of

det[(Am+∆̂m,k)λ
m+ · · ·+(A1+∆̂1)λ+A0+∆̂0],

which is equal to ±βτ/det(Am + ∆̂m,k), is

bounded for all k; this is a contradiction. ¤
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Theorem 3 If σε,w(P ) is bounded, then it has

no more than n m con. components, and any

associated P∆(λ) has the same number (≥ 1)

of eigenvalues with P (λ) in each one of these

components, counting multiplicities.

Proof By Theorem 2, for any associated

P∆(λ) = (Am+∆m)λm+ · · ·+(A1+∆1)λ+A0+∆0,

det(Am + ∆m) 6= 0. Thus, P∆(λ) has ex-

actly n m eigenvalues, counting multiplicities,

as does every

P∆,t(λ) = (1− t)P (λ) + tP∆(λ) ; t ∈ [0,1].

As t varies from 0 to 1, the eigenvalues of

P∆,t(λ) trace continuous paths from the eigen-

values of P (λ) to the eigenvalues of P∆(λ). ¤
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4. A Curve-Tracing Algorithm

Recall that for the spectral norm,

∂σε,w(P ) = {λ ∈ C : smin(P (λ)) = ε qw(|λ|)} .

For convenience, define

gP (x, y) = smin(P (x + iy)) ; x, y ∈ R
and

gP (λ) = smin(P (λ)) ; λ ∈ C.

Theorem 4 (Sun, 1988) Let λ0 = x0 + iy0 ∈
C \ σ(P ). If smin(P (λ0)) is a simple singular

value of P (λ0), and u0, v0 are associated left

and right singular vectors, respectively, then

∇gP (λ0) =

(
Re

(
u∗0

∂P (λ0)

∂x
v0

)
,Re

(
u∗0

∂P (λ0)

∂y
v0

))
.
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Our continuation method for drawing

∂σε,w(P ) = {λ ∈ C : gP (λ)− ε qw(|λ|) = 0}
is an extension of (Brühl, 1996), and consists

of an initial step to find a starting point on

∂σε,w(P ) followed by a sequence of “predictor”

steps tangential to ∂σε,w(P ) and “corrector”

steps to go back to ∂σε,w(P ).

Initial Step: For calculation of a first point on

∂σε,w(P ), let λ0 ∈ σε,w(P )\σ(P ) and d0 ∈ C be

nonzero. Then use Newton’s method to solve

gP (λ0 + t d0)− ε qw(|λ0 + t d0|) = 0

along the straight line {λ0 + t d0 : t ∈ R}. Set

t0 = 0, and assume that gP is differentiable

at λ0 and ∇gP (λ0) is given by Theorem 4.
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The first Newton iterate gives

t1 = − gP (λ0)− ε qw(|λ0|)
(gP (λ0 + t d0)− ε qw(|λ0 + t d0|))′

and the point

z1 = λ0 −
gP (λ0)− ε qw(λ0)

(Re d0, Im d0) · ∇[gP (λ0)− ε qw(|λ0|)]
d0.

(3)

Since λ0 ∈ σε,w(P ), for suitable direction d0,

we estimate a point of ∂σε,w(P ) by repeat-

ing (3) until |smin(P (z)) − ε qw(|z|)| is small

enough. In our examples, only a few iterations

are required.

For d0 = ∇[gP (λ0)− ε qw(|λ0|)], (3) implies

z1 = λ0 − (gP (λ0)− ε qw(|λ0|)) d0
−1. (4)
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Prediction: Assuming that zk−1 ∈ ∂σε,w(P )

has been computed and τk is the corresponding

step-length, the (tangential) prediction for the

kth boundary point of σε,w(P ), zk, is

ẑk = zk−1 + τk

(
i
∇ [

gP (zk−1)− ε qw(|zk−1|)
]

∣∣∇ [
gP (zk−1)− ε qw(|zk−1|)

]∣∣

)
.

Correction: For small τk, the correction step

is a single Newton iterate for the equation

gP (ẑk + t dk)− ε qw(|ẑk + t dk|) = 0, with an ap-

propriate direction dk and initial t0 = 0. In

our examples, has been found that one Newton

step gives satisfactory performance, although

the effect of taking more steps could be a sub-

ject for further investigation.
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A natural choice for dk ∈ C is

d̂k = ∇ [gP (ẑk)− ε qw(|ẑk|)] .

In this case, the step (4) is written

zk = ẑk −
(
gP (zk−1)− ε qw(|zk−1|)

)
d̂k
−1

and the estimation of zk requires the compu-

tation of smin(P (zk−1)), smin(P (ẑk)) and their

associated left and right singular vectors.

)

o

*

o

z
k

z
k

^

∆

z
k −1

σε, w (P

Choosing the direction d̂k in the correction step.
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The computation of smin(P (ẑk)) and the cor-

responding singular vectors can be avoided

(and the computational cost of the algorithm

reduced by about a half) if the correction step

is taken in the direction of

dk = ∇ [
gP (zk−1)− ε qw(|zk−1|)

]

and (4) is written in the form

zk = ẑk −
(
gP (zk−1)− ε qw(|zk−1|)

)
dk
−1.

∆

o

*

o

σε, w (P)

z
k

^

z
k

z
k −1

Choosing the direction dk in the correction step.
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5. Comments on the Algorithm

(a) It tracks the boundary of that con. com-

ponent of σε,w(P ) containing λ0. For a com-

plete picture, it may be necessary to repeat the

procedure for several values of λ0.

(b) It does not require a priori knowledge of

the size of σε,w(P ), since it sketches the con.

components of σε,w(P ) one after the other by

using starting points close to eigenvalues.

(c) The size of the step-lengths, τk, in the

prediction step affects the accuracy and the

computational cost of the algorithm, and it is

important to obtain criteria for their selection

(Bekas-Gallopoulos, 2001).
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(d) The algorithm may lose its path near bound-

ary points where ∇ [gP (λ)− ε qw(|λ|)] does not

exist or it is zero, and near points where the

distance between con. components of σε,w(P )

becomes small. Some of these difficulties can

be solved by choosing a smaller step-length

(increasing the cost). See below σε,w(P ) of

Example 2, for ε = 0.06.
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6. Some Open Questions

(a) What else can we say about the topological

and geometrical properties of σε,w(P ) and its

con. components ?

(b) When σε,w(P ) is unbounded, how many

con. components it may have ?

(c) Is it true that a bounded con. component

G of σε,w(P ) contains 2 eigenvalues of P (λ)

if and only if an associated perturbation P∆(λ)

has a multiple eigenvalue in G ?

(d) How can σε,w(P ) be used in studying the

stability of the spectral factorization of P (λ) ?

(e) Can the path-tracing algorithm be a part

of a parallel algorithm?
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