On the Pseudospectra of Matrix Polynomials

Peter Lancaster University of Calgary lancaste@math.ucalgary.ca

Panayiotis Psarrakos National Technical University of Athens ppsarr@math.ntua.gr

http://www.maths.man.ac.uk/~nareports/narep445.pdf

0. Prologue

Consider the differential equation

 $A_m u^{(m)}(t) + A_{m-1} u^{(m-1)} + \dots +$

 $+\cdots + A_1 u'(t) + A_0 u(t) = f(t)$ (1)

and the difference equation

 $A_m u_{j+m} + A_{m-1} u_{j+m-1} + \dots +$

 $+\cdots + A_1 u_{j+1} + A_0 u_j = f_j,$ (2)

where $A_j \in \mathbb{C}^{n \times n}$, $u(t), u_j \in \mathbb{C}^n$ and $\underline{\det A_m \neq 0}$.

Applying the Laplace transformation to (1) or the Z-transformation to (2) yields the *matrix polynomial*

 $P(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \dots + A_1 \lambda + A_0.$

A $0 \neq x_0 \in \mathbb{C}^n$ is an *eigenvector* of $P(\lambda)$ corresponding to the *eigenvalue* $\lambda_0 \in \mathbb{C}$ if

 $P(\lambda_0)x_0 = 0$ (eigenproblem).

If, in addition, $x_1, x_2, \ldots, x_k \in \mathbb{C}^n$ satisfy

$$\sum_{j=1}^{\xi} \frac{1}{j!} P^{(j)}(\lambda_0) x_{\xi-j} = 0 \quad ; \quad \xi = 1, 2, \dots, k,$$

then x_0, x_1, \ldots, x_k is a *Jordan chain* of $P(\lambda)$. The solution of (1) is of the form

$$u(t) = X_P e^{t J_P} c + \int_{t_0}^t X_P e^{(t-s) J_P} Y_P f(s) ds$$

and the solution of (2) is of the form

$$u_j = X_P J_P^j c + \sum_{i=0}^{\nu-1} X_P J_P^{\nu-i-1} Y_P f_i$$

<u>1. Introduction</u>

The *spectrum* of $P(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \dots + A_1 \lambda + A_0$ is the set of all eigenvalues of $P(\lambda)$,

 $\sigma(P) = \{\lambda \in \mathbb{C} : \det P(\lambda) = 0\},\$

where det $P(\lambda)$ is a scalar polynomial of degree n m, with leading coefficient det $A_m \neq 0$.

We are interested in the spectra of perturbations of $P(\lambda)$ of the form

 $P_{\Delta}(\lambda) = (A_m + \Delta_m)\lambda^m + (A_{m-1} + \Delta_{m-1})\lambda^{m-1}$

 $+\cdots+(A_1+\Delta_1)\lambda+A_0+\Delta_0,$

where $\Delta_0, \Delta_1, \ldots, \Delta_m \in \mathbb{C}^{n \times n}$ are arbitrary.

For a given $\varepsilon > 0$ and a given set of nonnegative weights $\mathbf{w} = \{w_0, w_1, \dots, w_m\}$, the ε *pseudospectrum* of $P(\lambda)$ with respect to \mathbf{w} (introduced by Tisseur and Higham, 2001) is

 $\sigma_{\varepsilon,\mathbf{w}}(P) = \{\lambda \in \mathbb{C} : \det P_{\Delta}(\lambda) = 0, \}$

 $\|\Delta_j\| \leq \varepsilon \, w_j, \ j = 0, 1, \dots, m\}.$

 $w_0, w_1, \ldots, w_m \ge 0$ allow freedom in how perturbations are measured; for example, in an absolute sense when $w_0 = w_1 = \cdots = w_m = 1$, or in a relative sense when $w_j = ||A_j||$. Different values for w_j admit different levels of confidence in A_j .

Note that for $\varepsilon = 0$, $\sigma_{0,\mathbf{w}}(P) = \sigma(P)$.

