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Abstract

Pseudospectra of matrix polynomials have been systematically investigated in
the last years, since they provide important insights into the sensitivity of poly-
nomial eigenvalue problems. An accurate approximation of the pseudospectrum
of a matrix polynomial P (λ) by means of the standard grid method is computa-
tionally high demanding. In this paper, we propose an improvement of the grid
method, which reduces the computational cost and retains the robustness and the
parallelism of the method. In particular, after giving two lower bounds for the
distance from a point to the boundary of the pseudospectrum of P (λ), we present
two algorithms for the estimation of the pseudospectrum, using exclusion discs.
Furthermore, two illustrative examples and an application of pseudospectra on
elliptic (quadratic) eigenvalue problems are given.
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1 Introduction and preliminaries

Consider the matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0, (1)

where λ is a complex variable and Aj ∈ C
n×n (j = 0, 1, . . . , m) with detAm 6= 0. The

study of matrix polynomials has a long history, especially with regard to their spectral
analysis, which leads to the solutions of higher order linear systems of differential
equations [9, 19].

A scalar λ0 ∈ C is said to be an eigenvalue of the matrix polynomial P (λ) in (1)
if the system P (λ0)x = 0 has a nonzero solution x0 ∈ C

n. This solution x0 is known
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as an eigenvector of P (λ) corresponding to λ0. The set of all eigenvalues of P (λ)
is the spectrum of P (λ), σ(P ) = {λ ∈ C : det P (λ) = 0} , and since detAm 6= 0, it
contains no more than nm distinct (finite) elements.

We are interested in the spectra of perturbations of P (λ) of the form

P∆(λ) = (Am + ∆m)λm + (Am−1 + ∆m−1)λ
m−1 + · · · + (A1 + ∆1)λ + A0 + ∆0,

where the matrices ∆0, ∆1, . . . ,∆m ∈ C
n×n are arbitrary. For a given ε > 0 and

a given set of nonnegative weights w = {w0, w1, . . . , wm} with at least one nonzero
element, we define the set of perturbed matrix polynomials

B(P, ε,w) = {P∆(λ) : ‖∆j‖2 ≤ εwj , j = 0, 1, . . . , m} .

Here, ‖ · ‖2 denotes the spectral norm, i.e., the matrix norm subordinate to the
euclidean vector norm. The parameters w0, w1, . . . , wm ≥ 0 allow freedom in how
perturbations are measured; for example, in the absolute sense when w0 = w1 =
· · · = wm = 1, or in a relative sense when wj = ‖Aj‖2 (j = 0, 1, . . . , m).

The (weighted) ε-pseudospectrum of P (λ) (introduced by Tisseur and Higham
[18]) is then defined by

σε,w(P ) = {λ ∈ C : detP∆(λ) = 0, P∆(λ) ∈ B(P, ε,w)}
= {λ ∈ C : detP∆(λ) = 0, ‖∆j‖2 ≤ εwj , j = 0, 1, . . . , m} .

If P (λ) = Iλ − A for some A ∈ C
n×n, then σ(P ) coincides with the standard

spectrum of A, σ(A). If in addition, w = {w0, w1} = {1, 0}, then σε,w(P ) coincides
with the well understood ε-pseudospectrum of the matrix A [5, 6, 7, 20], that is,
σε(A) = {λ ∈ C : λ ∈ σ(A + E), ‖E‖2 ≤ ε}.

For any matrix A ∈ C
n×n, we denote by s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0 the

singular values of A. If we consider the scalar polynomial

w(λ) = wmλm + wm−1λ
m−1 + · · · + w1λ + w0, (2)

then by [18, Lemma 2.1],

σε,w(P ) = {λ ∈ C : sn(P (λ)) ≤ εw(|λ|)} .

Thus, by the continuity of the eigenvalues of P∆(λ) with respect to the entries of the
coefficient matrices, it follows that the boundary of σε,w(P ), ∂σε,w(P ), satisfies

∂σε,w(P ) ⊆ {λ ∈ C : sn(P (λ)) = εw(|λ|)} . (3)

As the parameter ε > 0 increases, the ε-pseudospectrum of P (λ) enlarges,
and for ε large enough, σε,w(P ) may become unbounded. Moreover, if there is a
P∆(λ) ∈ B(P, ε,w) with identically zero determinant, then σε,w(P ) coincides with
the complex plane. On the other hand, since the leading coefficient Am is nonsin-
gular, for sufficiently small ε, σε,w(P ) consists of no more than nm bounded con-
nected components, each one containing a single (possibly multiple) eigenvalue of
P (λ). Moreover, σε,w(P ) is bounded if and only if εwm < sn(Am), and in this case,
it has no more than nm connected components [15].
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Pseudospectra provide important insights into the sensitivity of eigenvalues un-
der perturbations and have several applications (see [3, 5, 6, 7, 15, 18, 20] and the
references therein). Hence, the problem of their computation is of special interest.
Tisseur and Higham [18] use the standard grid method (GRID) and formula (3) for
the estimation of the ε-pseudospectrum of a matrix polynomial. In particular, they
obtain a graphical representation of ∂σε,w(P ) by evaluating sn(P (λ)) on a predefined
grid of points in the complex plane and then plotting the ε-contours. This simple
method is robust and gain large parallelism, but it is also too costly since it is based
on a two dimensional grid.

