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1. Introduction. For an arbitrary square complex matrix A ∈ Cn×n with standard spectrum σ(A), the

celebrated Gershgorin (Geršgorin) circle theorem [8, 21] implies n easily computable disks, in the complex

plane, centered at the diagonal entries of the matrix, whose union contains σ(A). The simplicity and the

applications of the Gershgorin circle theorem have inspired further research in this area, resulting in hundreds

of papers on Gershgorin disks and related sets such as the generalized Gershgorin set (known also as the

A-Ostrowski set), the Brauer set, the Dashnic-Zusmanovich set and others (see [3, 5, 6, 18, 21] and the

references therein), which are widely used in the analysis of ordinary eigenvalue problems.

In this paper, we consider n× n matrix polynomials of the form

(1.1) P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0,

where λ is a complex variable, A0, A1, . . . , Am ∈ Cn×n with Am 6= 0, and the determinant detP (λ) is not

identically zero. The study of matrix polynomials, especially with regard to their spectral analysis and the

solution of higher order linear differential (or difference) systems with constant coefficients, has a long history

and important applications; see [9, 14, 15, 16, 17] and the references therein.

A scalar µ ∈ C is called an eigenvalue of P (λ) if the system P (µ)x = 0 has a nonzero solution x0 ∈ Cn.

This solution x0 is known as an eigenvector of P (λ) corresponding to the eigenvalue µ. The set of all finite

eigenvalues of P (λ),

σ(P ) = {µ ∈ C : detP (µ) = 0} = {µ ∈ C : 0 ∈ σ(P (µ))} ,

is the finite spectrum of P (λ). The algebraic multiplicity of an eigenvalue µ ∈ σ(P ) is the multiplicity of

µ as a root of the (scalar) polynomial detP (λ), and it is always greater than or equal to the geometric

multiplicity of µ, that is, the dimension of the null space of matrix P (µ). Furthermore, it is said that µ =∞
is an eigenvalue of P (λ) exactly when 0 is an eigenvalue of the reverse matrix polynomial

P̂ (λ) = λmP (1/λ) = A0λ
m +A1λ

m−1 + · · ·+Am−1λ+Am.

In this case, the algebraic multiplicity and the geometric multiplicity of the eigenvalue µ = ∞ of P (λ) are

defined as the algebraic multiplicity and the geometric multiplicity of the eigenvalue 0 of P̂ (λ), respectively.
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In the next sections, we extend the notions of the Gershgorin set (Section 2), the generalized Gershgorin

set (Section 3), the Brauer set (Section 4) and the Dashnic-Zusmanovich set (Section 5) to the case of matrix

polynomials; see also [1, 12, 13]. In particular, in each section, we define an eigenvalues’ inclusion set, present

basic topological and geometrical properties of this set, and give illustrative examples to verify our results.

Our approach is direct, does not involve any kind of linearizations, and it is motivated by the following

simple observation: Suppose that F is a set-valued function of n× n matrices which associates each matrix

A ∈ Cn×n to a region F (A) ⊆ C that contains the spectrum σ(A). If, for an n × n matrix polynomial

P (λ) as in (1.1), we define the set F (P ) = {µ ∈ C : 0 ∈ F (P (µ))}, then σ(P ) = {µ ∈ C : 0 ∈ σ(P (µ))} ⊆
{µ ∈ C : 0 ∈ F (P (µ))} = F (P ).

2. The Gershgorin set.

2.1. Definitions. Consider a square complex matrix A ∈ Cn×n, define the set N = {1, 2, . . . , n}, and

let (A)i,j denote the (i, j)-th entry of A, i, j ∈ N . For any i ∈ N , define also the nonnegative quantity

ri(A) =
∑

j ∈N\{i}
|(A)i,j | and the i-th row Gershgorin disk Gi(A) = {µ ∈ C : |µ− (A)i,i| ≤ ri(A)}. The

Gershgorin circle theorem [8, 21] states that the spectrum σ(A) lies in the union G(A) =
⋃
i∈N

Gi(A), which

is known as the Gershgorin set of A.

Consider now an n× n matrix polynomial P (λ) as in (1.1), and define the nonnegative functions

ri(P (λ)) =
∑

j ∈N\{i}

|(P (λ))i,j |, i ∈ N ,

the i-th row Gershgorin sets of P (λ)

Gi(P ) = {µ ∈ C : 0 ∈ Gi(P (µ))} = {µ ∈ C : |(P (µ))i,i| ≤ ri(P (µ))} , i ∈ N ,

and the Gershgorin set of P (λ)

G(P ) = {µ ∈ C : 0 ∈ G(P (µ))} =
⋃
i∈N

Gi(P ).

It is easy to see that

Gi(P̂ )\{0} =
{
µ ∈ C\{0} : 0 ∈ Gi

(
P
(
µ−1

))}
=
{
µ ∈ C\{0} : µ−1 ∈ Gi(P )

}
, i ∈ N ,

and

G(P̂ )\{0} =
{
µ ∈ C\{0} : 0 ∈ G

(
P
(
µ−1

))}
=
{
µ ∈ C\{0} : µ−1 ∈ G(P )

}
.

As in the case of the eigenvalues of P (λ), we say that µ = ∞ lies in Gi(P ) (resp., in G(P )) exactly when

0 lies in Gi(P̂ ) (resp., in G(P̂ )). The Gershgorin circle theorem [8, 21] is directly generalized to the case of

matrix polynomials.

Theorem 2.1. All the (finite and infinite) eigenvalues of the matrix polynomial P (λ) lie in the Gersh-

gorin set G(P ).

Proof. For any finite eigenvalue µ ∈ σ(P ), it is apparent that 0 ∈ σ(P (µ)) ⊆ G(P (µ)), and hence, µ lies

in G(P ). Moreover, if µ =∞ is an eigenvalue of P (λ), then 0 ∈ σ(P̂ ) ⊆ G(P̂ ), and consequently, µ =∞ lies

in G(P ).
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By the original proof of the Gershgorin circle theorem [8] (see also [21, Theorem 1.1]), it follows that if

λ0 is an eigenvalue of a matrix A ∈ Cn×n and x0 = [x1 x2 · · · xn ]
T

is an eigenvector of A corresponding

to λ0, with 0 < |xk| = max{|x1|, |x2|, . . . , |xn|} for some k ∈ N , then λ0 lies in the k-th row Gershgorin disk

Gk(A). As a consequence, if µ0 is an eigenvalue of a matrix polynomial P (λ) and x0 = [x1 x2 · · · xn ]
T

is

an eigenvector of P (λ) corresponding to µ0, with 0 < |xk| = max{|x1|, |x2|, . . . , |xn|} for some k ∈ N , then

0 is an eigenvalue of the matrix P (µ0) with x0 as an associated eigenvector, and thus, 0 ∈ Gk(P (µ0)), or

equivalently, µ0 ∈ Gk(P ).

2.2. Basic properties. For an n × n matrix polynomial P (λ) as in (1.1), it is easy to verify the

following properties.

Proposition 2.2. Let i ∈ N .

(i) Gi(P ) is a closed subset of C.

(ii) For any scalar b ∈ C\{0}, consider the matrix polynomials Q1(λ) = P (bλ), Q2(λ) = bP (λ) and

Q3(λ) = P (λ+ b). Then Gi(Q1) = b−1Gi(P ), Gi(Q2) = Gi(P ) and Gi(Q3) = Gi(P )− b.
(iii) If the (i, i)-th entry of P (λ), (P (λ))i,i, is (identically) zero, then Gi(P ) = C.

(iv) If all the coefficient matrices A0, A1, . . . , Am have their i-th rows real, then Gi(P ) is symmetric with

respect to the real axis.

Proof. (i) Consider a scalar µ /∈ Gi(P ). Then |(P (µ))i,i| > ri(P (µ)), and continuity implies that for any

scalar µ̂ sufficiently close to µ, |(P (µ̂))i,i| > ri(P (µ̂)), i.e., µ̂ /∈ Gi(P ). Thus, the set C\Gi(P ) is open.

