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Abstract. In this paper, we introduce the notions of weakly normal and normal matrix poly-

nomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using

orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the

eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical

form.
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1. Introduction. In pure and applied mathematics, normality of matrices (or

operators) arises in many concrete problems. This is reflected to the fact that there

are numerous ways to describe a normal matrix (or operator). A list of about ninety

conditions on a square matrix equivalent to its being normal can be found in [5, 7].

The study of matrix polynomials has also a long history, especially in the context

of their spectral analysis, which leads to the solutions of associated linear systems of

higher order; see [6, 10, 11] and the references therein. Surprisingly, it seems that

the notion of normality has been overlooked by people working in the area. The only

exceptions are the works of Adam and Psarrakos [1] and Lancaster and Psarrakos [9].

Our present goal is to take a comprehensive look at normality of matrix polyno-

mials. To avoid infinite eigenvalues, we restrict ourselves to matrix polynomials with

nonsingular leading coefficients. The case of singular leading coefficients and infinite

eigenvalues will be considered in a future work. The presentation of the article is

organized as follows: In the next section, we provide the necessary theoretical back-

ground on the spectral analysis of matrix polynomials. In Section 3, we introduce

the notions of weakly normal and normal matrix polynomials, and obtain necessary

and sufficient conditions for a matrix polynomial to be weakly normal. In Section

4, we consider the normal eigenvalues of matrix polynomials and use them to pro-

vide sufficient conditions for a matrix polynomial to be normal. Finally, in Section
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5, we investigate the Jordan structure of a normal matrix polynomial, and study the

conditioning of the associated eigenvalue problem.

2. Spectral analysis of matrix polynomials. Consider an n×n matrix poly-

nomial

P (λ) = Amλ
m +Am−1λ

m−1 + · · · +A1λ+A0,(2.1)

where λ is a complex variable and Aj ∈ C
n×n (j = 0, 1, . . . ,m) with detAm 6= 0. If

the leading coefficient Am coincides with the identity matrix I, then P (λ) is called

monic. A scalar λ0 ∈ C is said to be an eigenvalue of P (λ) if P (λ0)x0 = 0 for

some nonzero x0 ∈ C
n. This vector x0 is known as a (right) eigenvector of P (λ)

corresponding to λ0. A nonzero vector y0 ∈ C
n that satisfies y∗0P (λ0) = 0 is called a

left eigenvector of P (λ) corresponding to λ0.

The set of all eigenvalues of P (λ) is the spectrum of P (λ), namely, σ(P ) =

{λ ∈ C : detP (λ) = 0} , and since detAm 6= 0, it contains no more than nm distinct

(finite) elements. The algebraic multiplicity of an eigenvalue λ0 ∈ σ(P ) is the multi-

plicity of λ0 as a zero of the (scalar) polynomial detP (λ), and it is always greater than

or equal to the geometric multiplicity of λ0, that is, the dimension of the null space

of matrix P (λ0). A multiple eigenvalue of P (λ) is called semisimple if its algebraic

multiplicity is equal to its geometric multiplicity.

Let λ1, λ2, . . . , λr ∈ σ(P ) be the eigenvalues of P (λ), where each λi appears ki

times if and only if the geometric multiplicity of λi is ki (i = 1, 2, . . . , r). Suppose

also that for a λi ∈ σ(P ), there exist xi,1, xi,2, . . . , xi,si
∈ C

n with xi,1 6= 0, such

that

P (λi)xi,1 = 0

P ′(λi)

1!
xi,1 + P (λi)xi,2 = 0

...
...

...

P (si−1)(λi)

(si − 1)!
xi,1 +

P (si−2)(λi)

(si − 2)!
xi,2 + · · · +

P ′(λi)

1!
xi,si−1 + P (λi)xi,si

= 0,

where the indices denote the derivatives of P (λ) and si cannot exceed the algebraic

multiplicity of λi. Then the vector xi,1 is an eigenvector of λi, and the vectors

xi,2, xi,3, . . . , xi,si
are known as generalized eigenvectors. The set {xi,1, xi,2, . . . , xi,si

}

is called a Jordan chain of length si of P (λ) corresponding to the eigenvalue λi.