In [15], Lancaster and Psarrakos propose a path-following algorithm for the nu-
merical determination of the boundary of σε,w(P ), extending the work of Brühl (for
matrices) [4]. This alternative methodology has been shown to be effective, and since
it is essentially based on an one dimensional grid, it is much less demanding in terms
of the number of points λ at which it is necessary to compute sn(P (λ)). As might be
expected, difficulties may appear near singular points of the boundary ∂σε,w(P ) and
near points where the distance between distinct connected components of σε,w(P )
becomes relatively small. Furthermore, GRID handles several ε’s at once, while one
has to repeat the path-tracing algorithm of [15] for each connected component and
each ε. Thus, the standard grid method still appears to offer greater robustness and
more parallelism.

Several techniques for the estimation of pseudospectra of matrices can be found
in the literature [1, 2, 4, 6, 7, 8, 10, 14, 21]. In this article, motivated by a recent
paper of Koutis and Gallopoulos [14] (which can be downloaded from [7]), we present
a modified grid method that reduces drastically the number of points λ where the
evaluation of sn(P (λ)) is required, reducing the computational cost, and also retains
the robustness and the parallelism of the method. Thus, despite its apparent simplic-
ity, it can be considered as an effective tool for computing pseudospectra. In Section
2, we give two lower bounds for the distance from a given point λ0 /∈ ∂σε,w(P ) to
the boundary ∂σε,w(P ) (one bound for exterior points and one for interior points).
In Section 3, we propose two algorithms for the estimation of ∂σε,w(P ), using our
theoretical results and appropriate exclusion discs. Moreover, illustrative examples
with several comparisons and an application of pseudospectra on elliptic eigenvalue
problems are presented in Sections 4 and 5, respectively.

2 Two distance lower bounds

In [14], Koutis and Gallopoulos propose a simple inclusion-exclusion algorithm for
the estimation of pseudospectra of complex matrices, which is based on the following
result (see also [5, 6]).

Theorem 1 [14, Theorem 2.4] Let A ∈ C
n×n, ε > 0 and λ0 /∈ σε(A). Then

the distance dist(λ0, σε(A)) from the point λ0 to the ε-pseudospectrum of A satis-
fies dist(λ0, σε(A)) ≥ sn(Iλ0 − A) − ε.

Consider now an n×n matrix polynomial P (λ) as in (1), an ε > 0, some weights
w0, w1, . . . , wm ≥ 0 (with at least one of them nonzero) and the associated polynomial
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w(λ) in (2). Theorem 1 has been generalized by Psarrakos [17]. Here (and elsewhere),
the indices denote the derivatives of the polynomials.

Theorem 2 [17, Theorem 4] Let λ0 /∈ σε,w(P ), and let r1 be the positive root of the
equation

w(m)(|λ0|)
m!

λm + · · · + w(1)(|λ0|)
1!

λ −
(

sn(P (λ0))

ε
− w(|λ0|)

)

= 0, (4)

assuming that r1 = +∞ whenever this equation has no positive roots. For any
γ ∈ (0, 1), let ργ be the positive root of

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ − (sn(P (λ0)) − εw(|λ0| + γr1)) = 0. (5)

Then dist(λ0, σε,w(P )) ≥ min {γr1, ργ}.

We remark that r1 = +∞ if and only if w1 = w2 = · · · = wm = 0 and w0 > 0.
In this case, (5) is written

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ − (sn(P (λ0)) − εw0) = 0

and does not depend on γ.
Suppose that at least one of the weights w1, w2, . . . , wm is positive (or equivalently,

that r1 < +∞). As mentioned in [17], ργ is a continuous decreasing function of the
variable γ ∈ (0, 1), with limγ→1− ργ = 0. Consequently, the curve {(γ, ργ) : γ ∈
(0, 1)} has exactly one common point with the line segment {(γ, γr1) : γ ∈ (0, 1)},
which is the only maximum of the function min {γr1, ργ}. If this common point
is (γ0, ργ0

) = (γ0, γ0r1) (for a γ0 ∈ (0, 1)), then ργ0
= γ0r1 is the best lower

bound Theorem 2 can imply. Furthermore, if wm > 0, σε,w(P ) is bounded and
|λ0| is sufficiently large, then r1 becomes relatively large. In particular, it becomes
proportional to |λ0| [17].