(ii) Recall that µ ∈ Gi(P ) if and only if 0 ∈ Gi(P (µ)), and observe that

Gi(Q1) = {µ ∈ C : 0 ∈ Gi(P (bµ))} =
{µ
b
∈ C : 0 ∈ Gi(P (µ))

}
,

Gi(Q2) = {µ ∈ C : 0 ∈ Gi(bP (µ))} = {µ ∈ C : 0 ∈ Gi(P (µ))}

and

Gi(Q3) = {µ ∈ C : 0 ∈ Gi(P (µ+ b))} = {µ− b ∈ C : 0 ∈ Gi(P (µ))} .

(iii) If the (i, i)-th entry of P (λ) is identically zero, then for any µ ∈ C, the origin is the center of the

Gershgorin disk Gi(P (µ)). Hence, the inequality |(P (µ))i,i| ≤ ri(P (µ)) is satisfied trivially for all µ ∈ C.

(iv) Suppose that all the coefficient matrices A0, A1, . . . , Am have their i-th rows real. If µ ∈ Gi(P ),

then ∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣ ≤ ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k

∣∣∣∣∣ ,
or equivalently, ∣∣∣∣∣

m∑
k=0

(Ak)i,iµk

∣∣∣∣∣ ≤ ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµk

∣∣∣∣∣ ,
or equivalently, ∣∣∣∣∣

m∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣ ≤ ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k

∣∣∣∣∣ .
This means that µ ∈ Gi(P ).
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Proposition 2.3. For any i ∈ N , the set {µ ∈ C : |(P (µ))i,i| < ri(P (µ))} lies in the interior of

Gi(P ); as a consequence,

∂Gi(P ) ⊆ {µ ∈ C : |(P (µ))i,i| = ri(P (µ))} = {µ ∈ C : 0 ∈ ∂Gi(P (µ))} .

Proof. Consider a scalar µ ∈ C such that |(P (µ))i,i| < ri(P (µ)). By continuity, there is a real ε > 0

such that for every µ̂ ∈ C with |µ− µ̂| ≤ ε, |(P (µ̂))i,i| ≤ ri(P (µ̂)). Thus, µ is an interior point of Gi(P ).

By applying the proof technique of Theorem 3.1 in [1], we obtain a necessary condition for the isolated

points.

Theorem 2.4. If a scalar µ ∈ C is an isolated point of Gi(P ), then µ is a common root of all polynomials

(P (λ))i,j, j ∈ N ; as a consequence, µ is an eigenvalue of P (λ).

Proof. For the sake of contradiction, assume that (P (µ))i,i 6= 0. Since µ is an isolated point of Gi(P ), it

belongs to the boundary ∂Gi(P ), and there exists an ε > 0 such that the disk D(µ, ε) = {λ ∈ C : |λ− µ| ≤ ε}
contains no other point of Gi(P ). The i-th row Gershgorin set can be written as

Gi(P ) = {µ ∈ C : |(P (µ))i,i| ≤ ri(P (µ))}

=

{
µ ∈ C :

ri(P (µ))

|(P (µ))i,i|
> 1

}
=

{
µ ∈ C : log

ri(P (µ))

|(P (µ))i,i|
> 0

}
.

Define the function

ϕ(λ) = log
ri(P (λ))

|(P (λ))i,i|
, λ ∈ D(µ, ε)(2.2)

= log

∥∥∥∥[ (P (λ))i,1
(P (λ))i,i

, . . . ,
(P (λ))i,i−1
(P (λ))i,i

,
(P (λ))i,i+1

(P (λ))i,i
, . . . ,

(P (λ))i,n
(P (λ))i,i

]∥∥∥∥
1

, λ ∈ D(µ, ε),

and observe that it is subharmonic and satisfies the maximum principle [2, 4]. By definition, ϕ(λ) is equal to

zero on the boundary of Gi(P ), nonnegative in the interior of Gi(P ) and negative elsewhere; see Proposition

2.3. Since µ ∈ ∂Gi(P ), it follows

|(P (µ))i,i| = ri(P (µ)) =
∑

j ∈N\{i}

|(P (µ))i,j |.

So, the function ϕ(λ) is equal to zero at the center µ of D(µ, ε) and negative in the rest of the disk. Since

ϕ(λ) satisfies the maximum principle, it should take it’s maximum value on the boundary of the disk; this

is a contradiction. As a consequence,

0 = (P (µ))i,i =
∑

j ∈N\{i}

|(P (µ))i,j |,

and µ is a common root of all polynomials (P (λ))i,j , j ∈ N .

Let Ω be a closed subset of C, and let µ ∈ Ω. The local dimension of the point µ in Ω is defined as the

limit lim
h→0+

dim{Ω ∩ D(µ, h)} (h ∈ R, h > 0), where dim {·} denotes the topological dimension [11]. Any

isolated point in Ω has local dimension 0. Any non-isolated point in Ω has local dimension 2 if it belongs to

the closure of the interior of Ω, and 1 otherwise.
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Theorem 2.5. Any point of the i-th row Gershgorin set Gi(P ) has local dimension either 2 or 0 (isolated

point); in other words, the Gershgorin set of P (λ) cannot have parts with (nontrivial) curves.

Proof. For the sake of contradiction, assume that the local dimension of a point µ ∈ Gi(P ) is equal to

1. Then µ ∈ ∂Gi(P ) and there is an ε > 0 such that

Gi(P ) ∩ {λ ∈ C : |λ− µ| ≤ ε} ⊂ ∂Gi(P ).

Thus, the function ϕ(λ) in (2.2), defined in the disk |λ − µ| ≤ ε, takes its maximum value 0 in (infinitely

many) interior points of the disk. Since ϕ(λ) is subharmonic and satisfies the maximum principle, this is a

contradiction. Hence, the local dimension of µ is either 2 or 0.

Next we obtain necessary and sufficient conditions for the row Gershgorin sets to be bounded. For any

i ∈ N , we define the sets

(2.3) βi = {j ∈ N : (Am)i,j 6= 0} and βi = N\βi = {j ∈ N : (Am)i,j = 0} .

It is worth mentioning that a scalar µ ∈ C is a common root of all polynomials (P (λ))i,1, (P (λ))i,2,

. . . , (P (λ))i,n if and only if the i-th row of matrix P (µ) is zero, or equivalently, if and only if Gi(P (µ)) = {0}.
By Theorem 2.4, if the origin is an isolated point of the row Gershgorin set Gi(P ), then the i-th row of the

coefficient matrix A0 is zero. As a consequence, if βi 6= ∅, then the origin is not an isolated point of Gi(P̂ ),

i.e., Gi(P ) is not the union of a bounded set and ∞.

Theorem 2.6. Suppose that for an i ∈ N , βi 6= ∅.

(i) If i ∈ βi, then the i-th row Gershgorin set Gi(P ) is unbounded if and only if 0 ∈ Gi(Am).

(ii) If i ∈ βi, then the i-th row Gershgorin set Gi(P ) is unbounded and 0 ∈ Gi(Am).

Proof. (i) Suppose that i ∈ βi, i.e., (Am)i,i 6= 0.

Let Gi(P ) be unbounded. Since βi 6= ∅, the origin is not an isolated point of Gi(P̂ ) and there is a

sequence {µl}l∈N in Gi(P )\{0} such that |µl| → +∞. Then, for every l ∈ N,∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k
l

∣∣∣∣∣ ≤ ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k
l

∣∣∣∣∣ ,
or ∣∣∣∣∣

m∑
k=0

(Ak)i,i
µkl
µml

∣∣∣∣∣− ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,j
µkl
µml

∣∣∣∣∣ ≤ 0.

As l→ +∞, it follows

|(Am)i,i| −
∑

j∈βi\{i}

|(Am)i,j | ≤ 0,

and hence, 0 ∈ Gi(Am).