Any eigenvalue of P (λ) of geometric multiplicity k has k maximal Jordan chains

associated to k linearly independent eigenvectors, with total number of eigenvectors

and generalized eigenvectors equal to the algebraic multiplicity of this eigenvalue.
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We consider now the n× nm matrix

X = [x1,1 x1,2 · · · x1,s1
x2,1 · · · xr,1 xr,2 · · · xr,sr

]

formed by maximal Jordan chains of P (λ) and the associated nm×nm Jordan matrix

J = J1 ⊕ J2 ⊕ · · · ⊕ Jr, where each Ji is the Jordan block that corresponds to the

Jordan chain {xi,1, xi,2, . . . , xi,si
} of λi. Then the nm×nm matrix Q =








X

XJ
...

XJm−1








is invertible, and we can define Y = Q−1








0
...

0

A−1
m








. The set (X,J, Y ) is called a

Jordan triple of P (λ), and satisfies

P (λ)−1 = X(λI − J)−1Y ; λ /∈ σ(P ).(2.2)

The set {x1,1, x1,2, . . . , x1,s1
, x2,1, . . . , xr,1, xr,2, . . . , xr,sr

} is known as a complete

system of eigenvectors and generalized eigenvectors of P (λ).

3. Weakly normal and normal matrix polynomials. In [1], the term “nor-

mal matrix polynomial” has been used for the matrix polynomials that can be diago-

nalized by a unitary similarity. For matrix polynomials of degreem ≥ 2, this definition

does not ensure the semisimplicity of the eigenvalues, and hence, it is necessary to

modify it. Consider, for example, the diagonal matrix polynomials

P (λ) =





(λ− 2)(λ− 1) 0 0

0 λ(λ− 1) 0

0 0 (λ+ 1)(λ+ 2)



(3.1)

and

R(λ) =





(λ− 1)2 0 0

0 λ(λ− 2) 0

0 0 (λ+ 1)(λ+ 2)



 ,(3.2)

which have exactly the same eigenvalues (counting multiplicities), −2, −1, 0, 1 (dou-

ble) and 2. The eigenvalue λ = 1 is semisimple as an eigenvalue of P (λ) with algebraic

and geometric multiplicities equal to 2. On the other hand, λ = 1 is not semisimple as

an eigenvalue of R(λ) since its algebraic multiplicity is 2 and its geometric multiplicity

is 1.

Definition 3.1. The matrix polynomial P (λ) in (2.1) is called weakly normal if

there is a unitary matrix U ∈ C
n×n such that U∗P (λ)U is diagonal for all λ ∈ C. If,
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in addition, every diagonal entry of U∗P (λ)U is a polynomial with exactly m distinct

zeros, or equivalently, all the eigenvalues of P (λ) are semisimple, then P (λ) is called

normal.

Clearly, the matrix polynomial P (λ) in (3.1) is normal, and the matrix polynomial

R(λ) in (3.2) is weakly normal (but not normal). Note also that the notions of weakly

normal and normal matrix polynomials coincide for matrices and for linear pencils of

the form P (λ) = A1λ+A0.

The next two lemmas are necessary to characterize weakly normal matrix poly-

nomials.

Lemma 3.2. Let A,B ∈ C
n×n be normal matrices such that AB∗ = B∗A. Then

the matrices A+B and AB are also normal.

Lemma 3.3. Suppose that for every µ ∈ C, the matrix P (µ) is normal. Then

for every i, j = 0, 1, . . . ,m, it holds that AiA
∗
j = A∗

jAi. In particular, all coefficient

matrices A0, A1, . . . , Am are normal.

