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Abstract

Let A be a nonnegative square matrix whose symmetric part has rank
one. Tournament matrices are of this type up to a positive shift by 1/2 1.
When the symmetric part of A is irreducible, the Perron value and the
left and right Perron vectors of £(A,a) = (1 — a)A + oAt are studied
and compared as functions of « € [0, 1/2]. In particular, upper bounds
are obtained for both the Perron value and its derivative as functions of
the parameter « via the notion of the g-numerical range.
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1 Introduction

An almost skew-symmetric matrix is a square matrix whose symmetric part
has rank one. The initial interest in almost skew-symmetric matrices can be
largely attributed to their association with tournament matrices; indeed, if 7" is
a (0, 1)-tournament matrix, i.e., T'+7T* = J — I, where J is the all ones matrix,
then T+ 1/21 is a nonnegative almost skew-symmetric matrix. The discovery
that the eigenvalues of almost skew-symmetric matrices satisfy interesting in-
equalities forced upon by their structure [4, 5, 11] is sustaining the interest in
these matrices and their properties.

In this article, we consider an entrywise nonnegative almost skew-symmetric
matrix A and study the spectral radius of L(A,a) = (1 — a)A + aA® as a
function of « € [0, 1/2]. The affine transformation (1 — «)A + aA® and, in
particular, its spectral radius when A is nonnegative were initially considered
by Levinger [7], who showed that the spectral radius is non-decreasing in [0, 1/2].
We thus refer to L(A, «) as Levinger’s transformation. This result, re-proved
and extended by Fiedler [2, 3], is regarded as one of the few results on the
behavior of the spectral radius as a function of matrix elements and has proven
useful in many instances.

More recently, use of Levinger’s transformation is made in [11] in order to study
the spectrum of general almost skew-symmetric matrices. In addition, £(A4, «)
is used to study the shape of the numerical range of nonnegative matrices [10].
It appears that Levinger’s transformation is a piece of many puzzles and so we
are motivated to continue studying its role. Here, we do it in the context of
nonnegative almost skew-symmetric matrices with irreducible symmetric parts.
Specifically, we study the rate of change of the spectral radius of L(A,«a) as a
function of «, as well as the behavior of the corresponding left and right (Perron)
eigenvectors.

2 Preliminaries

Let z,y € R™. We call x a unit vector if its Euclidean norm ||z||z = 1. The

angle between two nonzero vectors x and y is defined to be
#7) Ty

T,Yy) = cos” ———
ll2llll2

and is measured in [0, 7]. Consider an n x n real matrix A (denoted by
A € M, (R)). The spectrum of A is denoted by o(A) and its spectral radius
by p(A) = max{|A| : A € 0(A)}. Recall that A can be written as

A = S(A) + K(A),



where Ao At A At
_ At and K(A) = _2

are the (real) symmetric part and the (real) skew-symmetric part of A, respec-
tively. We define Levinger’s transformation of A by

S(4)

L(Aa) = (1—a)A+aA'; a€]0,1/2]
and Levinger’s function by
d(A,a) = p(L(A,a)) = p((1—a)A+aA'); a€]0,1/2]. (2.1)

Notice that the analysis of Levinger’s function in [0, 1/2] extends naturally to
[1/2,1] as L(A,a)! = L(A,1 — «). One can also see that

L(A0) = A, L(A1/2) = S(A)
and that for every « € (0, 1/2),

L(A,a) = S(A)+ (1 -20)K(A).

Suppose now that A is entrywise nonnegative (denoted by A > 0). Then
S(A) > 0. Moreover, suppose S(A) is of rank one. This means that o(S(A4))
consists of the eigenvalue 0 with multiplicity n — 1 and a simple eigenvalue
d(A). By the Perron-Frobenius Theorem (see e.g., [1]), 6(A4) = p(S(4)) > 0.
It follows that there is a nonzero nonnegative vector w € R™ such that

S(A) = ww® and §(A) = w'w.

We refer to a matrix A having the above features as a nonnegative almost skew-
symmetric matriz and assume the reader recalls the above associated notation.

The variance of a nonnegative almost skew-symmetric matrix A is

_ IEAw3 _ w (KA K(A)w

lwlf3 whw

var(A)

Note that the variance of L(A, ) is given by
var(L(A,a)) = (1 — 2a)?var(A).
It is also clear that
B(A,0) = p(4) and  B(A,1/2) = p(S(A)) = 5(A).

