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Abstract

We present results connecting the shape of the numerical range to intrinsic properties
of a matrix A. When A is a nonnegative matrix, these results are to a large extent
analogous to the Perron-Frobenius theory, especially as it pertains to irreducibility and
cyclicity in the combinatorial sense. Special attention is given to polygonal, circular and
elliptic numerical ranges. The main vehicles for obtaining these results are the Hermitian
and skew-Hermitian parts of A, as well as Levinger’s transformation aA+ (1− a)A∗.
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1 Introduction

The numerical range of a matrix may be used to draw surprisingly strong conclusions about
the spectrum and the combinatorial structure of a matrix, in particular a nonnegative
matrix. In this paper, we will recall and develop results on the numerical range of a real or
a nonnegative matrix, which directly relate its shape to intrinsic properties of the matrix,
and thus provide means of detecting such properties. The motivation is largely provided
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by the unpublished doctoral thesis of J. N. Issos [7] in 1966; also by [14, 15], and a recent
paper [16] in which the authors thoroughly examine matrices whose numerical ranges have
rotational symmetries.

The structure and goals of this paper are as follows.

In Section 3 we look at the basic conclusions that can be drawn about/from the numerical
range of a nonnegative matrix that are analogous to the Perron-Frobenius Theorem. These
are mainly the results of Issos [7] generalized by relaxing or disposing of the assumption of
irreducibility. We have attempted to provide as simple proofs as possible, combining the
approach of Issos with results found in [6] and [16]. We also report some progress on a
question raised in [16] (Proposition 3.8), and a result based on Fan’s Theorem that relates
the numerical ranges of a matrix and its entrywise absolute value (Theorem 3.10).

In Section 4, motivated by the work of Levinger [10] and subsequent work of Fiedler [4], we
consider the numerical range of (1−a)A+aA∗ as a function of a ∈ R. When the numerical
range of A ∈ Mn(C) is an elliptic or circular disk, this approach allows us to obtain results
on the irreducibility of a nonnegative matrix A (Theorem 4.5) or to describe the spectral
radius as a function of a (Theorem 4.8). We also generalize a result by J. Anderson from
circles to ellipses (Theorem 4.12).

The reader is alerted to the forthcoming article [11] in which many of the topics herein are
treated in a different but related manner.

2 Notation and preliminaries

Let Mn(C) (Mn(R)) be the algebra of all n× n complex (real) matrices. For A ∈ Mn(C),
the numerical range (also known as the field of values) of A is defined and denoted by

W (A) = {x∗Ax : x ∈ C
n, x∗x = 1},

and is known to be a compact and convex subset of C. We refer to a vector x as unit if
x∗x = 1. The numerical radius of A is r(A) = max{|a| : a ∈ W (A)}. We refer to a ∈ W (A)
as maximal if |a| = r(A). The spectrum of A is denoted by σ(A) and its spectral radius by
ρ(A) = max{|λ| : λ ∈ σ(A)}.
Let also H(A) = (A + A∗)/2 denote the Hermitian part and S(A) = (A − A∗)/(2i), i.e.,
iS(A) is the skew-Hermitian part of A. Clearly, W (H(A)) = {Rez : z ∈ W (A)} and if
A ∈ Mn(R), then W (A) is symmetric with respect to the real axis.

It is assumed that the reader is familiar with the basic elements of the Perron-Frobenius
theory for nonnegative matrices. The suggested references are [2, 5, 6]. We will only
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selectively recall some notions and notation.

Let ≥ 0 be the symbol for real arrays with nonnegative entries, and ≥ the symbol for the
induced entrywise order. The symbol | · | is reserved for the entrywise absolute value of an
array. Matrix A is called irreducible if there does not exist a permutation matrix P such
that

PAP T =
(
A11 A12

0 A22

)
,

where A11 and A22 are square, non-vacuous matrices. Matrix A is called k-cyclic if for some
permutation matrix P ,

PAP T =




0 A12 0 . . . . . . 0

0 0 A23 0 . . .
...

...
...

. . . . . . . . .
...

...
...

...
. . . . . . 0

0 0 0 . . . 0 Ak−1,k

Ak,1 0 0 . . . 0 0




, (1)

where the zero blocks along the diagonal are square. Notice that a k-cyclic matrix is also
m-cyclic for any divisor m of k. The largest positive integer k for which A is k-cyclic is
referred to as the cyclic index of A. When Ak,1 = 0 and k ≥ 2 in (1), A is said to be
permutationally similar to a block-shift matrix.

