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Abstract

Let L(λ) = Inλm + Am−1λ
m−1 + · · ·+ A1λ + A0 be an n× n monic

matrix polynomial, and let CL be the corresponding block companion
matrix. In this note, we extend a known result on scalar polynomials to
obtain a formula for the polar decomposition of CL when the matrices A0

and
Pm−1

j=1 AjA
∗
j are nonsingular.

Keywords: block companion matrix, matrix polynomial, eigenvalue, singular value,
polar decomposition.

AMS Subject Classifications: 15A18, 15A23, 65F30.

1 Introduction and notation

Consider the monic matrix polynomial

L(λ) = Inλm + Am−1λ
m−1 + · · ·+ A1λ + A0, (1)

where Aj ∈ Cn×n (j = 0, 1, . . . , m− 1, m ≥ 2), λ is a complex variable and In

denotes the n×n identity matrix. The study of matrix polynomials, especially
with regard to their spectral analysis, has a long history and plays an important
role in systems theory [1, 2, 3, 4]. A scalar λ0 ∈ C is said to be an eigenvalue of
L(λ) if the system L(λ0)x = 0 has a nonzero solution x0 ∈ Cn. This solution x0

is known as an eigenvector of L(λ) corresponding to λ0. The set of all eigenvalues
of L(λ) is the spectrum of L(λ), namely, sp(L) = {λ ∈ C : detL(λ) = 0}, and
contains no more than nm distinct (finite) elements.
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Define ∆ = [ A1 A2 · · · Am−1 ] ∈ Cn×n(m−1). The nm× nm matrix

CL =




0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In

−A0 −A1 −A2 · · · −Am−1




=
[

0 In(m−1)

−A0 −∆

]
(2)

(where the zero matrices are of appropriate size) is known as the block companion
matrix of L(λ), and its spectrum, sp(CL), coincides with sp(L). Moreover, CL

and L(λ) are strongly connected since they have similar Jordan structures and
define equivalent dynamical systems; for example, see [2, 3] for these comments
and general background on block companion matrices of matrix polynomials.

Let CL = P U be the (left) polar decomposition of CL, where the nm×nm
matrix P = (CLC∗L)1/2 is positive semidefinite and U ∈ Cnm×nm is unitary.
Then the eigenvalues of P are the singular values of CL and (recalling that
sp(CL) = sp(L)) yield bounds for the eigenvalues and for products of eigenvalues
of L(λ) [5, 6].

In [7], van den Driessche and Wimmer obtained an explicit formula for the
polar decomposition of the companion matrix corresponding to a monic scalar
polynomial p(λ) (i.e., for n = 1) in terms of the coefficients of p(λ). In this
article, extending their methodology, we prove that their results are also valid
for the matrix polynomial L(λ) in (1) and its block companion matrix CL in (2)
when the matrices A0 and ∆∆∗ =

∑m−1
j=1 AjA

∗
j are nonsingular. An important

feature of our generalization is that the construction of the polar decomposition
of the nm × nm matrix CL is reduced to the computation of the (positive
definite) square root of a 2n×2n positive definite matrix. If in addition, A0A

∗
0

and ∆∆∗ commute, then the polar decomposition of CL is further reduced to
the computation of the n× n positive definite square roots

P0 = (A0A
∗
0)

1/2, P1 = (∆∆∗)1/2 =




m−1∑

j=1

AjA
∗
j




1/2

(3)

and
Ψ = (∆∆∗ + A0A

∗
0 + In + 2P0)1/2 =

(
P 2

1 + (P0 + In)2
)1/2

. (4)

2 Singular values and polar decomposition

Suppose L(λ) = Inλm + Am−1λ
m−1 + · · · + A1λ + A0 is an n × n matrix

polynomial with n ≥ 2 and detA0 6= 0 (or equivalently, 0 /∈ sp(L)), and let CL

be the corresponding (nonsingular) block companion matrix in (2).

Consider the n×n positive definite matrix S =
∑m−1

j=0 AjA
∗
j = ∆∆∗+A0A

∗
0

and the nm× nm positive definite matrix

CLC∗L =
[

In(m−1) −∆∗

−∆ S

]
.
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The square roots of the eigenvalues of CLC∗L are the singular values of CL.
Keeping in mind the Schur complement of the leading n(m − 1) × n(m − 1)
block of the linear pencil Inmλ− CLC∗L, one can see that

det(Inmλ− CLC∗L) = det[In(m−1)(λ− 1)] det
(

Inλ− S − 1
λ− 1

∆∆∗
)

= (λ− 1)n(m−2) det
[
Inλ2 − (In + S)λ + A0A

∗
0

]
.