For the converse, suppose that 0 ∈ Gi(Am) (or equivalently, |(Am)i,i| ≤ ri(Am)). Then 0 ∈ Gi(P̂ )

and, by definition, ∞ ∈ Gi(P ) (where by hypothesis, 0 is a non-isolated point of Gi(P̂ ), and hence, ∞ is a

non-isolated point of Gi(P )).

(ii) Suppose that i ∈ βi, i.e., (Am)i,i = 0.
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It is clear that 0 ∈ Gi(Am), and

Gi(P )\{0} =

µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣ ≤ ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k

∣∣∣∣∣


=

µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,i
µk

µm−1

∣∣∣∣∣− ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,j
µk

µm−1

∣∣∣∣∣ ≤ 0

 ,

where at least one of the coefficients (Am)i,j , j ∈ N\{i}, is nonzero. As a consequence, for “large enough”

|µ|, µ lies in Gi(P ). Thus, there exists a real number M > 0 such that every scalar µ ∈ C with |µ| ≥M lies

in Gi(P ), i.e., {µ ∈ C : |µ| ≥M} ⊆ Gi(P ).

Remark 2.7. Suppose that 0 ∈ Gi(Am), i.e., 0 ∈ Gi(P̂ ). If the origin is a non-isolated point of

Gi(P̂ ), then there exists a sequence {µl}l∈N ⊂ Gi(P̂ )\{0} that converges to 0. This means that the se-

quence {µ−1l }l∈N ⊂ Gi(P ) is unbounded. Hence, the i-th row Gershgorin set Gi(P ) is also unbounded and

does not have the infinity as an isolated point. On the other hand, if the origin is an isolated point of

Gi(P̂ ) (which yields βi = ∅), then Gi(P )\{0} =
{
µ ∈ C\{0} : µ−1 ∈ Gi(P̂ )\{0}

}
∪ {∞} , where the set{

µ ∈ C\{0} : µ−1 ∈ Gi(P̂ )\{0}
}

is bounded.

Remark 2.8. Suppose that i ∈ βi and the origin is an interior point of Gi(Am) (or equivalently,

(Am)i,i 6= 0 and |(Am)i,i| − ri(Am) < 0). Then, for any sequence {µl}l∈N in C\{0} such that |µl| → +∞,

and for sufficiently large l, ∣∣∣∣∣
m∑
k=0

(Ak)i,i
µkl
µml

∣∣∣∣∣− ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,j
µkl
µml

∣∣∣∣∣ ≤ 0,

or ∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k
l

∣∣∣∣∣− ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k
l

∣∣∣∣∣ ≤ 0,

or

µl ∈ Gi(P ).

As a consequence, Gi(P ) is unbounded, and there exists a real number M > 0 such that {µ ∈ C : |µ| ≥M}
⊆ Gi(P ).

The next result, as well as Theorem 3.7 at the end of the next section, is a special case of Theorem 3.1 in

the work of D. Bindel and A. Hood [1] (see also Theorem 2 in [13]). For clarity, we give an elementary proof.

Theorem 2.9. Suppose that Am has no zero rows, and the Gershgorin set G(P ) is bounded. Then the

number of the connected components of G(P ) is less than or equal to nm. Moreover, if G is a connected

component of G(P ) constructed by ξ connected components of the row Gershgorin sets, then the total number

of roots of the polynomials (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n in G is at least ξ and it is equal to the number

of eigenvalues of P (λ) in G, counting multiplicities.

Proof. Since G(P ) is bounded, Theorem 2.6 (i) implies that for every i ∈ N , 0 /∈ Gi(Am), i ∈ βi and

the polynomial (P (λ))i,i is of degree m (i.e., it has exactly m roots, counting multiplicities).

For all coefficient matrices of P (λ), A0, A1, . . . , Am, consider the splitting

Aj = Dj + Fj , j = 0, 1, . . . ,m,
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where Dj is the diagonal part of Aj (i.e., Dj is a diagonal matrix and its diagonal coincides with the diagonal

of Aj) for every j = 0, 1, . . . ,m. Define also the family of matrix polynomials

Pt(λ) = (Dm + tFm)λm + (Dm−1 + tFm−1)λm−1 + · · ·+ (D1 + tF1)λ+ (D0 + tF0)

= Dmλ
m +Dm−1λ

m−1 + · · ·+D1λ+D0 + t
(
Fmλ

m + Fm−1λ
m−1 + · · ·+ F1λ+ F0

)
for t ∈ [0, 1]. We observe that

(2.4) G(Pt1) ⊆ G(Pt2), 0 ≤ t1 ≤ t2 ≤ 1.

Indeed, if 0 < t1 ≤ t2 ≤ 1 and a scalar µ ∈ C lies in Gi(Pt1) for some i ∈ N , then |(Pt2(µ))i,i| =

|(Pt1(µ))i,i| ≤ ri(Pt1(µ)) = t1
t2
ri(Pt2(µ)) ≤ ri(Pt2(µ)), and thus, µ ∈ Gi(Pt2). Moreover, it is apparent that

if 0 = t1 ≤ t2 ≤ 1 and µ ∈ Gi(P0), then µ is a root of (P (λ))i,i and |(Pt2(µ))i,i| = |(P0(µ))i,i| = ri(P0(µ)) =

0 ≤ ri(Pt2(µ)).

By Proposition 2.2 (i), Theorem 2.6 and (2.4), it follows that the family

G(Pt), t ∈ [0, 1]

is a family of nondecreasing compact sets (with respect to t ∈ [0, 1]). Furthermore, G(P1) = G(P ), and

G(P0) coincides with the roots of the polynomials (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n (which are eigenvalues

of the diagonal matrix polynomial Dmλ
m +Dm−1λ

m−1 + · · · + D1λ + D0). Keeping in mind that all

polynomials detPt(λ), t ∈ [0, 1], are of degree nm, the continuity of the eigenvalues of Pt(λ) in t ∈ [0, 1]

implies that each root of the polynomials (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n is connected to an eigenvalue

of P (λ) with a continuous curve in G(P ). Hence, any (compact) connected component of G(P ) constructed

by ξ connected components of the row Gershgorin sets, G, contains at least ξ roots of the polynomials

(P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n, and each root of (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n in G is connected to

an eigenvalue of Pt(λ), t ∈ [0, 1], with a continuous curve in G.

2.3. Examples. The Gershgorin set is simple and gives better results than known bounds based on

norms. In the next example, we compare it to some bounds given in [10]; in particular, we draw and compare

the Gershgorin set to the bounds given by Lemmas 2.2 and 2.3 of [10].

For a matrix polynomial P (λ) as in (1.1), consider the n× n matrices Ui = A−1m Ai (i = 0, 1, . . . ,m− 1)

and Li = A−10 Ai (i = 1, 2, . . . ,m). Then, by Lemma 2.2 of [10], every eigenvalue λ0 of P (λ) satisfies

(2.5)

1 +

m∑
j=1

‖Lj‖p

−1 ≤ |λ0| ≤ 1 +

m−1∑
j=0

‖Uj‖p, 1 ≤ p ≤ ∞.

Define also the n × nm matrices U = [U0 U1 · · · Um−1 ] and L = [Lm Lm−1 · · · L1 ]. Then, by Lemma

2.3 of [10], we have the following bounds:

(2.6) max

{
‖Lm‖1, 1 + max

i=1,2,...,m−1
‖Li‖1

}−1
≤ |λ| ≤ max

{
‖U0‖1, 1 + max

i=1,2,...,m−1
‖Ui‖1

}
,

(2.7) max {‖L‖∞, 1}−1 ≤ |λ| ≤ max {‖U‖∞, 1})

and

(2.8) ‖I + LL∗‖−1/22 ≤ |λ| ≤ ‖I + UU∗‖1/22 .

7



(a) The set G(P ) and the bounds of

[10, Lemma 2.2] for norm-2.

(b) The set G(P ) and the bounds of

[10, Lemma 2.3] for norm-∞.

(c) The set G(P ) and the bounds of

[10, Lemma 2.3] for norm-2.

(d) The set G(P ). (e) The set G1(P ). (f) The set G2(P ).