Some more terminology is in order for a nonnegative matrix X (for details and
general background see [1]). We refer to p(X) € o(X) as the Perron root of
X. Recall that X is irreducible if its directed graph is strongly connected or,
equivalently, if it cannot be symmetrically permuted to a block upper triangular



matrix having non-vacuous, square diagonal blocks. When X is irreducible, the
Perron-Frobenius Theorem states that p(X) is a simple eigenvalue. In this case,
we denote the corresponding unit right and left eigenvectors of X by z,(X) and
x1(X), and refer to them as the unit right Perron vector and the unit left Perron
vector, respectively.

Let us now assume that A is nonnegative almost skew-symmetric and that
S(A) = ww' is irreducible. As S(A) > 0, we have that w must be a strictly
positive vector and thus S(A) is a strictly positive matrix. It follows that all
L(A,a) (a € (0, 1)) are also strictly positive (and thus irreducible) almost skew-
symmetric matrices. As a consequence, ¢(A4, «) is a simple eigenvalue and thus
the right and left unit Perron vectors of L£(A, «) are well-defined; in particular
notice that

wr(L£(A,1/2)) = @i(L£(4,1/2)) = 2r(S(4)) = @(5(4)) = w/||w]2

In addition, when S(A) is irreducible, ¢(A,a) is a differentiable function of
a € (0, 1). These facts underlie most of our statements in Sections 3 and 4.

Example 2.1 This example illustrates the above definitions and that S(A)
being irreducible is indeed an assumption weaker than A being irreducible,
even for nonnegative almost skew-symmetric matrices. The matrix

1 2 2
A=1[10 1 2
0 0 1

is a reducible nonnegative almost skew-symmetric matrix with

0 11 1
KA =|-1 01 and S(A) = ww', where w = | 1
-1 -1 0 1

It satisfies 6(A) = 3 and var(4) = 8/3. As S(A) is irreducible, the main
results herein apply to this matrix A.

We proceed with a brief mention of some results from [11] that are relevant
to our discussion. Notice that they apply to skew-symmetric matrices that
are not necessarily nonnegative; in [11] an almost skew-symmetric matrix is by
definition a matrix A whose symmetric part has rank one and §(A) > 0.

Theorem 2.2 Let A € M, (R) be an almost skew-symmetric matriz and X an
eigenvalue of A. Then

(TmA)? ReX < (6(A) — Re)) [var(A4) + ReX (Red — 5(A))]. (2.2)



Prompted by the above theorem, the shell of an almost skew-symmetric matrix
A is defined in [11] as the curve in the complex plane given by

A
I(A) = {:L‘—I—iye C:z,y€R and y* = (6(A) — x) <var—() +:U—6(A)>}.
x
By Theorem 2.2, T'(A) yields a localization of the spectrum of A, as specified
by (2.2). The various possible configurations of the shell of an almost skew-
symmetric matrix and how to achieve them via Levinger’s transformation are
illustrated in the next example.

Example 2.3 We have taken a 5 x 5 almost skew-symmetric matrix A with
0(A) = 2.6636 and variance var(4) = 2.4219, and found the almost skew-
symmetric matrices B = £(A,0.072) and C = L£(A4,0.1) having variances
var(B) = 1.7746 and var(C) = 1.55. Of course, §(B) = 6(C) = 2.6636. Their
shells are shown in Figure 1, where the eigenvalues of each matrix are marked
with *’s. The shell I'(A) is connected and all the eigenvalues of A are located
in the region between I'(A) and the imaginary axis. The shell T'(C') consists of
one bounded and one unbounded branch. The bounded branch surrounds a real
eigenvalue of C' and the unbounded branch isolates the rest of the spectrum. The
shell of B is the transition in a continuous transformation from the connected
shell to the shell with two branches.
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Figure 1: The shells T'(A), I'(B) and T'(C).

When A is almost skew-symmetric, applying Theorem 2.2 to £(A, «), which is
also almost skew-symmetric, the following can be shown [11].

Proposition 2.4 Let A € M, (R) be an almost skew-symmetric matriz. Then
for every o € [0, 1/2] such that §*(A) > 4(1 —2a)*var(A), the matriz L(A,«)
has a real eigenvalue

§(A) + /62(A) — 4(1 — 2a)? var(A)

A >
AMA a) > 5




and n — 1 complex eigenvalues whose real parts are not greater than

5(A) = /3°(A) = 4(1 = 20)? var(4)
2

We conclude with an outline of our results to follow. In Section 3 we obtain
bounds for the angles between the vectors w, z,(L(A,«)) and z;(L(A, «)) for
appropriate values of a € [0, 1/2]. In Section 4, using the notion of g-numerical
range and a result in [3], we construct an upper bound for the derivative of
Levinger’s function in (2.1), which, in turn, yields an upper bound for ¢(A, ).
Finally, an illustrative example is presented in Section 5.