For $P(\lambda) = I\lambda - A$ $(A \in \mathbb{C}^{n \times n})$, $\sigma(P)$ coincides with the spectrum of A, $\sigma(A)$. If, in addition, $\mathbf{w} = \{w_0, w_1\} = \{1, 0\}$, then $\sigma_{\varepsilon, \mathbf{w}}(P)$ coincides with the ε -pseudospectrum of A,

 $\sigma_{\varepsilon}(A) = \{\lambda \in \mathbb{C} : \lambda \in \sigma(A + \Delta_0), \|\Delta_0\| \le \varepsilon\}.$

For the spectral norm, defining the scalar $q_{\mathbf{w}}(\lambda) = w_m \lambda^m + w_{m-1} \lambda^{m-1} + \dots + w_1 \lambda + w_0$, one of the main tools is the formula (Tisseur-Higham, 2001) (s_{\min} : min. singular value)

 $\sigma_{\varepsilon,\mathbf{w}}(P) = \{\lambda \in \mathbb{C} : s_{\min}(P(\lambda)) \le \varepsilon q_{\mathbf{w}}(|\lambda|) \}.$

As the eigenvalues of $P_{\Delta}(\lambda)$ are continuous,

 $\partial \sigma_{\varepsilon, \mathbf{w}}(P) = \{\lambda \in \mathbb{C} : s_{\min}(P(\lambda)) = \varepsilon q_{\mathbf{w}}(|\lambda|) \}.$

2. Examples (using the spectral norm)

Example 1 (*A wing problem*) The eigenproblem of the matrix polynomial

$$Q(\lambda) = \begin{bmatrix} 17.6 & 1.28 & 2.89 \\ 1.28 & 0.824 & 0.413 \\ 2.89 & 0.413 & 0.725 \end{bmatrix} \lambda^2 + \\ + \begin{bmatrix} 7.66 & 2.45 & 2.1 \\ 0.23 & 1.04 & 0.223 \\ 0.6 & 0.756 & 0.658 \end{bmatrix} \lambda + \begin{bmatrix} 121 & 18.9 & 15.9 \\ 0 & 2.7 & 0.145 \\ 11.9 & 3.64 & 15.5 \end{bmatrix}.$$

arose from a study of the oscillations of a wing in an airstream. The eigenvalues of $Q(\lambda)$ are

 $-0.88 \pm i 8.44, \ 0.09 \pm i 2.52, \ -0.92 \pm i 1.76.$

Perturbations are measured in the absolute sense, i.e., $w_0 = w_1 = w_2 = 1$.

 $\partial \sigma_{\varepsilon,\mathbf{w}}(Q)$ for $\varepsilon = 0.01, 0.1, 0.15 < s_{\min}(A_2)$.

The less sensitive eigenvalues.

 $\partial \sigma_{\varepsilon,\mathbf{w}}(Q)$ for $\varepsilon = 0.18 > s_{\min}(A_2)$.

The less sensitive eigenvalues.

Example 2 (A vibrating system) The 3×3 selfadjoint matrix polynomial

$$P(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \lambda^2 + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 6 \end{bmatrix} \lambda + \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 10 \end{bmatrix}$$

corresponds to a mass-spring model described by Falk (1960). The eigenvalues of $P(\lambda)$ are

 $-0.08 \pm i 1.45, -0.75 \pm i 0.86, -0.51 \pm i 1.25.$

Perturbations are measured in a relative sense, i.e., $w_0 = ||A_0|| = 10$, $w_1 = ||A_1|| = 6.3$ and $w_2 = ||A_2|| = 5$.

 $\partial \sigma_{\varepsilon,\mathbf{w}}(P)$ for $\varepsilon = 0.02, 0.05, 0.1.$

Example 3 (A gyroscopic system)

Let *B* be the 10×10 nilpotent matrix with ones on the subdiagonal and zeros elsewhere. Define $\hat{M} = (4I_{10} + B + B^T)/6$, $\hat{G} = B - B^T$ $\hat{K} = B + B^T - 2I_{10}$, and set

- $M = I_{10} \otimes \hat{M} + 1.30 \hat{M} \otimes I_{10},$
- $G = 1.35I_{10} \otimes \hat{G} + 1.10\hat{G} \otimes I_{10},$
- $K = I_{10} \otimes \hat{K} + 1.20 \hat{K} \otimes I_{10}.$

The 100×100 matrix polynomial $M\lambda^2 + G\lambda + K$ corresponds to a gyroscopic system (Mehrmann-Watkins, 2001). Adding the damping matrix $D = \text{tridiag}\{-0.1, 0.3, -0.1\}$ to G yields

$R(\lambda) = M\lambda^2 + (G+D)\lambda + K.$

Perturbations are measured in the absolute sense.

 $\partial \sigma_{\varepsilon,\mathbf{w}}(R)$ for $\varepsilon = 0.004, 0.02, 0.1.$

3. General Properties

Consider an $n \times n$ matrix polynomial $P(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \dots + A_1 \lambda + A_0.$

Proposition 1 If the coefficients of $P(\lambda)$ are all real or all hermitian, then for any $\varepsilon > 0$ and $\mathbf{w} = \{w_0, w_1, \dots, w_m\}, \sigma_{\varepsilon, \mathbf{w}}(P)$ is symmetric with respect to the real axis.

