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Abstract. The Birkhoff–James ε-sets of vectors and vector-valued polynomials (in one complex variable) have recently

been introduced as natural generalizations of the standard numerical range of (square) matrices or operators and matrix or

operator polynomials, respectively. Corners on the boundary curves of these sets are of particular interest, not least because of

their importance in visualizing these sets. In this paper, we provide a characterization for the corners of the Birkhoff-James ε-

sets of vectors and vector-valued polynomials, completing and expanding upon previous exploration of the geometric properties

of these sets. We also propose a randomized algorithm for approximating their boundaries.
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1. Introduction. The standard numerical range has been extensively studied for more than a century

and is a useful tool in understanding (square) matrices and operators; see [2, 3, 13, 14, 30] and the references

therein. During the last few decades, applications on higher-order linear systems of differential (or difference)

equations and stability theory have motivated generalizations to matrix and operator polynomials [10, 12,

22, 23]. More precisely, the numerical range of a matrix polynomial:

P (z) = Amz
m +Am−1z

m−1 + · · ·+A1z +A0,

where z ∈ C is a complex variable and Aj ∈ Cn×n (j = 0, 1, . . . ,m) with Am 6= 0, is defined (see e.g., [22])

by:

W (P ) = {µ ∈ C : x∗P (µ)x = 0 for some nonzero x ∈ Cn} .

For P (z) = zI−A, the set W (P ) reduces to the classical numerical range F (A) = {x∗Ax : x ∈ Cn, ‖x‖2 = 1}
of the matrix A (also known as field of values) [14].

Extensions beyond the realm of square matrices to general rectangular matrices and vectors (using some

norm instead of the inner product) have been inspired by the notion of the Birkhoff–James ε-orthogonality

[1, 8, 16]. Based on this concept, Chorianopoulos and Psarrakos [7] and Karamanlis and Psarrakos [18] in-

troduced the Birkhoff–James ε-orthogonality sets of rectangular matrices and elements of a complex normed

linear space, respectively. These sets are direct generalizations of the standard numerical range of matri-

ces and operators, and their interesting geometrical properties were studied in [6, 7, 18, 27]. Then, the

corresponding Birkhoff–James ε-set of vector-valued polynomials (in one complex variable) was recently in-

troduced by Panagakou, Psarrakos, and Yannakakis in [27] and also demonstrates a rich structure. The
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analysis in [27] was based on an equivalent description of the Birkhoff–James ε-set which involves continuous

linear functionals, while a preliminary definition for rectangular matrix polynomials had already appeared

in [7].

The continued interest in such sets is readily explained by the potential of their geometry to capture and

reveal information about the algebraic and analytic properties of the corresponding linear transformations.

Pride of place must go to the study of their boundary, not least because of its importance for visualization

purposes. Particular problems in this direction may arise in cases where the boundary is nonsmooth. In fact,

the (non)-smoothness of the boundary of the numerical range is well known to reveal spectral information.

In particular, corners of the numerical range boundary curve are (normal and semisimple) eigenvalues of the

corresponding matrix (or, under some weak conditions, of the corresponding matrix polynomial). Related

results regarding the shape, the boundary, and the corners of the numerical range of matrix polynomials can

be found in [7, 20, 24, 26].

In this note, we focus on corners of the boundary of the Birkhoff–James ε-orthogonality set of vectors

and the Birkhoff–James ε-set of vector-valued polynomials. Specifically, in Section 2, we briefly recall the

relevant background; namely, the definitions and the various equivalent descriptions of these two sets, along

with their basic properties, revealing their interesting structure. In Section 3, we formally introduce the

notion of a corner and provide a characterization for the corners of the Birkhoff–James ε-orthogonality sets,

completing (in some sense) the geometrical exploration of these sets which was initiated in [27] and furthering

our understanding of vector-valued polynomials. Finally, in Section 4, we propose a randomized algorithm

for drawing (approximately) the boundaries of the Birkhoff–James ε-orthogonality sets, which is quite faster

than the standard grid method.

2. Definitions and basic properties. Consider a complex normed linear space (X , ‖ · ‖) (henceforth,

for simplicity abbreviated as X ). For two elements x and y of X , x is said to be Birkhoff–James orthogonal

to y, denoted by x ⊥BJ y, if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ C [1, 16]. The Birkhoff–James orthogonality is

homogeneous, but it is neither symmetric nor additive [16]. Moreover, for any ε ∈ [0, 1), x is said to be

Birkhoff–James ε-orthogonal to y, denoted by x ⊥εBJ y, if [5, 8]

(2.1) ‖x+ λy‖ ≥
√

1− ε2 ‖x‖, ∀λ ∈ C.

The Birkhoff–James ε-orthogonality is also homogeneous. If the norm ‖ · ‖ is induced by an inner product

〈·, ·〉, then an x ∈ X is said to be ε-orthogonal to a y ∈ X , denoted by x ⊥ε y, if |〈x, y〉| ≤ ε ‖x‖ ‖y‖;
apparently, for ε = 0, we have the standard orthogonality. Furthermore, for any ε ∈ [0, 1), x ⊥ε y if and

only if x ⊥εBJ y [5, 8].

For any x, y ∈ X , with y 6= 0, and any ε ∈ [0, 1), the Birkhoff–James ε-orthogonality set of x with respect

to y is defined and denoted by:

F ε‖·‖(x; y) = {µ ∈ C : y ⊥εBJ (x− µy)} .