By Theorem 2 and straightforward calculations, we see that for the linear pencil
P (λ) = A1λ + A0 with detA1 6= 0, and for any λ0 /∈ σε,w(P ),

dist(λ0, σε,w(P )) ≥ sn(A1λ0 + A0) − ε (w1|λ0| + w0)

‖A1‖2 + εw1
.

Moreover, for A1λ + A0 = Iλ − A and w = {1, 0}, Theorem 1 follows immediately.
It is known that for any point λ0 of the ε-pseudospectrum of a matrix A ∈ C

n×n,
there is an E ∈ C

n×n such that λ0 ∈ σ(A + E) and ‖E‖2 = sn(Iλ0 −A) ≤ ε [6, 7].
Moreover, for any matrix ∆ ∈ C

n×n with ‖∆‖2 ≤ ε − sn(Iλ0 − A), it is clear that
‖E + ∆‖2 ≤ ‖E‖2 + ‖∆‖2 ≤ ε, and thus, σ(A + E + ∆) ⊂ σε(A). Choosing ∆ = zI
(z ∈ C, 0 ≤ |z| ≤ ε − sn(Iλ0 − A)), one can easily verify the next proposition, which
is, in some sense, complementary to Theorem 1.

Proposition 3 Let A ∈ C
n×n, ε > 0 and λ0 ∈ Int[σε(A)], the interior of the

pseudospectrum. Then the distance from the point λ0 to the boundary ∂σε(A) satisfies
dist(λ0, ∂σε(A)) ≥ ε − sn(Iλ0 − A).
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Next we generalize this proposition to the case of matrix polynomials, borrowing
arguments from the proof of [17, Theorem 4]. As in [17], the following two lemmas
are necessary for our discussion. The first lemma can be found in [13], and the second
one is a simple exercise in scalar polynomials.

Lemma 4 For any A, B ∈ C
n×n, |sn(A + B) − sn(A)| ≤ s1(B).

Lemma 5 Let p(λ) = amλm +am−1λ
m−1+ · · ·+a1λ−a0 be a scalar polynomial with

a0 > 0, a1, a2, . . . , am ≥ 0 and at least one of the coefficients a1, a2, . . . , am positive.
Then p(λ) has exactly one positive zero.

Theorem 6 For any λ0 ∈ Int[σε,w(P )] with sn(P (λ0)) < εw(|λ0|), let r be the
smallest positive root of the equation

w(m)(|λ0|)
m!

(−1)m λm + · · · + w(1)(|λ0|)
1!

(−1)λ −
(

sn(P (λ0))

ε
− w(|λ0|)

)

= 0 (6)

(assuming that r = +∞ whenever this equation has no positive roots), and let r2 =
min{r, |λ0|}. For any δ ∈ (0, 1), let ρδ be the positive root of

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ + (sn(P (λ0)) − εw(|λ0| − δr2)) = 0. (7)

Then dist(λ0, ∂σε,w(P )) ≥ min {δr2, ρδ}.

Proof Suppose that λ0 ∈ Int[σε,w(P )] with sn(P (λ0)) < εw(|λ0|). Then for any
nonzero µ ∈ C, we have

P (λ0 + µ) = P (λ0) +
P (1)(λ0)

1!
µ + · · · + P (m)(λ0)

m!
µm,

where the leading coefficient P (m)(λ0)/(m!) = Am is nonsingular. By Lemma 4 and
norm properties, it follows

|sn(P (λ0 + µ)) − sn(P (λ0))| ≤ s1





m
∑

j=1

P (j)(λ0)

j!
µj





≤
m

∑

j=1

‖P (j)(λ0)‖2

j!
|µ|j .

As a consequence,

sn(P (λ0 + µ)) − sn(P (λ0)) ≤
m

∑

j=1

‖P (j)(λ0)‖2

j!
|µ|j ,

or equivalently,

sn(P (λ0 + µ)) ≤
m

∑

j=1

‖P (j)(λ0)‖2

j!
|µ|j + sn(P (λ0)).
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For a moment, assume that |µ| ≤ |λ0|. Then we observe that for

ε >
1

w(|λ0| − |µ|)





m
∑

j=1

‖P (j)(λ0)‖2

j!
|µ|j + sn(P (λ0))



 ,

or equivalently, for

‖P (m)(λ0)‖2

m!
|µ|m + · · · + ‖P (1)(λ0)‖2

1!
|µ| + (sn(P (λ0)) − εw(|λ0| − |µ|)) < 0, (8)

we have sn(P (λ0+µ)) < εw(|λ0|−|µ|) ≤ εw(|λ0+µ|), i.e., λ0+µ lies in the interior
of σε,w(P ). Furthermore, observe that the difference sn(P (λ0))−εw(|λ0|−|µ|) (in the
constant coefficient of the scalar polynomial in the left-hand part of (8)) is negative
if and only if

w(m)(|λ0|)
m!

(−1)m|µ|m + · · · + w(1)(|λ0|)
1!

