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Abstract

Inclusion regions for the spectrum of a hypertournament matrix A are
obtained, based on a complex curve that relates the real and imaginary parts
of the eigenvalues. These results generalize and in certain cases improve work
of S. Kirkland. The bounds obtained depend on the variance of the score
vector; their tightness is investigated using the notion of numerical range.
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1 Introduction

Both a tournament matrix and its corresponding directed graph arise as a record of
the outcomes of a round robin competition. The need and desire to come up with
player ranking schemes has motivated an extensive study of the combinatorial and
spectral properties of tournament matrices and their generalizations (see [2, 3, 10,
11, 12]). Hypertournament and generalized tournament matrices not only provide
a means for inquiring into the properties of tournament matrices but also are the
source of matrix analytic challenges of independent interest.

We proceed with some basic definitions and notation needed to describe our
results. Let Mn(R) be the algebra of all n× n real matrices. Matrix A ∈ Mn(R)
is called an h-hypertournament if it has zero diagonal entries and A+At = hht − I
for some nonzero h ∈ Rn . When h = 1, the all ones vector, an h-hypertournament
matrix A satisfies A + At = J − I, where J denotes the all ones matrix. If all the
entries of a 1-hypertournament matrix A ∈ Mn(R) are in {0, 1}, then A is called
a tournament matrix, and if all the entries of A are nonnegative, then A is called a
generalized tournament matrix.

In [10], Maybee and Pullman show that every h-hypertournament matrix is
(diagonally) similar to a 1-hypertournament matrix. Thus, the discussion of the
spectral properties of an h-hypertournament matrix can be reduced to the case of
1-hypertournament matrices. It is further shown in [10] that −1/2 ≤ Reλ ≤ (n −
1)/2 whenever λ is an eigenvalue of an h-hypertournament matrix. Moreover, the
eigenvalues of a generalized tournament matrix satisfy |Imλ| ≤ (1/2) cot(π/(2n))
(see [4]).

For the purposes of our work, we introduce the quantity

v(A) =
1
n

∥∥∥∥s−
(
n− 1
2

)
1
∥∥∥∥2

,

associated with the score vector s = A1 of an n × n 1-hypertournament matrix
A. Notice the interpretation of v(A) as the variance of the score vector. Thus we
refer to v(A) as the score variance of A. Moreover, it can be verified that

v(A) =
sts

n
− (n− 1)2

4
.

If A is an n × n generalized tournament matrix, then 0 ≤ v(A) ≤ (n2 − 1)/12.
The score variance v(A) is zero when A is a tournament matrix and in each row of
A the number of off-diagonal zeros is equal to the number of ones. Also v(A) =
(n2 − 1)/12 when A is triangular.

In this paper, we continue the work in [7] by providing inclusion regions for the
spectra of 1-hypertournament matrices. These inclusion regions are described by a
curve relating the real part and the imaginary part of an eigenvalue to each other
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and to the score variance. The bounds we obtain imply bounds in [7] on the real
parts of the eigenvalues of a 1-hypertournament matrix, and also give information
on the imaginary parts as well. Our approach relies on Schur’s Lemma and basic
facts about the numerical range (also known as the field of values) of a matrix A,

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1}.

Recall that a matrix A ∈ Mn(R) with nonnegative entries is called primitive if
there is a positive integer k such that all the entries of Ak are positive. Further-
more, by the Perron-Frobenius Theorem, a primitive entrywise nonnegative matrix
A has a (simple) real positive eigenvalue ρ such that ρ > |λ| for all eigenvalues λ of
A, [1]. The eigenvalue ρ is known as the Perron value of A, and the corresponding
eigenvector, called the Perron vector, can be taken to have all positive entries.

An n×n tournament matrix A corresponds to a round robin competition involv-
ing n players, with aij = 1 if player i defeats player j, and aij = 0 otherwise (tie
games are not allowed). In the case that A is primitive, a ranking scheme of Kendall
and Wei (see [11], for example) considers the sequence (Ak1)/(1TAk1) (k ∈ N); it
turns out that this sequence converges to the Perron vector of A, which is then used
to rank the players. Further, the rate of convergence is governed by the quantities
|λ|/ρ, where ρ is the Perron value of A and λ is a non-Perron eigenvalue of A.
Section 3 applies some of the results of Section 2 to the problem of bounding the
quantities |λ|/ρ.

