The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger's transformation

To appear in Linear Algebra and Its Applications

Panayiotis J. Psarrakos 1 and Michael J. Tsatsomeros 2

April 29, 2002

Abstract

Let A be a nonnegative square matrix whose symmetric part has rank one. Tournament matrices are of this type up to a positive shift by 1/2 I. When the symmetric part of A is irreducible, the Perron value and the left and right Perron vectors of $\mathcal{L}(A,\alpha)=(1-\alpha)A+\alpha A^t$ are studied and compared as functions of $\alpha\in[0,1/2]$. In particular, upper bounds are obtained for both the Perron value and its derivative as functions of the parameter α via the notion of the q-numerical range.

Keywords: Almost skew-symmetric matrix, Perron value, Perron vector, Levinger's transformation, q-numerical range, tournament

AMS Subject Classifications: 15A18, 15A42, 15A60, 05C20

¹Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece (ppsarr@math.ntua.gr).

²Mathematics Department, Washington State University, Pullman, Washington 99164-3113, U.S.A. (tsat@math.wsu.edu).

1 Introduction

An almost skew-symmetric matrix is a square matrix whose symmetric part has rank one. The initial interest in almost skew-symmetric matrices can be largely attributed to their association with tournament matrices; indeed, if T is a (0,1)-tournament matrix, i.e., $T+T^t=J-I$, where J is the all ones matrix, then T+1/2I is a nonnegative almost skew-symmetric matrix. The discovery that the eigenvalues of almost skew-symmetric matrices satisfy interesting inequalities forced upon by their structure [4, 5, 11] is sustaining the interest in these matrices and their properties.

In this article, we consider an entrywise nonnegative almost skew-symmetric matrix A and study the spectral radius of $\mathcal{L}(A,\alpha)=(1-\alpha)A+\alpha A^t$ as a function of $\alpha\in[0,1/2]$. The affine transformation $(1-\alpha)A+\alpha A^t$ and, in particular, its spectral radius when A is nonnegative were initially considered by Levinger [7], who showed that the spectral radius is non-decreasing in [0, 1/2]. We thus refer to $\mathcal{L}(A,\alpha)$ as Levinger's transformation. This result, re-proved and extended by Fiedler [2, 3], is regarded as one of the few results on the behavior of the spectral radius as a function of matrix elements and has proven useful in many instances.

More recently, use of Levinger's transformation is made in [11] in order to study the spectrum of general almost skew-symmetric matrices. In addition, $\mathcal{L}(A,\alpha)$ is used to study the shape of the numerical range of nonnegative matrices [10]. It appears that Levinger's transformation is a piece of many puzzles and so we are motivated to continue studying its role. Here, we do it in the context of nonnegative almost skew-symmetric matrices with irreducible symmetric parts. Specifically, we study the rate of change of the spectral radius of $\mathcal{L}(A,\alpha)$ as a function of α , as well as the behavior of the corresponding left and right (Perron) eigenvectors.

2 Preliminaries

Let $x, y \in \mathbb{R}^n$. We call x a *unit* vector if its Euclidean norm $||x||_2 = 1$. The angle between two nonzero vectors x and y is defined to be

$$(\widehat{x,y}) = \cos^{-1} \frac{x^t y}{\|x\|_2 \|y\|_2}$$

and is measured in $[0, \pi]$. Consider an $n \times n$ real matrix A (denoted by $A \in M_n(\mathbb{R})$). The spectrum of A is denoted by $\sigma(A)$ and its spectral radius by $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$. Recall that A can be written as

$$A = S(A) + K(A),$$

where

$$S(A) = \frac{A+A^t}{2}$$
 and $K(A) = \frac{A-A^t}{2}$

are the (real) symmetric part and the (real) skew-symmetric part of A, respectively. We define Levinger's transformation of A by

$$\mathcal{L}(A, \alpha) = (1 - \alpha)A + \alpha A^t$$
; $\alpha \in [0, 1/2]$

and Levinger's function by

$$\phi(A,\alpha) = \rho(\mathcal{L}(A,\alpha)) = \rho((1-\alpha)A + \alpha A^t); \quad \alpha \in [0, 1/2].$$
 (2.1)

Notice that the analysis of Levinger's function in [0, 1/2] extends naturally to [1/2, 1] as $\mathcal{L}(A, \alpha)^t = \mathcal{L}(A, 1 - \alpha)$. One can also see that

$$\mathcal{L}(A,0) = A$$
, $\mathcal{L}(A,1/2) = S(A)$

and that for every $\alpha \in (0, 1/2)$,

$$\mathcal{L}(A,\alpha) = S(A) + (1 - 2\alpha)K(A).$$

Suppose now that A is entrywise nonnegative (denoted by $A \geq 0$). Then $S(A) \geq 0$. Moreover, suppose S(A) is of rank one. This means that $\sigma(S(A))$ consists of the eigenvalue 0 with multiplicity n-1 and a simple eigenvalue $\delta(A)$. By the Perron-Frobenius Theorem (see e.g., [1]), $\delta(A) = \rho(S(A)) > 0$. It follows that there is a nonzero nonnegative vector $w \in \mathbb{R}^n$ such that

$$S(A) = w w^t$$
 and $\delta(A) = w^t w$.