Note that, by the (second part of the) Perron-Frobenius Theorem (see [2, Theorem 2.20,
p. 32]), the cyclic index of a nonnegative irreducible matrix A coincides with the index of
imprimitivity of A, namely, the number of eigenvalues of A of maximal modulus.

3 Perron-Frobenius and the results of Issos

It is perhaps well known, but not readily accessible in the standard literature, that when
A ≥ 0, r(A) is a maximal element ofW (A) attained by the quadratic form of H(A) at a unit
eigenvector of H(A) corresponding to ρ(H(A)). That is, when A ≥ 0, r(A) = ρ(H(A)). It is
of interest, however, that primarily in the case of irreducible nonnegative matrices, there are
further analogies between the Perron-Frobenius Theorem and the shape of the numerical
range. These analogies were first presented in [7] and are summarized and paraphrased
next.

Theorem 3.1 (Issos [7]) Let A ∈ Mn(R), A ≥ 0, be an irreducible matrix.
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(i) There exists a unit positive vector x such that xTAx = r(A). Moreover, y∗Ay = r(A)
with y∗y = 1 if and only if y = eiθx for some θ ∈ [0, 2π).
(ii) If A is k-cyclic, then

W (A) =W (ei 2tπ
k A) (t = 0, 1, . . . , k − 1).

Moreover, if λ ∈ σ(A), then ei 2tπ
k λ ∈ σ(A) with the same multiplicity as λ.

(iii) If W (A) has exactly k ( 2 ≤ k ≤ n) maximal elements, then A has cyclic index k.

(iv) There exists a positive integer k ≤ n such that the maximal elements of W (A) are of
the form

r(A)ei 2tπ
k (t = 0, 1, . . . , k − 1).

Moreover, the maximal elements of σ(A) are of the form

ρ(A)ei 2tπ
k (t = 0, 1, . . . , k − 1).

Remarks The following remarks refer to Theorem 3.1.

(1) In fact, Issos showed that (ii) holds for all complex matrices.

(2) The integer k in clause (iv) equals the cyclic index and the index of imprimitivity of A.

(3) Notice the striking similarities of Theorem 3.1 with the various clauses of the Perron-
Frobenius Theorem for irreducible and k-cyclic matrices. As a matter of fact, in the proof
attributed to Wielandt of the second part of the Perron-Frobenius Theorem ([2, Theorem
2.20, p.32]), it is observed that a k-cyclic matrix A is invariant under the transformation
A −→ eiθDAD∗ for a suitable angle θ and a diagonal unitary matrix D. Such a transfor-
mation simply rotates W (A) by θ and so Wielandt’s approach can be used as an alternate
method of proof for some of the clauses of the above theorem and their extensions herein.

Our first goal is to generalize Theorem 3.1 (i) by relaxing the assumption of irreducibility.
The proof of the first part of the next theorem is essentially contained in [7] and also in [1].

Theorem 3.2 Let A ∈ Mn(R), A �= 0, A ≥ 0. Then there exists a unit vector xa ≥ 0 such
that xT

a Axa = r(A). Moreover, if ρ(H(A)) is a simple eigenvalue of H(A), then y is a unit
vector with y∗Ay = r(A) if and only if y = eiθxa for some θ ∈ [0, 2π).

Proof. We readily have that for every x ∈ C
n, |x∗Ax| ≤ |x|TA|x|. Consequently,

r(A) = max{xTAx : xTx = 1, x ≥ 0}
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and there exists xa ≥ 0 such that xT
a Axa = r(A). Suppose now that r(A) = ρ(H(A))

is a simple eigenvalue of H(A). By [6, Lemma 1.5.7], any unit vector y ∈ C
n such that

y∗Ay = r(A) is an eigenvector of H(A) corresponding to ρ(H(A)). Thus, as ρ(H(A)) is
simple, y = eiθxa for some θ ∈ [0, 2π).
Note that if H(A) is irreducible, xa in the above theorem is indeed the unit Perron vector
of H(A).

Next we aim to generalize Theorem 3.1 (iv). We first need two lemmas of independent
interest, which are also generalizations of results in [7].

