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Abstract

The numerical range of an n×n matrix polynomial P (λ) = Amλm +
. . . + A1λ + A0 is defined by

W (P ) = {λ ∈ C : x∗P (λ)x = 0, x ∈ Cn, x 6= 0}.
In this paper, we investigate the shape of W (P ) by using the notion of
local dimension. The numerical range of first order matrix polynomials is
always simply connected. The special cases of diagonal matrix polynomi-
als and 2× 2 matrix polynomials are also considered.
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1 Introduction

Consider a matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + . . . + A1λ + A0, (1)

where Aj ∈ Cn×n (j = 0, 1, . . . , m) and λ is a complex variable. The spectral
analysis of matrix polynomials is very important when studying linear systems
of ordinary differential equations of order m with constant coefficients [5], [7]. A
scalar λ0 ∈ C is said to be an eigenvalue of P (λ) in (1) if the system P (λ0)x = 0
has a nonzero solution x0 ∈ Cn. This solution x0 is known as an eigenvector of
P (λ) corresponding to λ0, and the set of all eigenvalues of P (λ) is the spectrum
of P (λ), namely,

σ(P ) = {λ ∈ C : detP (λ) = 0}.
The numerical range of P (λ) in (1) is defined by

W (P ) = {λ ∈ C : x∗P (λ)x = 0, for some nonzero x ∈ Cn}. (2)

Clearly, W (P ) is always closed and contains σ(P ). If P (λ) = Iλ − A, then
W (P ) coincides with the classical numerical range of the matrix A,

F (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.
The last decade, the numerical range of matrix polynomials has been studied

systematically, and a number of interesting results have been obtained (see e.g.,
[2], [6], [8], [10], [11] and [13]). It is known that W (P ) in (2) is not always
connected, and it is bounded if and only if 0 /∈ F (Am). In this case, W (P ) has
no more than m connected components [8]. Moreover, if µ is a boundary point
of W (P ), then the origin is also a boundary point of F (P (µ)), and in general,
the corners of W (P ) are eigenvalues of P (λ) [11].

In this paper, we continue the investigation of the numerical range W (P )
in (2), and present new results on the boundary and the geometry of W (P ).
In Section 2, we study the shape of W (P ) obtaining necessary and sufficient
conditions for the local dimension of a point λ0 ∈ W (P ) to be equal to 1
or 2. In Section 3, it is proved that the numerical range of a linear pencil
P (λ) = Aλ−B is always simply connected. The numerical range of a diagonal
matrix polynomial is considered in Section 4, and it is proved that its boundary
is contained in a finite union of the numerical ranges of 2× 2 diagonal matrix
polynomials. Finally, in Section 5, we present a method to compute the point
equation of the boundary of the numerical range of a 2× 2 matrix polynomial.
In particular, if the numerical range of a 2 × 2 matrix polynomial is not the
whole complex plane, then its boundary lies on an algebraic curve of total degree
at most 4m, where m is the degree of the polynomial.

It is worth noting that some of the results of this paper are also valid for
more general matrix functions than matrix polynomials. It is clear from their
proofs, that Theorems 1 and 2 hold for analytic matrix functions. Furthermore,
Propositions 12 and 14 are also true for general continuous matrix functions
(since Theorem 1.1 in [11] holds for continuous matrix functions).
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2 Local Dimension

Let Ω be a closed subset of C, and let λ0 ∈ Ω. The local dimension of the
point λ0 in Ω is defined as the limit

lim
h→0+

dim {Ω ∩ S(λ0, h)} (h ∈ R, h > 0).

Notice that any isolated point of Ω has local dimension equal to zero, and any
non-isolated point λ0 of Ω has local dimension 2 if and only if there exists a
sequence {µk}k∈N ∈ IntΩ converging to λ0 (i.e., λ0 belongs to the closure of
IntΩ).

A (boundary) point λ0 ∈ Ω is said to be a corner of Ω if there exist three
angles θ0, θ1, θ2 ∈ [0, 2π] and a real ρ > 0 such that 0 ≤ θ2 − θ1 ≤ θ0 < π and

θ1 ≤ Arg(z − λ0) ≤ θ2

for every z ∈ Ω ∩ S(λ0, ρ) (cf. [6] and [11]).

For a matrix polynomial P (λ) as in (1), the local dimension of any λ0 in
W (P ) is closely connected with the local dimension of the origin in F (P (λ0)).

Theorem 1 Let P (λ) = Amλm+. . .+A1λ+A0 be an n×n matrix polynomial,
and let λ0 ∈ W (P ) such that the origin is not a corner of F (P (λ0)) and 0 /∈
F (P ′(λ0)). If the local dimension of λ0 in W (P ) is equal to 1, then the local
dimension of the origin in F (P (λ0)) is also equal to 1.

Proof Assume that the local dimension of λ0 in W (P ) is 1 and the local dimen-
sion of the origin in F (P (λ0)) is 2. It is clear that λ0 belongs to the boundary
∂W (P ) and there is a real r0 > 0 such that

W (P ) ∩ S(λ0, r0) ⊆ ∂W (P ).

By Theorem 1.1 in [11], the origin is a boundary point of F (P (λ0)). Since
F (P (λ0)) is convex (see [4]) and 0 is a differentiable point of F (P (λ0)), there
exists a straight line ε0 passing through the origin and defining two closed half
planes H1 and H2 such that F (P (λ0)) ⊂ H1.