2 1-Hypertournament matrices

Suppose that A ∈ Mn(R) is a 1-hypertournament matrix and let H = (A +At)/2
and K = (A − At)/2 be the Hermitian and the skew-Hermitian part of A, respec-
tively. Clearly, A = H + K and H = (J − I)/2. The matrix H has exactly two
eigenvalues, λ1 = (n − 1)/2 with multiplicity 1 and λ2 = −1/2 with multiplicity
n − 1. The vector (1/

√
n)1 is a unit eigenvector of H corresponding to λ1. By

Schur’s Lemma [5, Theorem 2.3.1], there exists a unitary U ∈ Mn(R) whose first
column is (1/

√
n)1 such that

U tHU = diag{(n− 1)/2,−1/2,−1/2, ...,−1/2}.
Moreover, it is easy to see that

U tKU =
[
0 −ut

u K1

]
,

where K1 ∈ Mn−1(R) is skew-Hermitian and u ∈ Rn−1 . Consequently,

U tAU =
[
(n− 1)/2 −ut

u K1 − (1/2)I

]
. (1)
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The following theorem is the main result of this section.

Theorem 1 Let A ∈ Mn(R) be a 1-hypertournament matrix with score variance
v(A). Let λ be an eigenvalue of A such that λ 
= (n − 1)/2 and Reλ 
= −1/2, and
let d = n− 1− 2Reλ. Then

(Imλ)2 ≤ d

(
v(A)
n− d

− d

4

)
. (2)

Proof Since A− λI is singular, by equation (1), the matrix

U t(A− λI)U =
[
(n− 1)/2− λ −ut

u K1 − (1/2 + λ)I

]
is also singular. It follows that the Schur complement of the leading entry is singular
[5, p. 21], that is, 0 ∈ σ(S), the spectrum of

S = K1 −
(
1
2
+ λ

)
I +

1
(n− 1)/2− λ

uut.

The Hermitian and skew-Hermitian parts of S are

M =
2d

d2 + 4(Imλ)2
uut −

(
1
2
+ Reλ

)
I

and
N = K1 − i Imλ I +

4i Imλ

d2 + 4(Imλ)2
uut, (3)

respectively. Since σ(S) ⊆ F (S) and F (M) = ReF (S) (see [6, Properties 1.2.5,
1.2.6]), it follows that 0 ∈ F (M), which, in turn, implies

1
2
+ Reλ ∈ 2d

d2 + 4(Imλ)2
F (uut).

Since F (uut) coincides with the interval [0, utu],

1
2
+ Reλ ≤ 2d(utu)

d2 + 4(Imλ)2

or equivalently,

(Imλ)2 ≤ d

(
utu

n− d
− d

4

)
.

Observe that

utu =
∥∥∥∥ 1√

n
K1
∥∥∥∥2

=
1
n

∥∥∥∥s−
(
n− 1
2

)
1
∥∥∥∥2

= v(A)
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and the proof is complete.

For the real parts of the eigenvalues and for any purely imaginary eigenvalues
of A, we have the following results.

Corollary 2 Let A ∈ Mn(R) be a 1-hypertournament matrix with score variance
v(A) < n2/16. Then for every eigenvalue λ of A,

Reλ /∈
(
n− 2−√n2 − 16v(A)

4
,

n− 2 +
√

n2 − 16v(A)
4

)
.

Proof Suppose that λ is an eigenvalue of A. Since

−1/2 <
n− 2−√n2 − 16v(A)

4
<

n− 1
2

,

consider Reλ 
= −1/2 and λ 
= (n− 1)/2. Then by (2),

d

(
v(A)
n− d

− d

4

)
≥ 0,

where d = n− 1− 2Reλ > 0. Hence,

v(A)
1 + 2Reλ

− d

4
≥ 0,

that is,

(Reλ)2 −
(
n− 2
2

)
Reλ+ v(A)− n− 1

4
≥ 0.

Since v(A) < n2/16, the proof is complete.