Lemma 3.3 Let A ∈ Mn(R), A ≥ 0 and assume ρ(H(A)) is a simple eigenvalue of H(A).
If y ∈ C

n is a unit vector such that |y∗Ay| = r(A) and xa ≥ 0 is the vector of Theorem 3.2,
then |y| = xa.

Proof. As in the proof of Theorem 3.2, r(A) = |y∗Ay| ≤ |y|TA|y| and thus r(A) = |y|TA|y|.
By Theorem 3.2 it now follows that |y| = xa.

Lemma 3.4 Let A ∈ Mn(R), A ≥ 0 and assume ρ(H(A)) is a simple eigenvalue of
H(A). If there are angles φ, θ ∈ [0, 2π), φ �= θ, such that r(A)eiφ, r(A)eiθ ∈ W (A), then
r(A)ei(φ+θ) ∈ W (A).

Proof. Let u = (uj), v = (vj) ∈ C
n be two unit vectors such that u∗Au = r(A)eiφ and

v∗Av = r(A)eiθ. If xa = (xj) is the nonnegative vector of Theorem 3.2, then by Lemma
3.3, |u| = |v| = xa. Moreover, precisely as in the proofs of [7, Theorems 2 and 3], by the
ensuing relations

r(A) = |u∗Au| = |
n∑

i,j=1

aijuiuj | ≤
n∑

i, j=1

aij |ui| |uj | =
n∑

i, j=1

aijxixj = r(A),

it follows that every non-zero term of
∑

aijuiuj has the same argument φ. Thus, corre-
sponding to every positive entry aij of A, arguj − argui = φ. Similarly, argvj − argvi = θ .
Define now the unit vector w = (wj) by

wj = xj ei(arguj+argvj) (j = 1, 2, . . . , n).

It is straightforward to verify that for every aij > 0, arg(aijwiwj) = φ+ θ , and so w∗Aw =
r(A)ei(φ+θ).

We can now generalize Theorem 3.1 (iv).
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Theorem 3.5 Let A ≥ 0 and assume ρ(H(A)) is a simple eigenvalue of H(A). Assume
also that W (A) is not a circular disk centered at the origin. Then there exists a positive
integer k ≤ n such that the maximal elements of W (A) are of the form r(A)ei 2tπ

k (t =
0, 1, . . . , k − 1).

Proof. By Theorem 3.2, W (A) has at least one maximal element, r(A). Moreover, by
a result attributed to J. Anderson (see [16, Lemma 6]), W (A) cannot have more than
n maximal elements. Thus its maximal elements are a1, a2, . . . , ak with arguments φ1 =
0, φ2, . . . , φk for some positive integer k ≤ n. By Lemma 3.4, the set

{φ1(mod2π), φ2(mod2π), . . . , φk(mod2π)}
is a finite additive abelian group and thus a cyclic group.

Corollary 3.6 Let A ∈ Mn(R), A ≥ 0 such that H(A) is irreducible. If W (A) has a finite
number k ≥ 2 of maximal elements, then the following (equivalent) conditions hold.

(i) A is diagonally similar to ei 2π
k A.

(ii) A is k-cyclic.

(iii) ei 2tπ
k W (A) =W (A) (t = 0, 1, . . . , k − 1).

(iv) ei 2tπ
k r(A) ∈ W (A) (t = 0, 1, . . . , k − 1).

In particular, the cyclic index of A equals k.

Proof. Conditions (i)-(iv) are shown to be equivalent in [16, Theorem 2], when A ≥ 0,
H(A) is irreducible and A is not permutationally similar to a block-shift matrix. The latter
assumption holds here as W (A) is assumed to have a finite number of maximal elements;
cf. Theorem 4.1. Moreover, as H(A) is assumed to be irreducible, ρ(H(A)) is a simple
eigenvalue of H(A) and thus by Theorem 3.5, (iv) holds.

Example 3.7 Suppose it is known that the matrices with numerical ranges as given by
Figure 1 are nonnegative and have irreducible Hermitian parts. Their numerical ranges
have 3 and 4 maximal elements and thus they must have cyclic index 3 and 4, respectively.
Their eigenvalues are also marked to illustrate the corresponding symmetries of the spectrum
and the numerical range.