For every r ∈ [0, r0] and ϑ ∈ [0, 2π], either λ0 + reiϑ /∈ W (P ), or λ0 + reiϑ ∈
∂W (P ). Equivalently, for every r ∈ [0, r0] and ϑ ∈ [0, 2π], either 0 /∈ F (P (λ0 +
reiϑ)), or 0 ∈ ∂F (P (λ0 + reiϑ)) (see Theorem 3.1 in [6]). Moreover, the origin
does not belong to the convex set F (P ′(λ0)), and P (λ0 + reiϑ) is written

P (λ0 + reiϑ) = P (λ0) + reiϑP ′(λ0) + reiϑR(λ0, r, ϑ),

where ‖R(λ0, r, ϑ)‖ = o(1) as r → 0. Hence, for “small enough” r, there exists
a cone

Kr,λ0 = {z ∈ C : ϕ1 ≤ Argz ≤ ϕ2, 0 < ϕ2 − ϕ1 ≤ ψ < π}
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such that
F (P ′(λ0) + R(λ0, r, ϑ)) ⊂ Kr,λ0\{0}.

For suitable ϑ ∈ [0, 2π], eiϑF (P ′(λ0) + R(λ0, r, ϑ)) lies in the interior of H2.
One can see that for every unit vector x ∈ Cn,

x∗P (λ0 + reiϑ)x = x∗P (λ0)x + reiϑx∗(P ′(λ0) + R(λ0, r, ϑ))x.

where Arg{reiϑx∗(P ′(λ0) + R(λ0, r, ϑ))x} ∈ [ϕ1 + ϑ, ϕ2 + ϑ]. Thus, for every
ρ = x∗ρP (λ0)xρ ∈ F (P (λ0)) and for every r ∈ [0, r0] such that ρ+rei(ϕ1+ϑ), ρ+
rei(ϕ2+ϑ) ∈ H2, the point

x∗ρP (λ0 + reiϑ)xρ = ρ + reiϑx∗ρ(P
′(λ0) + R(λ0, r, ϑ))xρ

also lies in H2. Consequently, as r takes values from 0 to r0, the part of
F (P (λ0)) close to the origin “moves” into the half plane H2 (note that the
numerical range F (P (λ0 + reiϑ)) depends continuously on r, with respect to
the Hausdorff metric). Thus, for suitable rϑ ∈ [0, r0], the origin lies in the
interior of

F (P (λ0) + rϑeiϑ[P ′(λ0) + R(λ0, r, ϑ)]) ≡ F (P (λ0 + rϑeiϑ)).

This is a contradiction and the proof is complete. ¤

Theorem 2 Suppose that P (λ) = Amλm + . . . + A1λ + A0 be an n× n matrix
polynomial, and λ0 ∈ W (P ) is not a corner of W (P ) or a node point of the
boundary ∂W (P ). If 0 /∈ F (P ′(λ0)), and the local dimension of λ0 in W (P ) is
equal to 2, then the local dimension of the origin in F (P (λ0)) is also equal to 2.

(At this point, we comment that an example of a linear pencil P (λ) = Aλ−B
with node points on ∂W (P ) can be found in [2].)

Proof If λ0 is an interior point of W (P ), then by Theorem 3.1 in [6], the origin
is an interior point of F (P (λ0)), and thus with local dimension in F (P (λ0))
equal to 2.

If λ0 ∈ ∂W (P ), then since λ0 is not a corner of W (P ) or a node point of
∂W (P ), there exists an angle ϕ0 ∈ [0, 2π] such that for every ϕ ∈ (ϕ0, ϕ0 + π),
there is a real rϕ > 0 with

λ0 + rϕ ∈ IntW (P ).

For the sake of contradiction, assume that the local dimension of the origin in
F (P (λ0)) is 1. Then by the convexity of F (P (λ0)), it follows that F (P (λ0))
is a line segment passing through the origin. The line of F (P (λ0)) defines two
closed half planes H1 and H2 in C. As in the previous theorem, P (λ0 + reiϕ) is
written

P (λ0 + reiϕ) = P (λ0) + reiϕP ′(λ0) + reiϕR(λ0, r, ϕ),
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where ‖R(λ0, r, ϕ)‖ = o(1) as r → 0. Hence, for “small enough” r, there exists
a cone

Kr,λ0 = {z ∈ C : ϕ1 ≤ Argz ≤ ϕ2, 0 < ϕ2 − ϕ1 ≤ ψ < π}
such that

F (P ′(λ0) + R(λ0, r, ϕ)) ⊂ Kr,λ0\{0}.
One can verify that for some ϑ ∈ (ϕ0, ϕ0 + π), eiϑF (P ′(λ0) + R(λ0, r, ϕ)) lies
in the interior of the half plane H1. Since

F (P (λ0 + rϑeiϑ)) ⊆ F (P (λ0)) + rϑeiϑF (P ′(λ0) + R(λ0, r, ϕ)),

it is clear that F (P (λ0 + rϑeiϑ)) also lies in the interior of H1, and thus,

0 /∈ F (P (λ0 + rϑeiϑ)).

This is a contradiction because λ0 + rϑeiϑ belongs to W (P ). Hence, the local
dimension of the origin in F (P (λ0)) is equal to 2. ¤

3 Linear Pencils

Consider a linear pencil Aλ− B, where A and B are n× n complex matrices.
This special case of matrix polynomials plays an important role in the study of
linear dynamical systems (see [1] and the references therein). The last years,
the numerical range of linear pencils has attracted the attention (see e.g., [2],
[9] and [12]). From the results of the previous section, the next corollary follows
immediately.

Corollary 3 Suppose that W (Aλ−B) is bounded, and let λ0 ∈ W (P ).

(i) If the origin is not a corner of F (Aλ0 − B)), and the local dimension of
λ0 in W (Aλ − B) is equal to 1, then the local dimension of the origin in
F (P (λ0)) is also equal to 1.

(ii) If λ0 is not a corner of W (Aλ−B) or a node point of ∂W (Aλ−B), and
the local dimension of λ0 in W (Aλ0 − B) is equal to 2, then the local
dimension of the origin in F (Aλ0 −B) is also equal to 2.