(−1)|µ| −
(

sn(P (λ0))

ε
− w(|λ0|)

)

> 0. (9)

Next we consider two cases:

(i) Suppose that at least one of the weights w1, w2, . . . , wm is positive. Since sn(P (λ0)) <
εw(|λ0|), the polynomial

q(λ) =
w(m)(|λ0|)

m!
(−1)mλm + · · · + w(1)(|λ0|)

1!
(−1)λ −

(

sn(P (λ0))

ε
− w(|λ0|)

)

satisfies q(0) > 0. Let r be the smallest positive zero of this polynomial, assuming
that r = +∞ whenever the polynomial has no positive zeros. Then for every nonzero
µ ∈ C with |µ| < r2 (= min{r, |λ0|}), (9) holds and

sn(P (λ0)) < εw(|λ0| − |µ|) ≤ εw(|λ0 + µ|).

Hence, for any δ ∈ (0, 1),

sn(P (λ0)) < εw(|λ0| − δr2),

and consequently, the scalar polynomial

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ + (sn(P (λ0)) − εw(|λ0| − δr2))

satisfies the conditions of Lemma 5 and has exactly one positive zero, ρδ. Furthermore,
for every nonzero µ ∈ C such that |µ| < min {δr2, ρδ} , we have

‖P (m)(λ0)‖2

m!
|µ|m + · · · + ‖P (1)(λ0)‖2

1!
|µ| + (sn(P (λ0)) − εw(|λ0 + µ|))

≤ ‖P (m)(λ0)‖2

m!
|µ|m + · · · + ‖P (1)(λ0)‖2

1!
|µ| + (sn(P (λ0)) − εw(|λ0| − |µ|))

<
‖P (m)(λ0)‖2

m!
|µ|m + · · · + ‖P (1)(λ0)‖2

1!
|µ| + (sn(P (λ0)) − εw(|λ0| − δr2))

< 0.
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Thus, for every nonzero µ ∈ C such that |µ| < min {δr2, ρδ} , both (8) and (9) hold,
and as a consequence, λ0 + µ ∈ Int[σε,w(P )].

(ii) Suppose that w1 = w2 = · · · = wm = 0 and w0 > 0. Then w(λ) = w0 for
every λ ∈ C. Hence, for every µ ∈ C, the difference sn(P (λ0)) − εw(|λ0 + µ|) =
sn(P (λ0))−εw0 is negative, i.e., we may assume that r = +∞. The scalar polynomial
in the left-hand side of (7) is of the form

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ + (sn(P (λ0)) − εw0) ,

satisfies the conditions of Lemma 5, and has exactly one positive zero, ρ. As in case
(i), for every nonzero µ ∈ C such that |µ| < ρ,

‖P (m)(λ0)‖2

m!
|µ|m + · · · + ‖P (1)(λ0)‖2

1!
|µ| + (sn(P (λ0)) − εw0) < 0,

i.e., (8) holds. Thus, sn(P (λ0 +µ)) < εw0, or equivalently, the point λ0 +µ belongs
to the interior of σε,w(P ). �

We remark that in part (ii) of the above proof, i.e., when w1 = w2 = · · · = wm = 0
and w0 > 0, we have r = +∞ and |λ0| is removed from the construction of the bound.
Moreover, (7) is written

‖P (m)(λ0)‖2

m!
λm + · · · + ‖P (1)(λ0)‖2

1!
λ + (sn(P (λ0)) − εw0) = 0,

and does not depend on δ and r2. It is also clear that for P (λ) = Iλ − A and
w = {1, 0}, this part of the proof yields directly Proposition 3.

If r < +∞, then as in Theorem 2, ρδ is a continuous decreasing function of
δ ∈ (0, 1) with limγ→1− ρδ = 0. Hence, the curve {(δ, ρδ) : δ ∈ (0, 1)} has exactly one
common point with the line segment {(δ, δr2) : δ ∈ (0, 1)}, say (δ0, ρδ0) = (δ0, δ0r2),
which is the only maximum of min {δr2, ρδ} , and ρδ0 = δ0r2 is the best lower bound
Theorem 6 can give.

Example 1 The boundaries of the ε-pseudospectra of the matrix polynomial

H(λ) =





2 0 0
0 3 0
0 0 4



λ2 +





1.75 0 0
0 7.5 0
0 0 5



λ +





3.5 1 0
1 8 1
0 1 4



 ,

for ε = 0.15, 0.3, 0.5, 0.6, 0.8 and w = {1, 1, 1}, are drawn in Figure 1. The eigen-
values of H(λ), −0.4710± i 1.2448,−1.1794± i 1.0335,−0.6621± i 0.7491, are plotted
in the figure as ‘+’. Clearly, the origin (marked with an asterisk) does not belong
to σ0.8,w(H). For the distance dist(0, σ0.8,w(H)), we verify that r1 = 1.3080. Fur-
thermore, Theorem 2 and the bisection method (after 12 iterations) yield the lower
bound 0.3229, which corresponds to γ0 = 0.2468.