Figure 1: Comparing the Gershgorin set to the bounds of Lemmas 2.2 and 2.3 of [10].

Example 2.10. Consider the (real) matrix polynomial

P (λ) =

[
5λ6 + λ3 + 7 2λ6 + 4

λ6 + 1 2λ6 + 3λ

]
.

The upper bound given by (2.5) for norm-2 is approximately equal to 5.1673 and can be seen in Figure 1 (a)

(dashed line) compared to the Gershgorin set G(P ). The lower bound of (2.5) is equal to 0.09 and since it is

relatively small, its illustration is omitted in the figure. The lower and upper bounds given by (2.6)–(2.8) are

0.1081 and 3.6250 for norm-1, 0.1111 and 3.50 for norm-∞, and 0.1394 and 2.6780 for norm-2. The upper

bounds for norm-∞ and norm-2 compared to the Gershgorin set G(P ) are illustrated in parts (b) and (c) of

the figure, respectively. The sets G(P ), G1(P ) (with exactly six connected components) and G2(P ) (with

exactly six connected components) are given (magnified) in parts (d), (e) and (f) of Figure 1, respectively.

Here and elsewhere, the eigenvalues are marked with dots. Note that Proposition 2.2 (iv) (symmetry with

respect to the real axis), Theorem 2.6 (boundedness conditions) and Theorem 2.9 (distribution of eigenvalues

in the connected components) are clearly verified.
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(a) The set G(Q).
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(b) The sets G1(Q) and G2(Q).
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(c) The set G3(Q).

Figure 2: The Gershgorin set of Q(λ) = Iλm −A.

For a matrix A ∈ Cn×n, consider the matrix polynomial Q(λ) = Iλm − A. Then, for any i ∈ N ,

Gi(Q) = {µ ∈ C : |λm − (A)i,i| ≤ ri(A)} =
{
µ ∈ C : µ1/m ∈ Gi(A)

}
is bounded and its shape depends on

the location of the origin with respect to Gi(A); in particular, we have three cases illustrated in the next

example.

Example 2.11. Consider the (complex) matrix polynomial

Q(λ) = Iλ10 −A = Iλ10 −

 −3.5i −3i 0

−2 2i 0

−0.5− 2i 7i −5 + 3i

 =

λ10 + 3.5i 3i 0

2 λ10 − 2i 0

0.5 + 2i −7i λ10 + 5− 3i

 .
The Gershgorin set G(Q) = G1(Q) ∪ G2(Q) ∪ G3(Q), the union of the sets G1(Q) and G2(Q), and the set

G3(Q) are illustrated in parts (a), (b) and (c) of Figure 2, respectively. Observe that 0 /∈ G1(A) (since

| − 3.5i| > | − 3i|), and thus, G1(Q) consists of ten connected components located symmetrically around the

origin. Concerning the second row, notice that |2i| = | − 2| and 0 ∈ ∂G2(A), and hence, the set G2(Q) is

connected and “daisy” shaped. Finally, in the third row, we have | − 5 + 3i| < | − 0.5 − 2i| + |7i| (i.e., the

origin lies in the interior of G3(A)), and G3(Q) is connected, with smooth boundary.

3. The generalized Gershgorin set. In this section, we extend the notion of the generalized Gersh-

gorin set (or the A-Ostrowski set) of matrices to the case of matrix polynomials.

3.1. Definitions. For a square complex matrix A ∈ Cn×n, denote ci(A) = ri(A
T ), i ∈ N , and for any

a ∈ [0, 1], define the disks Ai,a(A) =
{
µ ∈ C : |µ− (A)i,i| ≤ ri(A)aci(A)1−a

}
, i ∈ N . Then the spectrum

of matrix A lies in the union Aa(A) =
⋃
i∈N
Ai,a(A), and consequently, it lies in the intersection A(A) =⋂

a∈[0,1]
Aa(A) [18, 21], which is known as the generalized Gershgorin set (or the A-Ostrowski set) of A.

Similarly, for a matrix polynomial P (λ) as in (1.1), we define

Ai,a(P ) = {µ ∈ C : 0 ∈ Ai,a(P (µ))} =
{
µ ∈ C : |P (µ)i,i| ≤ ri(P (µ))aci(P (µ))1−a

}
9



for any i ∈ N and a ∈ [0, 1],

Aa(P ) = {µ ∈ C : 0 ∈ Aa(P (µ))} =
⋃
i∈N
Ai,a(P ), a ∈ [0, 1],

and the generalized Gershgorin set of P (λ)

A(P ) = {µ ∈ C : 0 ∈ A(P (µ))} =
⋂

a∈[0,1]

Aa(P ).

As before, we say that µ = ∞ lies in Ai,a(P ) (resp., in Aa(P ), or in A(P )) exactly when 0 lies in Ai,a(P̂ )

(resp., in Aa(P̂ ), or in A(P̂ )).

Theorem 3.1. The generalized Gershgorin set of a matrix polynomial P (λ) is a subset of the Gershgorin

set of P (λ) that contains all the (finite and infinite) eigenvalues of P (λ).

Proof. By definition, a scalar µ ∈ C lies in A(P ) (resp., in σ(P ), or in G(P )) if and only if 0 lies

in A(P (µ)) (resp., in σ(P (µ)), or in G(P (µ))). Since σ(P (µ)) ⊆ A(P (µ)) ⊆ G(P (µ)) and σ(P̂ (µ)) ⊆
A(P̂ (µ)) ⊆ G(P̂ (µ)) [18, 21], the proof follows readily.

3.2. Basic properties. Let P (λ) be an n × n matrix polynomial as in (1.1). It is easy to verify the

following properties.

Proposition 3.2. Let a ∈ [0, 1] and i ∈ N .

(i) Ai,a(P ) is a closed subset of C.

(ii) For any scalar b ∈ C\{0}, consider the matrix polynomials Q1(λ) = P (bλ), Q2(λ) = bP (λ) and

Q3(λ) = P (λ+ b). Then Ai,a(Q1) = b−1Ai,a(P ), Ai,a(Q2) = Ai,a(P ) and Ai,a(Q3) = Ai,a(P )− b.
(iii) If the (i, i)-th entry of P (λ), (P (λ))i,i, is (identically) zero, then Ai,a(P ) = C.

(iv) If a ∈ (0, 1), and all the coefficient matrices A0, A1, . . . , Am have their i-th rows and i-th columns real,

then Ai,a(P ) is symmetric with respect to the real axis (for a = 1 or 0, see Proposition 2.2 (iv)

applied to P (λ) or its transpose, respectively).

Proof. The proof is similar to the proof of Proposition 2.2.

Proposition 2.3 for the row Gershgorin sets can be readily generalized for Ai,a(P ).

Proposition 3.3. For any a ∈ [0, 1] and i ∈ N , the set
{
µ ∈ C : |(P (µ))i,i| < ri(P (µ))aci(P (µ))1−a

}
lies in the interior of Ai,a(P ); as a consequence,

∂Ai,a(P ) ⊆
{
µ ∈ C : |(P (µ))i,i| = ri(P (µ))aci(P (µ))1−a

}
= {µ ∈ C : 0 ∈ ∂Ai,a(P (µ))} .

Theorems 2.4 and 2.5 can also be extended.

Theorem 3.4. (For a = 1 or 0, see Theorem 2.4 applied to P (λ) or its transpose, respectively.) Let

a ∈ (0, 1) and i ∈ N . If µ is an isolated point of Ai,a(P ), then µ is a common root of all polynomials

(P (λ))i,j, j ∈ N , or a common root of all polynomials (P (λ))p,i, p ∈ N ; as a consequence, µ is an eigenvalue

of P (λ).

