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Abstract

In this paper, the solutions of a homogeneous matrix difference equa-
tion AmUj+m + AmfluHm,l 4.4 A1Uj+1 + Aouj =0 (] =0,1,2,.. )
are investigated and it is obtained that they do not depend on the zeros
of the equation at the infinity.
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1 Introduction and preliminaries
Consider the difference equation
Amuj-‘rm + Am—luj—i-m—l +- Aluj-i-l + Aouj = fj ;7 J=0,1,2,... (1)

where Ag, Ay,...,A,, are n x n complex matrices, fo, f1,f2,... is a given
sequence of vectors in C”, and wug,u1,us,... is a sequence to be found. If for
some j=0,1,2,..., fj # 0, then the equation (1) is called inhomogeneous, and
if f; =0 forall §=0,1,2,..., then the equation

Amuj+m+Amfluj+m71 +"‘+A1Uj+1 +AOUj =0 3 _] = 0,1,2,... (2)

is said to be homogeneous.

A general solution w = {wg, w1, ws,...} of the inhomogeneous equation (1)
is written in the form
W =u-+yv,

where u = {up,u1,us,...} is a general solution of the corresponding homo-
geneous equation (2) and v = {vg,v1,v2,...} is a fixed particular solution of
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(1) (see [1]). Using the notions of standard and resolvent triples, the general
solution of (1) is given by Theorems 1.6 and 8.3 in [1].

In this paper, using a methodology in [5], we study the solutions of (2) and
explain why they are independent of the zeros of the difference equation at the
infinity (if any). In particular, the part of any solution u = {ug,uy,us,...} of
the homogeneous equation (2), which corresponds to the zeros at the infinity,
coincides with the initial vector ug. Our approach is based on the notions of the
Z-transformation and the Smith-McMillan form of a matrix polynomial at the
infinity. The suggested references are [2] and [3,5], respectively. Furthermore,
the use of Laurent expansion of rational matrix functions is crucial.

For a vector sequence yq, y1,¥2,... € C", its Z-transformation is defined by
o0
Z{y;} = > wAF,
k=0

where A is a complex variable. The Z-transformation is linear and for any

integer s,
s—1

Z{yjrs} = N Z{y;} =Y uAE (3)
k=0

It is also worth noting that for the Kronecker delta at a point s € Z, namely,

sy ={ o920 b (W
we have Z{0:(j)} =A"° (A #0, 0).

Let Q(A) be an n x n rational matrix function. Then there exist two n xn
rational matrix functions U(A) and V(A) with constant nonzero determinants
such that

. 1 1 1
U0 QWY = ding {ar o, o
where p1 > p2 > - > p, > 0 and 0 < guy1 < guy1 < -+ < g are the
orders of the poles and the zeros of Q()) at the infinity, respectively [3,5]. The
diagonal matrix function

- , 1 1 1
Sy = dlag{Apl’Am"“’Ap”’ Nit1 )\qﬂ,n’“",\qu} (5)

is known as the Smith-McMillan form of Q(\) at A = oc.

Finally, we recall that a rational matrix function Q(\) = [g;x(N)] is called
strictly proper (proper) if for every element g¢;x()), the degree of the denomina-
tor is greater (resp. not less) than the degree of the corresponding numerator
(see also [4]).



2 Zeros at the infinity

Consider the homogeneous difference equation in (2). Applying the Z-transfor-
mation (for every j =0,1,2,...) yields

Z{ApUjtm + -+ Arujp + Aou; b = 0
or equivalently,
A Z{uwjim}t + -+ A1 Z{uji1} + Ao{u;} = 0.
Hence by (3),

m—1
Am <)\mZ{UJ} - Z Uk/\mk> + -+ A1 ()\Z{u]} — ’U,o/\) + Ao{’u,]’} = O,
k=0

and thus,
(ApA™ 4+ Ad + Ag) Z{u;} = a()),

where the vector

m p—1
a()) = Z <A,,Zuk/\pk>
p=1 k=0
is the initial condition vector associated with wug,uy,...,u,m—1. Consequently,

for the n X n matrix polynomial
L) = Ap\™ + Ay A™ oo AN+ Ay,

it is clear that

Z{u;} = L) a(d)  (detL(A) £0). (6)

Let SﬁA) = diag {\P1, APz .. APe 1/ AWt T/ Ntz 0 1/A% ) be the
Smith-McMillan form of L(X) as in (5), and assume that L(\) has at least
one zero at oo, i.e., ¢, > 1. Then by Proposition 2.1 in [5], the Laurent
expansion at A = oo of the rational matrix function L(A)~! is of the form