A bounded connected set Ω ⊂ C is called simply connected if C\Ω is
connected (in particular, it has no “holes”). If Ω ⊂ C is unbounded, then
we consider the set Ω ∪ {∞} ⊂ C ∪ {∞}, and we say that Ω ∪ {∞} is simply
connected if (C∪{∞})\Ω is connected. (Note that the two definitions coincide
when Ω is a bounded subset of C.) By [8], it is known that if W (Aλ − B) is
bounded, then it is also connected. Furthermore, we have the following.

Theorem 4 If the numerical range W (Aλ − B) is bounded, then it is simply
connected.
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Proof Suppose that W (Aλ − B) is not simply connected. Then W (Aλ − B)
has a “hole”, i.e., there is a complex number ω0 /∈ W (Aλ − B) such that for
every ϕ ∈ [0, 2π], there exists a real rϕ > 0 satisfying

ω0 + rϕeiϕ ∈ W (Aλ−B).

Since W (A(λ + µ)−B) = W (Aλ−B)− µ (µ ∈ C), without loss of generality,
assume that ω0 = 0. Then we have that

0 /∈ W (Aλ−B)

and for every ϕ ∈ [0, 2π],

rϕeiϕ ∈ W (Aλ−B),

or equivalently,
0 /∈ F (B)

and for every ϕ ∈ [0, 2π],

0 ∈ F (Arϕeiϕ −B).

Since the origin does not belong to the convex sets F (A) and F (B), there exist
two cones

K1 = {z ∈ C : ϑ1 ≤ Argz ≤ ϑ̃1, 0 < ϑ̃1 − ϑ1 ≤ ψ1 < π}
and

K2 = {z ∈ C : ϑ2 ≤ Argz ≤ ϑ̃2, 0 < ϑ̃2 − ϑ2 ≤ ψ2 < π}
such that F (A) ⊂ IntK1 and −F (B) ⊂ IntK2 . Moreover, there exists an angle
ϕ0 ∈ [0, 2π] such that both F (rϕ0e

iϕ0A) ≡ rϕ0e
iϕ0F (A) and −F (B) belong to

the interior of a cone

K0 = {z ∈ C : ϑ0 ≤ Argz ≤ ϑ̃0, 0 < ϑ̃0 − ϑ0 ≤ ψ0 < π},
where max{ψ1, ψ2} ≤ ψ0 < π. As a consequence, the numerical range

F (A(rϕ0e
iϕ0)−B) ⊆ rϕ0e

iϕ0F (A) + F (−B) ⊂ IntK0

does not contain the origin; a contradiction. The proof is complete. ¤

By the proof of the above theorem, it also follows that for every exterior
point µ of the bounded numerical range W (Aλ−B) , there is a cone

Kµ = {z ∈ C : ϑ1 ≤ Arg(z − µ) ≤ ϑ2, 0 < ϑ2 − ϑ1 ≤ ϑ0 < π},
such that Kµ ∩W (Aλ−B) = ∅ (see also Theorem 5 in [12]).

The numerical ranges W (Aλ−B) and W (Bλ−A) satisfy [8]

W (Bλ−A)\{0} =
{
µ−1 : µ ∈ W (Aλ−B)\{0}} . (3)

As a consequence, Theorem 4 yields the following.
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Theorem 5 If the numerical range W (Aλ − B) is unbounded, then the set
W (Aλ−B) ∪ {∞} is simply connected in the extended plane C ∪ {∞} (or the
Riemann sphere S2).

Proof Since C ∪{∞} ∼= S2 is simply connected, we have nothing to prove when
W (Aλ−B) = C. Suppose now that W (Aλ−B) is unbounded, that is 0 ∈ F (A)
[8], and let λ0 /∈ W (Aλ − B). Since W (A(λ + λ0) − B) = W (Aλ − B) − λ0,
W (Aλ − B) ∪ {∞} is homeomorphic to the set W (Aλ − (B − Aλ0)) ∪ {∞}.
Hence, we can assume that 0 /∈ W (Aλ − B), or equivalently, 0 /∈ F (B). Then
by (3), we have (in the extended plane)

W (Bλ−A) =
{
µ−1 : µ ∈ W (Aλ−B) ∪ {∞}} ,

and the map Ψ(µ) = µ−1 for µ ∈ W (Aλ − B) and Ψ(∞) = 0 is an homeo-
morphism of W (Aλ−B)∪{∞} onto W (Bλ−A). By Theorem 4, the bounded
range W (Bλ − A) is simply connected, and since simply connectedness is a
topological property, W (Aλ − B) ∪ {∞} is simply connected in the extended
plane C ∪ {∞}. ¤

A nonempty subset Ω of C is said to be p-convex if for every pair of points
µ1, µ2 ∈ C, either

{tµ1 + (1− t)µ2 : 0 ≤ t ≤ 1} ⊂ Ω,

or
{tµ1 + (1− t)µ2 : t ≤ 0 or t ≥ 1} ⊂ Ω.

In [9], it is proved that if the matrix A is Hermitian, then the numerical range
W (Aλ−B) is always p-convex.

In general, the numerical range of a linear pencil has no isolated points.

Proposition 6 Let Aλ−B be an n×n linear pencil, and suppose that W (Aλ−
B) is not a singleton. Then the numerical range W (Aλ − B) has no isolated
points.

Proof If 0 /∈ F (A), or 0 ∈ F (A) and F (A)\{0} is connected, then the closed
range W (Aλ−B) is connected and has no isolated points.

If 0 ∈ F (A) and F (A)\{0} is not connected, then there is an angle ϕ0 ∈
[0, 2π] such that the matrix eiϕ0A is Hermitian. Then the numerical range
W (Aλ−B) = W (eiϕ0(Aλ−B)) is p-convex completing the proof. ¤

The case where W (Aλ− B) is a singleton is described by Proposition 2 (i)
in [12]. Moreover, the local dimension of the points in the numerical range of a
linear pencil is always constant.