Remark 1 Corollary 2 is a special case of [7, Theorem 1]. There, under the same
assumptions as in Corollary 2, it is shown that A has one real eigenvalue

ρ(A) ∈
[
n− 2 +

√
n2 − 16v(A)
4

,
n− 1
2

]

and n− 1 complex eigenvalues with real parts in the interval[
−1
2
,

n− 2−√n2 − 16v(A)
4

]
.

Corollary 3 Let A ∈ Mn(R) be a 1-hypertournament matrix with score variance
v(A) > (n− 1)/4. Then for any purely imaginary eigenvalue λ = ir (r ∈ R) of A,
|r| ≤√(n− 1)[v(A)− (n− 1)/4].
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Proof Follows directly from (2) for Reλ = 0 and d = n− 1.

Prompted by (2), we define the shell of a 1-hypertournament matrix A to be
the curve

Γ(A) =
{
x+ iy ∈ C : x, y ∈ R and y2 = d

(
v(A)
n− d

− d

4

)}
,

where d = n− 1− 2x. This curve is symmetric with respect to the real axis and is
asymptotic to the line Rez = −1/2. It is clear that Γ(A) depends only on the order
n and the score variance v(A) of the matrix A. Moreover, Γ(A) always intersects
the real axis at the point (n − 1)/2. If in addition, v(A) < n2/16, then Γ(A) also
intersects the real axis at the points (n− 2±√n2 − 16v(A))/4.

If v(A) < n2/16, then Γ(A) has two branches (one bounded and one unbounded),
and if v(A) ≥ n2/16, then Γ(A) consists of one unbounded branch. By Theorem
1, the shell Γ(A) yields a localization of the spectrum of A specified by (2) (see
Example 1 below).

Consider now a 1-hypertournament matrix A ∈ Mn(R) with score variance
v(A) > 0, and the function

f(t) =
nv(A)

t
− (n− t)2

4
− v(A) ; t ∈ (0, n].

Observe that for t = 2x+ 1,

f(2x+ 1) = (n− 1− 2x)
(

v(A)
2x+ 1

− n− 1− 2x
4

)
; x ∈ (−1/2, (n− 1)/2].

Moreover, f(t) is decreasing on (0, n] if and only if t3 − nt2 + 2nv(A) > 0 on
(0, n]. The latter inequality holds if and only if it holds at the minimum t0 = 2n/3.
Hence, f(t) is decreasing on the interval (0, n] if and only if v(A) > 2n2/27. In
this case the curve Γ(A) ∩ {z ∈ C : Imz ≥ 0} is decreasing (see Γ(B) in Figure 1).

If v(A) < n2/16, we are interested only in values of t such that

t2 − nt+ 4v(A) ≥ 0

(these values correspond to −1/2 ≤ x ≤ (n − 2 −√n2 − 16v(A))/4). But then we
have t3 − nt2 ≥ −4nv(A), and since t < n/2 for x ≤ (n− 2−√n2 − 16v(A))/4,

t3 − nt2 + 2nv(A) ≥ 2v(A)(n− 2t) > 0.

Consequently, if v(A) ∈ (0, n2/16), then the curve

Γ(A) ∩ {z ∈ C : Imz ≥ 0, Rez ≤ (n− 2−
√

n2 − 16v(A))/4}
is decreasing (see the unbounded branch of Γ(A) in Figure 1).
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If v(A) ∈ [n2/16, 2n2/27], then one can see that the curve Γ(A) ∩ {z ∈ C :
Imz ≥ 0} is decreasing, then increasing, then decreasing again, (Figure 2).

Example 1 A andB are two 8×8 1-hypertournament matrices with score variances
v(A) = 2.25 and v(B) = 6.75. The shell Γ(A) in Figure 1 consists of one bounded
and one unbounded branch. The bounded branch surrounds a real eigenvalue of A
and the unbounded branch isolates the rest of the spectrum of A. The shell Γ(B) is
connected and all the eigenvalues of B are located in the region between Γ(B) and
the line Rez = −1/2.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

                    REAL    AXIS                              score  variance  v(A) = 2.25

IM
A

G
IN

A
R

Y
   

 A
X

IS

−4 −3 −2 −1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

4

5

                    REAL    AXIS                              score  variance  v(B) = 6.75

IM
A

G
IN

A
R

Y
   

 A
X

IS

Figure 1: The shells Γ(A) and Γ(B) for different score variances.