In [7] the following question is asked: What are necessary and sufficient conditions for the
numerical range of an irreducible nonnegative matrix to be a regular polygon? In [16] a
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Figure 1: Numerical ranges of cyclic matrices.

similar problem is raised, namely, to characterize nonnegative matrices whose numerical
ranges are regular (convex) polygons centered at the origin. The following shed some light
in this regard.

Let A ≥ 0 be a square matrix. By considering the graph of H(A) and its connected
components, it is easy to see that A is permutationally similar to a direct sum A1 ⊕ A2 ⊕
. . .⊕Am so that H(Aj) is irreducible for every j = 1, 2, . . . ,m, and H(A) is permutationally
similar to H(A1) ⊕ H(A2) ⊕ . . . ⊕ H(Am). Notice now that, on one hand, W (A) being a
regular polygon centered at the origin with k vertices means

W (A) = conv.hull {r(A)e2πti/k : t = 0, 1, . . . , k − 1}.
On the other hand, by [6, Property 1.2.10],

W (A) = conv.hull {W (A1) ∪W (A2) ∪ . . . ∪W (Am)}.
By Theorem 3.2, r(A) ∈ W (A) and so there exists s such that r(A) = r(As) ∈ W (As). The
matrix As is not necessarily unique in having numerical radius equal r(A). As r(A)e2πi/k is
also an extreme point of W (A), we may without loss of generality assume that r(A)e2πi/k ∈
W (As). Then, by Lemma 3.4 applied to As, W (As) contains all points r(A)e2πti/k, t =
0, 1, . . . , k − 1. Thus, by the convexity of the numerical range, W (As) = W (A). As a con-
sequence, in considering nonnegative matrices whose numerical ranges are regular polygons
centered at the origin, one can restrict attention to matrices with irreducible Hermitian
parts, as is done in the next result.

Proposition 3.8 Let A ∈ Mn(R), A ≥ 0 such that H(A) is irreducible. Then W (A) is a
regular polygon Pk with k vertices centered at the origin if and only if
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(i) A has cyclic index k, and

(ii) there exists a unitary U ∈ Mn(C) such that U∗AU is the direct sum of a k×k diagonal
matrix D with a matrix B such that W (B) ⊆ W (D).

Proof. By Corollary 3.6, ifW (A) has exactly k maximal elements then A has cyclic index k.
If we assume that W (A) is a regular polygon Pk with k vertices centered at the origin, then
the vertices of the polygon are necessarily (normal) eigenvalues of A (see [6, Theorem 1.6.3])
and so (ii) is due to [6, Theorem 1.6.8]. Conversely, if (i) and (ii) hold, then W (A) =W (D)
is the claimed polygon by [6, Property 1.2.10] and because A has cyclic index k.

Note that condition (ii) of Proposition 3.8 is essential as illustrated by the following example.

Example 3.9 Consider the 3-cyclic 9× 9 matrix

A =


 0 C 0
0 0 C
C 0 0


 , where C =


 1.5 2 0
0 1.6 0
0 0 3




and see W (A) in Figure 2. The spectrum of A is

σ(A) = {1.5e 2tπ
3 , 1.6e

2tπ
3 , 3e

2tπ
3 : t = 0, 1, 2}.

Moreover, A is unitarily similar to diag{3, 3e 2π
3 , 3e

4π
3 } ⊕ B, where W (B) is not a subset

of P3 = conv.hull{3, 3e 2π
3 , 3e

4π
3 }. Therefore, W (A) = conv.hull{W (B) ∪ P3} �= P3.
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Figure 2: The vertices are the maximal elements.

One of the applications of the Perron-Frobenius Theorem is Fan’s Theorem [5, Theorem
8.2.12], which can be used to obtain the following result about the numerical range.
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Theorem 3.10 Let A = (aij) ∈ Mn(C) and B = (bij) ∈ Mn(R), B ≥ 0 such that B ≥ |A|.
Denote ξj(B) = r(B)− bjj , j = 1, 2, . . . , n and

mθ = min
j

(
Re(eiθajj)− ξj(B)

)
, Mθ = max

j

(
Re(eiθajj) + ξj(B)

)
.

Then
W (A) ⊆

⋂
θ∈[0,2π]

{z ∈ C : mθ ≤ cos θRez − sin θ Imz ≤ Mθ}.