Hence, the singular values of CL are σ = 1 (of multiplicity at least n(m−2)) and
the square roots of the eigenvalues of the quadratic selfadjoint matrix polynomial

RL(λ) = Inλ2 − (In + S)λ + A0A
∗
0. (5)

The hermitian matrices In + S and A0A
∗
0 are positive definite, and the

quantity [x∗(In + S)x]2 − 4x∗A0A
∗
0x is nonnegative for every unit vector x ∈

Cn. Thus, by [4, Section IV.31] (see also [8]), the eigenvalues of the matrix
polynomial RL(λ) are real positive and their minimum and maximum values
are given by

λmin(RL) = min

{
1 + x∗Sx−√

(1 + x∗Sx)2 − 4x∗A0A∗0x
2

: x ∈ Cn, x∗x = 1

}

and

λmax(RL) = max

{
1 + x∗Sx +

√
(1 + x∗Sx)2 − 4x∗A0A∗0x

2
: x ∈ Cn, x∗x = 1

}
,

respectively. Moreover, we have the following known result [5, Lemma 2.7] (see
also [6, p. 336] and [7, Lemma 2.2]).

Proposition 1 The singular values σ1 ≥ σ2 ≥ · · · ≥ σnm of the block compan-
ion matrix CL fall into three groups:

(i) σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 1,

(ii) σn+1 = σn+2 = · · · = σn(m−1) = 1 (if m ≥ 3), and

(iii) 1 ≥ σn(m−1)+1 ≥ σn(m−1)+2 ≥ · · · ≥ σnm > 0.

The 2n singular values of CL in (i) and (iii) are the square roots of the eigen-
values of RL(λ) in (5).

Corollary 2 For any eigenvalue µ of L(λ),

λmin(RL)1/2 = σnm ≤ |µ| ≤ σ1 = λmax(RL)1/2.

Next we characterize the case when 1 is an eigenvalue of RL(λ), i.e., when
CL has more than n(m−2) singular values equal to 1 (see also [5, Lemma 2.8]).
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Proposition 3 The following statements are equivalent:

(i) The matrix polynomial RL(λ) has an eigenvalue λ = 1.

(ii) The matrix ∆∆∗ =
∑m−1

j=1 AjA
∗
j is singular.

(iii) The matrices A1, A2, . . . , Am−1 are singular and have a common left eigen-
vector corresponding to zero.

Proof Since detRL(1) = det(∆∆∗), the equivalence (i)⇔ (ii) follows readily.
Moreover, if y ∈ Cn is a nonzero vector such that A∗j y = 0 (j = 1, 2, . . . , m−1),
then ∆∆∗y =

∑m−1
j=1 AjA

∗
j y = 0. Thus, it is enough to prove the part (ii)⇒

(iii).
Suppose ∆∆∗ is singular, and let x0 ∈ Cn be a unit eigenvector of ∆∆∗

corresponding to 0. Then

x∗0∆∆∗x0 =
m−1∑

j=1

x∗0AjA
∗
jx0 = 0,

where AjA
∗
j is positive semidefinite and satisfies x∗0AjA

∗
jx0 ≥ 0 for every

j = 1, 2, . . . , m − 1. Hence, x∗0AjA
∗
jx0 = 0 for every j = 1, 2, . . . , m − 1, and

thus,
A∗j x0 = 0 ; j = 1, 2, . . . , m− 1. ¤

If the minimum or the maximum singular value of CL is equal to 1, then
the polar decomposition of CL is equivalent to the polar decomposition of the
matrix A0.

Proposition 4 Suppose the minimum or the maximum singular value of CL

is σ = 1. Let P0 be the positive definite matrix in (3) (recall that detA0 6= 0).
Then A1 = A2 = · · · = Am−1 = 0, and the polar decomposition of CL is given
by CL = P U, where

P =
[

In(m−1) 0
0 P0

]
and U =

[
0 In(m−1)

−P−1
0 A0 0

]
.

Proof Clearly, λ = 1 is the minimum or the maximum eigenvalue of the matrix
polynomial RL(λ) in (5). Suppose λ = 1 is the minimum eigenvalue of RL(λ).
Then for every unit vector x ∈ Cn, the equation

x∗RL(λ)x = λ2 − (1 + x∗Sx)λ + x∗A0A
∗
0x = 0 (6)

has a real root [4, 8]

ρ1 =
1 + x∗Sx−√

(1 + x∗Sx)2 − 4x∗A0A∗0x
2

≥ 1.
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Hence,

x∗




m−1∑

j=0

AjA
∗
j


x ≤ x∗A0A

∗
0x,

where the equality holds for x a unit eigenvector of RL(λ) corresponding to 1.
Consequently, the matrix ∆∆∗ =

∑m−1
j=1 AjA

∗
j is singular negative semidefinite.