We refer to a matrix A having the above features as a nonnegative almost skew-symmetric matrix and assume the reader recalls the above associated notation.

The variance of a nonnegative almost skew-symmetric matrix A is

$$\operatorname{var}(A) = \frac{\|K(A)w\|_2^2}{\|w\|_2^2} = \frac{w^t(K(A)^tK(A))w}{w^tw}.$$

Note that the variance of $\mathcal{L}(A,\alpha)$ is given by

$$\operatorname{var}(\mathcal{L}(A,\alpha)) = (1-2\alpha)^2 \operatorname{var}(A).$$

It is also clear that

$$\phi(A, 0) = \rho(A)$$
 and $\phi(A, 1/2) = \rho(S(A)) = \delta(A)$.

Some more terminology is in order for a nonnegative matrix X (for details and general background see [1]). We refer to $\rho(X) \in \sigma(X)$ as the *Perron root* of X. Recall that X is irreducible if its directed graph is strongly connected or, equivalently, if it cannot be symmetrically permuted to a block upper triangular

matrix having non-vacuous, square diagonal blocks. When X is irreducible, the Perron-Frobenius Theorem states that $\rho(X)$ is a *simple* eigenvalue. In this case, we denote the corresponding unit right and left eigenvectors of X by $x_r(X)$ and $x_l(X)$, and refer to them as the unit *right Perron vector* and the unit *left Perron vector*, respectively.

Let us now assume that A is nonnegative almost skew-symmetric and that $S(A) = ww^t$ is irreducible. As $S(A) \geq 0$, we have that w must be a strictly positive vector and thus S(A) is a strictly positive matrix. It follows that all $\mathcal{L}(A,\alpha)$ ($\alpha \in (0,1)$) are also strictly positive (and thus irreducible) almost skew-symmetric matrices. As a consequence, $\phi(A,\alpha)$ is a simple eigenvalue and thus the right and left unit Perron vectors of $\mathcal{L}(A,\alpha)$ are well-defined; in particular notice that

$$x_r(\mathcal{L}(A, 1/2)) = x_l(\mathcal{L}(A, 1/2)) = x_r(S(A)) = x_l(S(A)) = w/||w||_2.$$

In addition, when S(A) is irreducible, $\phi(A, \alpha)$ is a differentiable function of $\alpha \in (0, 1)$. These facts underlie most of our statements in Sections 3 and 4.

Example 2.1 This example illustrates the above definitions and that S(A) being irreducible is indeed an assumption weaker than A being irreducible, even for nonnegative almost skew-symmetric matrices. The matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right]$$

is a reducible nonnegative almost skew-symmetric matrix with

$$K(A) = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
 and $S(A) = ww^t$, where $w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

It satisfies $\delta(A) = 3$ and var(A) = 8/3. As S(A) is irreducible, the main results herein apply to this matrix A.

We proceed with a brief mention of some results from [11] that are relevant to our discussion. Notice that they apply to skew-symmetric matrices that are not necessarily nonnegative; in [11] an almost skew-symmetric matrix is by definition a matrix A whose symmetric part has rank one and $\delta(A) > 0$.

Theorem 2.2 Let $A \in M_n(\mathbb{R})$ be an almost skew-symmetric matrix and λ an eigenvalue of A. Then

$$(\operatorname{Im}\lambda)^2 \operatorname{Re}\lambda \le (\delta(A) - \operatorname{Re}\lambda) \left[\operatorname{var}(A) + \operatorname{Re}\lambda \left(\operatorname{Re}\lambda - \delta(A) \right) \right].$$
 (2.2)

Prompted by the above theorem, the *shell* of an almost skew-symmetric matrix A is defined in [11] as the curve in the complex plane given by

$$\Gamma(A) \ = \ \left\{ x + iy \in \mathbb{C} : x, y \in \mathbb{R} \ \text{ and } \ y^2 = (\delta(A) - x) \left(\frac{\operatorname{var}(A)}{x} + x - \delta(A) \right) \right\}.$$

By Theorem 2.2, $\Gamma(A)$ yields a localization of the spectrum of A, as specified by (2.2). The various possible configurations of the shell of an almost skew-symmetric matrix and how to achieve them via Levinger's transformation are illustrated in the next example.

Example 2.3 We have taken a 5×5 almost skew-symmetric matrix A with $\delta(A) = 2.6636$ and variance $\operatorname{var}(A) = 2.4219$, and found the almost skew-symmetric matrices $B = \mathcal{L}(A, 0.072)$ and $C = \mathcal{L}(A, 0.1)$ having variances $\operatorname{var}(B) = 1.7746$ and $\operatorname{var}(C) = 1.55$. Of course, $\delta(B) = \delta(C) = 2.6636$. Their shells are shown in Figure 1, where the eigenvalues of each matrix are marked with *'s. The shell $\Gamma(A)$ is connected and all the eigenvalues of A are located in the region between $\Gamma(A)$ and the imaginary axis. The shell $\Gamma(C)$ consists of one bounded and one unbounded branch. The bounded branch surrounds a real eigenvalue of C and the unbounded branch isolates the rest of the spectrum. The shell of B is the transition in a continuous transformation from the connected shell to the shell with two branches.