Theorem 7 Let Aλ − B be an n × n linear pencil. Then the local dimension
of every point µ ∈ W (Aλ − B) is constant. Furthermore, if every point of the
numerical range W (Aλ−B) has local dimension in W (Aλ−B) equal to 1, then
W (Aλ−B) lies, either on a straight line, or on a circle.
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Proof By the above proposition, the numerical range W (Aλ − B) contains
isolated points (i.e., of zero local dimension) if and only if W (Aλ − B) is a
singleton. Consequently, for the first part of the theorem, it is enough to prove
that if there is at least one λ0 ∈ W (Aλ − B) of local dimension 1, then every
point of W (Aλ−B) has local dimension 1.

Suppose that λ0 ∈ W (Aλ−B) has local dimension in W (Aλ−B) equal to 1.
If 0 ∈ F (A), then the arguments in the proof of Theorem 5 apply to obtain that
the 1-dimensional part of W (Bλ−A) is nonempty. If W (Bλ−A) lies on a curve,
then W (Aλ−B) also lies on a curve. Hence, without loss of generality, assume
that 0 /∈ F (A). If λ0 ∈ W (Aλ−B) such that the origin is a corner of F (Aλ0−B),
then 0 ∈ σ(Aλ0 − B) [4], and thus λ0 is an eigenvalue of Aλ − B. Since
W (Aλ0 − B) 6= C, the linear pencil Aλ − B has no more than n eigenvalues,
and consequently, there is a λ0 ∈ W (Aλ−B) of local dimension 1 such that the
origin is not a corner of F (Aλ0−B). Since W (A(λ+λ0)−B) = W (Aλ−B)−λ0,
we can also assume that λ0 = 0. Then by Corollary 3(i), the local dimension
of the origin in F (B) is equal to 1. The convexity of F (B) implies that F (B)
is a line segment passing through the origin, and thus there exists an angle
ϕ0 ∈ [0, 2π] such that the matrix eiϕ0B is Hermitian. Moreover,

W (Aλ−B)\{0} = {µ−1 : µ ∈ W (eiϕ0(Bλ−A))}

where the numerical range W (eiϕ0(Bλ−A)) is p-convex [9], and has an nonempty
1-dimensional part. Hence, either

W (Bλ−A) = {tα + (1− t)β : 0 ≤ t ≤ 1},

or
W (Bλ−A) = {tα + (1− t)β : t ≤ 0 or t ≥ 1}

for some α, β ∈ C. Since by a Möbius transformation

ω =
az + b

cz + d
,

the straight line is transformed, either into a circle, or into a straight line, the
proof is complete. ¤

Next we characterize the linear pencils whose numerical range has no interior
and lies on a straight line or a circle.

Theorem 8 Let Aλ−B be an n× n linear pencil. Then the numerical range
W (Aλ−B) has no interior points if and only if there exist two linearly indepen-
dent Hermitian matrices H1 and H2, and complex numbers a, b, c and d such
that 0 /∈ F (H1 + iH2) and

A = aH1 + bH2 and B = cH1 + dH2. (4)
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Proof Suppose that W (Aλ− B) has no interior points and λ0 ∈ W (Aλ− B).
Then the origin belongs to F (B−Aλ0) = −F (Aλ0−B) and has local dimension
in F (B − Aλ0) equal to 1. By the convexity of F (B − Aλ0), it follows that
F (B−Aλ0) is a line segment passing through the origin, and thus there exists an
angle ϕ1 ∈ [0, 2π] such that the matrix H1 = eiϕ1(B−Aλ0) is Hermitian. Using
now the p-convexity of the unbounded (1-dimensional) range W ((B−Aλ0)λ−A)
[9], we obtain that there is a ϕ2 ∈ [0, 2π] for which W ((B − Aλ0)λ − eiϕ2A)
lies on a line parallel to the real axis. Hence, there exists a complex number γ
such that W ((B−Aλ0)λ− (eiϕ2A+γB−γAλ0)) lies on the real axis. It is also
clear that the fraction

x∗(eiϕ2A + γB − γAλ0)x
x∗(B −Aλ0)x

=
eiϕ1x∗(eiϕ2A + γB − γAλ0)x

eiϕ1x∗(B −Aλ0)x

is real for every unit vector x ∈ Cn with x∗(B−Aλ0)x 6= 0. Since (4) is obvious
when the matrices A and B are linearly dependent, we assume that A and B
are linearly independent. In this case, the set

{x ∈ Cn : x∗(B −Aλ0)x = 0 and x∗x = 1}
is dense to the unit sphere of Cn. Consequently, for every unit x ∈ Cn,
eiϕ1x∗(eiϕ2A + γB − γAλ0)x is real, and thus the matrix

H2 = eiϕ1(eiϕ2A + γB − γAλ0)

is Hermitian [4]. Moreover, the matrices A and B are written as in (4) with

a = −e−iϕ1e−iϕ2γ, b = e−iϕ1e−iϕ2 ,

c = e−iϕ1 − e−iϕ1e−iϕ2λ0γ and d = λ0e
−iϕ1e−iϕ2 .

Finally, by the condition W (Aλ−B) 6= C, it follows immediately that for every
unit vector y ∈ Cn, (y∗H1y, y∗H2y) 6= (0, 0), that is, 0 /∈ F (H1 + iH2).