Since ∆∆∗ is always positive semidefinite, this means that ∆ = 0, and thus,
CLC∗L = In(m−1) ⊕A0A

∗
0 and P = (CLC∗L)1/2 = In(m−1) ⊕ P0.

If λ = 1 is the maximum eigenvalue of RL(λ), then the proof is similar,
using the real root

ρ2 =
1 + x∗Sx +

√
(1 + x∗Sx)2 − 4x∗A0A∗0x

2
≤ 1

of the quadratic equation (6). In both cases, the matrix

U =
[

0 In(m−1)

−P−1
0 A0 0

]

satisfies

U U∗ =
[

0 In(m−1)

−P−1
0 A0 0

] [
0 −A∗0P

−1
0

In(m−1) 0

]
= Inm

and

P U =
[

In(m−1) 0
0 P0

] [
0 In(m−1)

−P−1
0 A0 0

]
= CL.

The proof is complete. ¤

Note that if all the coefficient matrices A1, A2, . . . , Am−1 of L(λ) are zero
(this is the case in the above proposition), then CLC∗L = In(m−1) ⊕ A0A

∗
0

and the spectrum of RL(λ) = (λ − 1)(Inλ − A0A
∗
0) coincides with the union

sp(A0A
∗
0) ∪ {1}.

Consider the 2n× 2n hermitian matrix

HL =




In

(∑m−1
j=1 AjA

∗
j

)1/2

(∑m−1
j=1 AjA

∗
j

)1/2 ∑m−1
j=0 AjA

∗
j


 =

[
In P1

P1 S

]
.

Then by straightforward computations, we see that det (I2nλ−HL) = detRL(λ),
i.e., sp(RL) = sp(HL). As a consequence, HL is positive definite.

Assuming that ∆∆∗ =
∑m−1

j=1 AjA
∗
j is nonsingular, we also define the nm×

2n matrix

ML =
[ −∆∗ P−1

1 0
0 In

]
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and observe that

M∗
LML =

[ −P−1
1 ∆ 0
0 In

] [ −∆∗ P−1
1 0

0 In

]
=

[
P−1

1 P 2
1 P−1

1 0
0 In

]
= I2n.

Now we can prove the main result of the paper, generalizing [7, Theorem 2.1].

Theorem 5 Let L(λ) = Inλm+Am−1λ
m−1+· · ·+A1λ+A0 be an n×n matrix

polynomial with detA0 6= 0, and suppose ∆∆∗ =
∑m−1

j=1 AjA
∗
j is nonsingular.

Define ML as above, and let H
1/2
L be the positive definite square root of HL.

Then the polar decomposition of the block companion matrix CL is given by
CL = P U, where

P = Inm + ML(H1/2
L − I2n)M∗

L

and

U =
(
Inm + ML(H1/2

L − I2n)M∗
L

)[ −∆∗(A−1
0 )∗ In(m−1)

−(A−1
0 )∗ 0

]
.

Proof Since M∗
LML = I2n, the matrix P = Inm + ML(H1/2

L − I2n)M∗
L is

positive definite and satisfies

P 2 =
(
Inm + ML(H1/2

L − I2n)M∗
L

)2

= Inm + 2ML(H1/2
L − I2n)M∗

L + ML(H1/2
L − I2n)2M∗

L

= Inm + ML(2H
1/2
L − 2I2n + HL − 2H

1/2
L + I2n)M∗

L

= Inm + ML(HL − I2n)M∗
L

= Inm +
[ −∆∗ P−1

1 0
0 In

] [
0 P1

P1 S − In

] [ −P−1
1 ∆ 0
0 In

]

= Inm +
[

0 −∆∗

−∆ S − In

]

= CLC∗L.

Furthermore, by the relation CL = P U, we have that U∗ = C−1
L P, or

equivalently, U = P (C−1
L )∗, where

(C−1
L )∗ =




−A∗1(A
−1
0 )∗ In 0 · · · 0

−A∗2(A
−1
0 )∗ 0 In · · · 0

...
...

...
. . .

...
−A∗m−1(A

−1
0 )∗ 0 0 · · · In

−(A−1
0 )∗ 0 0 · · · 0




=
[ −∆∗(A−1

0 )∗ In(m−1)

−(A−1
0 )∗ 0

]
.

The proof is complete. ¤

Notice that by the assumption detA0 6= 0, it follows that CL is nonsingular
and the matrices P and U are unique [9].