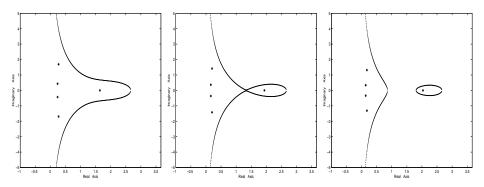


Figure 1: The shells $\Gamma(A)$, $\Gamma(B)$ and $\Gamma(C)$.

When A is almost skew-symmetric, applying Theorem 2.2 to $\mathcal{L}(A, \alpha)$, which is also almost skew-symmetric, the following can be shown [11].

Proposition 2.4 Let $A \in M_n(\mathbb{R})$ be an almost skew-symmetric matrix. Then for every $\alpha \in [0, 1/2]$ such that $\delta^2(A) > 4(1-2\alpha)^2 \text{var}(A)$, the matrix $\mathcal{L}(A, \alpha)$ has a real eigenvalue

$$\lambda(A, \alpha) \ge \frac{\delta(A) + \sqrt{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}}{2}$$

and n-1 complex eigenvalues whose real parts are not greater than

$$\frac{\delta(A) - \sqrt{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}}{2}.$$

We conclude with an outline of our results to follow. In Section 3 we obtain bounds for the angles between the vectors w, $x_r(\mathcal{L}(A,\alpha))$ and $x_l(\mathcal{L}(A,\alpha))$ for appropriate values of $\alpha \in [0, 1/2]$. In Section 4, using the notion of q-numerical range and a result in [3], we construct an upper bound for the derivative of Levinger's function in (2.1), which, in turn, yields an upper bound for $\phi(A,\alpha)$. Finally, an illustrative example is presented in Section 5.

3 Right and left Perron vectors of $\mathcal{L}(A, \alpha)$

Let $A \in M_n(\mathbb{R})$ be an irreducible nonnegative almost skew-symmetric matrix with symmetric part $S(A) = w \, w^t$. Then there exists an *orthonormal basis* of \mathbb{C}^n , $\{v_1, v_2, \ldots, v_{n-1}, w/\|w\|_2\}$, where $v_1, v_2, \ldots, v_{n-1} \in \operatorname{Ker} S(A)$ and $w/\|w\|_2$ is the unit eigenvector of S(A) corresponding to the eigenvalue $\delta(A) = w^t w$.

For any $\alpha \in [0, 1/2]$, consider the unit right and left Perron vectors of $\mathcal{L}(A, \alpha)$ and decompose them as

$$x_r(\alpha) = y_r(\alpha) + z_r(\alpha) \tag{3.1}$$

and

$$x_l(\alpha) = y_l(\alpha) + z_l(\alpha), \tag{3.2}$$

where $y_r(\alpha), y_l(\alpha) \in \text{span}\{v_1, v_2, \dots, v_{n-1}\}\ \text{and}\ z_r(\alpha), z_l(\alpha) \in \text{span}\{w\}.$

Proposition 3.1 Let $A \in M_n(\mathbb{R})$ be an irreducible nonnegative almost skew-symmetric matrix. Then for every $\alpha \in [0, 1/2]$, Levinger's function satisfies

$$\phi(A, \alpha) = \delta(A) \|z_r(\alpha)\|_2^2 = \delta(A) \|z_l(\alpha)\|_2^2,$$

where $z_r(\alpha)$ and $z_l(\alpha)$ are defined in (3.1) and (3.2), respectively.

Proof. It is enough to obtain that $\phi(A, \alpha) = \delta(A) \|z_r(\alpha)\|_2^2$. The proof of the equality $\phi(A, \alpha) = \delta(A) \|z_l(\alpha)\|_2^2$ is similar. Since the eigenvector $x_r(\alpha)$ of $\mathcal{L}(A, \alpha)$ in (3.1) is unit, it follows that

$$\phi(A,\alpha) = x_r(\alpha)^t \mathcal{L}(A,\alpha) x_r(\alpha).$$

Hence,

$$\phi(A, \alpha) = x_r(\alpha)^t (S(A) + (1 - 2\alpha)K(A))x_r(\alpha)$$

$$= (y_r(\alpha)^t + z_r(\alpha)^t)S(A)(y_r(\alpha) + z_r(\alpha))$$

$$+ (1 - 2\alpha)x_r(\alpha)^t K(A)x_r(\alpha)$$

$$= z_r(\alpha)^t S(A)z_r(\alpha) + (1 - 2\alpha)x_r(\alpha)^t K(A)x_r(\alpha)$$

$$= \delta(A) \|z_r(\alpha)\|_2^2 + (1 - 2\alpha)x_r(\alpha)^t K(A)x_r(\alpha).$$

Note that $\phi(A, \alpha) \in \mathbb{R}$ and the matrix K(A) is skew-symmetric. Thus $x_r(\alpha)^t K(A) x_r(\alpha) = 0$ and consequently, $\phi(A, \alpha) = \delta(A) \|z_r(\alpha)\|_2^2$. \square