Conversely, suppose that the matrices A and B are written as in (4), where
the Hermitian matrices H1 and H2 satisfy the hypothesis of the theorem. If
ad = bc, then the range W (Aλ − B) is a singleton. Assume now that ad 6= bc.
Since 0 /∈ F (H1 + iH2), the numerical range W (H1λ−H2) lies on the real axis
[8]. If a = 0, then bc 6= 0 and the numerical range

W (bH2λ− (cH1 + dH2)) = b−1(d + W (H2λ−H1))

has no interior points. If a 6= 0, then set d′ = d − (bc)/a 6= 0 and observe that
the range

W (d′H2λ− (aH1 + bH2)) = (d′)−1(b + aW (H2λ−H1))

has no interior points, or equivalently, W ((aH1 + bH2)λ− d′H2) has no interior
points. Hence, the numerical range

W ((aH1 + bH2)λ− (c/a)(aH1 + bH2)− d′H2) = W (Aλ−B)
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has also no interior points, and the proof is complete. ¤

Note that if A and B are written in the form

A = eiϑ1H1 and B = eiϑ2H2,

where ϑ1, ϑ2 ∈ [0, 2π] and the matrices H1 and H2 are Hermitian, then the
numerical range W (Aλ−B) = ei(ϑ2−ϑ1)W (H1λ−H2), either coincides with the
whole complex plane, or lies on the line

{z ∈ C : Argz = ϑ2 − ϑ1 or Argz = π + ϑ2 − ϑ1}.

By Theorem 1.7.17 in [4], it is easy to see that the matrices H1 and H2 in
Theorem 8 are simultaneously diagonalizable by congruence.

Corollary 9 If W (Aλ−B) has no interior points, then there is a nonsingular
matrix T such that the pencil T ∗(Aλ−B)T is diagonal.

It is known in the literature that every square matrix A is written in the
form

A = H1(A) + iH2(A),

where the matrices H1(A) = (A + A∗)/2 and H2(A) = (A − A∗)/(2i) are
Hermitian.

Corollary 10 Suppose that Aλ−B is an n×n linear pencil with W (Aλ−B) 6=
C. Then the following conditions are (mutually) equivalent.

(i) The numerical range W (Aλ−B) has a nonempty interior.

(ii) The numerical range W (Aλ−B) is the closure of its interior.

(iii) The real linear space spanned by the Hermitian matrices H1(A),H2(A),H1(B)
and H2(B) has dimension at least 3.

4 Diagonal Matrix Polynomials

For an n × n matrix polynomial P (λ) = Amλm + . . . + A1λ + A0, the joint
numerical range of its coefficients is defined by

JNR(P ) = {(x∗A0x, x∗A1x, . . . , x∗Amx) ∈ Cn : x ∈ Cn, x∗x = 1}.

One can easily see that

W (P ) = {λ ∈ C : amλm + . . . + a1λ + a0 = 0, (a0, a1, . . . , am) ∈ JNR(P )},

and if P (λ) is diagonal, then JNR(P ) is a convex polyhedron in Cm+1. Further-
more, the numerical range of a general matrix polynomial can be approximated
by using numerical ranges of diagonal matrix polynomials [13].

10



Theorem 11 [13, Theorem 4.2]
Let P (λ) = Amλm + . . . + A1λ + A0 be an n× n matrix polynomial. Then

⋃

D1

W (D1) = W (P ) =
⋂

D2

W (D2),

where the union (intersection) is taken over all diagonal matrix polynomials
D1(λ) (resp. D2(λ)) of degree m for which JNR(D1) ⊆ JNR(P ) ⊆ JNR(D2).

Motivated by the above theorem, next we consider the problem of drawing
the numerical range of a diagonal matrix polynomial

D(λ) = diag{d1(λ), d2(λ), . . . , dn(λ)}.
For any choice of indices 1 ≤ k1 < k2 < . . . < ks ≤ n, denote

D(λ : k1, k2, . . . , ks) = diag{dk1(λ), dk2(λ), . . . , dks
(λ)}. (5)

Notice also that the numerical range of a diagonal matrix diag{a1, a2, . . . , an},
with n > 3, is the convex hull of the diagonal elements and consists of a union
of convex polygons with s (3 ≤ s < n) vertices. In particular,

F (diag{a1, a2, . . . , an}) =
⋃

1≤k1<k2<...<ks≤n

F (diag{ak1 , ak2 , . . . , aks}).

By using this simple observation, the problem of drawing the numerical range
of a diagonal matrix polynomial is easily reduced.

Proposition 12 Let D(λ) be an n×n diagonal matrix polynomial with n > 3,
and let s ∈ {3, 4, . . . , n− 1}. Then

W (D) =
⋃

1≤k1<k2<...<ks≤n

W (D(λ : k1, k2, . . . , ks)).

Proof Consider a diagonal matrix polynomial

D(λ) = diag{d1(λ), d2(λ), . . . , dn(λ)} (n > 3)

and a positive integer s ∈ {3, 4, . . . , n− 1}. Then λ0 ∈ W (D) if and only if

0 ∈ F (D(λ0)) =
⋃

1≤k1<k2<...<ks≤n

F (diag{dk1(λ0), dk2(λ0), . . . , dks(λ0)}),

or equivalently,
λ0 ∈ W (D(λ : k1, k2, . . . , ks))

for some indices 1 ≤ k1 < k2 < . . . < ks ≤ n. ¤

Moreover, for an n × n diagonal matrix polynomial D(λ), the boundary
∂W (D) is proved to be a subset of a finite union of numerical ranges of 2× 2
diagonal matrix polynomials. This is quite useful since the numerical range of
a 2× 2 diagonal matrix polynomial has no interior points, and thus, it is easy
to be sketched.
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Proposition 13 If D(λ) is a 2 × 2 diagonal matrix polynomial, then W (D)
has no interior points, i.e., every point of W (D) has local dimension 1.