3 Right and left Perron vectors of £(A, «)

Let A € M, (R) be an irreducible nonnegative almost skew-symmetric matrix
with symmetric part S(A) = ww’. Then there exists an orthonormal basis
of C", {v1, va, ..., Vp_1, w/||w|]2}, where vy1,v3,...,v,-1 € KerS(A) and
w/||w]|2 is the unit eigenvector of S(A) corresponding to the eigenvalue 6(A) =

w t w.

For any a € [0, 1/2], consider the unit right and left Perron vectors of L(A, «)
and decompose them as

IT(OZ) = yr(a) + Zr(a) (31)
and

zi(a) = yi(a) + z2(a), (3.2)
where y,(a),yi(a) € span{vy,va,...,vp—1} and z.(a),z(«) € span {w}.

Proposition 3.1 Let A € M, (R) be an irreducible nonnegative almost skew-
symmetric matriz. Then for every « € [0, 1/2], Levinger’s function satisfies

$(A, ) = 6(A) |z (@)llz = (A) [z (@)l3.

where z.(a) and z(«) are defined in (3.1) and (3.2), respectively.

Proof. It is enough to obtain that ¢(A4,a) = §(A) ||z-(a)||3. The proof of the
equality ¢(A,a) = §(A)|z(a)||3 is similar. Since the eigenvector z,.(a) of
L(A,«) in (3.1) is unit, it follows that

d(A, ) = z.(a)'L(A, o)z, ().



Hence,

p(Aa) = p(@)'(S(A) + (1 - 2a)K(A))zr(a)
= (yr(@)" + 2,(@)")S(A) (yr (@) + 2())
+ (1 = 2a)z,.(a)'K(A)x,(a)
= 2z (a)'S(A)z.-(a) + (1 - 2a)z,(a)' K(A)z, ()
= 0(A) [lz- ()3 + (1 = 2a)z,(a) K (A)z,(a).

Note that ¢(A,a) € R and the matrix K(A) is skew-symmetric. Thus,
z.(a)'K(A)z,(a) = 0 and consequently, ¢(A4,a) = 3(A) [|z-(a)|3. O

Corollary 3.2 Let A € M, (R) be an irreducible nonnegative almost skew-
symmetric matriz. Then for every o € [0, 1/2], the right and left Perron
vectors of L(A,«) have the same orthogonal projection onto w, i.e., zp(a) =
zi(a). Moreover, Levinger’s function satisfies

$(A,a) = 5(A) (M)z — 5(A) (wtml(a))z

lll2 lwll2

Proof. From Proposition 3.1, it follows that for every « € [0, 1/2], the vectors
zr() and z;(«) have the same modulus. Also, since the Perron vectors z,(«)
and z;(«) are nonnegative, and since z,.(«) (resp., z(«)) is the orthogonal
projection of z,.(a) (resp., x;(«)) onto the vector w, the claimed expression
for ¢(A, a) follows readily, as well as that

—

cos(w, . (a)) = cos(w, z;())

or, equivalently,
(7U,Ir(a)) = (H],.TZ(OZ)).

The latter equality and as ||z, («)||2 = ||z;(«)||2, implies that z,.(a) = z;(«). O

Remark 3.3 Note that Proposition 3.1 and Corollary 3.2 hold for a € (0, 1/2]
when the assumption of irreducibility of A is relaxed to irreducibility of the
symmetric part of A.

We will now apply the results in [11] in order to investigate the behavior of the
Perron vectors of L(A,«). First, define the interval

1 52(A) 1
Xy = <max{0, 5 16Var(A)}’ 21 (3.3)

and observe that « € (0, 1/2] liesin X4 if and only if 62(A4) > 4(1—2a)?var(A).
Notice also that since 0 ¢ X4, if the symmetric part of A is irreducible, then
for every a € X4, L(A, ) is irreducible.



Theorem 3.4 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part. Then for every a € X4, the cosine of the

angle (w,/mTTa)) = (wﬁl(\a)) is greater than or equal to the quantity

ol [2(a) a0 20)2var(4)
Ra =43 +\/ 152(A)

—

Proof. We prove that cos(w,z,(a)) > R4. For any o € X4, by Proposition
2.4,

§(A) + 1/62(A) — 4(1 — 2a)2var(A)
?(A ) > 5 .