Keeping in mind (2.1), it is straightforward to see that

F ε‖·‖(x; y) =
{
µ ∈ C : ‖y − λ(x− µy)‖ ≥

√
1− ε2 ‖y‖, ∀λ ∈ C

}
=

{
µ ∈ C :

∥∥∥∥y − 1

λ
(x− µy)

∥∥∥∥ ≥√1− ε2 ‖y‖, ∀λ ∈ C \ {0}
}

=

{
µ ∈ C :

1

|λ|
‖λy − (x− µy)‖ ≥

√
1− ε2 ‖y‖, ∀λ ∈ C \ {0}

}
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=
{
µ ∈ C : ‖x− (µ+ λ)y‖ ≥

√
1− ε2 ‖y‖ |λ|, ∀λ ∈ C

}
=
{
µ ∈ C : ‖x− λy‖ ≥

√
1− ε2 ‖y‖ |µ− λ|, ∀λ ∈ C

}
=
⋂
λ∈C
D
(
λ,
‖x− λy‖√
1− ε2 ‖y‖

)
,(2.2)

where D
(
λ,
‖x− λy‖√
1− ε2 ‖y‖

)
denotes the closed circular disk with center at λ and radius

‖x− λy‖√
1− ε2 ‖y‖

. Since

the set F ε‖·‖(x; y) is an infinite intersection of closed circular disks, its compactness and convexity are apparent.

Moreover, it is non-empty by Corollary 2.2 of [16].

The Birkhoff–James ε-orthogonality set is a direct generalization of the standard numerical range of

matrices. In particular, for a square complex matrix A ∈ Cn×n and ‖ · ‖ = ‖ · ‖2, the Birkhoff–James

0-orthogonality set F 0
‖·‖(A; In) (where In is the n×n identity matrix) coincides [7] with the numerical range

F (A) of A.

Let X ∗ denote the dual space of X , that is, the complex linear space of all continuous linear functionals

of X (using the induced operator norm). Consider also two elements x and y of X , with y 6= 0. For any

ε ∈ [0, 1), we recall the next definition [27]:

Lε(y) =
{
f ∈ X ∗ : f(y) =

√
1− ε2 ‖y‖, ‖f‖ ≤ 1

}
.

This set is non-empty, closed and convex [27, Lemma 2.1]. Using this definition, an alternative characteri-

zation of the Birkhoff–James ε-orthogonality set, namely,

(2.3) F ε‖·‖(x; y) =

{
f(x)√

1− ε2 ‖y‖
: f ∈ Lε(y)

}
,

was obtained in [27, Theorem 2.4]. Next, for clarity and reader’s convenience, we summarize results of [18, 27]

(see also [6, 7] for rectangular matrices), describing basic properties of the Birkhoff–James ε-orthogonality

set.

(P1) For any a, b ∈ C and any ε ∈ [0, 1), F ε‖·‖(ax+ by; y) = aF ε‖·‖(x; y) + b.

(P2) For any nonzero b ∈ C and any ε ∈ [0, 1), F ε‖·‖(x; by) =
1

b
F ε‖·‖(x; y).

(P3) If x is a nonzero element of X , then for any ε ∈ [0, 1),{
µ−1 ∈ C : µ ∈ F ε‖·‖(x; y), |µ| ≥ ‖x‖

‖y‖

}
⊆ F ε‖·‖(y;x).

(P4) x = ay for some a ∈ C if and only if F ε‖·‖(x; y) = {a} for every ε ∈ [0, 1).

(P5) If x is not a scalar multiple of y, then for any 0 ≤ ε1 < ε2 < 1, F ε1‖·‖(x; y) lies in the interior of

F ε2‖·‖(x; y). As a consequence, for any ε ∈ (0, 1), F ε‖·‖(x; y) has a non-empty interior.

(P6) If x is not a scalar multiple of y, then for any bounded region Ω ⊂ C, there is an εΩ ∈ [0, 1) such that

Ω ⊆ F εΩ‖·‖(x; y) (i.e., F ε‖·‖(x; y) can be arbitrarily large for ε sufficiently close to 1).

(P7) A µ0 ∈ F ε‖·‖(x; y) lies on the boundary ∂F ε‖·‖(x; y) if and only if inf
λ∈C

{
‖x− λy‖ −

√
1− ε2 ‖y‖ |µ0 − λ|

}
=

0, where ‘ inf ’ can be replaced by ‘ min ’ when ε > 0.
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(P8) If the norm ‖ · ‖ is induced by an inner product 〈·, ·〉, then for any ε ∈ [0, 1),

F ε‖·‖(x; y) = D
(
〈x, y〉
‖y‖2

,

∥∥∥∥x− 〈x, y〉‖y‖2
y

∥∥∥∥ ε√
1− ε2 ‖y‖

)
.

(P9) For any x1, x2 ∈ X and ε ∈ [0, 1), it holds that F ε‖·‖(x1 + x2; y) ⊆ F ε‖·‖(x1; y) + F ε‖·‖(x2; y).

Based on the definition of the Birkhoff–James ε-orthogonality set of vectors, the Birkhoff–James ε-

orthogonality set of vector-valued polynomials (in one complex variable) was introduced in [27]. Consider a

vector-valued polynomial:

(2.4) P (z) = xmz
m + xm−1z

m−1 + · · ·+ x1z + x0,

with vector coefficients xi ∈ X (i = 0, 1, . . . ,m), xm 6= 0, and a scalar variable z ∈ C. Vector-valued

polynomials appear in the approximation of vector-valued functions [28]. Moreover, special cases of vector-

valued polynomials such as square matrix polynomials [9, 10, 11, 17, 19], rectangular matrix polynomials

[9, 17], and operator polynomials [12, 15, 21, 23] arise in many applications.