Corollary 3.2 Let $A \in M_n(\mathbb{R})$ be an irreducible nonnegative almost skew-symmetric matrix. Then for every $\alpha \in [0, 1/2]$, the right and left Perron vectors of $\mathcal{L}(A, \alpha)$ have the same orthogonal projection onto ω , i.e., $z_r(\alpha) = z_l(\alpha)$. Moreover, Levinger's function satisfies

$$\phi(A,\alpha) = \delta(A) \left(\frac{w^t x_r(\alpha)}{\|w\|_2} \right)^2 = \delta(A) \left(\frac{w^t x_l(\alpha)}{\|w\|_2} \right)^2.$$

Proof. From Proposition 3.1, it follows that for every $\alpha \in [0, 1/2]$, the vectors $z_r(\alpha)$ and $z_l(\alpha)$ have the same modulus. Also, since the Perron vectors $x_r(\alpha)$ and $x_l(\alpha)$ are nonnegative, and since $z_r(\alpha)$ (resp., $z_l(\alpha)$) is the orthogonal projection of $x_r(\alpha)$ (resp., $x_l(\alpha)$) onto the vector w, the claimed expression for $\phi(A, \alpha)$ follows readily, as well as that

$$cos(\widehat{w, x_r(\alpha)}) = cos(\widehat{w, x_l(\alpha)})$$

or, equivalently,

$$(\widehat{w, x_r(\alpha)}) = (\widehat{w, x_l(\alpha)}).$$

The latter equality and as $||z_r(\alpha)||_2 = ||z_l(\alpha)||_2$, implies that $z_r(\alpha) = z_l(\alpha)$. \square

Remark 3.3 Note that Proposition 3.1 and Corollary 3.2 hold for $\alpha \in (0, 1/2]$ when the assumption of irreducibility of A is relaxed to irreducibility of the symmetric part of A.

We will now apply the results in [11] in order to investigate the behavior of the Perron vectors of $\mathcal{L}(A, \alpha)$. First, define the interval

$$\mathcal{X}_A = \left(\max \left\{ 0, \frac{1}{2} - \sqrt{\frac{\delta^2(A)}{16 \operatorname{var}(A)}} \right\}, \frac{1}{2} \right]$$
 (3.3)

and observe that $\alpha \in (0, 1/2]$ lies in \mathcal{X}_A if and only if $\delta^2(A) > 4(1-2\alpha)^2 \operatorname{var}(A)$. Notice also that since $0 \notin \mathcal{X}_A$, if the symmetric part of A is irreducible, then for every $\alpha \in \mathcal{X}_A$, $\mathcal{L}(A, \alpha)$ is irreducible. **Theorem 3.4** Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part. Then for every $\alpha \in \mathcal{X}_A$, the cosine of the angle $(w, x_r(\alpha)) = (w, x_l(\alpha))$ is greater than or equal to the quantity

$$R_A = \sqrt{\frac{1}{2} + \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \text{var}(A)}{4 \delta^2(A)}}}$$
.

Proof. We prove that $\cos(w, x_r(\alpha)) \ge R_A$. For any $\alpha \in \mathcal{X}_A$, by Proposition 2.4,

$$\phi(A,\alpha) \ge \frac{\delta(A) + \sqrt{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}}{2}.$$

Hence, by Corollary 3.2 applied to $\mathcal{L}(A, \alpha)$, it follows that

$$\frac{\delta(A)(w^t x_r(\alpha))^2}{\|w\|_2^2} \ge \frac{\delta(A)}{2} + \delta(A) \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \text{var}(A)}{4 \, \delta^2(A)}}$$

or, equivalently,

$$\frac{w^t x_r(\alpha)}{\|w\|_2} \ge \sqrt{\frac{1}{2} + \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \text{var}(A)}{4 \, \delta^2(A)}}}.$$

Since the vector $x_r(\alpha)$ is unit, it is clear that

$$\widehat{\cos(w, x_r(\alpha))} \ge \sqrt{\frac{1}{2} + \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{4\delta^2(A)}}} . \quad \Box$$

Remark 3.5 These remarks refer to the above theorem.

(i) The following interpretation of $\operatorname{var}(A)$ is possible. For any $\alpha \in \mathcal{X}_A$, define the angle $\vartheta_A(\alpha) \in [0, \pi/4]$ such that

$$\cos \vartheta_A(\alpha) = R_A = \sqrt{\frac{1}{2} + \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \text{var}(A)}{4 \, \delta^2(A)}}}$$
 (3.4)

Consider now α varying in \mathcal{X}_A , starting from 1/2 and taking values toward the left endpoint of \mathcal{X}_A . Then the Perron vectors $x_r(\alpha)$ and $x_l(\alpha)$ of $\mathcal{L}(A,\alpha)$ lie in the cone

$$\mathcal{K}_A(\alpha) = \{ u \in \mathbb{R}^n : 0 \le (\widehat{w, u}) \le \vartheta_A(\alpha) \},$$

which contains w. Notice that the smaller $\operatorname{var}(A)$ is, the slower $\mathcal{K}_A(\alpha)$ dilates, and the slower $x_r(\alpha)$ and $x_l(\alpha)$ dilate away from w.