Next we consider the point λ0 = −1.5+ i (also marked with an asterisk), which is
an interior point of σ0.8,w(H) and satisfies |λ0| = 1.8028. For the distance dist(−1.5+
i, ∂σ0.8,w(H)), we see that r2 = r = 1.1110. Theorem 6 and the bisection method (af-
ter 12 iterations) imply the lower bound 0.2515, which corresponds to δ0 = 0.2263. �
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Figure 1: The pseudospectra σε,w(H) for ε = 0.15, 0.3, 0.5, 0.6, 0.8.

3 Numerical algorithms

For any λ0 ∈ C such that sn(P (λ0)) 6= εw(|λ0|), Theorems 2 and 6 yield an open
disc that does not intersect the boundary of the pseudospectrum σε,w(P ). As a
consequence, for the estimation of ∂σε,w(P ), we can use a simple modification of
GRID applied to a predefined grid of points in a region Ω that contains σε,w(P ) (or a
part of it). In particular, when evaluating sn(P (z)) 6= εw(|z|) at a grid point z ∈ Ω,
we set sn(P (z′))/w(|z′|) := sn(P (z))/w(|z|) for every grid point z′ in the associated
exclusion disc

S(z, R) = {λ ∈ C : |λ − z| < R} ,

where R is an appropriate lower bound from Theorem 2 or Theorem 6.
Our methodology is illustrated by the following algorithm, where we consider

several values of the parameter ε, namely,

0 < ε1 < ε2 < · · · < εk,

and combine Theorems 2 and 6. In particular, we use exterior exclusion discs for the
pseudospectrum σεk,w(P ), and interior exclusion discs for σε1,w(P ). For the closure
of the set σεk,w(P )\σε1,w(P ), we apply the standard GRID.

Algorithm IGRID1

Input: The coefficients A0, A1, . . . , Am of the matrix polynomial P (λ),
the parameters 0 < ε1 < ε2 < · · · < εk,
the weights w0, w1, . . . , wm ≥ 0,
the initial region Ω = [xmin, xmax] × [i ymin, i ymax],
the lengths hx, hy > 0 of the grids of [xmin, xmax] and [i ymin, i ymax], respectively.
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Step I Construct the grid of the rectangle Ω = [xmin, xmax] × [i ymin, i ymax] that
corresponds to the lengths hx and hy, and for every grid point z = x + i y, set
the initial value sn(P (z))/w(|z|) := 0.

Step II For every grid point z = x + i y with sn(P (z))/w(|z|) = 0, repeat the
following:

(a) Compute the matrix P (z), and the values w(|z|) and sn(P (z))/w(|z|).
(b) While sn(P (z))/w(|z|) > εk, repeat:

1. Compute the positive root r1 of the equation (4).

2. Using the bisection method and computing the positive root rγ of (5)
for the chosen values of γ, estimate a γ0 ∈ (0, 1) such that rγ0

∼= γ0r1.
Then set R := rγ0

.

(c) While sn(P (z))/w(|z|) < ε1, repeat:

1. Compute the minimum positive root r of the equation (6), and set
r2 = min{r, |z|}.

2. Using the bisection method and computing the positive root rδ of (7)
for the chosen values of δ, estimate a δ0 ∈ (0, 1) such that rδ0

∼= δ0r2.
Then set R := rδ0 .

(d) If sn(P (z))/w(|z|) > εk or sn(P (z))/w(|z|) < ε1, then for every grid
point z′ = x′ + i y′ in the open disc S(z, R) with sn(P (z′))/w(|z′|) = 0,
set sn(P (z′))/w(|z′|) := sn(P (z))/w(|z|).

STEP III Plot the curves {λ ∈ C : sn(P (λ))/w(|λ|) = εj} ∩ Ω, j = 1, 2, . . . , k.

In many cases, the radii of the exclusion discs centered at interior points of
σε1,w(P ) are relatively small. As a consequence, the construction of these discs may
increase unnecessarily the cost. An alternative algorithm to IGRID1 follows by re-
moving (c) in Step II, and replacing (d) of the same step by the following:

(d’) If sn(P (z))/w(|z|) > εk, then for every grid point z′ = x′ +i y′ in the open disc
S(z, R) with sn(P (z′))/w(|z′|) = 0, set sn(P (z′))/w(|z′|) := sn(P (z))/w(|z|).

Here, we evaluate sn(P (z))/w(|z|) at every grid point z ∈ σεk,w(P ) and do not
compute exclusion discs in Int[σε1,w(P )]. This algorithm, called IGRID2, results
almost the same figures with GRID and IGRID1, is much cheaper than GRID when
the area of Ω\σεk,w(P ) is sufficiently larger than the area of σεk,w(P ), and is cheaper
than IGRID1 when the components of σε1,w(P ) are sufficiently small. All these are
clearly confirmed by the examples of the next section.