Let P (z) be a vector-valued polynomial as in (2.4), ε ∈ [0, 1), and y ∈ X be a nonzero vector such that

F ε‖·‖(xm; y) 6= {0}. The Birkhoff–James ε-orthogonality set of P (z) with respect to y is defined and denoted

by:

W ε
‖·‖
(
P (z); y

)
=
{
µ ∈ C : 0 ∈ F ε‖·‖

(
P (µ); y

)}
(2.5)

=
{
µ ∈ C : f

(
P (µ)

)
= 0, f ∈ Lε(y)

}
= {µ ∈ C : y ⊥εBJ P (µ)}

=
{
µ ∈ C : ‖P (µ)− λy‖ ≥

√
1− ε2 ‖y‖ |λ|, ∀λ ∈ C

}
.

It is worth noting that for xm 6= 0 and ε ∈ (0, 1), the condition F ε‖·‖(xm; y) 6= {0} is always satisfied; see

Properties (P4), (P5), and (P6).

Since the set Lε(y) is non-empty and closed, it follows readily that W ε
‖·‖
(
P (z); y

)
is also non-empty and

closed. Moreover, for any 0 ≤ ε1 < ε2 < 1, W ε1
‖·‖
(
P (z); y

)
⊆ W ε2

‖·‖
(
P (z); y

)
. When P (z) is a square matrix

polynomial, note that the Birkhoff–James 0-orthogonality set W 0
‖·‖2

(
P (z); In

)
reduces to the usual numerical

range W (P ) of P (z), in complete analogy to the equality F 0
‖·‖2(A; In) = F (A) for A ∈ Cn×n.

Consider a vector-valued polynomial P (z) as in (2.4), the vector-valued polynomial P ′(z) = mxmz
m−1 +

(m− 1)xm−1z
m−2 + · · ·+ 2x2z+x1, an ε ∈ [0, 1), and a nonzero vector y ∈ X with F ε‖·‖(xm; y) 6= {0}. Next,

again for clarity and reader’s convenience, we summarize results of [27] (see also [7, 20, 22, 26] for matrix

polynomials), describing basic properties of the Birkhoff–James ε-orthogonality set of P (z).

(P10) For any scalar a ∈ C \ {0}, it holds W ε
‖·‖
(
P (az); y

)
= a−1W ε

‖·‖
(
P (z); y

)
and W ε

‖·‖
(
P (z + a); y

)
=

W ε
‖·‖
(
P (z); y

)
− a.

(P11) If R(z) = x0z
m + x1z

m−1 + · · ·+ xm−1z + xm = zmP
(
z−1
)

is the reverse vector-valued polynomial of

P (z), then

W ε
‖·‖
(
R(z); y

)
\ {0} =

{
µ ∈ C : µ−1 ∈W ε

‖·‖
(
P (z); y

)
\ {0}

}
.

(P12) If there exists a continuous linear functional f ∈ Lε(y) such that f(xm) = f(xm−1) = · · · = f(x0) = 0,

then W ε
‖·‖
(
P (z); y

)
= C.
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(P13) The set W ε
‖·‖
(
P (z); y

)
is bounded if and only if 0 /∈ F ε‖·‖(xm; y).

(P14) Let y ∈ X be a nonzero vector such that 0 /∈ F ε‖·‖(xm; y) (or equivalently, W ε
‖·‖
(
P (z); y

)
is bounded),

and suppose that W ε
‖·‖
(
P (z); y

)
has r connected components. If κ is the minimum number of distinct

zeros of the scalar polynomial f(P (z)) = f(xm)zm + f(xm−1)zm−1 + · · · + f(x1)z + f(x0) over all

f ∈ Lε(y), then r ≤ κ ≤ m.

(P15) If z0 ∈ ∂W ε
‖·‖
(
P (z); y

)
, then 0 ∈ ∂F ε‖·‖

(
P (z0); y

)
.

(P16) Let z0 ∈W ε
‖·‖
(
P (z); y

)
such that F ε‖·‖

(
P (z0); y

)
6= {0} and 0 /∈ F ε‖·‖

(
P ′(z0); y

)
. If 0 ∈ ∂F ε‖·‖

(
P (z0); y

)
,

then z0 ∈ ∂W ε
‖·‖
(
P (z); y

)
.

(P17) Let y ∈ X be a nonzero vector such that 0 /∈ F ε‖·‖(xm; y). If z0 is an isolated point of W ε
‖·‖
(
P (z); y

)
,

then F ε‖·‖
(
P (z0); y

)
= {0}. If, in addition, ε > 0, then P (z0) = 0.

3. Corners of the Birkhoff–James ε-orthogonality sets. In this section, we investigate the corners

of the (closed) Birkhoff–James ε-orthogonality sets F ε‖·‖(x; y) and W ε
‖·‖
(
P (z); y

)
. A boundary point z0 of

a closed subset Ω of the complex plane is called a corner of Ω if there exist some δ > 0 and two angles

φ1, φ2 ∈ [0, 2π], with φ2 − φ1 ∈ [0, π), such that

φ1 ≤ arg (z − z0) ≤ φ2, ∀ z ∈ Ω ∩ D(z0, δ),

where D(z0, δ) is the closed circular disk with center z0 and radius δ.

Consider a complex normed linear space (X , ‖ · ‖) (for simplicity X ) and let x, y ∈ X with y 6= 0. For

arbitrary ε ∈ [0, 1), we will be making use of the set:

Aε(x; y) = {f ∈ Lε(y) : f(x) = 0} ,

which is convex by [27, Lemma 4.3]. Moreover, removing the restriction ‖f‖ ≤ 1 in Lε(y), we introduce the

set:

L̂ε(y) =
{
f ∈ X ∗ : f(y) =

√
1− ε2 ‖y‖

}
,

and provide the analog definition of

Âε(x; y) =
{
f ∈ L̂ε(y) : f(x) = 0

}
.