Hence, by Corollary 3.2 applied to L(A4, «), it follows that

S(A)(whar(a))2 _ 6(A) 52(A) — 4(1 — 20)?var(A)
wlZ 2 ”(AM 15°(4)

or, equivalently,

whz, () 1 52(A) — 4(1 — 2a)?var(A)
ol = Jﬁ\/ 15°(4) |

Since the vector z,(«) is unit, it is clear that

— 1 02(A) — 4(1 — 2a)2var(A)
cos(w, z,(a)) > 5t \/ 107(A) . O

Remark 3.5 These remarks refer to the above theorem.

(i) The following interpretation of var(A) is possible. For any a € Xy4, define
the angle ¥4(a) € [0, w/4] such that

cosVa(a) = Ry =

1 \/52(,4) — 4(1 - 20)*var(4) (34)

152(A)

Consider now « varying in X4, starting from 1/2 and taking values toward the
left endpoint of X4. Then the Perron vectors z,(«) and z;(a) of L(A,«a) lie
in the cone

Kala) = fu € R : 0 < (@75) < da()},

which contains w. Notice that the smaller var(A) is, the slower K4(«) dilates,
and the slower z,(«) and z;(a) dilate away from w.



(ii) For o =1/2, we have

1 = cos0 = cos(w,w) >

Notice also that for every a € X4, the angle (w,z,(a)) = (w,z;(«)) is not
greater than 7/4.

Theorem 3.4 also allows us to estimate a priori the angle between x,(a) and
x;(«) and subsequently the Euclidean distance between these two vectors for
any o € X4.

Theorem 3.6 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part. Then for every o € Xy,

— 02(A) — 4(1 — 20)?var(4)
cos (v, (), 7i()) > \/ 52(A) '

—

Proof. With J4(a) as defined in (3.4) and for the angles (z,(),z;(a)),

(w/rza)) and (um)), we have

(2 (@), 21(@) < (w,z,(a) + (w,zi(a) < 20a(a) < 3.
Thus, o
cos(zy(a), z(@)) > cos(294(ar)) > 0,
where
cos(294(a)) = 2cos?y(a) —1
_ \/52(A) —4(1—20)%var(4)
52(4) '

Corollary 3.7 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part. Then for every o € X4, the Perron vectors
x-(a) and z(a) satisfy

H%W)xﬂ@@gg@¢$M)4%M%%mmv.

Proof. Since the vectors z,(a) and z;(c) are unit, one can see that

lzr(0) —zi(@)]3 = (zr(@) — a(e)) (@ (er) — ()
= 2—2cos(z,(a), z(r)).



Hence, by the above theorem,

|z, (a) — ()3 < 2—2 \/52(‘4) - 4%12(142)01)%&1“(/1) 5

4 Bounds for Levinger’s function and its
derivative

Let A € M, (R) be a nonnegative almost skew-symmetric matrix with irre-
ducible symmetric part, and recall Levinger’s function

¢(A,a) = p(L(A,q)) = p((1—a)A+ad"); a€l0,1/2

and the interval X4 C (0, 1/2] defined in (3.3). Proposition 2.4 applied to A,
and since then A\(A,a) = ¢(A, ), yields a lower bound on Levinger’s function.
In this section, we focus on upper bounds for ¢(A, ) and for the ‘rate of change’
of ¢(A,«) as a function of . The rate of change of Levinger’s function has
been studied systematically by Fiedler [3]. By the proof of [3, Theorem 1.2, p.
176], we have that for every « € (0, 1/2),

1 x(a) (LA, 0)t — L(A, o))z ()
1-2« zy(a)tr,(«)

= g @ Kri() (4.1)

cos(xr(m(a))

0< ¢(Aa) =

This expression for ¢’ (A, ) will lead us to an upper bound for ¢ (A, «) that
depends on var(A) and §(A); it is contained in Theorem 4.1. Subsequently, this
upper bound will be used to obtain an upper bound for ¢(A4, «).

To begin, by (4.1) and our Theorem 3.6, it follows that for every a € X4\ {1/2},

0< ¢(Aa) < ﬁ (—2u(@) K (A)z, () (4.2)

where

sa) = \/52(A) 4((512(A2)a)2var(A) . (43)

At this point, it is necessary to introduce the notion of g-numerical range of an
n X n complex matrix N for a real ¢ € [0, 1], that is,

Fy(N) = {&*NyeC:2,yeC" 2"z =y"y=1 and 2"y = ¢}

= {x—NL €C:z,yeC"\{0} and cos(:f,\y):q}.
lzllz = [lyll2

10



For ¢ =1, F,(N) coincides with the classical numerical range

F(N) = Fi(N) = {*Nz € C:z2 € C" and z*z = 1}.