Proof. Let P (µ) be a normal matrix for every µ ∈ C. Then P (0) = A0 is normal,

i.e. A0A
∗
0 = A∗

0A0. From the proof of [14, Lemma 16], we have that A0A
∗
i = A∗

iA0

for every i = 1, 2, . . . ,m. Thus, P (µ)A∗
0 = A∗

0P (µ) for every µ ∈ C. By Lemma 3.2,

it follows that for the matrix polynomials P0(λ) = Amλ
m−1 + · · · + A2λ + A1 and

P (λ) − A0 = λP0(λ), the matrices P0(µ) and P (µ) − A0 = µP0(µ) are normal for

every µ ∈ C.

Similarly, by [14, Lemma 16] and the fact that P0(µ) is normal for every µ ∈ C,

we have that P0(0) = A1 is also normal and A1A
∗
i = A∗

iA1 for every i = 2, 3, . . . ,m.

Hence, as before, P1(µ) = Amµ
m−2 + · · · + A3µ + A2 and P0(µ) − A1 = µP1(µ) are

normal matrices for every µ ∈ C. Repeating the same process, we complete the proof.

Theorem 3.4. The matrix polynomial P (λ) in (2.1) is weakly normal if and

only if for every µ ∈ C, the matrix P (µ) is normal.

Proof. If the matrix polynomial P (λ) is weakly normal, then it is apparent that

for every µ ∈ C, the matrix P (µ) is normal.

For the converse, suppose that for every µ ∈ C, the matrix P (µ) is normal. The

next assumption is necessary.

Assumption. Suppose that there is a coefficient matrix Ai with s ≥ 2 distinct eigen-

values. Then without loss of generality, we may assume that

Ai = λi1Ik1
⊕ λi2Ik2

⊕ · · · ⊕ λisIks
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and

Aj = Aj1 ⊕Aj2 ⊕ · · · ⊕Ajs ; j 6= i,

where the eigenvalues λi1, λi2, . . . , λis of Ai are distinct and nonzero, with multiplic-

ities k1, k2, . . . , ks, respectively, and Aj1 ∈ C
k1×k1 , Aj2 ∈ C

k2×k2 , . . . , Ajs ∈ C
ks×ks .

Proof of Assumption. Since Ai is normal, there is a unitary matrix U ∈ C
n×n such

that

U∗AiU = λi1Ik1
⊕ λi2Ik2

⊕ · · · ⊕ λisIks
.

We observe that for any µ, a ∈ C, the matrix P (µ) is normal if and only if the matrix

U∗P (µ)U + aIµi is normal. Thus, without loss of generality, we may assume that all

λil’s are nonzero. By Lemma 3.3, it follows that for every j 6= i,

AiA
∗
j = A∗

jAi,

or equivalently,

A∗
j = A−1

i A∗
jAi.

By straightforward calculations, we complete the proof of the assumption.

We proceed now with the proof of the converse, which is by induction with respect

to the order n of P (λ). Clearly, for n = 1, there is nothing to prove.

If n = 2, and there is a coefficient matrix with distinct eigenvalues, then by

Assumption, all A0, A1, . . . , Am are diagonal. If there is no coefficient matrix of P (λ)

with distinct eigenvalues, then each Ai (i = 0, 1, . . . ,m) is normal with a double

eigenvalue, and hence, it is scalar, i.e., Ai = aiI. As a consequence, P (λ) is diagonal.

Assume now that for any n = 3, 4, . . . , k− 1, every n×n matrix polynomial P (λ)

such that the matrix P (µ) is normal for any µ ∈ C, is weakly normal.

Let P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0 be a k× k matrix polynomial,

and suppose that there is a Ai with s ≥ 2 distinct eigenvalues. By Assumption,

Ai = λi1Ik1
⊕ λi2Ik2

⊕ · · · ⊕ disIks
,

and for every j 6= i,

Aj = Aj1 ⊕Aj2 ⊕ · · · ⊕Ajs.

Then

P (λ) = P1(λ) ⊕ P2(λ) ⊕ · · · ⊕ Ps(λ),
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where the matrix polynomials P1(λ), P2(λ), . . . , Ps(λ) are weakly normal. Hence,

there are unitary matrices Ut ∈ C
kt×kt , t = 1, 2, . . . , s, such that U∗

t Pt(λ)Ut, t =

1, 2, . . . , s, are diagonal. Thus, for the k × k unitary matrix U = U1 ⊕ U2 ⊕ · · · ⊕ Us,

the matrix polynomial U∗P (λ)U is diagonal.