Example 2 A andB are two 8×8 1-hypertournament matrices with score variances
v(A) = 82/16 = 4 and v(B) = 4.32. Their spectra and shells are sketched in Figure
2.
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Figure 2: The shells Γ(A) and Γ(B) for score variances on [n2/16, 2n2/27].
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Furthermore, the following results hold.

Corollary 4 Let A ∈ Mn(R) be a 1-hypertournament matrix with score variance
v(A) < n2/16. If A has k eigenvalues with nonnegative parts, then k ≤ (n + 2 −√

n2 − 16v(A))/2.

Proof The matrix A has a real eigenvalue ρ(A) ≥ (n− 2 +
√

n2 − 16v(A))/4 (see
Remark 1) and exactly n− k eigenvalues with real parts in the interval [−1/2, 0).
Since trace(A) = 0, we have that

n− 2 +
√

n2 − 16v(A)
4

≤ n− k

2
,

which implies that

k ≤ n+ 2−√n2 − 16v(A)
2

.

Note that Corollary 4 implies a result of Katzenberger and Shader [9] for a 1-
hypertournament matrix A, namely that if v(A) < (n−1)/4, then A is nonsingular.

Corollary 5 Suppose that A ∈ Mn(R) is a 1-hypertournament matrix with v(A) <
(n − 2)/2. Then A has at least n − 2 eigenvalues with negative real parts and 1
or 2 real positive eigenvalues.

Proof Since (n− 2)/2 < n2/16, by the above corollary,

k <
n+ 2−√

n2 − 8n+ 16
2

= 3.

Next we characterize the case of equality in (2).

Theorem 6 Let A ∈ Mn(R) be a 1-hypertournament matrix with score variance
v(A) > 0, and let λ be an eigenvalue of A. Then equality holds in (2) if and only if
v(A) ≤ n2/16 and λ is real and equal to either

n− 2 +
√

n2 − 16v(A)
4

or
n− 2−√n2 − 16v(A)

4
.

Further, equality holds in (2) for some eigenvalue if and only if A has n− 2 eigen-
values having real parts equal to −1/2 .

Proof Let λ be an eigenvalue of A and let S, M and N be as defined in the proof
of Theorem 1. Equality in (2), namely,

(Imλ)2 = d

(
v(A)
n− d

− d

4

)
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holds if and only if
1
2
+ Reλ =

2d(utu)
d2 + 4(Imλ)2

or equivalently, if and only if the matrix M is singular negative semidefinite. In
this case, the eigenvalue 0 ∈ σ(M) is simple and corresponds to the eigenvector u
in (1). Moreover, the matrix S is singular and since 0 ∈ ∂F (S) (the boundary of
the numerical range), 0 must be a normal eigenvalue of S (see [6, Theorem 1.6.6]);
every corresponding eigenvector belongs to

null(M) ∩ null(N) = span{u} .

Hence, u is an eigenvector of N in (3) corresponding to the eigenvalue 0. Further-
more, the vector u is an eigenvector of the rank one matrix

4Imλ

d2 + 4(Imλ)2
uut

corresponding to the simple eigenvalue

4Imλ(utu)
d2 + 4(Imλ)2

.

As a consequence, the quantity

i Imλ− 4i Imλ(utu)
d2 + 4(Imλ)2

=
i Imλ(n− 2− 4Reλ)

d

is an eigenvalue of the matrix K1 in (1) with corresponding eigenvector u. Thus,

utK1u

utu
=

i Imλ(n− 2− 4Reλ)
d

.