L™ = By A% + -+ BIA+ By + BLA ™ + BoA 24+
Hence, (6) implies
Z{u;} = (Be, A" + -+ BiA+ By + B A + Bod 2 +-+1) a())
or equivalently,

By

v

Z{u;} = [IX% IX®~' oo INT INTH -]




The initial condition vector «(A) is written

a(A) = [IX™ 1At

Ay

A

Az

and by straightforward computations, one can see that

Z{u;} = [IX®H™ [awtmlo

B, 0
Bqu_l Bqu
BQL/ —m+1 BQu —m+2
Bqu—m Bqu—m—H
B—m B—m+1

B—m—l B—m

A, 0 0
An_1 Ap 0

A A A,

As a consequence, Z{u;} is of the form

where

ﬂpol()\) — [I)\QV"FW I e tm=1 |
I B, 0
Bqu_l BCIV
X | Bg—m+1 Bg,—m+2
Bqu_m BQU_m+1
L B—m B—m+1
A 0 ce. 0
A1 A, - 0
X . .
A A A

INT X!

0
0

BQu_l
By, —2

B_;

Uo
U1

Z{“j} = ﬂpol()‘) + ﬂspo\)v

INT]

Um—1

A

By, -1

B_,
B_,

Ug
Ui

Um—1




is the polynomial part of Z{u;}, and

B—m—l B—m e B—S B—2
1 9 B—m—2 B—m—l e B—4 B—3
ﬁéP(A) = [IA IA o ] B_,,.3 B_,_o -+ B_s B_y4
Am 0 O Ug
Am,1 Am 0 (5%
x , (8)
Ay Ay o Ap Um—1
is the strictly proper part of Z{u;}. Notice that (,,(A) is of the form
Bap(A) = mAT + 1A A (9)

where the coefficients v1,72,7s3,... € C" are obtained by (8). In particular,

M o= (Z B_j_ 1Ak> ug + (Z B—kAk) ur+ -+ BogApum—_1
(ZB k- 2Ak> up + (ZB k- 1Ak> up + -+ B_gApum_1

V2

(10)

Vo= (ZB k- jAk> ug + (Z B—k—j+1Ak> uy + -+ By 1 Apum o1

k=1 k=2

The equation L(\)"'L(\) = I (detL()\) # 0) is written
(Bo A" + -+ Bid+ By + B_gA™ ) (A AN™ + -+ AA+ Ag) = T

and yields the equations

0 = By Anm

0 = By Am_1+ By —14Am

0 = BqVAm72 + quflAmfl + Bq,,72Am

: : : : (11)
0 = quAl+qu_1A2+"'+qu_m+1Am

0 = By Ao+ By 141+ + By -mAn

I = ByAg+B_ 1A+ +B_ AR



Then we can verify that

B,, 0 0 0
B,, -1 B,, 0 0
" ! , , Am 0 0
. : A1 A, 0
Bqu—m+1 Bqu—m-&-? Bqu—l Bqu . . .
By, - By, —m+1 Bg,—2 Bg,—1 . : :
e " " A A Anm
| B B_mt1 B>, B |
[0 0 0 0 0]
0 0 0 O 0
8 8 8 ) ) Ay Ay Am—1
: : 0 AO Am—2
= : —| By, 0 0 0 0 ) .
B,,-1 B, 0 0 0 : :
0 0 0 q. fz . 0 0 Ao
I 0 0 : : :
| Bo By By, 0 0 |
Consequently,
uo
uy
Bpot(A) ([I0 - 0]=[IX\" IA¥* ... TNT]|By)
Um—1
Uo
Uy
ug — [IX IX*~1 ... I\ I]Byg : : (12)
Um—1
where By, is the n(g, + 1) X nm matrix
B, 0 -+ 0 0 07 A A A1
By-1 By - 0 0 0 0 A Ay s
By = ) . . ) )
By B, B, 0 0 0 0 Ay
[ By, Ao By, A4 By, A1 ]
qu_le Bql,—lAl + BqUAO Bq,,—lAm—l + quAm_Q
BqV72AO Bq,,72A1 + quflAO Bq,,72Am71 + Bql,flAm72 + Bq,,Amfl’)
BlAO BlAl + BQAO g’/:l BjAm—l—j
By Ay ByA; + B1 A Lo BiAm_1j |