(ii) For $\alpha = 1/2$, we have

$$1 = \cos 0 = \cos(\widehat{w, w}) \ge \sqrt{\frac{1}{2} + \sqrt{\frac{\delta^2(A)}{4 \, \delta^2(A)}}} = 1.$$

Notice also that for every $\alpha \in \mathcal{X}_A$, the angle $(w, x_r(\alpha)) = (w, x_l(\alpha))$ is not greater than $\pi/4$.

Theorem 3.4 also allows us to estimate a priori the angle between $x_r(\alpha)$ and $x_l(\alpha)$ and subsequently the Euclidean distance between these two vectors for any $\alpha \in \mathcal{X}_A$.

Theorem 3.6 Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part. Then for every $\alpha \in \mathcal{X}_A$,

$$\cos\left(x_r(\widehat{\alpha}), x_l(\alpha)\right) \ge \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{\delta^2(A)}}$$
.

Proof. With $\vartheta_A(\alpha)$ as defined in (3.4) and for the angles $(x_r(\alpha), x_l(\alpha))$, $(w, x_r(\alpha))$ and $(w, x_l(\alpha))$, we have

$$(x_r(\widehat{\alpha}), x_l(\alpha)) \le (\widehat{w}, \widehat{x_r(\alpha)}) + (\widehat{w}, \widehat{x_l(\alpha)}) \le 2 \vartheta_A(\alpha) \le \frac{\pi}{2}.$$

Thus,

$$\cos(x_r(\alpha), x_l(\alpha)) \ge \cos(2\vartheta_A(\alpha)) \ge 0,$$

where

$$\cos(2 \vartheta_A(\alpha)) = 2 \cos^2 \vartheta_A(\alpha) - 1$$
$$= \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \text{var}(A)}{\delta^2(A)}}. \quad \Box$$

Corollary 3.7 Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part. Then for every $\alpha \in \mathcal{X}_A$, the Perron vectors $x_r(\alpha)$ and $x_l(\alpha)$ satisfy

$$||x_r(\alpha) - x_l(\alpha)||_2^2 \le 2\left(1 - \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{\delta^2(A)}}\right).$$

Proof. Since the vectors $x_r(\alpha)$ and $x_l(\alpha)$ are unit, one can see that

$$||x_r(\alpha) - x_l(\alpha)||_2^2 = (x_r(\alpha)^t - x_l(\alpha)^t)(x_r(\alpha) - x_l(\alpha))$$
$$= 2 - 2\cos(x_r(\alpha), x_l(\alpha)).$$

Hence, by the above theorem,

$$||x_r(\alpha) - x_l(\alpha)||_2^2 \le 2 - 2\sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{\delta^2(A)}}$$
. \square

4 Bounds for Levinger's function and its derivative

Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part, and recall Levinger's function

$$\phi(A,\alpha) = \rho(\mathcal{L}(A,\alpha)) = \rho((1-\alpha)A + \alpha A^t); \quad \alpha \in [0, 1/2]$$

and the interval $\mathcal{X}_A \subseteq (0, 1/2]$ defined in (3.3). Proposition 2.4 applied to A, and since then $\lambda(A, \alpha) = \phi(A, \alpha)$, yields a lower bound on Levinger's function. In this section, we focus on upper bounds for $\phi(A, \alpha)$ and for the 'rate of change' of $\phi(A, \alpha)$ as a function of α . The rate of change of Levinger's function has been studied systematically by Fiedler [3]. By the proof of [3, Theorem 1.2, p. 176], we have that for every $\alpha \in (0, 1/2)$,

$$0 \leq \phi'(A,\alpha) = \frac{1}{1-2\alpha} \frac{x_l(\alpha)^t (\mathcal{L}(A,\alpha)^t - \mathcal{L}(A,\alpha)) x_r(\alpha)}{x_l(\alpha)^t x_r(\alpha)}$$
$$= -2 \frac{x_l(\alpha)^t K(A) x_r(\alpha)}{\cos(x_r(\alpha), x_l(\alpha))}. \tag{4.1}$$

This expression for $\phi'(A, \alpha)$ will lead us to an upper bound for $\phi'(A, \alpha)$ that depends on var(A) and $\delta(A)$; it is contained in Theorem 4.1. Subsequently, this upper bound will be used to obtain an upper bound for $\phi(A, \alpha)$.

To begin, by (4.1) and our Theorem 3.6, it follows that for every $\alpha \in \mathcal{X}_A \setminus \{1/2\}$,

$$0 \le \phi'(A,\alpha) \le \frac{2}{g(\alpha)} \left(-x_l(\alpha)^t K(A) x_r(\alpha) \right), \tag{4.2}$$

where

$$q(\alpha) = \sqrt{\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{\delta^2(A)}}.$$
 (4.3)

At this point, it is necessary to introduce the notion of q-numerical range of an $n \times n$ complex matrix N for a real $q \in [0, 1]$, that is,

$$\begin{split} F_q(N) &=& \left\{ x^*Ny \in \mathbb{C} : x,y \in \mathbb{C}^n, \ x^*x = y^*y = 1 \ \text{and} \ x^*y = q \right\} \\ &=& \left\{ \frac{x^*}{\|x\|_2} \, N \, \frac{y}{\|y\|_2} \in \mathbb{C} : x,y \in \mathbb{C}^n \setminus \{0\} \ \text{and} \ \cos(\widehat{x,y}) = q \right\}. \end{split}$$

For q = 1, $F_q(N)$ coincides with the classical numerical range

$$F(N) \equiv F_1(N) = \{x^* N x \in \mathbb{C} : x \in \mathbb{C}^n \text{ and } x^* x = 1\}.$$

The q-numerical range $F_q(N)$ $(q \in [0, 1])$ is always a compact and convex subset of the complex plane. For $0 \le q < 1$, $F_q(N)$ has a nonempty interior, and for q = 1, the range F(N) is a line segment if and only if N is a normal matrix with colinear eigenvalues. In particular, a complex matrix N is Hermitian (resp., skew-Hermitian) if and only if $F(N) \subset \mathbb{R}$ (resp., $F(N) \subset \mathbb{R}$).