The g-numerical range F,(N) (q € [0, 1]) is always a compact and convex sub-
set of the complex plane. For 0 < ¢ < 1, Fy(N) has a nonempty interior, and
for ¢ =1, the range F(N) is a line segment if and only if N is a normal ma-
trix with colinear eigenvalues. In particular, a complex matrix N is Hermitian
(resp., skew-Hermitian) if and only if F(N) C R (resp., F(N) CiR).

For the matrix A, it is obvious now that the quantity —u;(a)!K(A)z,() in
(4.2) is positive and lies in the interval

[0, 400) N F — (K(A)).

cos(zr(a),zi(a))
As a consequence, it will be necessary to estimate the length of the intersection

of the positive half-axis [0, +00) with the cos(xr(m(a))—numerical range of
the real skew-symmetric matrix K(A).

First observe that in general, for any pair 0 < a1 < ay < 1/2, it follows that
q(a1) < q(az), where g(a) is defined in (4.3). Thus, by [8, Theorem 2.5],

q(az

Fq(om) (K(A)) -

—~
o
i
~ =
<
Q
)
—
X
o
Na
~

and consequently,

q(a2)
q(on)
Similarly we obtain that for every a € X4 \ {1/2},

[07 +OO) N Fq(az)(K(A)) -

{[Oa +OO) ﬁFq(on)(Kv(A)) } .

—

cos(zr (o), 21(x))
q(a)
X { [O, +OO) N Fq(a) (K(A)> } :

[0, +00) N F, . 55y (K (A))

cos(z,(a

Hence, by (4.2) and Theorem 3.6,

—

2 cos(zy (), z1(a))
= ?*(a)

% max{ [0, +00) N Fq(a)(K(A)) } :

0 < ¢(A0)

max{ [O, +OO) N Fq(a) (K(A)) }

Theorem 4.1 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part and let s1 be the maximum singular value
of the skew-symmetric matriz K(A). Then for every o € X4\ {1/2},

, 451 (1 = 20)8(A)y/var(A)
0<¢(Aa) < 52(1/1) —4(1 — 2a)2var(A) -

11



Proof. The numerical range of K(A) is F(K(A)) = [—if, if], where the real
number § is nonnegative [6]. Denote by D(X,r) the closed disk centered at A
with radius r. By the results in [9], it is known that for any ¢ € [0, 1],

Fy(K(A) = |J Dlgr, V1~ ¢)(h—72),

(iv, h)
v,h €R

where the union is taken over all the pairs
(iv,h) = (2" K(A)z, 2" (K(A)*K(A))x); 2z =1.
Since K(A) is skew-symmetric, there is a unitary matrix U such that
K(A) = iU diag{®s1,+82,..., 8} U

and
K(A)*K(A) = U*diag{s?, s7, 3, 85,...,50,} U,

where 1 > s9 > ... > s,, > 0 are the singular values of K(A). (Note that
every nonzero singular value appears an even number of times.)

One can see that for the pair (i, h) = (0,s%), the radius of the disk

D(iqy,v(1=¢*)(h—~%))
attains its maximum value, that is,

Tmax(Aa Q) =s1vV1— q2~

Indeed, let y; and §; be two orthonormal eigenvectors of K(A) corresponding
to the eigenvalues is; and —isy, respectively. Then the vector yo = (y1 +
91)/V/2 is a unit eigenvector of matrix K(A)*K(A) corresponding to s2, and

(5 K (A, i (4 K (A) )
_ (viKA)y: | KA .
- (UK SR ) KA

= (0,s1).

Thus, for any o € X4\ {1/2}, the set [0, +00] N Fya)(K(A)) coincides with
the interval

[0, s14y/1 —q2(oz)} = {0, W var(A)} .

Consequently, for any « € X4 \ {1/2}, we have

/ 2 281 (1—2a)
05 o < Bl

var(A),

12



where ¢(«) is given in (4.3), or equivalently,

, 451 (1 —2a)5(A)\/var(A)
0<¢(4a) < 52(A) —4(1 — 2a)2var(A)

Next we turn our attention to obtaining an upper bound for ¢(A,«). The
only upper bound we know so far is Levinger’s result, namely, ¢(A, ) < §(A).
However, our bound for ¢ (A, «) can lead us to a better estimate for ¢(A, ).