Proof Based on the observation

 $\|\Delta_j\| = \|\overline{\Delta}_j\| = \|\Delta_j^*\|. \quad \Box$

Theorem 2 The pseudospectrum $\sigma_{\varepsilon,\mathbf{w}}(P)$ is bounded if and only if $0 \notin \sigma_{\varepsilon w_m}(A_m)$, i.e., if and only if

 $s_{\min}(A_m) \geq \varepsilon w_m.$

Proof Suppose $0 \notin \sigma_{\varepsilon w_m}(A_m)$ and define

 $\zeta_{\varepsilon} = \min\{|\det(A_m + \Delta_m)| : ||\Delta_m|| \le \varepsilon w_m\} > 0.$

Then there is an $M_{\varepsilon} > 0$ such that for any associated perturbation

 $P_{\Delta}(\lambda) = (A_m + \Delta_m)\lambda^m + \dots + (A_1 + \Delta_1)\lambda + A_0 + \Delta_0$

and for any $\lambda \in \mathbb{C}$ with $|\lambda| > M_{\varepsilon}$,

 $|\det P_{\Delta}(\lambda) - \det(A_m + \Delta_m)\lambda^{nm}| < \zeta_{\varepsilon}|\lambda^{mn}|$

 $\leq |\det(A_m + \Delta_m)\lambda^{mn}|,$

i.e., det $P_{\Delta}(\lambda) \neq 0$. Hence, $\sigma_{\varepsilon, \mathbf{w}}(P)$ is bounded.

To prove the converse, assume that $\sigma_{\varepsilon,\mathbf{w}}(P)$ is bounded but there is an associated

 $P_{\widehat{\Delta}}(\lambda) = (A_m + \widehat{\Delta}_m)\lambda^m + \dots + (A_1 + \widehat{\Delta}_1)\lambda + A_0 + \widehat{\Delta}_0,$

with $\det(A_m + \hat{\Delta}_m) = 0$. One of the coefficients of $\det P_{\hat{\Delta}}(\lambda)$, let of λ^{τ} , is $\beta_{\tau} \neq 0$. Construct a sequence $\{\hat{\Delta}_{m,k}\}_{k\in\mathbb{N}} \subset \mathbb{C}^{n\times n}$ such that $\lim_{k\to\infty} \hat{\Delta}_{m,k} = \hat{\Delta}_m$, and for every $k \in \mathbb{N}$,

 $\det(A_m + \hat{\Delta}_{m,k}) \neq 0$ and $\|\hat{\Delta}_{m,k}\| \leq \varepsilon w_m$.

Since $\sigma_{\varepsilon, \mathbf{w}}(P)$ is bounded, the $(nm - \tau)$ th elementary symmetric function of the zeros of

 $\det[(A_m + \hat{\Delta}_{m,k})\lambda^m + \dots + (A_1 + \hat{\Delta}_1)\lambda + A_0 + \hat{\Delta}_0],$

which is equal to $\pm \beta_{\tau} / \det(A_m + \hat{\Delta}_{m,k})$, is bounded for all k; this is a contradiction.

Theorem 3 If $\sigma_{\varepsilon,\mathbf{w}}(P)$ is bounded, then it has no more than nm con. components, and any associated $P_{\Delta}(\lambda)$ has the same number (≥ 1) of eigenvalues with $P(\lambda)$ in each one of these components, counting multiplicities.

Proof By Theorem 2, for any associated

 $P_{\Delta}(\lambda) = (A_m + \Delta_m)\lambda^m + \dots + (A_1 + \Delta_1)\lambda + A_0 + \Delta_0,$

det $(A_m + \Delta_m) \neq 0$. Thus, $P_{\Delta}(\lambda)$ has exactly nm eigenvalues, counting multiplicities, as does every

 $P_{\Delta,t}(\lambda) = (1-t)P(\lambda) + tP_{\Delta}(\lambda); \quad t \in [0,1].$

As t varies from 0 to 1, the eigenvalues of $P_{\Delta,t}(\lambda)$ trace continuous paths from the eigenvalues of $P(\lambda)$ to the eigenvalues of $P_{\Delta}(\lambda)$.