By straightforward computations, it follows

Uo
qv
qv Q-1 .. “ — \J
[IA% T\ I\ IByp ) > BN | Agug
: =0
Um—1
qv ) qv )
H D BN | A+ [ D BN Ag|ug + -
j=0 j=1

qv qv
+ ZBJAJ Am,1 + ZBj)\j_l Am72 + .4 Bq,,Aqu,,*l U —1
J=0 j=1

qv m—1 qv m—2
- () (S ) o () (5 ] 4
j=0 k=0 j=1 k=0
m—q,—2 m—q,—1
+ (Bg, A+ Bg,-1) ( Z Akuk-&-qu—l) + By, ( Z Akuk-‘qu) :
k=0

k=0
Assume now that wug,u1,...,Um4q, satisfy (2). Then the equations (2) and
(11) imply
Ug
U1
[INT IA%—1 ... TA T]|By ) = — (Bg, Am) A" U,
Um—1

By, —1Am + By, A 1)A" "y, — (Byy Ap) A Mg

By, Ao+ By, —1Am_1+ By, 2 Am)A? Yy, — - — (By, Ap) Ut q,
By, Am) A%t + A" Mg+ Uigg,)

By, Apm—1+ By, —14m) ALy, + A2y e Umtqy—1)
BquAm—2 + Bqu—lAm—l + BqV—QAM) ()‘qy_Qum +oeet um+qu—2)

—(
—(
—(
—(
—(

- (BQVAW*QU + quflAqu,fFl + BOAm) Um
= 0.

Thus, by (12), we have B,0(A\) = uo. Moreover, applying the inverse Z-
transformation on the equation (7), it follows that

Uj = Z_l{ﬁpol(A) J"Bsp(/\)} = Z_l{ﬁpol()‘)}+Z_1{ﬂsp()‘)}' (13)



By the equation (9) and the properties of the Z-transformation and its inverse
[2], it is clear that

Z7HBp(N)} = Z7TH{mA T AT+ AT )
= m61(j) +v202(4) + 3 d3(4) + - (14)
and
Z7HBpar(N)} = Z7Huo} = uodo(4), (15)
where 05(j) is the Kronecker delta defined by (4) and the coefficients 71,2,
73, ... are given by (10). Hence, for appropriate vectors ug,u1, ..., Um+q,, the

solution of the difference equation (2) depends only on the strictly proper part
of Z{u;}, that is, Bsp(N) in (8).

Let ug,u1,...,um—1 be any choice of initial conditions. Then by (10), (13),
(14) and (15), we can construct the corresponding solution u = {ug, u1, ug, ...}
of the equation (2). As a consequence, the above discussion yields the following
result.

Theorem 1 Consider the homogeneous difference equation (2) and the matriz
polynomial L(\) = Ay A+ A i A™ 14+ Aj A+ Ag. Let S ) be the Smith-

LA
MecMillan form of L(X\) asin (5), and assume that L(\) has at least one zero at
00, i.e., q, > 1. Then for every choice of initial conditions ug, U1, ..., Um—_1,
the corresponding solution uw = {ug,u1,us,...} of (2) does not depend on the
zeros of L(\) at infinity. In particular, the vectors ug,u1,...,Um—1 are arbi-
trary, and for every j =m,m+1,m+2,..., the vector u; coincides with y;
in (10).

Next we present an illustrative example.
Example
Let

A+ N 101 3 10 10
L(A)_[ 0 >\+1]_{0 O}A—F{O 1%*{0 1]
be the matrix polynomial, which corresponds to the difference equation
0 1 1 0 1 0 .
|:0 O]uj+3+[0 1]Uj+1+|:0 1:|Uj—0 (j=0,1,2,...). (16)
Then one can verify that ¢, =1 and

[ A+1)"1 A4 1)2 ]
0 A+t

o -1 0 2 1 -3,
= [0 o%*{o 0}*{0 1 ]’\ o

Hence, for the vectors

Uo,1 Ui,1 U2,1
Uy = , Ul = and us = ,
Uo,2 U1,2 u22

L™



we have

Uo,1

uo,2

. _]. A—2 A 1 0 Uy,1
e 0 } U9
U211
U2, 2

_ (w2 + ur2)A+ug1 — 2up2 — u1,2 + Uz 2
U0,2

It is clear that for every solution {ug,u1,usg,...} of the difference equation (16),
the vectors wug,u1,up satisfy wug2 +ui2 =0 and uz2 —ug2 =0, and thus,

Z Y Bpor(N)} u0,200(7)

Up,2 + U2 ] 510) + { Ug,1 — 2ug,2 — U1,2 + U2,2 } 50(j)
0 Up,2

[ (uo,2 +u1,2)61(5) + (w01 — 2u02 — u1,2 + ua,2)d0(4) ]

= zo’l }50@) = uo do(j)-
| o2
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