It is straightforward to see that Âε(x; y) is also convex. In the remainder of the paper, the ball centered at

a linear functional f0 ∈ X ∗ with radius δ ≥ 0 is denoted by B(f0, δ).

Lemma 3.1. Let f0 ∈ Aε(x; y) be a linear functional (i.e., f0 ∈ Lε(y) with f0(x) = 0) such that

φ1 ≤ arg
(
f(x)

)
≤ φ2, ∀ f ∈ L̂ε(y) ∩ B(f0, δ),

for some radius δ > 0 and a pair of angles φ1, φ2 ∈ [0, 2π], with φ2 − φ1 ∈ [0, π). Then, for arbitrary

g0 ∈ Âε(x; y), we have

φ1 ≤ arg
(
g(x)

)
≤ φ2, ∀ g ∈ L̂ε(y) ∩ B(g0, δ).

Proof. Let f0 ∈ Lε(y) be a linear functional such that f0(x) = 0, and consider scalars δ > 0 and

φ1, φ2 ∈ [0, 2π] with φ2 − φ1 ∈ [0, π), such that

φ1 ≤ arg
(
f(x)

)
≤ φ2, ∀ f ∈ L̂ε(y) ∩ B(f0, δ).
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Then, for any linear functional g0 ∈ L̂ε(y) with g0(x) = 0 and for every g ∈ B(g0, δ) ∩ L̂ε(y), it holds that

fg = g + f0 − g0 ∈ B(f0, δ),

because ‖fg − f0‖ = ‖g − g0‖ ≤ δ, and

fg = g + f0 − g0 ∈ L̂ε(y),

because fg(y) = g(y) + f0(y) − g0(y) = g(y) =
√

1− ε2 ‖y‖. This means that fg = g + f0 − g0 ∈ L̂ε(y) ∩
B(f0, δ), and by hypothesis, we have

φ1 ≤ arg
(
fg(x)

)
≤ φ2 ⇔ φ1 ≤ arg

(
g(x) + f0(x)− g0(x)

)
≤ φ2

⇔ φ1 ≤ arg
(
g(x)

)
≤ φ2,

completing the proof.

Under the assumptions of Lemma 3.1, an alternative way to express its conclusion would be by saying

that for every linear functional:

g ∈ Âε(x; y) + B(0, δ) =
{
f ∈ X ∗ : ‖f − f0‖ ≤ δ for some f0 ∈ Âε(x; y)

}
,

the argument of the complex scalar g(x) is bounded by:

φ1 ≤ arg
(
g(x)

)
≤ φ2.

Proposition 3.2. Let f0 ∈ Aε(x; y) be a linear functional (i.e., f0 ∈ Lε(y) with f0(x) = 0). Suppose

there exist a δ > 0 and two angles φ1, φ2 ∈ [0, 2π], with φ2 − φ1 ∈ [0, π), such that

(3.6) φ1 ≤ arg
(
f(x)

)
≤ φ2, ∀ f ∈ L̂ε(y) ∩ B(f0, δ).

Then, the origin is a corner of the set F ε‖·‖(x; y).

Proof. By the discussion following Lemma 3.1, the assumption (3.6) on f0 ∈ Aε(x; y) ensures

φ1 ≤ arg
(
g(x)

)
≤ φ2,

for every g ∈ Âε(x; y) + B(0, δ). If we assume that the origin is not a corner of F ε‖·‖(x; y), then there exists

some point z0 of F ε‖·‖(x; y) that lies outside the cone {z ∈ C : φ1 ≤ arg (z) ≤ φ2}. By the characterization

of the Birkhoff–James ε-orthogonality set in (2.3), there exists a linear functional h0 ∈ Lε(y) such that
h0(x)√

1− ε2 ‖y‖
= z0.

Consider now the line segment:

ft = (1− t)h0 + tf0, t ∈ [0, 1],

in the convex set Lε(y), which joins h0 with f0. Then, the line segment:

ft(x) = (1− t)h0(x) + tf0(x) = (1− t)
√

1− ε2 ‖y‖z0, t ∈ [0, 1],

joins the point
√

1− ε2 ‖y‖z0 with 0. Since ft lies in the interior of Âε(x; y)+B(0, δ), there exists a t0 ∈ (0, 1)

such that ft ∈ Âε(x; y) for t ≥ t0. Consequently,

ft(x) = (1− t)
√

1− ε2 ‖y‖z0 ∈ {z ∈ C : φ1 ≤ arg (z) ≤ φ2},

which is a contradiction. Hence, the origin is a corner of F ε‖·‖(x; y).
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The converse of Proposition 3.2 is obvious. Indeed, supposing that the origin is a corner of F ε‖·‖(x; y)

and the (convex) set F ε‖·‖(x; y) lies in a cone {z ∈ C : φ1 ≤ arg (z) ≤ φ2, φ2 − φ1 ∈ [0, π)}, then for any

f ∈ Lε(y), it is clear from (2.3) that φ1 ≤ arg (f(x)) ≤ φ2, and this observation can be extended to elements

f ∈ L̂ε(y). Hence, we may state

Corollary 3.3. Let X be a normed linear space. Consider two vectors x, y ∈ X with y 6= 0 and some

ε ∈ [0, 1). The following are equivalent:

(i) The origin is a corner of F ε‖·‖(x; y).