Suppose that there is no Ai with at least two distinct eigenvalues. Then each

coefficient matrix Ai is normal with exactly one eigenvalue (of algebraic multiplicity

k), and hence, it is scalar, i.e., Ai = aiI. As a consequence, P (λ) is diagonal.

By this theorem, it follows that the matrix polynomial P (λ) is weakly normal if

and only if P (λ)[P (λ)]∗−[P (λ)]∗P (λ) = 0 for every λ ∈ C. We observe that each entry

of the matrix function P (λ)[P (λ)]∗ − [P (λ)]∗P (λ) is of the form χ(α, β) + iψ(α, β),

where α and β are the real and imaginary parts of variable λ, respectively, and

χ(α, β) and ψ(α, β) are real polynomials in α, β ∈ R of total degree at most 2m. As

a consequence, Lemma 3.1 of [12] yields the following.

Corollary 3.5. The matrix polynomial P (λ) in (2.1) is weakly normal if

and only if for any distinct real numbers s1, s2, . . . , s4m2+2m+1, the matrices P (sj +

i s2m+1
j ) (j = 1, 2, . . . , 4m2 + 2m+ 1) are normal.

By Theorem 3.4, Corollary 3.5 and [16] (see also the references therein), the next

corollary follows readily.

Corollary 3.6. Let P (λ) = Amλ
m + · · · + A1λ + A0 be an n × n matrix

polynomial as in (2.1). Then the following are equivalent:

(i) The matrix polynomial P (λ) is weakly normal.

(ii) For every µ ∈ C, the matrix P (µ) is normal.

(iii) For any distinct real numbers s1, s2, . . . , s4m2+2m+1, the matrices P (sj+i s2m+1
j )

(j = 1, 2, . . . , 4m2 + 2m+ 1) are normal.

(iv) The coefficient matrices A0, A1, . . . , Am are normal and mutually commuting,

i.e., AiAj = AjAi for i 6= j.

(v) All the linear combinations of the coefficient matrices A0, A1, . . . , Am are normal

matrices.

(vi) The coefficient matrices A0, A1, . . . , Am are normal and satisfy property L,

that is, there exists an ordering of the eigenvalues λ
(j)
1 , λ

(j)
2 , . . . , λ

(j)
n of Aj

(j = 0, 1, . . . ,m) such that for all scalars t0, t1, . . . , tm ∈ C, the eigenvalues

of t0A0+t1A1+· · ·+tmAm are t0λ
(0)
i +t1λ

(1)
i +· · ·+tmλ

(m)
i (i = 1, 2, . . . , n).

(vii) There exists a unitary matrix U ∈ C
n×n such that U∗AjU is diagonal for every

j = 0, 1, . . . ,m.

4. Normal eigenvalues. In the matrix case, it is well known that normality

(or diagonalizibility) is equivalent to the orthogonality (resp., linear independence) of

eigenvectors. In the matrix polynomial case, it is clear (by definition) that any n× n
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normal matrix polynomial of degree m has an orthogonal system of n eigenvectors,

such that each one of these eigenvectors corresponds to exactly m distinct eigenvalues.

Proposition 4.1. Consider a matrix polynomial P (λ) as in (2.1), with all its

eigenvalues semisimple. Suppose also that P (λ) has a complete system of eigenvectors

where each vector of a basis {g1, g2, . . . , gn} of C
n appears exactly m times. Then there

exists a diagonal matrix polynomial D(λ) such that

P (λ) = AmGD(λ)G−1,

where G = [ g1 g2 · · · gn ] ∈ C
n×n.

Proof. Each vector gi (i = 1, 2, . . . , n) appears exactly m times as an eigenvector

of m distinct eigenvalues of P (λ), say λi1, λi2, . . . , λim. By [8, Theorem 1], we have

that

P (λ) gi =

m∏

j=1

(λ− λij) gi ; i = 1, 2, . . . , n.