Proof. For the sake of contradiction, assume that (P (µ))i,i 6= 0. Since µ is an isolated point, it belongs

to the boundary of Ai,a(P ), and there exists an ε > 0 such that the disk D(µ, ε) = {λ ∈ C : |λ− µ| ≤ ε}
10



contains no other point of Ai,a(P ). The set Ai,a(P ) can be written as

Ai,a(P ) =
{
µ ∈ C : |(P (µ))i,i| ≤ ri(P (µ))aci(P (µ))1−a

}
=

{
µ ∈ C :

ri(P (µ))aci(P (µ))1−a

|(P (µ))i,i|
> 1

}
=

{
µ ∈ C : log

ri(P (µ))aci(P (µ))1−a

|(P (µ))i,i|
> 0

}
=

{
µ ∈ C : a log

ri(P (µ))

|(P (µ))i,i|
+ (1− a) log

ci(P (µ))

|(P (µ))i,i|
> 0

}
.

Consider the function

(3.9) φ(λ) = a log
ri(P (λ))

|(P (λ))i,i|
+ (1− a) log

ci(P (λ))

|(P (λ))i,i|
, λ ∈ D(µ, ε),

and observe that it is subharmonic (as a sum of subharmonic functions) and satisfies the maximum principle

[2, 4]. By definition, φ(λ) is equal to zero on the boundary of Ai,a(P ), nonnegative in the interior of Ai,a(P )

and negative elsewhere; see Proposition 3.3. Furthermore, since µ ∈ ∂Ai,a(P ), it follows that the function

φ(λ) is equal to zero at the center µ of D(µ, ε) and negative in the rest of the disk; this is a contradiction

because φ(λ) satisfies the maximum principle. As a consequence,

0 = (P (µ))i,i =

 ∑
j ∈N\{i}

|(P (µ))i,j |

a ∑
p∈N\{i}

|(P (µ))p,i|

1−a

,

and the result follows readily.

Theorem 3.5. Let a ∈ [0, 1] and i ∈ N . Any point of the i-th generalized Gershgorin set Ai,a(P ) has

local dimension either 2 or 0 (isolated point); in other words, the generalized Gershgorin set of P (λ) cannot

have parts with (nontrivial) curves.

Proof. For a = 1 or 0, see Theorem 2.5 applied to P (λ) or its transpose, respectively. For a ∈ (0, 1), the

proof is similar to the proof of Theorem 2.5, using the (subharmonic) function φ(λ) in (3.9) instead of ϕ(λ)

in (2.2).

Recalling the definition of βi and βi in (2.3), we define similarly the sets

(3.10) γj = {p ∈ N : (Am)p,j 6= 0} and γj = N\γj = {p ∈ N : (Am)p,j = 0} ,

and we obtain (as in Theorem 2.6) necessary and sufficient conditions for the sets Ai,a(P ) to be bounded.

Note that, by Theorem 3.4, if µ ∈ C is an isolated point of Ai,a(P ) for some a ∈ (0, 1) and i ∈ N , then µ

is a common root of all polynomials (P (λ))i,j , j ∈ N , or a common root of all polynomials (P (λ))p,i, p ∈ N .

As a consequence, if the sets βi and γi are nonempty, then the origin is not an isolated point of Ai,a(P̂ ), i.e.,

Ai,a(P ) is not the union of a bounded set and ∞.

Theorem 3.6. (For a = 1 or 0, see Theorem 2.6 applied to P (λ) or its transpose, respectively.) Let

a ∈ (0, 1), and suppose that for an i ∈ N , the sets βi and γi are nonempty.

(i) If i ∈ βi (thus, i ∈ γi), then Ai,a(P ) is unbounded if and only if 0 ∈ Ai,a(Am).

(ii) If i ∈ βi (thus, i ∈ γi), then Ai,a(P ) is unbounded and 0 ∈ Ai,a(Am).
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Proof. (i) Suppose that i ∈ βi, i.e., (Am)i,i 6= 0.

Let Ai,a(P ) be unbounded. Since the sets βi and γi are nonempty, the origin is not an isolated point of

Ai,a(P̂ ) and there is a sequence {µl}l∈N in Ai,a(P )\{0} such that |µl| → +∞. Then, for every l ∈ N,

∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k
l

∣∣∣∣∣ ≤
 ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k
l

∣∣∣∣∣
a ∑

p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)p,iµ
k
l

∣∣∣∣∣
1−a

,

or ∣∣∣∣∣
m∑
k=0

(Ak)i,i
µkl
µml

∣∣∣∣∣ ≤
 ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,j
µkl
µml

∣∣∣∣∣
a ∑

p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)p,i
µkl
µml

∣∣∣∣∣
1−a

,

As l→ +∞, it follows

|(Am)i,i| −

 ∑
j∈βi\{i}

|(Am)i,j |

a ∑
p∈γi\{i}

|(Am)p,i|

1−a

≤ 0,

and hence, 0 ∈ Ai,a(Am).

For the converse, suppose that 0 ∈ Ai,a(Am) (or equivalently, |(Am)i,i| ≤ ri(Am)aci(Am)1−a). Then

0 ∈ Ai,a(P̂ ) and, by definition, ∞ ∈ Ai,a(P ).

(ii) Suppose that i ∈ βi, i.e., (Am)i,i = 0.

It is clear that 0 ∈ Ai,a(Am). Moreover,

Ai,a(P )\{0}

=

{
µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣ ≤
 ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,jµ
k

∣∣∣∣∣
a ∑

p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)p,iµ
k

∣∣∣∣∣
1−a


=

{
µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,i
µk

µm

∣∣∣∣∣ ≤
 ∑
j∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,j
µk

µm

∣∣∣∣∣
a ∑

p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)p,i
µk

µm

∣∣∣∣∣
1−a

 ,

where at least one of the coefficients (Am)i,j , j ∈ N\{i}, and one of the coefficients (Am)p,i, p ∈ N\{j},
are nonzero. As a consequence, for “large enough” |µ|, µ lies in Ai,a(P ). Thus, there exists a real number

M > 0 such that every scalar µ ∈ C with |µ| ≥M lies in Ai,a(P ), i.e., {µ ∈ C : |µ| ≥M} ⊆ Ai,a(P ).

As mentioned in the paragraph before Theorem 2.9, we conclude this section with a result which is a

special case of Theorem 3.1 of [1].

Theorem 3.7. (For a = 1 or 0, see Theorem 2.9 applied to P (λ) or its transpose, respectively.) Let

a ∈ (0, 1), and suppose that for every i ∈ N , the sets βi and γi are nonempty. If Aa(P ) is bounded, then

the number of connected components of Aa(P ) is less than or equal to nm. Moreover, if G is a connected

component of Aa(P ) constructed by ξ connected components of the sets A1,a(P ),A2,a(P ), . . . , An,a(P ), then

the total number of roots of the polynomials (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n in G is at least ξ and it is

equal to the number of eigenvalues of P (λ) in G, counting multiplicities.
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(a) The Gershgorin set. (b) The generalized Gershgorin set.

Figure 3: Comparing the Gershgorin set and the generalized Gershgorin set.

Proof. Since Aa(P ) is bounded, Theorem 3.6 (i) implies that for every i ∈ N , i ∈ βi∩γi and the polyno-

mial (P (λ))i,i is of degree m (i.e., it has exactly m roots, counting multiplicities). Based on the continuity of

the eigenvalues of a matrix polynomial with respect to its matrix coefficients and the boundedness of Aa(P ),

one can complete the proof, following the arguments of the proof of Theorem 2.9.

3.3. Examples.

Example 3.8. Consider the matrix polynomial of Example 2.10. In Figure 3, one can see the improve-

ment of the Gershgorin set due to the use of column sums in addition to row sums1. Moreover, Proposition

3.2 (iv) (symmetry with respect to the real axis), Theorem 3.6 (boundedness conditions) and Theorem 3.7

(distribution of eigenvalues in the connected components) are verified.

Example 3.9. Consider the matrix polynomial

P (λ) =

4.2λ2 − i 4λ2 0

λ− 3 λ2 + 4 0

−2λ+ i λ2 + 2 2λ2 − 1

 .
In Figure 4, the Gershgorin and generalized Gershgorin sets of P (λ) are illustrated. It is worth mentioning

that µ1 =
√
2
2 and µ2 = −

√
2
2 are isolated points of A(P ), and the third columns of the matrices P (µ1) =

P
(√

2
2

)
and P (µ2) = P

(
−
√
2
2

)
are zero; see Theorems 2.4 and 3.4.