(ii) There exist a linear functional f0 ∈ Aε(x; y) (i.e., f0 ∈ Lε(y) with f0(x) = 0), some radius δ > 0,

and two angles φ1, φ2 ∈ [0, 2π], with φ2 − φ1 ∈ [0, π), such that

φ1 ≤ arg
(
f(x)

)
≤ φ2, ∀ f ∈ L̂ε(y) ∩ B(f0, δ).

Now, we turn our attention to vector-valued polynomials and corners of W ε
‖·‖
(
P (z); y

)
. As the first step,

we proceed to investigate the linear polynomial case.

Theorem 3.4. Let P (z) = x1z − x0, and let z0 be a corner of the Birkhoff–James ε-orthogonality set

W ε
‖·‖
(
P (z); y

)
. Then, the origin is a corner of F ε‖·‖

(
P (z0); y

)
.

Proof. Let

Q(z) = P (z + z0) = x1z + (x1z0 − x0).

The fact that z0 is a corner of W ε
‖·‖(P (z); y) implies that the origin is a corner of

W ε
‖·‖
(
Q(z); y

)
= W ε

‖·‖
(
P (z + z0); y

)
= W ε

‖·‖
(
P (z); y

)
− z0,

by the translation Property (P10). Since 0 ∈W ε
‖·‖
(
Q(z); y

)
, the corresponding definition ensures the existence

of some linear functional f0 ∈ Lε(y), such that the origin is root of the polynomial:

p(z) = f0(x1)z + f0(x1z0 − x0).

Note that f0(x1z0 − x0) = f0(x1) = 0 cannot hold simultaneously, since then Property (P12) would imply

W ε
‖·‖(Q(z); y) = C. Hence, f0(x1z0 − x0) = 0 and f0(x1) 6= 0. Additionally, since the origin is in fact a

corner of W ε
‖·‖
(
Q(z); y

)
, there exist radii r, ρ > 0 and angles φ1, φ2 ∈ [0, 2π] with φ2 − φ1 ∈ [0, π), such that

for every f ∈ L̂ε(y) ∩ B(f0, ρ), the corresponding root:

µf = −f(x1z0 − x0)

f(x1)
∈W ε

‖·‖
(
Q(z); y

)
∩ D(0, r),

lies in a neighborhood of 0 and its argument is bounded by:

(3.7) φ1 ≤ arg(µf ) ≤ φ2.

By the continuity of the linear functionals, for any d > 0, there exists a neighborhood B(f0, δ) such that

for every f ∈ L̂ε(y) ∩ B(f0, δ),

f(x1) ∈ D
(
f0(x1), d

)
and µf ∈ D(0, r).

Then, by the equation:

arg
(
f(x1)

)
+ arg(µf ) = arg

(
f(x1z0 − x0)

)
+ π = arg

(
f (P (z0))

)
+ π,
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for d small enough, there exist suitable angles θ1, θ2 ∈ [0, 2π], with θ2 − θ1 < π, such that

arg
(
f (P (z0))

)
∈ [θ1, θ2], ∀ f ∈ L̂ε(y) ∩ B(f0, δ).

By Proposition 3.2, it is clear that the origin is a corner of F ε‖·‖
(
P (z0); y

)
.

Application of Theorem 3.4 leads to a corresponding statement for general m-th degree vector-valued

polynomials P (z) = xmz
m + xm−1z

m−1 + · · · + x1z + x0, as in (2.4). We will also be making use of the

notation P ′(z) = mxmz
m−1 + (m− 1)xm−1z

m−2 + · · ·+ 2x2z + x1.

Theorem 3.5. Let P (z) be the m-th degree vector-valued polynomial in (2.4) and z0 be a corner of

W ε
‖·‖
(
P (z); y

)
. If there exists a linear functional f0 ∈ Lε(y) such that f0

(
P (z0)

)
= 0, f0

(
P ′(z0)

)
6= 0, and

f0(xm) 6= 0, then the origin is a corner of F ε‖·‖
(
P (z0); y

)
.

Proof. Defining the vector-valued polynomial

Q(z) = P (z + z0) = xmz
m + · · ·+ P ′(z0)z + P (z0),

the translation Property (P10) yields

W ε
‖·‖
(
Q(z); y

)
= W ε

‖·‖
(
P (z + z0); y

)
= W ε

‖·‖
(
P (z); y

)
− z0,

whereby the origin is a corner of W ε
‖·‖
(
Q(z); y

)
. Since f0(xm) 6= 0 and by the continuity of the linear

functionals of the set Lε(y), there exists a neighborhood B(f0, δ) for suitable δ > 0, such that f(xm) 6= 0

for every linear functional f ∈ B(f0, δ). Moreover, note that f0

(
Q(0)

)
= f0

(
P (z0)

)
= 0 and the assumption

f0

(
Q′(0)

)
= f0

(
P ′(z0)

)
6= 0 implies that the origin is in fact a simple root of the equation:

f0

(
Q(z)

)
= 0.

Hence, restricting our attention to f ∈ B(f0, δ) ∩ L̂ε(y), we denote z1(f), z2(f), . . . , zm(f) the roots of the

m–th degree (f(xm) 6= 0) polynomial equation:

f
(
Q(z)

)
= f(xm)zm + · · ·+ f

(
P ′(z0)

)
z + f(P (z0)) = 0,

indexed so that zm(f0) = 0 and the product:

prm−1(f) = z1(f) · · · zm−1(f),

is nonzero for f = f0. Note that zi(f) (i = 1, 2, . . . ,m) are continuous functions of f ∈ L̂ε(y) ∩ B(f0, δ) and

their product is (up to sign) given by the ratio:

f
(
P (z0)

)
f(xm)

= (−1)m
m∏
j=1

zj(f) = (−1)mprm−1(f)zm(f).(3.8)

Regarding the argument of this quantity for f in a neighborhood of f0, we proceed to obtain bounds for

the arguments of individual factors arg
(
zm(f)

)
and arg[(−1)mprm−1(f)] separately. Since the origin is a

corner of W ε
‖·‖
(
Q(z); y

)
, there exist radii ρ < δ and η > 0 such that for every f ∈ L̂ε(y) ∩ B(f0, ρ), the

corresponding Birkhoff–James ε-orthogonality set point:

zm(f) ∈W ε
‖·‖
(
Q(z); y

)
∩ D(0, η),
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lies in a neighborhood of the origin and its argument satisfies the inclusion:

(3.9) arg
(
zm(f)

)
∈ [φ1, φ2], for suitable φ1, φ2 ∈ [0, 2π] with φ2 − φ1 < π.