Thus,

P (λ) [ g1 g2 · · · gn ] = Am





m∏

j=1

(λ− λ1j) g1

m∏

j=1

(λ− λ2j) g2 · · ·
m∏

j=1

(λ− λnj) gn





= Am [ g1 g2 · · · gn ] diag







m∏

j=1

(λ− λ1j) g1,

m∏

j=1

(λ− λ2j) g2, . . . ,

m∏

j=1

(λ− λnj) gn






.

Consequently,

P (λ) = AmG diag







m∏

j=1

(λ− λ1j),

m∏

j=1

(λ− λ2j), . . . ,

m∏

j=1

(λ− λnj)






G−1,

and the proof is complete.

Corollary 4.2. Under the hypothesis of Proposition 4.1, it holds that:

(i) If the matrix G−1AmG is diagonal, then the matrix polynomial G−1P (λ)G is

diagonal.

(ii) If G is unitary, then there exists a diagonal matrix polynomial D(λ) such that

P (λ) = AmGD(λ)G∗.

(iii) If G is unitary and the matrix G∗AmG is diagonal, then the matrix polynomial

G∗P (λ)G is diagonal, i.e., P (λ) is normal.
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Note that if P (λ) = Iλ − A, then in Corollary 4.2, G−1AmG = G−1I G = I for

nonsingular G, and G∗AmG = G∗I G = I for unitary G. This means that all the

parts of the corollary are direct generalizations of standard results on matrices.

The following definition was originally introduced in [9].

Definition 4.3. Let P (λ) be an n × n matrix polynomial as in (2.1). An

eigenvalue λ0 ∈ σ(P ) of algebraic multiplicity k is said to be normal if there exists a

unitary matrix U ∈ C
n×n such that

U∗P (λ)U = [(λ− λ0)D(λ)] ⊕Q(λ),

where the matrix polynomial D(λ) is k × k diagonal and λ0 /∈ σ(D) ∪ σ(Q).

By this definition and Definition 3.1, it is obvious that every normal matrix

polynomial has all its eigenvalues normal. In the sequel, we obtain the converse.

Proposition 4.4. Suppose that all the eigenvalues of P (λ) in (2.1) are semisim-

ple, and that λ1, λ2, . . . , λs are normal eigenvalues of P (λ) with multiplicities m1,m2,

. . . ,ms, respectively, such that m1 +m2 + . . .+ms = n. If P (λ) satisfies

U∗
j P (λ)Uj = [(λ− λj)Dj(λ)] ⊕Qj(λ) ; j = 1, 2, . . . , s,

where for each j, the matrix Uj ∈ C
n×n is unitary, the matrix polynomial Dj(λ) is

mj×mj diagonal and λi ∈ σ(Qj)\σ(Dj) (i = j+1, . . . , s), then the matrix polynomial

P (λ) is normal.

Proof. For the eigenvalue λ1, by hypothesis, we have that

U∗
1P (λ)U1 = [(λ− λ1)D1(λ)] ⊕Q1(λ),

where U1 is unitary and D1(λ) is m1 × m1 diagonal. The first m1 columns of U1

are an orthonormal system of eigenvectors of λ1. From hypothesis we also have

that detAm 6= 0 and all the eigenvalues of P (λ) are semisimple. As a consequence,

each one of the m1 eigenvectors of λ1 is an eigenvector for m exactly eigenvalues of

P (λ) (counting λ1). Moreover, since λi ∈ σ(Q1)\σ(D1), i = 2, 3, . . . , s, these m1

eigenvectors of λ1, are orthogonal to the eigenspaces of the eigenvalues λ2, λ3, . . . , λs.

Similarly, for the eigenvalue λ2, we have

U∗
2P (λ)U2 = [(λ− λ2)D2(λ)] ⊕Q2(λ),

where U2 is unitary andD2(λ) is m2×m2 diagonal. As before, the firstm2 columns of

U2 are an orthonormal system of eigenvectors of λ2. In addition, each one of these m2

eigenvectors of λ2 is an eigenvector for m exactly eigenvalues of P (λ) (counting λ2).