Proof Let D(λ) = diag{d1(λ), d2(λ)} be of m-th degree with d1(λ) = bmλm +
. . .+b1λ+b0 and d2(λ) = cmλm+. . .+c1λ+c0, and assume that IntW (D) 6= ∅.
Observe that for every µ ∈ IntW (D), the origin is a boundary point of F (D(µ)).
By Theorem 3.1 in [6], it follows that for every µ ∈ IntW (D),

0 ∈ F (D′(λ0)),

or equivalently,
λ0 ∈ W (D′).

By induction, we have

IntW (D) ⊆ IntW (D′) ⊆ . . . ⊆ IntW (D(m−1)).

The numerical range of the 2× 2 linear pencil

D(m−1)(λ) = (m− 1)! (m diag{bm, cm}λ + diag{bm−1, cm−1}),
namely,

W (D(m−1)) =
1
m

{
−bm−1t + cm−1(1− t)

bmt + cm(1− t)
: t ∈ [0, 1]

}

has no interior points (cf. Theorems 7 and 8), and the proof is complete. ¤
Proposition 14 If D(λ) is an n× n diagonal matrix polynomial, then

∂W (D) ⊆
⋃

1≤j<k≤n

W (D(λ : j, k)).

Proof Let D(λ) = diag{d1(λ), d2(λ), . . . , dn(λ)} and let λ0 ∈ ∂W (D). Then
by Theorem 1.1 in [11], the origin is a boundary point of F (D(λ0)), where
F (D(λ0)) coincides with the convex hull of d1(λ0), d2(λ0), . . . , dn(λ0). Hence,

0 ∈ F (diag{dj(λ0), dk(λ0)})
for some j, k ∈ {1, 2, . . . , n} with j < k, and thus λ0 ∈ W (D(λ : j, k)). ¤

The above proposition and the second part of Theorem 7 yield the following.

Corollary 15 The boundary of the numerical range of a diagonal linear pencil
coincides with a union of linear segments and circular arcs.

Example 1 Let D(λ) be the 4× 4 diagonal matrix polynomial

D(λ) = Iλ3 + diag{1,−i, i,−1 + i}λ2 + diag{2i, 12,
√

5, 0}λ
+ diag{

√
13,−4i,−5, 4}.

In Figure 1, we sketch 1000 points of W (D), and in Figure 2, we add 100 points
of each numerical range W (D(λ : j, k)) (1 ≤ j < k ≤ 4). The eigenvalues of
D(λ) are marked with +’s. The comparison of these two figures shows how
helpful is Proposition 14 in studying the shape of the numerical range of a
diagonal matrix polynomial.
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Figure 1: The numerical range W (D).
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Figure 2: The numerical range W (D) and its boundary.

5 Computations for n = 2

Let P (λ) = Amλm + . . . + A1λ + A0 be an n× n matrix polynomial. Then by
Theorem 4.1 in [10], W (P ) can be approximated by using numerical ranges of
2× 2 matrix polynomials. In this section, we investigate the point equation of
the boundary of the numerical range of a 2× 2 matrix polynomial (cf. [2])

Q(λ) = Bmλm + Bm−1λ
m−1 + . . . + B1λ + B0. (6)

Recall that every square matrix A is written A = H1(A) + iH2(A), where
the matrices H1(A) = (A + A∗)/2 and H2(A) = (A−A∗)/(2i) are Hermitian.
Moreover, observe that for any 2× 2 Hermitian matrix

A =
[

a + d b + ic
b− ic a− d

]
,
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and for any unit vector y =
[
cosϑ, eiϕ sin ϑ

]T ∈ C2, we have

y∗Ay = a + d cos(2ϑ) + b sin(2ϑ) cos ϕ− c sin(2ϑ) sin ϕ.

Consider now y as an element of the complex projective line CP1, and set

X = sin(2ϑ) cos(ϕ), Y = − sin(2ϑ) sin(ϕ) and Z = cos(2ϑ).

Then the point (X, Y, Z) ∈ R3 satisfies X2 + Y 2 + Z2 = 1 and we can identify
CP1 with the real 3-dimensional sphere X2 + Y 2 + Z2 = 1. As a consequence,

y∗Ay = a + bX + c Y + dZ.

The coefficients of Q(λ) in (6) can be written in the form

Bj =
[

aj + dj bj + icj

bj − icj aj − dj

]
+ i

[
a′j + d′j b′j + ic′j
b′j − ic′j a′j − d′j

]
(j = 0, 1, . . . , m),

where aj , bj , cj , dj , a
′
j , b

′
j , c

′
j , d

′
j ∈ R (j = 0, 1, . . . , m), and then

y∗Q(λ)y =
m∑

j=0

λj(aj + bjX + cjY + djZ) + i

m∑

j=0

λj(a′j + b′jX + c′jY + d′jZ).

For λ = u + iv, (u, v ∈ R), the equation y∗Q(u + iv)y = 0 is rewritten as the
system

Re(y∗Q(u+iv)y) = φ1,1(u, v)X+φ1,2(u, v)Y +φ1,3(u, v)Z+φ1,0(u, v) = 0, (7)

Im(y∗Q(u+iv)y) = φ2,1(u, v)X+φ2,2(u, v)Y +φ2,3(u, v)Z+φ2,0(u, v) = 0, (8)

where φj,k(u, v) (j = 1, 2, k = 0, 1, 2, 3) are real polynomials in u, v of to-
tal degree at most m. At this point and for the remainder, we assume that
φj,k(u, v) 6= 0 for some j = 1, 2, k = 1, 2, 3 since otherwise Q(λ) is a scalar
polynomial. Furthermore, for every (u, v) ∈ R2, consider an affine subspace
L(u, v) of R3 defined by

L(u, v) = {(X,Y, Z) ∈ R3 : (7) and (8) are satisfied }.
Then it is clear that the numerical range W (Q) is the set of the points λ =
u+ iv (u, v ∈ R) for which the corresponding affine space L(u, v) has a common
point with the unit sphere X2 + Y 2 + Z2 = 1.