Moreover, by the continuity of prm−1(f), the radius η > 0 may be chosen to be small enough, so that

(3.10) arg[(−1)mprm−1(f)] ∈ [θ1, θ2], ∀ f ∈ L̂ε(y) ∩ B(f0, ρ),

with θ2 − θ1 < π − (φ2 − φ1). Then, combining (3.9) and (3.10), expression (3.8) leads to

arg

(
f
(
P (z0)

)
f(xm)

)
∈ [ω1, ω2], ∀ f ∈ L̂ε(y) ∩ B(f0, ρ),

where ωi = φi+ θi (i = 1, 2) satisfy ω2−ω1 = (φ2−φ1) + (θ2− θ1) < π. This means that (3.7) holds true for

the linear pencil xmz−P (z0). Invoking the subsequent arguments in the proof of Theorem 3.4, we conclude

that the origin is a corner of F ε‖·‖
(
P (z0); y

)
= F ε‖·‖

(
Q(0); y

)
.

The following example demonstrates Theorem 3.5 in action.

Example 3.6. Consider the normed linear space (X , ‖ · ‖) = (C3, ‖ · ‖∞) and the vector-valued polyno-

mial:

P (z) =

 3

2

6

 z2 +


−1
1

2
−2

 z +

 −2

−2

−5

 .

The corresponding ε-set of P (z) with respect to the unit vector y =


1

2
0
1

 for ε =

√
3

2
is depicted in

Figure 1. Evidently, the boundary point 1 in the rightmost component is a corner of W

√
3

2

‖·‖∞

(
P (z); y

)
.

Now, considering the (unit) vector P (1) =

 0
1

2
−1

, note that

‖y + λP (1)‖∞ =

∥∥∥∥∥∥∥∥∥∥∥


1

2
λ

2
1− λ



∥∥∥∥∥∥∥∥∥∥∥
∞

= max

{
1

2
,
|λ|
2
, |1− λ|

}

≥ 1

2
= ‖y‖∞

√√√√1−

(√
3

2

)2

, ∀ λ ∈ C.

Equivalently, 0 ∈ F

√
3

2

‖·‖∞(P (1); y). In fact, for λ = 1, we get the equality ‖y + P (1)‖∞ =
1

2
, and thus,

0 ∈ ∂F
√

3
2

‖·‖∞(P (1); y), confirming Property (P15). The corresponding set is depicted in Figure 2, where 0 is a

corner of F

√
3

2

‖·‖∞

(
P (1); y

)
, verifying Theorem 3.5.
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Figure 1. The point 1 is a corner of W

√
3

2
‖·‖∞

(
P (z); y

)
.

Figure 2. The origin is a corner of F

√
3

2
‖·‖∞

(P (1); y).

4. A randomized algorithm. Numerical determination of the Birkhoff–James ε-orthogonality set

F ε‖·‖(x; y) is straightforward enough by its characterization (2.2) as an infinite intersection of closed disks.

Indeed, for most applications, it suffices to plot some hundreds of circles ∂D
(
λ,
‖x− λy‖√
1− ε2 ‖y‖

)
centered

at random points λ ∈ C on the complex plane and then estimate F ε‖·‖(x; y) as the region which remains

unshaded.

On the other hand, estimating the set W ε
‖·‖(P (z); y) of an m-th degree vector-valued polynomial P (z)

in (2.4) is a much more daunting task. As suggested by the definition of this set in (2.5), it is crucial to

develop an efficient procedure to check for µ ∈ C whether inclusion 0 ∈ F ε‖·‖(P (µ); y) holds true. In this

direction, denoting for x, y ∈ X (y 6= 0) the quantity:

d(x, y) = max
λ∈C

{
|λ| − ‖x− λy‖√

1− ε2 ‖y‖

}
,
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we immediately obtain the equivalences:

d(x, y) < 0 ⇔ 0 ∈ Int
(
F ε‖·‖(x; y)

)
,

d(x, y) = 0 ⇔ 0 ∈ ∂F ε‖·‖(x; y),

d(x, y) > 0 ⇔ 0 /∈ F ε‖·‖(x; y).

Hence, the sign of d(x, y) is indicative of the relative position of the origin with respect to the boundary of

the set F ε‖·‖(x; y) and may be used to characterize W ε
‖·‖(P (z); y) as:

W ε
‖·‖(P (z); y) = {µ ∈ C : d(P (µ), y) ≤ 0} .

Moreover, under the assumption F ε‖·‖(xm; y) 6= {0}, Property (P15) implies the inclusion:

∂W ε
‖·‖(P (z); y) ⊆

{
µ ∈ C : 0 ∈ ∂F ε‖·‖(P (µ); y)

}
,

whereby a numerical approximation of W ε
‖·‖(P (z); y) is obtained by plotting the 0-level-set:

{µ ∈ C : d (P (µ), y) = 0} .