Proof. Since |A| ≤ B, it is easy to see that for any θ ∈ [0, 2π], |H(eiθA)| ≤ H(|A|) ≤ H(B).
By Fan’s Theorem,

σ(H(eiθA)) ⊆
n⋃

j=1

{z ∈ C : |z − Re(eiθajj)| ≤ ρ(H(B))− bjj}

and consequently,

ReW (eiθA) ⊆
[
min

j

(
Re(eiθajj)− r(B) + bjj

)
, max

j

(
Re(eiθajj) + r(B)− bjj

)]
.

Hence, W (A) lies in the zone {z ∈ C : mθ ≤ Re(eiθz) ≤ Mθ}. The proof is completed by
taking the intersection of these zones for all θ ∈ [0, 2π].

4 Circular and elliptic disks

For an n× n matrix A, W (A) has either at most n maximal elements or, according to [16,
Lemma 6], it is a circular disk centered at the origin (and thus has infinitely many maximal
elements.) In fact, the following holds for nonnegative matrices.

Theorem 4.1 [16, Theorem 1 (a), (r)] Let A ∈ Mn(R), A ≥ 0 such that H(A) is irre-
ducible. Then W (A) is a circular disk centered at the origin if and only if A is permuta-
tionally similar to a block-shift matrix.

This result provides our motivation to look at numerical ranges that are circular or elliptic
and at the consequences of such an assumption.

It was shown in [9, 12] that the boundary of the numerical range of a complex matrix A is
the real part of an algebraic curve whose equation in line coordinates is

det(uI + vH(A) + wS(A)) = 0.

9



This algebraic curve is of class n and has n foci that coincide with the eigenvalues of A (see
[12]). Taking into consideration that the dual curve of a conic is a conic, we can now state
the following theorem (cf. [13, Theorem 2]).

Theorem 4.2 Let A ∈ Mn(C). If W (A) is an elliptic disk, then its foci are eigenvalues
of A. In particular, if W (A) is a circular disk, then its center is an eigenvalue of A.

We proceed by considering the numerical range of the matrix

T (a,A) := (1− a)A+ aA∗,

whose spectral radius as a function of a ∈ [0, 1] has been studied by Levinger [10] and
Fiedler [4]. For any a ∈ R, it is easy to verify that H(T (a,A)) = H(A) and S(T (a,A)) =
(1− 2a)S(A). Consequently,

W (T (a,A)) = {u+ i(1− 2a)v : u, v ∈ R, u+ iv ∈ W (A)}. (2)

Theorem 4.3 Let A ∈ Mn(C) such that W (A) is symmetric with respect to the real axis.
Then the following are equivalent.

(i) W (A) is a circular disk centered at µ ∈ R.

(ii) W (T (a,A)) is an elliptic disk with center µ ∈ R and foci lying on the real axis if and
only if a ∈ (0, 1).
(iii) W (T (a,A)) is an elliptic disk with center µ ∈ R and foci lying on the line {µ + iλ :
λ ∈ R} if and only if a ∈ (−∞, 0) ∪ (1,∞).

Proof. By continuity of the boundary of W (T (a,A)) in a (relative to the Hausdorff metric)
and its symmetry with respect to the real axis, it is enough to prove that (i) implies (ii) and
(iii). Assume that the boundary of W (A) is a circle with equation (u−µ)2+ v2 = r2 in the
(u, v)-plane. Then the boundary of W (T (a,A)) is obtained by (2). For a ∈ R \ {0, 1/2, 1},
via the change of variables

X = u and Y = (1− 2a)v,
the boundary of W (T (a,A)) is seen to be the ellipse

(X − µ)2

r2
+

Y 2

r2(1− 2a)2 = 1,

whose foci are µ ± 2r
√

a(1− a) if a ∈ (0, 1/2) ∪ (1/2, 1), or µ ± i2r
√

a(a− 1) if a ∈
(−∞, 0) ∪ (1,∞). For a = 1/2, the line segment W (T (1/2, A)) = W (H(A)) is indeed a
degenerate ellipse.
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From Theorems 4.2 and 4.3, and the continuity of the eigenvalues of T (a,A) in a, we
immediately obtain the following.

Corollary 4.4 Let A ∈ Mn(C) such that W (A) is a circular disk centered at µ ∈ C. Then
µ ∈ σ(A) with multiplicity at least 2.