For the matrix A, it is obvious now that the quantity $-x_l(\alpha)^t K(A)x_r(\alpha)$ in (4.2) is positive and lies in the interval

$$[0, +\infty) \cap F_{\cos(x_r(\alpha), x_l(\alpha))}(K(A)).$$

As a consequence, it will be necessary to estimate the length of the intersection of the positive half-axis $[0, +\infty)$ with the $\cos(x_r(\alpha), x_l(\alpha))$ -numerical range of the real skew-symmetric matrix K(A).

First observe that in general, for any pair $0 < \alpha_1 < \alpha_2 < 1/2$, it follows that $q(\alpha_1) < q(\alpha_2)$, where $q(\alpha)$ is defined in (4.3). Thus, by [8, Theorem 2.5],

$$F_{q(\alpha_2)}(K(A)) \subseteq \frac{q(\alpha_2)}{q(\alpha_1)} F_{q(\alpha_1)}(K(A))$$

and consequently,

$$[0, +\infty) \cap F_{q(\alpha_2)}(K(A)) \subseteq \frac{q(\alpha_2)}{q(\alpha_1)} \{ [0, +\infty) \cap F_{q(\alpha_1)}(K(A)) \}.$$

Similarly we obtain that for every $\alpha \in \mathcal{X}_A \setminus \{1/2\}$,

$$[0, +\infty) \cap F_{\cos(x_r(\alpha), x_l(\alpha))}(K(A)) \subseteq \frac{\cos(x_r(\alpha), x_l(\alpha))}{q(\alpha)} \times \{ [0, +\infty) \cap F_{q(\alpha)}(K(A)) \}.$$

Hence, by (4.2) and Theorem 3.6,

$$0 \leq \phi'(A,\alpha) \leq \frac{2\cos(x_r(\widehat{\alpha}), x_l(\alpha))}{q^2(\alpha)} \max\left\{ [0, +\infty) \cap F_{q(\alpha)}(K(A)) \right\}$$
$$\leq \frac{2}{q^2(\alpha)} \max\left\{ [0, +\infty) \cap F_{q(\alpha)}(K(A)) \right\}.$$

Theorem 4.1 Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part and let s_1 be the maximum singular value of the skew-symmetric matrix K(A). Then for every $\alpha \in \mathcal{X}_A \setminus \{1/2\}$,

$$0 \leq \phi'(A,\alpha) \leq \frac{4 s_1 (1 - 2\alpha) \delta(A) \sqrt{\operatorname{var}(A)}}{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}.$$

Proof. The numerical range of K(A) is $F(K(A)) = [-i\beta, i\beta]$, where the real number β is nonnegative [6]. Denote by $D(\lambda, r)$ the closed disk centered at λ with radius r. By the results in [9], it is known that for any $q \in [0, 1]$,

$$F_q(K(A)) = \bigcup_{\substack{(\mathbf{i}\gamma, h)\\ \gamma, h \in \mathbb{R}}} D(\mathbf{i}\,q\gamma, \sqrt{(1-q^2)(h-\gamma^2)}),$$

where the union is taken over all the pairs

$$(i\gamma, h) = (x^*K(A)x, x^*(K(A)^*K(A))x); \quad x^*x = 1.$$

Since K(A) is skew-symmetric, there is a unitary matrix U such that

$$K(A) = i U^* \operatorname{diag}\{\pm s_1, \pm s_2, \dots, \pm s_m\} U$$

and

$$K(A)^*K(A) = U^*\operatorname{diag}\{s_1^2, s_1^2, s_2^2, s_2^2, \dots, s_m^2\}U,$$

where $s_1 \geq s_2 \geq \ldots \geq s_m \geq 0$ are the singular values of K(A). (Note that every nonzero singular value appears an even number of times.)