One of the following three cases occurs :

(I) The real matrix

F1(u, v) =
[

φ1,1(u, v) φ1,2(u, v) φ1,3(u, v)
φ2,1(u, v) φ2,2(u, v) φ2,3(u, v)

]
(9)

has rank 2 for every (u, v) ∈ R2 except for points on an algebraic curve
G(u, v) = 0.
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(II) For every (u, v) ∈ R2, the real matrix F1(u, v) in (9) has rank ≤ 1, and the
real matrix

F2(u, v) =
[

φ1,1(u, v) φ1,2(u, v) φ1,3(u, v) φ1,0(u, v)
φ2,1(u, v) φ2,2(u, v) φ2,3(u, v) φ2,0(u, v)

]
(10)

has rank 2 for some (u, v) ∈ R2.

(III) For every (u, v) ∈ R2, the real matrix F2(u, v) in (10) has rank ≤ 1.

First, we consider Case (I). Without loss of generality, assume that

det
[

φ1,1(u, v) φ1,2(u, v)
φ2,1(u, v) φ2,2(u, v)

]

does not vanish on an open dense subset of R2. On this open set the affine
subspace L(u, v) is 1-dimensional. A parametric representation of the straight
line L(u, v) is obtained by solving the equations (7) and (8) in X,Y,

X =
φ1,3(u, v)φ2,2(u, v)− φ2,3(u, v)φ1,2(u, v)
φ1,1(u, v)φ2,2(u, v)− φ1,2(u, v)φ2,1(u, v)

Z

+
φ1,0(u, v)φ2,2(u, v)− φ2,0(u, v)φ1,2(u, v)
φ1,1(u, v)φ2,2(u, v)− φ1,2(u, v)φ2,1(u, v)

,

Y =
φ1,3(u, v)φ2,1(u, v)− φ2,3(u, v)φ1,1(u, v)
φ1,1(u, v)φ2,2(u, v)− φ1,2(u, v)φ2,1(u, v)

Z

+
φ1,0(u, v)φ2,1(u, v)− φ2,0(u, v)φ1,1(u, v)
φ1,1(u, v)φ2,2(u, v)− φ1,2(u, v)φ2,1(u, v)

.

Substituting these relations into the equation X2 + Y 2 + Z2 − 1 = 0, we have a
quadratic equation with discriminant

D(u, v) = (φ1,1φ2,2 − φ1,2φ2,1)2 + (φ1,1φ2,3 − φ1,3φ2,1)2

+(φ1,2φ2,3−φ1,3φ2,1)2− ‖φ2,0 [ φ1,1, φ1,2, φ1,3 ]T −φ1,0 [ φ2,1, φ2,2, φ2,3 ]T ‖22,
where ‖ · ‖2 is the Euclidean norm. Obviously, D(u, v) is a real polynomial in
u, v of total degree at most 4m.

If λ0 = u0 + iv0 (u0, v0 ∈ R) is an interior point of W (P ), then the discrim-
inant D(u, v) is non-negative “near” the point (u0, v0), and if λ0 = u0 + iv0 is
an exterior point of W (P ), then D(u0, v0) < 0. Hence, every boundary point
λ0 = u0 + iv0 (u0, v0 ∈ R) of W (P ) (as a limit point of the interior of W (P ))
satisfies the equation

D(u0, v0) = 0.

Note that the points (u, v) ∈ R2 for which the matrix F1(u, v) in (9) has
rank ≤ 1 lie on the algebraic curve

G(u, v) = (φ1,1φ2,2 − φ1,2φ2,1)2 + (φ1,1φ2,3 − φ1,3φ2,1)2

15



+(φ1,2φ2,3 − φ1,3φ2,1)2 = 0.

Remark For the straight line, in the 3-dimensional Euclidean space,

φ1,1X + φ1,2Y + φ1,3Z + φ1,0 = 0,

φ2,1X + φ2,2Y + φ2,3Z + φ2,0 = 0,

the distance d between the origin and the line is given by

d2 =
‖φ2,0 [ φ1,1, φ1,2, φ1,3 ]T − φ1,0 [ φ2,1, φ2,2, φ2,3 ]T ‖22

(φ1,1φ2,2 − φ1,2φ2,1)2 + (φ1,1φ2,3 − φ1,3φ2,1)2 + (φ1,2φ2,3 − φ1,3φ2,1)2
.

Let us now consider Case (II). In this case, for every u + iv ∈ W (P ), the
point (u, v) ∈ R2 satisfies the equations

φ1,0(u, v)φ2,j(u, v)− φ2,0(u, v)φ1,j(u, v) = 0 (j = 1, 2, 3).

Notice that at least one of the polynomials

φ1,0(u, v)φ2,j(u, v)− φ2,0(u, v)φ1,j(u, v) (j = 1, 2, 3)

does not vanish at some (u0, v0) ∈ R2. Thus, the numerical range W (P ) is
contained in an algebraic curve

Γ(u, v) = φ1,0(u, v)φ2,j(u, v)− φ2,0(u, v)φ1,j(u, v) = 0

for some j = 1, 2, 3, and every point of W (P ) has local dimension 1 (i.e., W (P )
has no interior points).

Finally, we consider Case (III). The following lemma is necessary.

Lemma 16 Let P (λ) = Amλm + . . . + A1λ + A0 be an n × n matrix poly-
nomial, and let P (µ) be normal for every µ ∈ C. If there is a λ0 ∈ C such
that the matrix P (λ0) has n distinct eigenvalues, then there exists an n × n
unitary matrix U such that the matrix polynomial U∗P (λ)U is diagonal. (In
particular, the coefficients A0, A1, . . . , Am are simultaneously diagonalizable by
unitary similarity.)