Suppose now that the boundary of W (A) in the (u, v)-plane has equation

u2

k2
+

v2

λ2
= 1 (k, λ > 0).

If k > λ (resp., k < λ), then W (A) is an elliptic disk with foci lying on the real axis (resp.,
off the real axis). For any a ∈ (−∞, 1/2), the boundary of W (T (a,A)) has equation

u2

k2
+

v2

λ2(1− 2a)2 = 1,

which becomes a circle when a = (λ− k)/(2λ). It is also worth noting that for a, b,∈ [0, 1],
T (b, T (a,A)) = [1− (a+ b− 2ab)A] + (a+ b− 2ab)AT = T (a+ b− 2ab,A),

where a + b − 2ab ∈ [0, 1]. In conclusion, if the boundary of W (A) is a conic, then the
boundary of W (T (a,A)) is transformed as follows as a varies in R:

[Ellipse with foci �∈ R]←→ [Circle]←→ [Ellipse with foci ∈ R]
a=1/2←→ [Line segment] .

For nonnegative matrices, we have the following.

Theorem 4.5 Let A ∈ Mn(R), A ≥ 0 such that W (A) is a circular disk or an elliptic disk
with foci off the real line. Then A is reducible.

Proof. Suppose that A is as prescribed and, by way of contradiction, that A is irreducible.
By (2) and Theorem 4.3, for some a0 ∈ [0, 1/2), W (T (a0, A)) is a circular disk concentric to
W (A). Let µ ∈ R be the center. Then, by Corollary 4.4, µ ∈ σ(T (a0, A)) has multiplicity at
least 2. As T (a0, A) ≥ 0 must also be irreducible, its spectral radius is a simple eigenvalue
and thus

µ < ρ(T (a0, A)). (3)

Now for a ∈ [a0, 1/2], consider the right focus of W (T (a,A)) as a function ψ(a,A). When
a = a0, ψ(a,A) coincides with the center µ of W (T (a0, A)). By Theorem 4.2, we also have
ψ(a,A) ∈ σ(T (a,A)). We can now deduce that for every a ∈ [a0, 1/2),

ψ(a,A) < ρ(T (a,A)) ≤ ρ(H(A)). (4)

11



The first (strict) inequality in (4) follows by (3) and the simplicity of the eigenvalue
ρ(T (a,A)) as T (a,A) is irreducible for 0 ≤ a ≤ 1. The second inequality in (4) was shown
in [10] but also follows readily from the fact that ReW (T (a,A)) = ReW (A) = W (H(A)).
Lastly, at a = 1/2, we have

ψ(1/2, A) = ρ(T (1/2, A)) = ρ(H(A)).

The latter equalities and (4) imply that ρ(H(A)) is not a simple eigenvalue of H(A), a
contradiction to the assumption that A is irreducible that completes the proof.

Corollary 4.6 Let A ∈ Mn(R), A ≥ 0 such that W (A) is an elliptic disk with foci off the
real line. Then H(A) is reducible.

Proof. If H(A) is irreducible, then there exists an a0 ∈ (0, 1/2) such that T (a0, A) ≥ 0 is
irreducible withW (T (a0, A)) a circular disk. This is a contradiction by Theorem 4.5.

Example 4.7 Consider the matrix

A =
(
a b
c d

)
≥ 0.

It is known that W (A) is a circular or elliptic disk. The discriminant of the characteristic
polynomial of A is

∆ = (a− d)2 + 4bc ≥ 0.

If ∆ = 0, then W (A) is a circular disk centered at (a + d)/2; if ∆ > 0, then W (A) is an
elliptic disk with foci (a + d ±√

∆)/2. Moreover, A is irreducible if and only if bc �= 0, in
which case ∆ > 0 (see also Theorem 4.5).

When A is an n× n nonnegative matrix and W (A) is an elliptic disk with foci on the real
axis, the behavior of ρ(T (a,A)) can be described in detail, complementing (in this case) the
work of Fiedler [3].

Theorem 4.8 Let A ∈ Mn(R), A ≥ 0 such that H(A) is irreducible. If W (A) is an elliptic
disk centered at µ ∈ R with foci µ± k ∈ R and minor axis length λ, then

ρ(T (a,A)) = µ+
√

k2 + 4λ2a(1− a), a ∈ [0, 1/2].