Since λi ∈ σ(Q2)\σ(D2), i = 3, 4, . . . , s, these m2 eigenvectors of λ2 are orthogonal

to the eigenspaces of the eigenvalues λ3, λ4, . . . , λs.
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Repeating this process for the eigenvalues λ3, λ4, . . . , λs, we construct an or-

thonormal basis of C
n,

u1, u2, . . . , um1

︸ ︷︷ ︸

of λ1

, um1+1, um1+2, . . . , um1+m2

︸ ︷︷ ︸

of λ2

, . . . , un−ms+1, un−ms+2, . . . , un
︸ ︷︷ ︸

of λs

,

where each vector is an eigenvector for m distinct eigenvalues of P (λ) and an eigen-

vector of the leading coefficient Am. By Corollary 4.2, P (λ) is a normal matrix

polynomial.

The next lemma follows readily and it is necessary for our discussion.

Lemma 4.5. If an n × n matrix polynomial P (λ) has a normal eigenvalue of

multiplicity n or n− 1, then it is weakly normal.

Theorem 4.6. Consider a matrix polynomial P (λ) as in (2.1). If all its eigen-

values are normal, then P (λ) is normal.

Proof. Let λ1, λ2, . . . , λs be the distinct eigenvalues of P (λ) with corresponding

multiplicities k1, k2, . . . , ks (k1+k2+· · ·+ks = nm), and suppose that they are normal.

It is easy to see that s ≥ m. If s = m then all the eigenvalues have multiplicity n and

by Lemma 4.5, the theorem follows.

Suppose that s > m and for every j = 0, 1, . . . , s, there is a unitary matrix

Uj = [uj1 uj2 . . . ujn ] such that

U∗
j P (λ)Uj = [(λ− λj)Dj(λ)] ⊕Qj(λ),

where Dj(λ) is kj ×kj diagonal and λj /∈ σ(Dj)∪σ(Qj). Then the first kj columns of

Uj (j = 1, 2, . . . , s) are right and left eigenvectors of P (λ), and also of A0, A1, . . . , Am.

The set of all vectors

u1,1, u1,2, . . . , u1,k1
, u2,1, u2,2, . . . , u2,k2

, . . . us,1, us,2, . . . , us,ks

form a complete system of eigenvectors of P (λ). So, by [13], there is a basis of C
n

{u1, u2, . . . , un} ⊆ {u11, u12, . . . , u1k1
, u21, u22, . . . , u2k2

, . . . , us1, us2, . . . , usks
} .

We also observe that the vectors u1, u2, . . . , un are linearly independent right and left

common eigenvectors of the coefficient matrices A0, A1, . . . , Am. Keeping in mind

that any left and right eigenvectors (of the same matrix) corresponding to distinct

eigenvalues are orthogonal, [7, Condition 13] implies that all Aj ’s are normal. More-

over, any two vectors ui, uj (i 6= j) that correspond to distinct eigenvalues of a

coefficient matrix are also orthogonal. Hence, it is straightforward to see that there

exists a unitary matrix U such that all U∗AjU ’s are diagonal. As a consequence, the

matrix polynomial P (λ) is weakly normal, and since all its eigenvalues are semisimple,

P (λ) is normal.
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5. Weighted perturbations and condition numbers. Let P (λ) be a matrix

polynomial as in (2.1). We are interested in perturbations of P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =

m∑

j=0

(Aj + ∆j)λ
j ,(5.1)

where the matrices ∆0,∆1, . . . ,∆m ∈ C
n×n are arbitrary. For a given parameter

ε > 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we

define the set of admissible perturbed matrix polynomials

B(P, ε,w) = {Q(λ) as in (5.1) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m} ,(5.2)

where ‖ · ‖ denotes the spectral matrix norm (i.e., that norm subordinate to the eu-

clidean vector norm). The weights w0, w1, . . . , wm allow freedom in how perturbations

are measured, and the set B(P, ε,w) is convex and compact [3] with respect to the

max norm ‖P (λ)‖∞ = max0≤j≤m‖Aj‖.