The same arguments applied to λ ∈ σ(A) yield

utK1u

utu
=

i Imλ(n− 2− 4Reλ)
d

and hence Imλ = 0. Thus the existence of eigenvalues on Γ(A) hinges on the
equation in d (here d = n− 1− 2λ)

d

(
v(A)
n− d

− d

4

)
= 0

having real solutions. If v(A) > n2/16, this equation has no real solutions. Other-
wise, the real solutions lead to eigenvalues as stated in the theorem.
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If equality holds in (2) for some eigenvalue λ, then from our argument above,
λ is one of (n − 2 +

√
n2 − 16v(A))/4 and (n − 2 − √n2 − 16v(A))/4 , and in

[8] it is shown that this implies that A has n − 2 eigenvalues having real parts
equal to −1/2. Conversely, if A has n − 2 eigenvalues having real parts equal
to −1/2, then by [7, Theorem 2], A has two eigenvalues with real parts equal to
(n− 2 +

√
n2 − 16v(A))/4 and (n− 2−√n2 − 16v(A))/4 , respectively. From (2)

it follows that those eigenvalues are necessarily real, so that equality holds in (2)
for both eigenvalues.

3 Generalized tournament matrices

Let A ∈ Mn(R) be a generalized tournament matrix, i.e., all the entries of A are
nonnegative and A + At = J − I. By Pick’s inequality (see [4]), every eigenvalue
λ of A satisfies |Imλ| ≤ (1/2) cot(π/(2n)). Hence, it is natural to ask where the
shell Γ(A) intersects the horizontal line Imz = (1/2) cot(π/(2n)). In essence, we
are asking for x ∈ R such that

1
4
cot2

( π

2n

)
= (n− 1− 2x)

v(A)
2x+ 1

− (n− 1− 2x)2

4
.

Letting y = 2x+ 1, we have

y3 − 2ny2 +
(
n2 + cot2

( π

2n

)
+ 4v(A)

)
y − 4nv(A) = 0.

Observe that the left part of this equation is increasing as a function of y ∈ [0, n];
it follows from the Implicit Function Theorem that

∂y

∂v(A)
> 0.

Thus, the largest possible root will occur when v(A) is as large as possible, i.e.,
when A is triangular, in which case v(A) = (n2−1)/12. Considering this maximum
possible value of v(A), we investigate the asymptotics of y as n → ∞. It follows
that

y3 − 2ny2 +
(
n2 + cot2

( π

2n

)
+

n2 − 1
3

)
y − n3 − n

3
= 0,

which, in turn, implies( y
n

)3

− 2
( y
n

)2

+
(
1 +

cot2(π/(2n))
n2

+
n2 − 1
3n2

)
y

n
− n2 − 1

3n2
= 0.

Asymptotically we have y/n → ξ, where

ξ3 − 2ξ2 +
(
1 +

4
π2

+
1
3

)
ξ − 1

3
= 0.
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Solving this cubic gives ξ ∼= 0.2588, so that for large n, y is asymptotic to 0.2588n.
As a consequence, for all sufficiently large n, the shell Γ(A) of an n×n generalized
tournament matrix A intersects the line Imz = (1/2) cot(π/(2n)) somewhere in
the zone

{z ∈ C : −1/2 ≤ Rez ≤ 0.1295n}.
The Kendall-Wei ranking method for tournament matrices (see [11]) relies on

the power method as a justification. The following results show that when the score
variance is not too big, convergence of the power method is quite fast.

Theorem 7 Let A ∈ Mn(R) be a generalized tournament matrix with n ≥ 12 and
score variance

v(A) ≤ 1
2(n+ 2)

(
n2 − 4n+ 3 +

4n2

π2

)
.

If λ is an eigenvalue of A such that Reλ ≤ (n− 2−√n2 − 16v(A))/4, then

|λ| ≤
∣∣∣∣−1

2
+

i

2
cot
( π

2n

)∣∣∣∣ .
Proof Since −1/2 ≤ Reλ the inequality is straightforward if Reλ ≤ 1/2, so
suppose that 1/2 < Reλ ≤ (n − 2 −√n2 − 16v(A))/4. By Theorem 1, it follows
that

|λ|2 = (Reλ)2 + (Imλ)2 ≤ nv(A)
2Reλ+ 1

+ (n− 1)Reλ− v(A) − (n− 1)2

4
.

Hence, it is enough to prove that

nv(A)
2Reλ+ 1

+ (n− 1)Reλ− v(A) − (n− 1)2

4
≤
∣∣∣∣−1

2
+

i

2
cot
( π

2n

)∣∣∣∣2 ; (4)

observe that ∣∣∣∣−1
2
+

i

2
cot
( π

2n

)∣∣∣∣2 =
1

4 sin2(π/(2n))
.