1In Figures 3 (b) and 4 (b), the generalized Gershgorin set A(P ) is estimated by the intersection of the sets Aa(P ),

a = 0, 0.05, 0.10, . . . , 0.95, 1.
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(a) The Gershgorin set.
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(b) The generalized Gershgorin set.

Figure 4: Comparing the Gershgorin set and the generalized Gershgorin set.

4. The Brauer set. In this section, we introduce the Brauer set of matrix polynomials, similarly to

the Gershgorin set and the generalized Gershgorin set.

4.1. Definitions. The Brauer set of a matrix A ∈ Cn×n is defined as B(A) =
⋃
i∈N

i−1⋃
j=1

Bi,j(A), where

Bi,j(A) = {µ ∈ C : |µ− (A)i,i| |µ− (A)j,j | ≤ ri(A)rj(A)}. The Brauer set consists of n(n−1)
2 Cassini ovals,

lies in the Gershgorin set, and contains all the eigenvalues of the matrix [3, 21].

For a matrix polynomial P (λ) as in (1.1) and i, j ∈ N with j < i, we define the (i, j)-th Brauer set of

P (λ)

Bi,j(P ) = {µ ∈ C : 0 ∈ Bi,j(P (µ))} = {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j | ≤ ri(P (µ))rj(P (µ))} ,

and the Brauer set of P (λ)

B(P ) = {µ ∈ C : 0 ∈ B(P (µ))} =
⋃
i∈N

i−1⋃
j=1

Bi,j(P ).

We also say that µ =∞ lies in Bi,j(P ) (resp., in B(P )) exactly when 0 lies in Bi,j(P̂ ) (resp., in B(P̂ )). The

Brauer theorem for matrices [3, 21] is generalized to the case of matrix polynomials as well as the Gershgorin

circle theorem.

Theorem 4.1. The Brauer set of a matrix polynomial P (λ) is a subset of the Gershgorin set of P (λ)

that contains all the (finite and infinite) eigenvalues of P (λ).

Proof. By definition, a scalar µ ∈ C lies in B(P ) (resp., in σ(P ), or in G(P )) if and only if 0 lies

in B(P (µ)) (resp., in σ(P (µ)), or in G(P (µ))). Since σ(P (µ)) ⊆ B(P (µ)) ⊆ G(P (µ)) and σ(P̂ (µ)) ⊆
B(P̂ (µ)) ⊆ G(P̂ (µ)) [3, 21], the proof follows readily.
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4.2. Basic properties. Let P (λ) be an n × n matrix polynomial as in (1.1). It is easy to verify the

following properties.

Proposition 4.2. Consider two integers i, j ∈ N with j < i.

(i) Bi,j(P ) is a closed subset of C.

(ii) For any scalar b ∈ C\{0}, consider the matrix polynomials Q1(λ) = P (bλ), Q2(λ) = bP (λ) and

Q3(λ) = P (λ+ b). Then Bi,j(Q1) = b−1Bi,j(P ), Bi,j(Q2) = Bi,j(P ) and Bi,j(Q3) = Bi,j(P )− b.
(iii) If the (i, i)-th or the (j, j)-th entry of P (λ) is (identically) zero, then Bi,j(P ) = C.

(iv) If all the coefficient matrices A0, A1, . . . , Am have their i-th and j-th rows real, then Bi,j(P ) is symmetric

with respect to the real axis.

Proof. The proof is similar to the proof of Proposition 2.2.

Propositions 2.3 and 3.3 for the Gershgorin set and generalized Gershgorin set, respectively, can be

readily extended to the case of the Brauer set.

Proposition 4.3. For any i, j ∈ N with j < i, the set {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j | < ri(P (µ))

·rj(P (µ))} lies in the interior of Bi,j(P ); as a consequence,

∂Bi,j(P ) ⊆ {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j | = ri(P (µ))rj(P (µ))} = {µ ∈ C : 0 ∈ ∂Bi,j(P (µ))} .

As in Theorem 2.4 for the Gershgorin set and Theorem 3.4 for the generalized Gershgorin set, we obtain

a necessary condition for the isolated points of Bi,j(P ).

Theorem 4.4. If µ is an isolated point of the (i, j)-th Brauer set Bi,j(P ), 1 ≤ j < i ≤ n, then

(a) µ is a root of (P (λ))i,i or (P (λ))j,j, and

(b) µ is a common root of all polynomials (P (λ))i,p, p ∈ N\{i}, or a common root of all polynomials

(P (λ))j,p, p ∈ N\{j}.

Proof. For the sake of contradiction, assume that (P (µ))i,i 6= 0 and (P (µ))j,j 6= 0. Since µ is an isolated

point, it belongs to the boundary of the Brauer set, and also there exists an ε > 0 such that the disk

D(µ, ε) = {λ ∈ C : |λ− µ| ≤ ε} contains no other point of Bi,j(P ). The Brauer set can be written as

Bi,j(P ) = {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j | ≤ ri(P (µ))rj(P (µ))}

=

{
µ ∈ C :

ri(P (µ))rj(P (µ))

|(P (µ))i,i| |(P (µ))j,j |
≥ 1

}
=

{
µ ∈ C : log

ri(P (µ))rj(P (µ))

|(P (µ))i,i| |(P (µ))j,j |
≥ 0

}
=

{
µ ∈ C : log

ri(P (µ))

|(P (µ))i,i|
+ log

rj(P (µ))

|(P (µ))j,j |
≥ 0

}
.

Consider the function

(4.11) ϑ(λ) = log
ri(P (λ))

|(P (λ))i,i|
+ log

rj(P (λ))

|(P (λ))j,j |
, λ ∈ D(µ, ε),

and observe that it is subharmonic (as a sum of subharmonic functions) and satisfies the maximum principle

[2, 4]. By definition, ϑ(λ) is equal to zero on the boundary of Bi,j(P ), nonnegative in the interior of Bi,j(P )
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and negative elsewhere. Since µ ∈ ∂Bi,j(P ), it follows

|(P (µ))i,i| |(P (µ))j,j | = ri(P (µ))rj(P (µ)) =

 ∑
p∈N\{i}

|(P (µ))i,p|

 ∑
p∈N\{j}

|(P (µ))j,p|

 .

Hence, the function ϑ(µ) is equal to zero at the center µ of D(µ, ε) and negative in the rest of the disk; this

is a contradiction because ϑ(λ) satisfies the maximum principle. As a consequence,

0 = |(P (µ))i,i| |(P (µ))j,j | =

 ∑
p∈N\{i}

|(P (µ))i,p|

 ∑
p∈N\{j}

|(P (µ))j,p|

 ,

and the proof is complete.

Theorem 4.5. Any point of the (i, j)-th Brauer set Bi,j(P ), 1 ≤ j < i ≤ n, has local dimension either

2 or 0 (isolated point); in other words, the Brauer set cannot have parts with (nontrivial) curves.

Proof. The proof is similar to the proof of Theorem 2.5, using the (subharmonic) function ϑ(λ) in (4.11)

instead of ϕ(λ) in (2.2).

Similarly to Theorem 2.6 for the Gershgorin set and Theorem 3.6 for the generalized Gershgorin set,

and recalling the definition of βi and βi in (2.3), we obtain necessary and sufficient conditions for Bi,j(P ) to

be bounded.

By Theorem 4.4, if µ ∈ C is an isolated point of Bi,j(P ) for some i, j ∈ N with j < i, then µ is a root of

(P (λ))i,i or (P (λ))j,j , and a common root of polynomials (P (λ))i,p, p ∈ N\{i}, or of polynomials (P (λ))j,p,

p ∈ N\{j}. As a consequence, if i ∈ βi and j ∈ βj , or βi\{i} 6= ∅ and βj\{j} 6= ∅, then the origin is not an

isolated point of Bi,j(P̂ ), i.e., Bi,j(P ) is not the union of a bounded set and ∞.