This observation leads us to Algorithm 1.

Algorithm 1 Standard grid method for W ε
‖·‖(P (z); y) estimation

Input: xm, xm−1, . . . , x1, x0, y ∈ X , ε ∈ [0, 1)

[smin, smax] : range of real parts of µ

[tmin, tmax] : range of imaginary parts of µ

Construct a grid Γ ⊂ Ω = [smin, smax]× [tmin, tmax];

for every µ ∈ Γ do
Compute P (µ) = xmµ

m + xm−1µ
m−1 + · · ·+ x2µ

2 + x1µ+ x0;

η =
‖2P (µ)‖
‖y‖

;

Construct a grid Γµ ⊂ Ωµ = [−η, η]× [−η, η];

D = [ ];

for every ζ ∈ Γµ do

r =
‖P (µ)− ζy‖√

1− ε2 ‖y‖
;

D =
[
D |ζ| − r

]
;

end

Compute d (P (µ), y) = maxD;

end

Draw the set {µ ∈ C : d (P (µ), y) = 0};

Algorithm 1 discretizes an initial region Ω = [smin, smax] × [tmin, tmax] ⊃ W ε
‖·‖(P (z); y) and estimates

d (P (µ), y) for every complex scalar µ ∈ Γ on the corresponding grid Γ ⊂ Ω. This task necessitates the

introduction of another grid Γµ for each µ ∈ Γ. The computation and storage of the relevant data greatly

increases memory requirements and markedly compromises the efficiency of the procedure.
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A substantially more efficient approach would be to introduce randomization at both levels: initially for

sampling µ in the region Ω ⊃W ε
‖·‖(P (z); y) and then for selecting the random circles ∂D

(
ζ,
‖P (µ)− ζy‖√

1− ε2 ‖y‖

)
used to estimate d (P (µ), y), without ever forming the corresponding grids on Ω, Ωµ. This approach is

outlined in Algorithm 2.

Algorithm 2 Randomized method for W ε
‖·‖(P (z); y) estimation

Input: xm, xm−1, . . . , x1, x0, y ∈ X , ε ∈ [0, 1)

[smin, smax] : range of real parts of µ

[tmin, tmax] : range of imaginary parts of µ

n1 ∈ N : the number of random points µ for which d (P (µ), y) is computed

n2 ∈ N : the number of random points ζ used to estimate d (P (µ), y) for each µ

for k = 1 : n1 do
s = (smax − smin) · rand+ smin with rand ∈ [0, 1] a random number;

t = (tmax − tmin) · rand+ tmin with rand ∈ [0, 1] a random number;

µ = s+ i t;

Compute P (µ) = xmµ
m + xm−1µ

m−1 + · · ·+ x2µ
2 + x1µ+ x0;

η =
‖2P (µ)‖
‖y‖

;

D = [ ];

for ` = 1 : n2 do
w = 2η · rand+ η with rand ∈ [0, 1] a random number;

v = 2η · rand+ η with rand ∈ [0, 1] a random number;

ζ = w + i v;

r =
‖P (µ)− ζy‖√

1− ε2 ‖y‖
;

D =
[
D |ζ| − r

]
;

end

Compute d (P (µ), y) = maxD;

end

Draw the set {µ ∈ C : d (P (µ), y) = 0};

The following numerical experiments were implemented in a python environment and were performed

on an 1.7 GHz Intel Core i7 processor with 8 GB of RAM.

Example 4.1. Consider the normed linear space (`1(N), ‖ · ‖1) and the vector-valued polynomial:

P (z) =

(
1

4n

)∞
n=0

z2 +

[(
0.8

3n

)∞
n=0

⊗ e1

]
z +

(
0.6

2n

)∞
n=0

,

with e1 ∈ C5 the standard basis vector. Figure 3(a) depicts the set W ε
‖·‖1(P (z); y) with respect to the

vector y =
(

1
3n

)∞
n=0
∈ `1(N) for the parameter pair ε = 0.4, 0.9 and was obtained via Algorithm 1 using

100×100 grids Γ and Γµ on Ω = [−2, 1]× [−2.5, 2.5] and the auxiliary regions Ωµ (µ ∈ Γ), respectively. This

procedure took 3248.83 s to complete. Algorithm 2 with n1 = 10000 random points in the same region and

then n2 = 800 points for each d(P (µ), y)-estimation yields the remarkably similar Figure 3(b) after 291.70

s, that is, a speedup factor of 11.13 was observed.
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(a) Algorithm 1 (b) Algorithm 2

Figure 3. Comparison of ε-set estimations for a vector-valued polynomial with coefficients in `1(N) with respect to some

vector y ∈ `1(N), the norm ‖ · ‖ = ‖ · ‖1, and the pair of parameters ε = 0.4, 0.9 using the grid and the randomized methods

(100× 100 grids and (n1, n2) = (10000, 800) random points in the regions Ω = [−2, 1]× [−2.5, 2.5] and Ωµ, respectively).

Example 4.2. We consider the 64× 64 quartic matrix polynomial:

P (z) = M4z
4 +M3z

3 +M2z
2 +M1z +M0,

with alternating coefficients:

Mi = I8 ⊗ M̂i + M̂i ⊗ I8 (i = 0, 1, 2, 3, 4),

defined by

M̂0 =
1

6

(
4I8 +N +NT

)
, M̂1 = M̂3 = N −NT , M̂2 = −M̂4 = −

(
2I8 −N −NT

)
,

where N is the 8×8 nilpotent matrix having ones in its subdiagonal and zeros elsewhere [25]. Visualizations

of the set W ε
‖·‖∞(P (z);M4) for the parameter pair ε = 0.5, 0.8 using the two approaches on the initial region

on Ω = [−2, 2] × [−1.5, 1.5] can be found in Figure 4. Algorithm 1 (using 100 × 100 grids) took 2237.01 s

to complete, while Algorithm 2 (with (n1, n2) = (1000, 140) random points) performed considerably faster

(35.68 s), speeding up the procedure by a factor of 62.71.