Theorem 4.2 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part and let s1 be the maximum singular value
of the skew-symmetric matriz K(A). Then for every aj,as € X4\ {1/2} such
that oy < ao,

$16(4) | (8(A) — 41— 2a;)*var(4)
0 < &(4,a2) — ¢(4,01) < 4 Jvar(A) In (52(A) —4(1 —2a1)2var(A)) '

Proof. From Theorem 4.1, for every « € X4\ {1/2}, we get

, 4s1(1 = 2a)5(A)+/var(A)
0<¢(4Aa)< 52(1/1) —4(1 — 2a)?var(A)

Integrating through the above inequality with respect to a in the interval
(a1, 2) € X4\ {1/2}, and as ¢(A, ) is a non-decreasing function in [0, 1/2]
(see [3, 7]), we obtain the claimed inequality. O

Corollary 4.3 Let A € M, (R) be a nonnegative almost skew-symmetric ma-
triz with irreducible symmetric part and let s1 be the maximum singular value
of the skew-symmetric matriv K(A). If 6%(A) > 4var(A), then for every
a €10, 1/2), we have

P(A, ) < p(A) +

510(A) In <52(A) —4(1— 2a)zvar(A)>
4 V&I‘(A) 62 (A) — 4V&I‘(A)

Moreover, for o =1/2, the following inequality obtains:

$16(A) 3% (4)
§(A) —p(A) < 1 /var(A) In (52(/1) 4var(A)> )

Note that for values of « sufficiently close to 0, the upper bound for ¢(A, «)
in the above corollary is less than 6(A), and for a = 0, it coincides with p(A).

13



5 Illustrative example

Consider the (irreducible) nonnegative matrix

05 03 04 07 07 1
0.7 05 1 08 09 0.3
06 0 05 05 06 0.2
03 0.2 05 05 03 0.5
03 01 04 0.7 05 03
0 07 08 05 07 0.5

This matrix has irreducible symmetric part
S(A) = wwt, where w = (V2/2)[1, 1,1, 1, 1, 1]*.

Thus A is almost skew-symmetric. The spectral radius of A is p(A4) = 2.8128,
its variance is var(A) = 0.53 and 6(A) = 3. The maximum singular value of
the skew-symmetric part of A,

0 -0.2 -0.1 0.2 0.2 0.5
0.2 0 05 03 04 =02
0.1 -0.5 0 0 0.1 -0.3
K(4) = —-0.2 —0.3 0 0 0.2 0 ’
-02 —-04 -0.1 0.2 0 —0.2

—-0.5 0.2 0.3 0 0.2 0

is 81 = 0.8247. We also have that X4 = (0, 1/2] and that for every o €
[0, 1/2],

9 = 6%(A) > 2.12 > 4(1 — 2a)?var(A).
If we choose o = 1/3, then the Perron root of L£(A,1/3) is ¢(A4,1/3)
2.980254 with corresponding unit Perron vectors

12

7,-(1/3) = [0.435139, 0.460558, 0.378913, 0.376042, 0.374113, 0.416649]".
and

2(1/3) = [0.380385, 0.351427, 0.433478, 0.439692, 0.437761, 0.398672]"
By (4.1), we have

21 (1/3)" K (A)x,(1/3)

¢ (A1/3) = —2 xy(1/3)t2,.(1/3)

= (.238368.

Notice that

—

q(1/3) = 0.986827 < 0.986845 = cos(z,(1/3), z1(1/3)),
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confirming Theorem 3.6. The upper bound of the derivative of Levinger’s func-
tion in Theorem 4.1 is
451 (1 —2/3)6(A)+/var(A)
02(A) — 4(1 —2/3)%var(A)

=~ (0.274012 > 0.238368 = ¢ (A,1/3).

In Figure 2, we illustrate the upper bound for ¢(A, ) in Corollary 4.3 and the
lower bound in Proposition 2.4. The Perron roots ¢(A,«) for a =0, 0.1, 0.2,
0.3, 0.4, 0.5 are marked with o’s. Notice that since the variance var(A) = 0.53
is relatively small, the lower bound in Proposition 2.4 is evidently quite close to
Levinger’s function ¢(A, a).

3.05

2.95

2.9

2.85

1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2.8

Figure 2: The lower and upper bound for ¢(A, «).

Finally, we remark that Levinger’s function and our bounds for it have the
same qualitative behavior in X4, that is, they are all increasing and concave
functions, and their derivatives have a zero at o =1/2.
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