6



Next we obtain that the matrices CLC∗L and In(m−2) ⊕ HL are unitarily
similar. One can easily see that this result leads directly to a second proof of
Theorem 5.

Proposition 6 Suppose ∆∆∗ is nonsingular and let ω1, ω2, . . . , ωn(m−2) be
an orthonormal system of n(m−2) eigenvectors of CLC∗L corresponding to the
eigenvalue λ = 1. Then the nm×nm matrix V =

[
ω1 ω2 . . . ωn(m−2) ML

]
is unitary and satisfies V ∗ (CLC∗L) V = In(m−2) ⊕HL.

Proof Consider the eigenvectors

ω1 =




ω1,1

ω1,2

...
ω1,m


 , ω2 =




ω2,1

ω2,2

...
ω2,m


 , . . . , ωn(m−2) =




ωn(m−2),1

ωn(m−2),2

...
ωn(m−2),m


 ∈ Cnm,

where ωi,j ∈ Cn (i = 1, 2, . . . , n(m− 2), j = 1, 2, . . . ,m), and define the nm×
n(m − 2) matrix W =

[
ω1 ω2 · · · ωn(m−2)

]
. Since ∆∆∗ is nonsingular,

by Proposition 3, A1, A2, . . . , Am−1 cannot have a common left eigenvector
corresponding to zero. As a consequence, the equations

(CLC∗L)ωk =




In 0 · · · 0 −A∗1
0 In · · · 0 −A∗2
...

...
. . .

...
...

0 0 · · · In −A∗m−1

−A1 −A2 · · · −Am−1 S







ωk,1

ωk,2

...
ωk,m


 =




ωk,1

ωk,2

...
ωk,m




(k = 1, 2, . . . , n(m− 2)) yield

ωk,m = 0 ; k = 1, 2, . . . , n(m− 2)

and

M∗
L ωk =

[ −P−1
1 ∆ 0
0 In

]



ωk,1

ωk,2

...
ωk,m


 = 0 ; k = 1, 2, . . . , n(m− 2).

Furthermore, M∗
LML = I2n, and thus, the nm×nm matrix V = [ W ML ]

is unitary. If W1 is the n(m−1)×n(m−2) submatrix of W obtained by striking
out the last n zero rows of W , then straightforward computations imply that

V ∗ (CLC∗L) V =
[

W ∗

M∗
L

] [
In(m−1) −∆∗

−∆ S

]
[ W ML ]

=




W ∗
1 0

−P−1
1 ∆ P1

−∆ S




[
W1 −∆∗P−1

1 0
0 0 In

]

=




In(m−2) 0 0
0 In P1

0 P1 S


 = In(m−2) ⊕HL. ¤
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When the matrices A0A
∗
0 and ∆∆∗ commute, the problem of computing

H
1/2
L arisen in Theorem 5 can be reduced to the computation of the positive

definite matrices P0, P1 and Ψ in (3) and (4). The following lemma is necessary
for our discussion.

Lemma 7 Suppose A0A
∗
0 and ∆∆∗ commute. Then the matrices A0A

∗
0, ∆∆∗,

P0, P1, Ψ and their inverses are mutually commuting.

Proof By [9, Theorem 4.1.6], there exists a unitary V0 ∈ Cn×n such that
V ∗

0 (A0A
∗
0)V0 and V ∗

0 (∆∆∗)V0 are diagonal. The result follows readily. ¤

Proposition 8 Suppose ∆∆∗ is nonsingular and commutes with A0A
∗
0. Then

the positive definite square root of HL is given by

H
1/2
L =

[
Ψ−1 0

0 Ψ−1

] [
In + P0 P1

P1 P0 + S

]
.

Proof Since A0A
∗
0 and ∆∆∗ commute, using Lemma 7, it is straightforward to

see that
([

Ψ−1 0
0 Ψ−1

] [
In + P0 P1

P1 P0 + S

])2

=
[

Ψ−1(In + P0) Ψ−1P1

Ψ−1P1 Ψ−1(P0 + S)

]2

=
[

Ψ−2[(In + P0)2 + ∆∆∗] Ψ−2[In + 2P0 + S]P1

Ψ−2[In + 2P0 + S]P1 Ψ−2[In + 2P0 + S]S

]

=
[

In P1

P1 S

]
= HL.