Now let the rectangular matrix polynomial Q(z) = M̃4z
4+M̃3z

3+M̃2z
2+M̃1z+M̃0, where M̃j ∈ C32×64

is the submatrix of Mj (j = 0, 1, . . . , 4) consisting of its leading 32 rows. Repeating the procedure for

W ε
‖·‖∞(Q(z); M̃3) (ε = 0.5, 0.8), Algorithm 2 completed the visualizations in 29.85 s, performing 56.41 times

faster than Algorithm 1 (1684.17 s). The corresponding plots can be found in Figure 5.

We conclude this example, verifying that Algorithms 1 and 2 approximate the boundary of the standard

numerical range of a square matrix polynomial (or some square matrix), when applied for ε = 0, ‖·‖ = ‖·‖2
and ψ = χm = In. To compare with the inclusion–exclusion procedure for numerical range estimation for

monic matrix polynomials in [29], consider R(z) = M−1
4 P (z). Approximations of W 0

‖·‖2(R(z); I64) = W (R)
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(a) Algorithm 1 (b) Algorithm 2

Figure 4. Comparison of ε-set estimations for a quartic matrix polynomial with respect to its leading coefficient, the

norm ‖ · ‖ = ‖ · ‖∞, and the pair of parameters ε = 0.5, 0.8 using the grid and the randomized methods (100 × 100 grids and

(n1, n2) = (2500, 140) random points in the regions Ω = [−2, 2]× [−1.5, 1.5] and Ωµ, respectively).

(a) Algorithm 1 (b) Algorithm 2

Figure 5. Comparison of ε-set estimations for Q(z) (ε = 0.5, 0.8) using the grid and the randomized methods (100× 100

grids and (n1, n2) = (2500, 140) random points in the regions Ω = [−2, 2]× [−1.5, 1.5] and Ωµ, respectively).

via the standard grid (50×50 grids on Ω = [−4.4]× [−3, 3] and then on Ωµ) and the randomized approaches

(n1 = n2 = 2500 random points on each region Ω and Ωµ) can be found in Figures 6(a) and (b), respectively.

Both of these estimations in fact virtually coincide with the visualization in Figure 6(c) obtained via the

procedure in [29] (using grid lengths hx = hy = 0.01); Algorithm 2 (252.80 s) proved to be the most efficient

approach, completing the visualization 20.82 times faster than Algorithm 1 (5263.30 s) and 12.95 times faster

than the standard inclusion–exclusion procedure in [29] (3272.39 s). It is noteworthy that Algorithms 1 and

2 resulted in remarkably similar output to [29], in spite of using much sparser grids/less random points on
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(a) Algorithm 1 (b) Algorithm 2 (c) Inclusion–exclusion procedure in [29]

Figure 6. Numerical range visualization (W (P ) = W 0
‖·‖2

(P (z); I64)) via the standard grid and randomized methods, as

well as the inclusion–exclusion procedure in [29].

Ω, respectively. As expected, application of Algorithms 1 and 2 for ‖·‖ = ‖·‖2 is far more computationally

intensive than for ‖·‖ = ‖·‖∞. Contrary to [29], an additional advantage of the present method is that

Algorithms 1 and 2 remain relevant in the general non-monic matrix polynomial case.

Example 4.3. Consider the harmonic wave equation ∆p −
(

2πf

c

)2

p = 0 for the acoustic pressure p

in the domain Ω = [0, 1] × [0, 1] with Dirichlet boundary conditions on the sides x = 0, y = 0, y = 1 and

impedance condition
∂p

∂n
+

2πif

ζ
p = 0 on the right boundary (x = 1), as studied in [4]. The scalar parameters

f, c, ζ denote frequency, speed of sound in the medium, and impedance, respectively. Discretization with

mesh size h = 1/45 and f = c = ζ = 1 leads to a quadratic matrix polynomial P (z) = z2M + zD + K of

order 1980

(
=

1

h

(
1

h
− 1

))
with mass, damping, and stiffness matrices given by:

M = −4π2h2I44 ⊗
(
I45 −

1

2
e45e

T
45

)
, D =

2πih

ζ
I44 ⊗

(
e45e

T
45

)
, K = I44 ⊗ C + T ⊗

(
−I45 +

1

2
e45e

T
45

)
,

where

C =



4 −1

−1
. . .

. . .

. . . 4 −1

−1 2


∈ R45×45, T = tridiag {1, 0, 1} ∈ R44×44,

and e45 is the last column of I45.

Approximations of the set W ε
‖·‖∞(P (z);M) for the parameter triplet ε = 0, 0.4, 0.8 using the grid and

randomized approaches are plotted in Figure 7. Computations in both cases were restricted to the region

R = [−30, 30] × [−20, 20], using 100 × 100 grids and (n1, n2) = (10000,280) random points, respectively.

Algorithm 2 took 1508.27 s to complete, while the far more computationally intensive Algorithm 1 required

as many as 52569.89 s. This amounts to significant computational savings and a speedup factor of 34.85.
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(a) Algorithm 1 (b) Algorithm 2

Figure 7. Comparison of ε-set estimations for a quadrartic matrix polynomial arising in acoustics and the parameter

triplet ε = 0, 0.4, 0.8 using the grid and the randomized methods.
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