A question of interest is how one can choose the initial region Ω. It is easy to see
that the spectrum of the matrix polynomial P (λ) coincides with the spectrum of the
nm × nm block companion matrix of P (λ), that is,

CP =















0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
−A−1

m A0 −A−1
m A1 −A−1

m A2 · · · −A−1
m Am−1















.
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Suppose now that the leading coefficient Am of P (λ) is unperturbed, i.e., that wm =
0, and consider a matrix polynomial P∆(λ) ∈ B(P, ε,w). Then the difference of the
two associated block companion matrices satisfies

‖CP − CP∆
‖2
2 =

∥

∥

∥

∥

∥

∥

A−1
m





m−1
∑

j=0

∆j∆
∗
j



 (A−1
m )∗

∥

∥

∥

∥

∥

∥

2

≤
∥

∥A−1
m

∥

∥

2

2

m−1
∑

j=0

‖∆j‖2
2 ≤ ε2

sn(Am)2

m−1
∑

j=0

w2
j .

As a consequence, σε,w(P ) ⊆ σε ζ(CP ), where ζ =
√

w2
0 + · · · + w2

m−1 / sn(Am). If

we denote by λmin(·) and λmax(·) the minimum and the maximum eigenvalues of
a hermitian matrix, respectively, then by Theorem 13 ε of [5], a region of interest
that always contains the (bounded) pseudospectrum σε,w(P ) is the rectangle ΩC =
[xmin, xmax] × [i ymin, i ymax] , where

xmin = λmin

(

CP + C∗
P

2

)

− ε ζ, xmax = λmax

(

CP + C∗
P

2

)

+ ε ζ,

ymin = λmin

(

CP − C∗
P

2 i

)

− ε ζ and ymax = λmax

(

CP − C∗
P

2 i

)

+ ε ζ.

Keeping in mind that this initial region ΩC can be relatively large (see the results of
[16] on numerical ranges), we can use it even in the case wm > 0, as in Example 3
below.

4 Two numerical examples

The question of comparison of the methods GRID, IGRID1 and IGRID2 applied to
matrix polynomials, especially with respect to their costs, arises in a natural way. We
present two numerical examples performed in MATLAB 6.51 to illustrate our results,
compare the algorithms IGRID1 and IGRID2, and verify that they are computation-
ally much less demanding than GRID (as far as the radii of the exclusion discs are
greater than the lengths hx and hy).

Example 2 The 20 × 20 matrix polynomial

P (λ) = A2λ
2 + A1λ + A0

= Iλ2 + i

[

I10 0
0 5I10

]

λ +















1 −1 −1 · · · −1
−1 1 −1 · · · −1
−1 −1 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 1















1Implementations of the algorithms IGRID1 and IGRID2 in Matlab are available
at http://www.math.ntua.gr/∼ppsarr/pseinout.m and http://www.math.ntua.gr/∼ppsarr/

pseout.m , respectively. These Matlab codes have been used in our examples. We remark that,
for practical reasons, each exclusion disc has been replaced by a square (with sides parallel to the
axes) that is almost inscribed in the disc.
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corresponds to a gyroscopic system (see [19] for definitions and properties). We
consider perturbations of P (λ) measured in the absolute sense, i.e., w = {1, 1, 1}. The
boundaries of the ε-pseudospectra of P (λ) for ε = 0.2, 0.4, 0.6, 0.7, 0.8, are drawn in
the left part of Figure 2, and the boundary ∂σ0.6,w(P ) is sketched in the right part of
the figure. In both parts, we have used IGRID1 on a 400×400 grid of the initial region
Ω = [−25, 25]× [−i 30, i 10], and the eigenvalues of P (λ) (some of them multiple) are
marked as “+”.
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Figure 2: Pseudospectra of a gyroscopic system.

In Table 1, we record the execution time and the number of points λ where the
evaluation of s20(P (λ)) is required for the methods GRID, IGRID1 and IGRID2, and
for two grids. For IGRID1 and IGRID2, we also give the number of the exterior
points of σ0.8,w(P ) (left part) and σ0.6,w(P ) (right part) where the minimum singular
value is computed. Note that this number is always the same for the two algorithms.
The first two rows of the table correspond to the left part of Figure 2 (i.e., for ε =
0.2, 0.4, 0.6, 0.7, 0.8), and the last two rows correspond to the right part of the figure
(i.e., for ε = 0.6). The results in the table clearly demonstrate that the new algorithms
return (almost) the same approximation of the boundaries of pseudospectra as GRID
at a much lower cost, although in the left part of the figure, the area of Ω\σ0.8,w(P )
is not much greater than the area of σ0.8,w(P ). Note also that both IGRID1 and
IGRID2 behave well when the number of predefined grid points is increased since the
number of grid points in each exclusion disc is also increased. As a consequence, the
number of grid points λ, where the calculation of s20(P (λ)) is needed, increases more
slowly than the total number of grid points (compare for example the third and the
fourth rows of Table 1).