Considering the left part of (4) as a function of Reλ, it is easy to see that it is
concave up with at most one critical point. Thus, (4) will hold for

Reλ ∈
[
1
2
,

n− 2−√n2 − 16v(A)
4

]

provided that it holds for Reλ = 1/2 and Reλ = (n− 2−√n2 − 16v(A))/4.
Notice that for Reλ = 1/2, inequality (4) can be written as

nv(A)
2

+
n− 1
2

− v(A) − (n− 1)2

4
≤ 1

4 sin2(π/(2n))
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or equivalently,

v(A) ≤
(

1
n− 2

)(
n2 − 4n+ 3

2
+

1
2 sin2(π/(2n))

)
.

This is implied by our hypothesis.
For Reλ = (n− 2−√n2 − 16v(A))/4, (4) is written as

2nv(A)
n−√n2 − 16v(A)

+
(n− 1)(n− 2−√n2 − 16v(A))

4
− v(A)− (n− 1)2

4

≤ 1
4 sin2(π/(2n))

,

which is equivalent to

n2 − 2n+ 2
8

− (n− 2)
√

n2 − 16v(A)
8

− v(A) ≤ 1
4 sin2(π/(2n))

.

Since 1/2 < (n−2−√n2 − 16v(A))/4, v(A) > (n−2)/2. Moreover, our hypothesis
implies that v(A) ≤ (3n)/4 as well. After straightforward computations, we find
that

n2 − 2n+ 2
8

− (n− 2)
√

n2 − 16v(A)
8

− v(A) ≤ n2 − 8n+ 2− (n− 2)
√
n2 − 12n

8
.

This last quantity is seen to be at most (n/π)2 ( ≤ (1/4) sin−2(π/(2n)) ).

Corollary 8 Let A ∈ Mn(R) be a generalized tournament matrix with score vari-
ance

v(A) ≤ 1
2(n− 2)

(
n2 − 4n+ 3 +

4n2

π2

)
and n ≥ 12. If in addition, A is primitive with Perron value ρ, then for every
eigenvalue λ 
= ρ,

|λ|
ρ

≤ 2
sin(π/(2n))(n− 2 +

√
n2 − 16v(A))

.

(Observe that for large n, this bound is asymptotic to 2/π.)

Proof By Remark 1,

ρ ≥ n− 2 +
√

n2 − 16v(A)
4
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and by Theorem 7,

|λ| ≤
∣∣∣∣−1

2
+

i

2
cot
( π

2n

)∣∣∣∣ = 1
2 sin(π/(2n))

.

The result follows immediately.

Example 3 Let T be the circulant matrix of order 2k + 1 given by

T = Circ([ 0

k︷ ︸︸ ︷
1 1 ... 1

k︷ ︸︸ ︷
0 0 ... 0 ])

(see [5] for the definition of a circulant), and observe that T is a tournament matrix.
Now let A be the (4k + 2)× (4k + 2) tournament matrix

A =
[

T T t + I
T t T

]
.

Letting n = 4k + 2, one can verify that A has score variance v(A) = 1/4, Perron
value (n2 − 2 +

√
n2 − 4)/4 and −1/2± (i/2) cot(π/(2n)) as eigenvalues. So this

matrix actually achieves equality on the above corollary.
We conclude by posing the open problem of determining those primitive gener-

alized tournament matrices A with score variance

v(A) ≤ 1
2(n− 2)

(
n2 − 4n+ 3 +

4n2

π2

)

such that both

λ = −1
2
+

1
2
cot
( π

2n

)
and ρ =

n2 − 2 +
√

n2 − 16v(A)
4

are eigenvalues of A. (Note that each such matrix provides an example for which
equality holds in Corollary 8.) We note that [4] provides a constructive characteri-
zation of generalized tournament matrices having −1/2 + (1/2) cot(π/(2n)) as an
eigenvalue, while [8] provides a characterization when (n2−2+

√
n2 − 16v(A))/4 is

an eigenvalue of A. Thus our problem can be reduced to looking at the intersection
of those two classes of matrices.
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