Proof Consider the matrix polynomial P̃ (λ) = P (λ − λ0). Then it is obvious
that σ(P̃ ) = σ(P ) + λ0 and the matrix P̃ (µ) is normal for every µ ∈ C. Hence,
without loss of generality, assume that P (0) = A0 has n distinct eigenvalues.
By the normality hypothesis, we have, for real parameter t,

P (t)P (t)∗ = P (t)∗P (t), (11)

P (teiϑ)P (teiϑ)∗ = P (teiϑ)∗P (teiϑ) , ϑ ∈ [0, 2π] . (12)

We differentiate these equations, with respect to t, for ϑ = π/2. Taking the
derivatives at t = 0 yields

A1A
∗
0 + A0A

∗
1 = A∗0A1 + A∗1A0,
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iA1A
∗
0 − iA0A

∗
1 = iA∗0A1 − iA∗1A0,

and thus A0A
∗
1 = A∗1A0. By hypothesis, A0 is written A0 = U∗D0U , where U

is an n × n unitary matrix and D0 is an n × n diagonal matrix with distinct
diagonal elements. Then it is straightforward that A1 is also a normal matrix
of the form A1 = U∗D1U , where D1 is diagonal (see [3], pp. 186-187). Clearly,
A0 and A1 commute. Next, for ϑ = π/4, we take the second order derivative of
the equations (11) and (12) at t = 0. Then

A2A
∗
0 + A0A

∗
2 + A1A

∗
1 = A∗0A2 + A∗2A0 + A∗1A1,

iA2A
∗
0 − iA0A

∗
2 + A1A

∗
1 = iA∗0A2 − iA∗2A0 + A∗1A1,

which implies that A0A
∗
2 = A∗2A0. Hence, A2 is also a normal matrix com-

muting with A0, and there exists an n × n diagonal matrix D1 such that
A2 = U∗D2U . Continuing this process for ϑ = π/6, π/8, . . . , π/(2m), we con-
clude that A0, A1, . . . , Am are commuting normal matrices, and they are simul-
taneously diagonalizable by unitary similarity. The proof is complete. ¤

By the assumptions of Case (III), it follows that for every (u, v) ∈ R2, the
left-hand sides of (7) and (8) are proportional. Hence, for every unit vector
y ∈ C2,

y∗Q(λ)y = Φ(λ) g(λ, y)

for some complex valued continuous function Φ(λ) and a real valued function
g(λ, y). This implies that for every µ ∈ C, the matrix Q(µ) is normal and its
numerical range, F (Q(µ)), is contained in a straight line passing through the
origin. By the above lemma, there exists a 2× 2 unitary matrix U such that

UQ(λ)U∗ = diag{q1(λ), q2(λ)}
for two scalar polynomials q1(λ) and q2(λ), and thus,

W (Q) = W (diag{q1(λ), q2(λ)}).
(Note that if the matrix Q(µ) has a double eigenvalue for every µ ∈ C, then
Q(µ) is a scalar matrix for every µ ∈ C, and the conclusions of Lemma 16 hold.)

If q2(λ) ≡ 0, then W (Q) = C, and we have nothing to prove. If q2(λ) 6= 0,
then since the real matrix F2(u, v) in (10) always has rank ≤ 1, it follows that
for every µ ∈ C, the real matrix

[
Re q1(µ) Re q2(µ)
Im q1(µ) Im q2(µ)

]

is singular. Consequently, for every µ ∈ C, there exists a pair (αµ, βµ) ∈
R2\{ (0, 0)} such that αµ q1(µ) + βµ q2(µ) = 0. This is true only when there
is a pair (α, β) ∈ R2\{ (0, 0)} such that α q1(λ) + β q2(λ) ≡ 0. Hence, either
W (Q) = C (when α β ≥ 0), or W (Q) coincides with the set of the roots of q2(λ)
(when α β < 0).

So we proved the main result of this section.
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Theorem 17 Let Q(λ) = Bmλm + . . .+B1λ+B0 be a 2×2 matrix polynomial
with numerical range W (Q) 6= C. If W (Q) has no interior points, then W (Q)
lies on an algebraic curve of degree at most 2m. If W (Q) has interior points,
then W (Q) coincides with the union of two closed sets W1 and W2 such that
W1 lies on an algebraic curve of degree at most 2m and the boundary ∂W2 lies
on an algebraic curve of degree at most 4m.

Motivated by the results of the previous section, we consider the point equa-
tion of the numerical range of the matrix polynomial

Q(λ) = diag{q1(λ), q2(λ)}. (13)

Corollary 18 Let Q(λ) be a 2× 2 diagonal matrix polynomial as in (13) such
that W (Q) 6= σ(Q), C. Then W (Q) lies on the curve

Re q1(λ) Im q2(λ)− Re q2(λ) Im q1(λ) = 0

(recall that by Proposition 13, W (Q) has no interior points).

Example 2 Consider the 2× 2 diagonal matrix polynomial

Q(λ) = diag{λ2 + λ + 1, λ2 + 2λ + 2}.
The numerical range W (Q) (in C ∼= R2), in Figure 3, is the union of two arcs
of the circle S(−1, 1) with centre at −1 ∼= (−1, 0) and radius 1. The endpoints
of these arcs are the eigenvalues −0.5± i

√
0.75, −1± i of Q(λ). Furthermore,

it is easy to see, writing λ = u + iv (u, v ∈ R), that the algebraic curve (in R2)

Re q1(u + iv) Im q2(u + iv)− Re q2(u + iv) Im q1(u + iv) = v(u2 + 2u + v2) = 0

coincides with the union of the axis v = 0 and the circle S((−1, 0), 1). The
above corollary is verified.
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Figure 3: W (Q) consists of two circular arcs.
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