One can see that for the pair $(i\gamma, h) = (0, s_1^2)$, the radius of the disk

$$D(iq\gamma, \sqrt{(1-q^2)(h-\gamma^2)})$$

attains its maximum value, that is,

$$r_{max}(A,q) = s_1 \sqrt{1 - q^2}.$$

Indeed, let y_1 and \hat{y}_1 be two orthonormal eigenvectors of K(A) corresponding to the eigenvalues i s_1 and $-i s_1$, respectively. Then the vector $y_0 = (y_1 + \hat{y}_1)/\sqrt{2}$ is a unit eigenvector of matrix $K(A)^*K(A)$ corresponding to s_1^2 , and

$$(y_0^* K(A) y_0, y_0^* (K(A)^* K(A)) y_0)$$

$$= \left(\frac{y_1^* K(A) y_1}{\sqrt{2}} + \frac{\hat{y}_1^* K(A) \hat{y}_1}{\sqrt{2}}, y_0^* (K(A)^* K(A)) y_0 \right)$$

$$= (0, s_1^2).$$

Thus, for any $\alpha \in \mathcal{X}_A \setminus \{1/2\}$, the set $[0, +\infty] \cap F_{q(\alpha)}(K(A))$ coincides with the interval

$$\left[0, s_1 \sqrt{1 - q^2(\alpha)}\right] = \left[0, \frac{2 s_1 (1 - 2\alpha)}{\delta(A)} \sqrt{\operatorname{var}(A)}\right].$$

Consequently, for any $\alpha \in \mathcal{X}_A \setminus \{1/2\}$, we have

$$0 \le \phi'(A, \alpha) \le \frac{2}{q^2(\alpha)} \frac{2s_1(1 - 2\alpha)}{\delta(A)} \sqrt{\operatorname{var}(A)},$$

where $q(\alpha)$ is given in (4.3), or equivalently,

$$0 \le \phi'(A,\alpha) \le \frac{4 s_1 (1 - 2\alpha) \delta(A) \sqrt{\operatorname{var}(A)}}{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)} . \quad \Box$$

Next we turn our attention to obtaining an upper bound for $\phi(A, \alpha)$. The only upper bound we know so far is Levinger's result, namely, $\phi(A, \alpha) \leq \delta(A)$. However, our bound for $\phi'(A, \alpha)$ can lead us to a better estimate for $\phi(A, \alpha)$.

Theorem 4.2 Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part and let s_1 be the maximum singular value of the skew-symmetric matrix K(A). Then for every $\alpha_1, \alpha_2 \in \mathcal{X}_A \setminus \{1/2\}$ such that $\alpha_1 < \alpha_2$,

$$0 \le \phi(A, \alpha_2) - \phi(A, \alpha_1) \le \frac{s_1 \, \delta(A)}{4 \, \sqrt{\operatorname{var}(A)}} \, \ln \left(\frac{\delta^2(A) - 4(1 - 2\alpha_2)^2 \operatorname{var}(A)}{\delta^2(A) - 4(1 - 2\alpha_1)^2 \operatorname{var}(A)} \right).$$

Proof. From Theorem 4.1, for every $\alpha \in \mathcal{X}_A \setminus \{1/2\}$, we get

$$0 \leq \phi'(A,\alpha) \leq \frac{4s_1(1-2\alpha)\delta(A)\sqrt{\operatorname{var}(A)}}{\delta^2(A) - 4(1-2\alpha)^2\operatorname{var}(A)}.$$

Integrating through the above inequality with respect to α in the interval $(\alpha_1, \alpha_2) \subseteq \mathcal{X}_A \setminus \{1/2\}$, and as $\phi(A, \alpha)$ is a non-decreasing function in [0, 1/2] (see [3, 7]), we obtain the claimed inequality. \square

Corollary 4.3 Let $A \in M_n(\mathbb{R})$ be a nonnegative almost skew-symmetric matrix with irreducible symmetric part and let s_1 be the maximum singular value of the skew-symmetric matrix K(A). If $\delta^2(A) > 4\text{var}(A)$, then for every $\alpha \in [0, 1/2)$, we have

$$\phi(A,\alpha) \leq \rho(A) + \frac{s_1\delta(A)}{4\sqrt{\operatorname{var}(A)}} \ln\left(\frac{\delta^2(A) - 4(1 - 2\alpha)^2 \operatorname{var}(A)}{\delta^2(A) - 4\operatorname{var}(A)}\right).$$

Moreover, for $\alpha = 1/2$, the following inequality obtains:

$$\delta(A) - \rho(A) \le \frac{s_1 \delta(A)}{4\sqrt{\operatorname{var}(A)}} \ln \left(\frac{\delta^2(A)}{\delta^2(A) - 4\operatorname{var}(A)} \right).$$

Note that for values of α sufficiently close to 0, the upper bound for $\phi(A, \alpha)$ in the above corollary is less than $\delta(A)$, and for $\alpha = 0$, it coincides with $\rho(A)$.

5 Illustrative example

Consider the (irreducible) nonnegative matrix

$$A = \begin{bmatrix} 0.5 & 0.3 & 0.4 & 0.7 & 0.7 & 1 \\ 0.7 & 0.5 & 1 & 0.8 & 0.9 & 0.3 \\ 0.6 & 0 & 0.5 & 0.5 & 0.6 & 0.2 \\ 0.3 & 0.2 & 0.5 & 0.5 & 0.3 & 0.5 \\ 0.3 & 0.1 & 0.4 & 0.7 & 0.5 & 0.3 \\ 0 & 0.7 & 0.8 & 0.5 & 0.7 & 0.5 \end{bmatrix}.$$

This matrix has irreducible symmetric part

$$S(A) = w w^t$$
, where $w = (\sqrt{2}/2) [1, 1, 1, 1, 1, 1]^t$.