4. A Curve-Tracing Algorithm

Recall that for the spectral norm,

 $\partial \sigma_{\varepsilon,\mathbf{w}}(P) = \{\lambda \in \mathbb{C} : s_{\min}(P(\lambda)) = \varepsilon q_{\mathbf{w}}(|\lambda|) \}.$

For convenience, define

$$g_P(x,y) = s_{\min}(P(x+iy)) ; x,y \in \mathbb{R}$$

and

$$g_P(\lambda) = s_{\min}(P(\lambda)) ; \quad \lambda \in \mathbb{C}.$$

Theorem 4 (Sun, 1988) Let $\lambda_0 = x_0 + iy_0 \in \mathbb{C} \setminus \sigma(P)$. If $s_{\min}(P(\lambda_0))$ is a simple singular value of $P(\lambda_0)$, and u_0 , v_0 are associated left and right singular vectors, respectively, then

$$\nabla g_P(\lambda_0) = \left(\mathsf{Re}\left(u_0^* \frac{\partial P(\lambda_0)}{\partial x} v_0 \right), \mathsf{Re}\left(u_0^* \frac{\partial P(\lambda_0)}{\partial y} v_0 \right) \right).$$

Our continuation method for drawing

 $\partial \sigma_{\varepsilon,\mathbf{w}}(P) = \{\lambda \in \mathbb{C} : g_P(\lambda) - \varepsilon q_{\mathbf{w}}(|\lambda|) = 0\}$ is an extension of (Brühl, 1996), and consists of an initial step to find a starting point on $\partial \sigma_{\varepsilon,\mathbf{w}}(P)$ followed by a sequence of "predictor" steps tangential to $\partial \sigma_{\varepsilon,\mathbf{w}}(P)$ and "corrector" steps to go back to $\partial \sigma_{\varepsilon,\mathbf{w}}(P)$.

Initial Step: For calculation of a first point on $\partial \sigma_{\varepsilon, \mathbf{w}}(P)$, let $\lambda_0 \in \sigma_{\varepsilon, \mathbf{w}}(P) \setminus \sigma(P)$ and $d_0 \in \mathbb{C}$ be nonzero. Then use Newton's method to solve

$g_P(\lambda_0 + t d_0) - \varepsilon q_{\mathbf{w}}(|\lambda_0 + t d_0|) = 0$

along the straight line $\{\lambda_0 + t d_0 : t \in \mathbb{R}\}$. Set $t_0 = 0$, and assume that g_P is differentiable at λ_0 and $\nabla g_P(\lambda_0)$ is given by Theorem 4.

The first Newton iterate gives

$$t_1 = -\frac{g_P(\lambda_0) - \varepsilon q_{\mathbf{w}}(|\lambda_0|)}{(g_P(\lambda_0 + t d_0) - \varepsilon q_{\mathbf{w}}(|\lambda_0 + t d_0|))'}$$

and the point

$$z_{1} = \lambda_{0} - \frac{g_{P}(\lambda_{0}) - \varepsilon q_{\mathbf{w}}(\lambda_{0})}{(\operatorname{Re} d_{0}, \operatorname{Im} d_{0}) \cdot \nabla [g_{P}(\lambda_{0}) - \varepsilon q_{\mathbf{w}}(|\lambda_{0}|)]} d_{0}.$$
(3)

Since $\lambda_0 \in \sigma_{\varepsilon, \mathbf{w}}(P)$, for suitable direction d_0 , we estimate a point of $\partial \sigma_{\varepsilon, \mathbf{w}}(P)$ by repeating (3) until $|s_{\min}(P(z)) - \varepsilon q_{\mathbf{w}}(|z|)|$ is small enough. In our examples, only a few iterations are required.

For
$$d_0 = \nabla [g_P(\lambda_0) - \varepsilon q_{\mathbf{w}}(|\lambda_0|)]$$
, (3) implies
 $z_1 = \lambda_0 - (g_P(\lambda_0) - \varepsilon q_{\mathbf{w}}(|\lambda_0|)) \overline{d_0}^{-1}$. (4)

Prediction: Assuming that $z_{k-1} \in \partial \sigma_{\varepsilon, \mathbf{w}}(P)$ has been computed and τ_k is the corresponding step-length, the (tangential) prediction for the *k*th boundary point of $\sigma_{\varepsilon, \mathbf{w}}(P)$, z_k , is

$$\widehat{z}_{k} = z_{k-1} + \tau_{k} \left(i \frac{\nabla \left[g_{P}(z_{k-1}) - \varepsilon \, q_{\mathbf{w}}(|z_{k-1}|) \right]}{\left| \nabla \left[g_{P}(z_{k-1}) - \varepsilon \, q_{\mathbf{w}}(|z_{k-1}|) \right] \right|} \right).$$