Moreover, for the boundaries in the left part of Figure 2, we observe that IGRID1
and IGRID2 have almost the same computational cost since the area of σ0.2,w(P )
is relatively small. In particular, IGRID1 constructs only a few (small) exclusion
discs in the interior of σ0.2,w(P ), which are not very helpful and require some extra
computations. On the other hand, the pseudospectrum σ0.6,w(P ) is not so small,
and as a consequence, IGRID1 is apparently preferable when drawing ∂σ0.6,w(P ) in

11



Table 1: Cost comparisons for σε,w(P ).

Method GRID Method IGRID1 Method IGRID2

ε = 0.2, 0.4, 0.6, 0.7, 0.8 27.57 sec 11.84 sec 11.88 sec
200 × 200 grid 40000 points 20494 points 20630 points
(left part) 5806 ext. points 5806 ext. points

ε = 0.2, 0.4, 0.6, 0.7, 0.8 112.93 sec 37.55 sec 37.75 sec
400 × 400 grid 160000 points 71081 points 71749 points
(left part) 12201 ext. points 12201 ext. points

ε = 0.6 27.57 sec 4.07 sec 4.42 sec
200 × 200 grid 40000 points 3812 points 6107 points
(right part) 2826 ext. points 2826 ext. points

ε = 0.6 112.93 sec 8.53 sec 11.48 sec
400 × 400 grid 160000 points 7144 points 18151 points
(right part) 4960 ext. points 4960 ext. points

the right part of the figure. IGRID1 is faster than IGRID2 since it requires the
computation of the minimum singular value at less grid points than IGRID2, due to
the exclusion discs in Int[σ0.6,w(P )]. Note also that the area of Ω\σ0.6,w(P ) is quite
larger than the one of σ0.6,w(P ), and hence, IGRID1 and IGRID2 are much cheaper
than GRID. This becomes clear from the last two rows of Table 1. �

Example 3 We consider the 50 × 50 matrix polynomial

P (λ) = A2λ
2 + A1λ + A0

= Iλ2 + tridiag{−3, 9,−3}λ + tridiag{−5, 15,−5},

which corresponds to a damped mass-spring system described in [18, 19], and we set
w = {1, 1, 1}. The boundaries of the ε-pseudospectra of P (λ) for ε = 0.01, 0.05, 0.1,
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Figure 3: Pseudospectra of a damped mass-spring system.
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Table 2: Cost comparisons for σε,w(P ).

Method GRID Method IGRID1 Method IGRID2

ε = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 146.61 sec 37.45 sec 35.88 sec
200 × 200 grid 40000 points 14927 points 14939 points
(left part) 2182 ext. points 2182 ext. points

ε = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 576.69 sec 118.24 sec 116.80 sec
400 × 400 grid 160000 points 54657 points 54832 points
(left part) 3878 ext. points 3878 ext. points

ε = 0.2, 0.3 146.61 sec 19.52 sec 26.20 sec
200 × 200 grid 40000 points 6293 points 9671 points
(right part) 2038 ext. points 2038 ext. points

ε = 0.2, 0.3 576.69 sec 51.38 sec 81.58 sec
400 × 400 grid 160000 points 15357 points 33962 points
(right part) 3449 ext. points 3449 ext. points

0.2, 0.3, 0.4, are drawn in the left part of Figure 3, and for ε = 0.2, 0.3, are drawn in
the right part of the figure. In both parts, we have used IGRID1 on a 400× 400 grid
of the initial region

ΩC = [xmin, xmax] × [i ymin, i ymax]

= [−21.6342 − 0.4
√

2, 6.6456 + 0.4
√

2] × [−i (12.9905 + 0.4
√

2), i (12.9905 + 0.4
√

2)]

= [−22.1999, 7.2113] × [−i 13.5562, i 13.5562]

defined in the previous section. Furthermore, the eigenvalues of P (λ) are marked as
“+”.

In Table 2, we give the execution time and the number of points λ where the
evaluation of s50(P (λ)) is needed for GRID, IGRID1 and IGRID2, and for two grids.
For IGRID1 and IGRID2, we also give the number of the (common) exterior points
where the minimum singular value is computed. The first two rows of the table
correspond to the left part of Figure 2 (i.e., for ε = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4), and
the rest two rows correspond to the right part of the figure (i.e., for ε = 0.2, 0.3).
As in Example 2, the new algorithms return (almost) the same approximation of the
boundaries of pseudospectra as GRID at a much lower cost, and once again, they
behave well when the number of predefined grid points is increased.