Thus A is almost skew-symmetric. The spectral radius of A is $\rho(A) \cong 2.8128$, its variance is var(A) = 0.53 and $\delta(A) = 3$. The maximum singular value of the skew-symmetric part of A,

$$K(A) = \begin{bmatrix} 0 & -0.2 & -0.1 & 0.2 & 0.2 & 0.5 \\ 0.2 & 0 & 0.5 & 0.3 & 0.4 & -0.2 \\ 0.1 & -0.5 & 0 & 0 & 0.1 & -0.3 \\ -0.2 & -0.3 & 0 & 0 & -0.2 & 0 \\ -0.2 & -0.4 & -0.1 & 0.2 & 0 & -0.2 \\ -0.5 & 0.2 & 0.3 & 0 & 0.2 & 0 \end{bmatrix},$$

is $s_1 \cong 0.8247$. We also have that $\mathcal{X}_A = (0, 1/2]$ and that for every $\alpha \in [0, 1/2]$,

$$9 = \delta^2(A) > 2.12 \ge 4(1 - 2\alpha)^2 \operatorname{var}(A).$$

If we choose $\alpha=1/3$, then the Perron root of $\mathcal{L}(A,1/3)$ is $\phi(A,1/3)\cong 2.980254$ with corresponding unit Perron vectors

$$x_r(1/3) = [0.435139, 0.460558, 0.378913, 0.376042, 0.374113, 0.416649]^t.$$

and

$$x_l(1/3) = [0.380385, 0.351427, 0.433478, 0.439692, 0.437761, 0.398672]^t$$

By (4.1), we have

$$\phi'(A, 1/3) = -2 \frac{x_l(1/3)^t K(A) x_r(1/3)}{x_l(1/3)^t x_r(1/3)} \cong 0.238368.$$

Notice that

$$q(1/3) \cong 0.986827 < 0.986845 \cong \cos(x_r(1/3), x_l(1/3)),$$

confirming Theorem 3.6. The upper bound of the derivative of Levinger's function in Theorem 4.1 is

$$\frac{4 s_1 (1 - 2/3) \delta(A) \sqrt{\text{var}(A)}}{\delta^2(A) - 4(1 - 2/3)^2 \text{var}(A)} \cong 0.274012 > 0.238368 \cong \phi^{'}(A, 1/3).$$

In Figure 2, we illustrate the upper bound for $\phi(A,\alpha)$ in Corollary 4.3 and the lower bound in Proposition 2.4. The Perron roots $\phi(A,\alpha)$ for $\alpha=0,0.1,0.2,0.3,0.4,0.5$ are marked with o's. Notice that since the variance var(A)=0.53 is relatively small, the lower bound in Proposition 2.4 is evidently quite close to Levinger's function $\phi(A,\alpha)$.

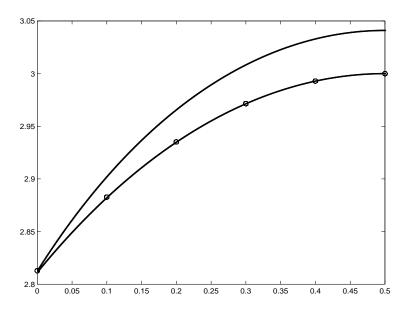


Figure 2: The lower and upper bound for $\phi(A, \alpha)$.

Finally, we remark that Levinger's function and our bounds for it have the same qualitative behavior in \mathcal{X}_A , that is, they are all increasing and concave functions, and their derivatives have a zero at $\alpha = 1/2$.

References

- [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
- [2] M. Fiedler, Geometry of the numerical range of matrices, *Linear Algebra* and Its Applications, **37** (1981), pp. 81-96.

- [3] M. Fiedler, Numerical range of matrices and Levinger's theorem, *Linear Algebra and Its Applications*, **220** (1995), pp. 171-180.
- [4] S. Friedland, Eigenvalues of almost skew-symmetric matrices and tournament matrices, in *Combinatorial and graph-theoretical problems in linear algebra*, R.A. Brualdi, S. Friedland, and V. Klee, Eds, IMA Vol. Math. Appl., 50, pp. 189-206, Springer-Verlag, New York, 1993.
- [5] S. Friedland and M. Katz, On the maximal spectral radius of even tournament matrices and the spectrum of almost skew-symmetric compact operators, *Linear Algebra and Its Applications*, **208/209** (1994), pp. 455-469.
- [6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge 1991.
- [7] B.W. Levinger, An inequality for nonnegative matrices, *Notices of the American Mathematical Society*, **17** (1970) p. 260.
- [8] C.-K. Li, P. Metha, and L. Rodman, A generalized numerical range: the range of a constrained sesquilinear form, *Linear and Multilinear Algebra*, **37** (1998), pp. 25-49.
- [9] C.-K. Li and H. Nakazato, Some results on the q-numerical range, Linear and Multilinear Algebra, 43 (1998), pp. 385-409.
- [10] J. Maroulas, P.J. Psarrakos, and M.J. Tsatsomeros, Perron-Frobenius type results on the numerical range, *Linear Algebra and Its Applications*, **348** (2002), pp. 49-62.
- [11] J. McDonald, P. Psarrakos, and M. Tsatsomeros, Almost skew-symmetric matrices, *Rocky Mountain Journal of Mathematics*, to appear.