Theorem 4.6. Suppose that for some integers i, j ∈ N with j < i, it holds that i ∈ βi and j ∈ βj, or

βi\{i} 6= ∅ and βj\{j} 6= ∅.

(i) If i ∈ βi and j ∈ βj, then Bi,j(P ) is unbounded if and only if 0 ∈ Bi,j(Am).

(ii) If i ∈ βi and j ∈ βj, then Bi,j(P ) is unbounded and 0 ∈ Bi,j(Am).

Proof. (i) Suppose that i ∈ βi, i.e., (Am)i,i 6= 0, and j ∈ βj , i.e., (Am)j,j 6= 0.

Let Bi,j(P ) be unbounded. By hypothesis, the origin is not an isolated point of Bi,j(P̂ ), and there is a

sequence {µl}l∈N in Bi,j(P )\{0} such that |µl| → +∞. Then, for every l ∈ N,∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k
l

∣∣∣∣∣
∣∣∣∣∣
m∑
k=0

(Ak)j,jµ
k
l

∣∣∣∣∣ ≤
 ∑
p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,pµ
k
l

∣∣∣∣∣
 ∑

p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k
l

∣∣∣∣∣
 ,

or ∣∣∣∣∣
m∑
k=0

(Ak)i,i
µkl
µml

∣∣∣∣∣
∣∣∣∣∣
m∑
k=0

(Ak)j,j
µkl
µml

∣∣∣∣∣ ≤
 ∑
p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,p
µkl
µml

∣∣∣∣∣
 ∑

p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,p
µkl
µml

∣∣∣∣∣
 .

As l→ +∞, it follows

|(Am)i,i| |(Am)j,j | −

 ∑
p∈βi\{i}

|(Am)i,p|

 ∑
p∈βj\{j}

|(Am)j,p|

 ≤ 0,
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and hence, 0 ∈ Bi,j(Am).

For the converse, suppose that 0 ∈ Bi,j(Am) (or equivalently, |(Am)i,i| |(Am)j,j | ≤ ri(Am)rj(Am)). Then

0 ∈ Bi,j(P̂ ) and, by definition, ∞ ∈ Bi,j(P ).

(ii) Suppose that i ∈ βi and j ∈ βj , i.e., (Am)i,i = (Am)j,j = 0. Then, it is clear that 0 ∈ Bi,j(Am).

Moreover,

Bi,j(P )\{0} =

{
µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣
∣∣∣∣∣
m−1∑
k=0

(Ak)j,jµ
k

∣∣∣∣∣
≤

 ∑
p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,pµ
k

∣∣∣∣∣
 ∑

p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k

∣∣∣∣∣


=

{
µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)i,i
µk

µm

∣∣∣∣∣
∣∣∣∣∣
m−1∑
k=0

(Ak)j,j
µk

µm

∣∣∣∣∣
−

 ∑
p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,p
µk

µm

∣∣∣∣∣
 ∑

p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,p
µk

µm

∣∣∣∣∣
 ≤ 0

 ,

where at least one of the coefficients (Am)i,p (p ∈ N\{i}) and one of the coefficients (Am)j,p (p ∈ N\{j})
are nonzero. As a consequence, for “large enough” |µ|, µ lies in Bi,j(P ). Thus, there exists a real number

M > 0 such that every scalar µ ∈ C with |µ| ≥M lies in Bi,j(P ), i.e., {µ ∈ C : |µ| ≥M} ⊆ Bi,j(P ).

Theorems 2.9 and 3.7 can be easily extended to the case of the Brauer set.

Theorem 4.7. Suppose that for every i, j ∈ N with j < i, i ∈ βi and j ∈ βj. If the Brauer set B(P )

is bounded, then the number of connected components of B(P ) is less than or equal to nm. Moreover, if G
is a connected component of B(P ) constructed by ξ connected components of (i, j)-th Brauer sets, then the

total number of roots of the polynomials (P (λ))1,1, (P (λ))2,2, . . . , (P (λ))n,n in G is at least ξ and it is equal

to the number of eigenvalues of P (λ) in G, counting multiplicities.

Proof. By hypothesis, for every i, j ∈ N with j < i, the polynomial (P (λ))i,i(P (λ))j,j is of degree 2m

(i.e., it has exactly 2m roots, counting multiplicities). Based on the continuity of the eigenvalues of a matrix

polynomial with respect to its matrix coefficients and the boundedness of B(P ), one can complete the proof,

following the arguments of the proof of Theorem 2.9.

4.3. Examples. In the case of a 2 × 2 matrix polynomial P (λ), the relation detP (λ) = 0 appar-

ently yields |(P (λ))1,1| |(P (λ))2,2| = |(P (λ))1,2| |(P (λ))2,1|, and consequently, the eigenvalues appear on the

boundary of the Brauer set.

Example 4.8. Consider the 2×2 matrix polynomial P (λ) of Example 2.10. In Figure 5, the Gershgorin

set G(P ) is illustrated in part (a) and the Brauer set B(P ) = B2,1(P ) is illustrated in part (b). It is

clearly verified that the Brauer set contains the eigenvalues of P (λ) and lies in the Gershgorin set. As

expected, the eigenvalues lie on the boundary of the Bruer set. Moreover, Proposition 4.2 (iv) (symmetry

with respect to the real axis), Theorem 4.4 (isolated points −0.9305±0.5028i and 0.0298±1.0573i), Theorem

4.6 (boundedness conditions) and Theorem 4.7 (distribution of eigenvalues in the connected components)

are also confirmed.
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(a) The Gershgorin set. (b) The Brauer set.

Figure 5: Comparing the Gershgorin set and the Brauer set.

(a) The Gershgorin set. (b) The Brauer set.

Figure 6: Comparing the Gershgorin set and the Brauer set.

Example 4.9. Consider the 3× 3 matrix polynomial P (λ) of Example 3.9. In Figure 6, the Gershgorin

set G(P ) is illustrated in part (a) and the Brauer set B(P ) is illustrated in part (b). It is once again verified

that the Brauer set contains the eigenvalues of P (λ) and lies in the Gershgorin set.
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5. The Dashnic-Zusmanovich set. In this section, we introduce the Dashnic-Zusmanovich set of

matrix polynomials.

5.1. Definitions. The Dashnic-Zusmanovich set of a matrix A ∈ Cn×n is defined as D(A) =⋂
i∈N

⋃
j∈N\{i}

Di,j(A), where Di,j(A) = {µ ∈ C : |µ− (A)i,i| (|µ− (A)j,j | − rj(A) + |(A)j,i|) ≤ ri(A)|(A)j,i|}

for distinct integers i, j ∈ N . The Dashnic-Zusmanovich set D(A) is determined by n(n − 1) oval sets,

lies in the Brauer set B(A), and contains all the eigenvalues of matrix A [6, 21].

For a matrix polynomial P (λ) as in (1.1), we define

Di,j(P ) = {µ ∈ C : 0 ∈ Di,j(P (µ))}
= {µ ∈ C : |(P (µ))i,i| (|(P (µ))j,j | − rj(P (µ)) + |(P (µ))j,i|) ≤ ri(P (µ))|(P (µ))j,i|}

for distinct integers i, j ∈ N , the union

Di(P ) =
⋃

j∈N\{i}

Di,j(P ), i ∈ N ,

and the Dashnic-Zusmanovich set of P (λ)

D(P ) = {µ ∈ C : 0 ∈ D(P (µ))} =
⋂
i∈N

⋃
j∈N\{i}

Di,j(P ) =
⋂
i∈N
Di(P ).

We also say that µ = ∞ lies in Di,j(P ) (resp., in Di(P ), or in D(P )) exactly when 0 lies in Di,j(P̂ ) (resp.,

in Di(P̂ ), or in D(P̂ )).