It is worth noting that for the boundaries in the left part of Figure 2, IGRID2
is a little cheaper than IGRID1 since σ0.01,w(P ) consists of several tiny connected
components whose total area is quite small. Hence, the exclusion discs constructed
by IGRID1, in the interior of σ0.01,w(P ), are not beneficial and increase the cost. On
the other hand, the pseudospectrum σ0.2,w(P ) is not so small, and as a consequence,
IGRID1 is preferable when sketching the boundaries of σ0.2,w(P ) and σ0.3,w(P ) in the
right part of the figure. The reason is the exclusion discs in the interior of σ0.2,w(P ),
as one can conclude from the last two rows of Table 2. �
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5 Distance to non-ellipticity

Quadratic eigenvalue problems appear in many applications (for a recent survey on
this topic, see [19]). An important class of n × n quadratic matrix polynomials

H(λ) = H2λ
2 + H1λ + H0 (10)

are those in which the coefficient matrices H0, H1 and H2 are hermitian, H2 is positive
definite, and (x∗H1x)2 < 4(x∗H2x)(x∗H0x) for all nonzero x ∈ C

n. A matrix polyno-
mial that satisfies these properties is called elliptic, and has only non-real eigenvalues
(in conjugate pairs). Moreover, H0 is necessarily positive definite. We remark that
by [9, 12], a quadratic matrix polynomial H(λ) with hermitian coefficient matrices is
elliptic if and only if σ(H) ∩ R = ∅.

For a given elliptic matrix polynomial as in (10), it is natural to ask how much the
coefficient matrices must be perturbed, always under hermitian perturbations, for the
property of ellipticity to be lost. This distance problem was systematically studied
in [11, 12], but without any freedom of independent size perturbations for different
coefficient matrices. Here, after defining a new (weighted) distance based on the class

Bh(H, ε,w) =







H∆(λ) =
2

∑

j=0

(Hj + ∆j)λ
j : ‖∆j‖2 ≤ εwj , ∆∗

j = ∆j , j = 0, 1, 2







,

we give a solution of the problem by using pseudospectra and the smallest singular
value.

For the elliptic matrix polynomial H(λ) in (10), the distance to non-ellipticity is
denoted and defined by

D(H) = min {ε > 0 : ∃ H∆(λ) ∈ Bh(H, ε,w) that is non-elliptic} .

By our discussion on pseudospectra and Proposition 14 of [3], we verify that

D(H) = min {ε > 0 : ∃ H∆(λ) ∈ ∂Bh(H, ε,w) that is non-elliptic}
= min {ε > 0 : ∃ H∆(λ) ∈ ∂Bh(H, ε,w) with a real eigenvalue}
≥ min {ε > 0 : σε,w(H) ∩ R 6= ∅}
= min {ε > 0 : ∂σε,w(H) ∩ R 6= ∅} .

Furthermore, if te ∈ ∂σε,w(H) ∩ R, and ue, ve ∈ C
n is a pair of a left and a right

singular vectors of the matrix H(te) corresponding to sn(H(te)) (with respect to the
same singular value decomposition), respectively, then the matrix polynomial

He(λ) =

(

H2 −
w2

w(|te|)
sn(H(te))uev

∗
e

)

λ2

+

(

H1 −
w1

w(|te|)
te
|te|

sn(H(te))uev
∗
e

)

λ

+ H0 −
w0

w(|te|)
sn(H(te))uev

∗
e . (11)

has all its coefficients hermitian, is non-elliptic and lies on ∂Bh(H, ε,w). Thus, the
next result follows readily.
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Figure 4: The graph of s3(H(t))/w(|t|), −12 ≤ t ≤ 8.

Proposition 7 The distance from an elliptic matrix polynomial H(λ) to non-ellipticity
is

D(H) = min {ε > 0 : σε,w(H) ∩ R 6= ∅} = min
t∈R

sn(H(t))

w(|t|) .

Moreover, if this minimum is attained at te ∈ R, then a non-elliptic matrix polyno-
mial on ∂Bh(H,D(H),w) is given by (11).

The computation of the distance D(H) is simple and direct. Note also that if
wm > 0, then for t −→ ±∞,

sn(H(t))

w(|t|) −→ sn(Hm)

wm
.

The quadratic matrix polynomial H(λ) in Example 1 is elliptic (see Example 5
of [12]). By its pseudospectra in Figure 1, it is clear that the distance D(H) satisfies
0.5 < D(H) < 0.6. In Figure 4, we see the graph of the function s3(H(t))/w(|t|) and
confirm that limt→+∞ s3(H(t))/w(|t|) = limt→−∞ s3(H(t))/w(|t|) = s3(H2)/w2 = 2.
Proposition 7 and straightforward calculations imply that D(H) = 0.5796 and the
closest to H(λ) non-elliptic matrix polynomial given by (11) is

He(λ) =





1.9327 0.1737 −0.0656
0.1737 2.5516 0.1694
−0.0656 0.1694 3.9360



λ2

+





1.8173 −0.1737 0.0656
−0.1737 7.9484 −0.1694
0.0656 −0.1694 5.0640



λ +





3.4327 1.1737 −0.0656
1.1737 7.5516 1.1694
−0.0656 1.1694 3.9360





with real (multiple) eigenvalue te = −1.4785.
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