Correction: For small τ_k , the correction step is a single Newton iterate for the equation $g_P(\hat{z}_k + t d_k) - \varepsilon q_W(|\hat{z}_k + t d_k|) = 0$, with an appropriate direction d_k and initial $t_0 = 0$. In our examples, has been found that one Newton step gives satisfactory performance, although the effect of taking more steps could be a subject for further investigation. A natural choice for $d_k \in \mathbb{C}$ is

$$\widehat{d}_k = \nabla \left[g_P(\widehat{z}_k) - \varepsilon \, q_{\mathbf{w}}(|\widehat{z}_k|) \right].$$

In this case, the step (4) is written

$$z_k = \hat{z}_k - \left(g_P(z_{k-1}) - \varepsilon \, q_{\mathbf{w}}(|z_{k-1}|)\right) \, \hat{d}_k^{-1}$$

and the estimation of z_k requires the computation of $s_{\min}(P(z_{k-1}))$, $s_{\min}(P(\hat{z}_k))$ and their associated left and right singular vectors.

Choosing the direction \hat{d}_k in the correction step.

The computation of $s_{\min}(P(\hat{z}_k))$ and the corresponding singular vectors can be avoided (and the computational cost of the algorithm reduced by about a half) if the correction step is taken in the direction of

$$d_k = \nabla \left[g_P(z_{k-1}) - \varepsilon \, q_{\mathbf{w}}(|z_{k-1}|) \right]$$

and (4) is written in the form

 $z_k = \hat{z}_k - (g_P(z_{k-1}) - \varepsilon q_{\mathbf{w}}(|z_{k-1}|)) \overline{d_k}^{-1}.$

Choosing the direction d_k in the correction step.

5. Comments on the Algorithm

(a) It tracks the boundary of that con. component of $\sigma_{\varepsilon,\mathbf{w}}(P)$ containing λ_0 . For a complete picture, it may be necessary to repeat the procedure for several values of λ_0 .

(b) It does not require <u>a priori</u> knowledge of the size of $\sigma_{\varepsilon,\mathbf{w}}(P)$, since it sketches the con. components of $\sigma_{\varepsilon,\mathbf{w}}(P)$ one after the other by using starting points close to eigenvalues.

(c) The size of the step-lengths, τ_k , in the prediction step affects the accuracy and the computational cost of the algorithm, and it is important to obtain criteria for their selection (Bekas-Gallopoulos, 2001).

(d) The algorithm may lose its path near boundary points where $\nabla [g_P(\lambda) - \varepsilon q_w(|\lambda|)]$ does not exist or it is zero, and near points where the distance between con. components of $\sigma_{\varepsilon,w}(P)$ becomes small. Some of these difficulties can be solved by choosing a smaller step-length (increasing the cost). See below $\sigma_{\varepsilon,w}(P)$ of Example 2, for $\varepsilon = 0.06$.

Constant step-lengths $\tau = 0.03$ and $\tau = 0.003$.

6. Some Open Questions

(a) What else can we say about the topological and geometrical properties of $\sigma_{\varepsilon,\mathbf{w}}(P)$ and its con. components?

(b) When $\sigma_{\varepsilon,\mathbf{w}}(P)$ is unbounded, how many con. components it may have?

(c) Is it true that a bounded con. component \mathcal{G} of $\sigma_{\varepsilon,\mathbf{w}}(P)$ contains 2 eigenvalues of $P(\lambda)$ if and only if an associated perturbation $P_{\Delta}(\lambda)$ has a multiple eigenvalue in \mathcal{G} ?

(d) How can $\sigma_{\varepsilon,\mathbf{w}}(P)$ be used in studying the stability of the spectral factorization of $P(\lambda)$?

(e) Can the path-tracing algorithm be a part of a parallel algorithm?

7. References

C. Bekas and E. Gallopoulos, Parallel Computing, **27** (2001).

M. Brühl, BIT, 36 (1996).

S. Falk, Ingenieur-Archiv, 29 (1960).

I. Gohberg, P. Lancaster and L. Rodman, *Matrix Polynomials*, 1982.

N.J. Higham and F. Tisseur, Linear Algebra Appl., **351**-**352** (2002).

V. Mehrmann and D. Watkins, SIAM J. Sci. Comput., **22** (2001).

R.G. Mosier, Math. Comp., 47 (1986).

J.-G. Sun, J. Comput. Math., 6 (1988).

F. Tisseur and N.J. Higham, SIAM J. Matrix Anal. Appl., **23** (2001).

L.N. Trefethen, SIAM Rev., **39** (1997).