Proof. Assume that the boundary of W (A) is the ellipse (in the (u, v)-plane)

(u− µ)2

k2 + λ2
+

v2

λ2
= 1,
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which is centered at µ ∈ R and has foci µ ± k. For every a ∈ [0, 1/2), the boundary of
W (T (a,A)) is also an ellipse given by

(u− µ)2

k2 + λ2
+

v2

λ2(1− 2a)2 = 1

having center µ and foci µ±√
k2 + 4λ2a(1− a) (see the proof of Theorem 4.3). As in the

proof of Theorem 4.5, one can see that since T (a,A) ≥ 0 is irreducible for every a ∈ (0, 1/2],
ρ(T (a,A)) must be the right focus ψ(a,A) of W (T (a,A)).

Example 4.9 Suppose it is known that the matrices whose numerical ranges are the elliptic
disks given by Figure 3 are nonnegative and have irreducible Hermitian parts. The first
matrix must have cyclic index 2 for it has exactly two maximal elements (see Corollary
3.6); the second must be primitive (that is, some positive power of it is a strictly positive
matrix). In either case, the right focus is an eigenvalue (see Theorem 4.2) and thus equals
the spectral radius.
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Figure 3: Elliptical disks.

The following result follows from Theorem 4.8 for k = 0 and λ = r.

Corollary 4.10 Let A ∈ Mn(R), A ≥ 0 such that A is reducible and H(A) is irreducible.
If W (A) is a circular disk centered at µ ∈ R with radius r, then ρ(A) = µ and ρ(T (a,A)) =
µ+ 2r

√
a(1− a) for every a ∈ [0, 1].

Note that if W (A) is a circular disk as in the above corollary, then in agreement with [3,
Theorem 4.6],

d2ρ(T (a,A))
da2

= −4r.

13



The next result follows from Theorem 4.8 for µ = 0.

Corollary 4.11 Let A ∈ Mn(R), A ≥ 0 such that H(A) is irreducible and W (A) is an
elliptic disk with foci ±k ∈ R and minor axis length λ. Then A is 2-cyclic and for every
a ∈ [0, 1], T (a,A) has two maximal eigenvalues:

±
√

k2 + 4λ2a(1− a).

From our results so far arises the need of identifying numerical ranges that are elliptic or
circular. To contribute in this direction, we conclude by obtaining a generalization of a
result attributed to J. Anderson (see [16, Lemma 6]).

Theorem 4.12 Let A ∈ Mn(C) and suppose W (A) is included in an elliptic disk. If W (A)
meets the boundary of the disk at n+1 or more points, then W (A) coincides with the elliptic
disk.

Proof. Suppose that W (A) ⊆ D, where D is an elliptic disk, and that W (A) meets the
boundary ∂D at n+ 1 or more points. The shape of W (A) does not change if A is shifted
by a multiple of the identity matrix or rotated via scalar multiplication. Thus, without loss
of generality, we can assume that ∂D has equation (in the (u, v)-plane)

u2

k2
+

v2

λ2
= 1 (k > λ > 0).

As in the proof of Theorem 4.3, for a = (λ−k)/(2λ),W (T (a,A)) is contained in the circular
disk Da whose boundary ∂Da has equation

u2 + v2 = k2.

Moreover, W (T (a,A)) meets ∂Da at n + 1 or more points. Hence, by [16, Lemma 6],
W (T (a,A)) coincides with the disk Da; applying the inverse affine transformation to T (a,A)
and Da, we obtain that W (A) coincides with the elliptic disk D as claimed.

Remark In our experience, many times a computer generated numerical range appears
to be circular or elliptic, but a confirmation is lacking. In the case of a circular disk, the
results of [14] are applicable. In the general case, and in view of Theorem 4.12, one can use
the following tactic to obtain such a confirmation:

(i) Compute n + 1 boundary points of W (A); this can be achieved by applying the basic
step of the algorithm of [8] for n+ 1 angles in [0, π].

14



(ii) Using an interpolation method, confirm that these n + 1 points belong to an el-
lipse/circle.

Acknowledgment The reduction argument to matrices with irreducible Hermitian parts
preceding Proposition 3.8 was pointed out by a referee.
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