Theorem 5.1. The Dashnic-Zusmanovich set of a matrix polynomial P (λ) is a subset of the Brauer set

of P (λ) that contains all the (finite and infinite) eigenvalues of P (λ).

Proof. By definition, a scalar µ ∈ C lies in D(P ) (resp., in σ(P ), or in B(P )) if and only if 0 lies

in D(P (µ)) (resp., in σ(P (µ)), or in B(P (µ))). Since σ(P (µ)) ⊆ D(P (µ)) ⊆ B(P (µ)) and σ(P̂ (µ)) ⊆
D(P̂ (µ)) ⊆ B(P̂ (µ)) [6, 21], the proof follows readily.

5.2. Basic properties. Let P (λ) be an n × n matrix polynomial as in (1.1). It is easy to verify the

following properties.

Proposition 5.2. Consider two distinct integers i, j ∈ N .

(i) Di,j(P ) and Di(P ) are closed subsets of C.

(ii) For any scalar b ∈ C\{0}, consider the matrix polynomials Q1(λ) = P (bλ), Q2(λ) = bP (λ) and

Q3(λ) = P (λ+ b). Then Di,j(Q1) = b−1Di,j(P ), Di,j(Q2) = Di,j(P ) and Di,j(Q3) = Di,j(P )− b.
(iii) If the (i, i)-th or the the (j, j)-th entry of P (λ) is (identically) zero, then Di,j(P ) = Di(P ) = C.

(iv) If all the coefficient matrices A0, A1, . . . , Am have their i-th and j-th rows real, then Di,j(P ) is sym-

metric with respect to the real axis.

Proof. The proof is similar to the proof of Proposition 2.2.

Similarly to Theorems 2.6, 3.6 and 4.6, we obtain necessary and sufficient conditions for the Dashnic-

Zusmanovich set to be bounded.

Theorem 5.3. Suppose that for some distinct i, j ∈ N , the sets βi and βj are nonempty, and the origin

is not an isolated point of Di,j(P̂ ), i.e., Di,j(P ) is not the union of a bounded set and ∞.
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(i) If i ∈ βi and j ∈ βj, then Di,j(P ) is unbounded if and only if 0 ∈ Di,j(Am).

(ii) If i ∈ βi ∩ βj and j ∈ βj, then Di,j(P ) is unbounded and 0 ∈ Di,j(Am).

Proof. (i) Suppose that i ∈ βi, i.e., (Am)i,i 6= 0 and j ∈ βj , i.e., (Am)j,j 6= 0.

Let Di,j(P ) be unbounded. Since the origin is not an isolated point of Di,j(P̂ ), there is a sequence

{µl}l∈N in Di,j(P )\{0} such that |µl| → +∞. Then, for every positive integer l,

∣∣∣∣∣
m∑
k=0

(Ak)i,iµ
k
l

∣∣∣∣∣
∣∣∣∣∣

m∑
k=0

(Ak)j,jµ
k
l

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k
l

∣∣∣∣∣+

∣∣∣∣∣
m∑
k=0

(Ak)j,iµ
k
l

∣∣∣∣∣


≤

 ∑
p∈N\{i}

∣∣∣∣∣
m∑
k=0

(Ak)i,pµ
k
l

∣∣∣∣∣
 ∣∣∣∣∣

m∑
k=0

(Ak)j,iµ
k
l

∣∣∣∣∣ ,
or ∣∣∣∣∣

m∑
k=0

(Ak)i,i
µkl
µml

∣∣∣∣∣
∣∣∣∣∣

m∑
k=0

(Ak)j,j
µkl
µml

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,p
µkl
µml

∣∣∣∣∣+

∣∣∣∣∣
m∑
k=0

(Ak)j,i
µkl
µml

∣∣∣∣∣


≤

 ∑
p∈N\{i}

∣∣∣∣∣
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k=0

(Ak)i,p
µkl
µml

∣∣∣∣∣
 ∣∣∣∣∣

m∑
k=0

(Ak)j,i
µkl
µml

∣∣∣∣∣ ,
As l→ +∞, it follows

|(Am)i,i|

|(Am)j,j | −
∑

p∈βi\{i}

|(Am)i,p|+ |(Am)j,i|

 ≤
 ∑
p∈βi\{i}

|(Am)i,p|

 |(Am)j,i| ,

and thus, 0 ∈ Di,j(Am).

For the converse, suppose that 0 ∈ Di,j(Am) (or equivalently, |(Am)i,i|(|(Am)j,j |−rj(Am)+ |(Am)j,i|) ≤
|(Am)j,i|rj(Am) ). Then 0 ∈ Di,j(P̂ ) and, by definition, ∞ ∈ Di,j(P ).

(ii) Suppose that i ∈ βi, j ∈ βj and i ∈ βj , i.e., (Am)i,i = 0, (Am)j,j = 0 and (Am)j,i 6= 0. Then, it is

clear that 0 ∈ Di,j(Am), and

Di,j(P )\{0} =

µ ∈ C\{0} :
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(a) The Gershgorin set.
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(b) The Brauer set.
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(c) The D.-Z. set.

Figure 7: Comparing the Gershgorin set, the Brauer set and the D.-Z. set.

where (Am)j,i and at least one of the coefficients (Am)i,p, p ∈ N\{i}, is nonzero. As a consequence, for

“large enough” |µ|, µ lies in Di,j(P ). Thus, there exists a real number M > 0 such that every scalar µ ∈ C
with |µ| ≥M lies in Di,j(P ), i.e., {µ ∈ C : |µ| ≥M} ⊆ Di,j(P ).

5.3. Examples.

Example 5.4. Consider the matrix polynomial

P (λ) =

[
8iλ2 − 2iλ+ 2 2iλ2 + iλ+ (1 + 2i)

−3iλ2 + 5iλ+ (1 + i) −6iλ2 + 3iλ+ 4i

]
.

In Figure 7, the Gershgorin set, the Brauer set and the Dashnic-Zusmanovich (D.-Z.) set of P (λ) are drawn.

Notice that the Brauer set and the Dashnic-Zusmanovich set are the same (because the matrix polynomial

has only 2 rows) and lie in the Gershgorin set.

In the following two examples, we consider two 3 × 3 quadratic matrix polynomials, with bounded

(Example 5.5) and unbounded (Example 5.6) eigenvalues’ inclusion sets.

Example 5.5. Consider the matrix polynomial

P (λ) =

 8iλ2 − 2iλ+ 2 2iλ2 + iλ+ (1 + 2i) (−1 + i)λ2 + λ+ 2

−3iλ2 + 5iλ+ (1 + i) −8iλ2 + 3iλ+ 4i (2− 2i)λ2 − 4λ− 5i

(0.8 − i)λ2 + iλ+ (1− i) 0.6iλ2 − iλ (6− 2i)λ2 + 2i

 .
The Gershgorin set, the Brauer set and the Dashnic-Zusmanovich set are illustrated in Figure 8. It is clear

that these three sets are bounded, confirming Theorems 2.6, 4.6 and 5.3, and D(P ) ⊆ B(P ) ⊆ G(P ).

Example 5.6. Consider the matrix polynomial

P (λ) =

 8iλ2 − 2iλ+ 2 2iλ2 + iλ+ (1 + 2i) (−1 + i)λ2 + λ+ 2

−3iλ2 + 5iλ+ (1 + i) −6iλ2 + 3iλ+ 4i (2− 2i)λ2 − 4λ− 5i

(0.8 − i)λ2 + iλ+ (1− i) 6iλ2 − iλ (6− 2i)λ2 + 2i

 .
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(c) The D.-Z. set.

Figure 8: Comparing the Gershgorin set, the Brauer set and the D.-Z. set.
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Figure 9: Comparing the Gershgorin set, the Brauer set and the D.-Z. set.

The Gershgorin set, the Brauer set and the Dashnic-Zusmanovich set are drawn in Figure 9, and they are

unbounded, verifying Theorems 2.6, 4.6 and 5.3. Notice once again that D(P ) ⊆ B(P ) ⊆ G(P ).
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