Moreover, by Lemma 7 and [9, Theorem 7.7.6], we obtain that the matrices
[

Ψ−1 0
0 Ψ−1

]
and

[
In + P0 P1

P1 P0 + S

]

are commuting positive definite. Hence, their product is also a positive definite
matrix, completing the proof. ¤

It is worth mentioning that if CL is nonsingular with polar decomposi-
tion CL = P U and the nm × nm matrix P is written in the form P =
[ Q1 Q2 · · · Qm ] , where Qk ∈ Cnm×n (k = 1, 2, . . . , m), then

U = [ Q1 Q2 · · · Qm ]
[ −∆∗(A−1

0 )∗ In(m−1)

−(A−1
0 )∗ 0

]

=


 −


Qm(A−1

0 )∗ +
m−1∑

j=1

QjA
∗
j (A

−1
0 )∗


 Q1 Q2 · · · Qm−1


 .
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Our results are illustrated in the following example.

Example Consider the 2× 2 matrix polynomial

L(λ) = I2λ
3+A2λ

2+A1λ+A0 = I2λ
3+

[
1 0
1 1

]
λ2+

[
0 0
1 1

]
λ+

[ −1 1
1 0

]

and its block companion matrix CL. The spectrum sp(L) = {1,−1,−0.5 ±
0.866 i} and the singular values of CL, namely, 2.4171, 1.8354, 1, 1, 0.8477, 0.2659,
clearly confirm Proposition 1 and Corollary 2. The matrices A0 and ∆∆∗ =

A1A
∗
1 + A2A

∗
2 =

[
1 1
1 4

]
are nonsingular and do not commute. It is easy to

compute

P0 =
[

1.3416 −0.4472
−0.4472 0.8944

]
, P1 =

[
0.9391 0.3437
0.3437 1.9702

]
, Ψ =

[
2.3094 −0.0906
−0.0906 2.6242

]

and

ML =
[ −∆∗ P−1

1 0
0 I2

]
=




0.1984 −0.5422 0 0
0.1984 −0.5422 0 0
−0.9391 −0.3437 0 0
0.1984 −0.5422 0 0

0 0 1 0
0 0 0 1




.

The positive definite square root of HL is

H
1/2
L =




0.91 −0.1089 0.3726 0.1459
−0.1089 0.6629 0.1787 0.7189
0.3726 0.1787 1.6813 −0.0482
0.1459 0.7189 −0.0482 2.1118


 ,

and by Theorem 5, the polar decomposition of CL is given by CL = P U, where

P =




0.9208 −0.0792 −0.0941 −0.0792 −0.0229 −0.3609
−0.0792 0.9208 −0.0941 −0.0792 −0.0229 −0.3609
−0.0941 −0.0941 0.8105 −0.0941 −0.4113 −0.3838
−0.0792 −0.0792 −0.0941 0.9208 −0.0229 −0.3609
−0.0229 −0.0229 −0.4113 −0.0229 1.6813 −0.0482
−0.3609 −0.3609 −0.3838 −0.3609 −0.0482 2.1118




and

U = P (C−1
L )∗ =




−0.3074 −0.1904 0.9208 −0.0792 −0.0941 −0.0792
−0.3074 −0.1904 −0.0792 0.9208 −0.0941 −0.0792
−0.1445 −0.5437 −0.0941 −0.0941 0.8105 −0.0941
−0.3074 −0.1904 −0.0792 −0.0792 −0.0941 0.9208
0.5283 −0.7417 −0.0229 −0.0229 −0.4113 −0.0229
−0.6453 −0.2134 −0.3609 −0.3609 −0.3838 −0.3609




.
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Denoting the Frobenius norm by ‖ ·‖F , we confirm our numerical results by cal-
culating ‖CLC∗L − P 2‖F < 10−14. Notice also that the last four columns of U
are exactly the same with the first four columns of P , verifying our discussion. ¤

Finally, we remark that since our results yield a strong reduction of the order
of the problem of polar decomposition, they lead to better estimations of the
factors P and U than the classical methods applied directly to CL. For example,
consider the 50× 50 diagonal matrix polynomial

L(λ) = I50λ
5 + A4λ

4 + A3λ
3 + A2λ

2 + A1λ + I50,

where Aj = diag{1, 2j , 3j , . . . , 50j} (j = 1, 2, 3, 4). Two approximations of the
positive definite square root of the 250 × 250 matrix CLC∗L, P and P̂ , were
constructed by our methodology (using Theorem 5 and Proposition 8) and by a
standard singular value decomposition of CL, respectively. All the computations
were performed in MATLAB. To compare the accuracy of the two techniques,
we compute ‖CLC∗L − P 2‖F

∼= 0.0135 and ‖CLC∗L − P̂ 2‖F
∼= 0.1562. Hence,

we conclude that our results add one more possibility for testing numerical
algorithms relative to polar decomposition and singular value decomposition.
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