In [15], motivated by (2.2) and the work of Chu [4], for a Jordan triple (X,J, Y )

of P (λ), the authors introduced the condition number of the eigenproblem of P (λ),

that is,1

k(P ) = ‖X‖ ‖Y ‖ .

Furthermore, they applied the Bauer-Fike technique [2, 4] and used k(P ), to bound

eigenvalues of perturbations of P (λ). Denoting w(λ) = wmλ
m + · · ·+w1λ+w0, one

of the results of [15] is the following.

Proposition 5.1. Let (X,J, Y ) be a Jordan triple of P (λ), and let Q(λ) ∈

B(P, ε,w) for some ε > 0. If the Jordan matrix J is diagonal, then for any µ ∈

σ(Q)\σ(P ),

min
λ∈σ(P )

|µ− λ| ≤ k(P ) εw(|µ|).

As in the matrix case, we say that a matrix polynomial eigenvalue problem is

well-conditioned (or ill-conditioned) if its condition number is sufficiently small (resp.,

sufficiently large).

In the remainder of this section, we confine our discussion to normal matrix

polynomials. Recall that for an n × n normal matrix polynomial P (λ), there is a

unitary matrix U ∈ C
n×n such that U∗P (λ)U is diagonal and all its diagonal entries

1Note that the definition of k(P ) clearly depends on the choice of the triple (X, J, Y ), but to

keep things simple, the Jordan triple will not appear explicitly in the notation.
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are polynomials of degree exactly m, with distinct zeros. Moreover, for any Jordan

triple (X,J, Y ) of P (λ), the Jordan matrix J is diagonal. In the sequel, we derive

some bounds for the condition number k(P ).

The following lemma is a simple exercise.

Lemma 5.2. Let λ1, λ2, . . . , λm be m distinct scalars. Then it holds that

1
m∏

j=1

(λ− λj)
=

m∑

j=1

1

(λ− λj)
∏

i6=j

(λi − λj)
.

Next we compute a Jordan triple of a monic normal matrix polynomial P (λ) and

the associated condition number k(P ).

Proposition 5.3. Let P (λ) be an n × n monic normal matrix polynomial of

degree m, and let U∗P (λ)U = (Iλ− J1) (Iλ− J2) · · · (Iλ− Jm) for some unitary

U ∈ C
n×n and diagonal matrices J1, J2, . . . , Jm. Then a Jordan triple (X,J, Y ) of

P (λ) is given by

X = U

[

I (J2 − J1)
−1 · · ·

m−2∏

i=1

(Jm−1 − Ji)
−1

m−1∏

i=1

(Jm − Ji)
−1

]

,

J = J1 ⊕ J2 ⊕ · · · ⊕ Jm and Y =














m∏

i=2

(J1 − Ji)
−1

m∏

i=3

(J2 − Ji)
−1

...

(Jm−1 − Jm)−1

I














U∗.

Proof. 2By Lemma 5.2 and straightforward calculations, we see that

m∏

j=1

(Iλ− Jj)
−1 =

m∑

j=1



(Iλ− Jj)
∏

i6=j

(Ji − Jj)





−1

,

or equivalently,

P (λ)−1 = X(Iλ− J)−1Y.

2Originally, we have derived another (constructive) proof of the proposition, which explains the

choice of matrices X and Y . That proof is inductive with respect to the degree m of P (λ), and uses

Corollary 3.3 of [6]. It also requires some computations, and hence, we decided to present this short

proof.
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Theorem 2.6 of [6] completes the proof.

Theorem 5.4. Let P (λ) be an n× n monic normal matrix polynomial of degree

m, and let (X,J, Y ) be the Jordan triple given by Proposition 5.3. If we denote

Ji = diag{λ
(i)
1 , λ

(i)
2 , . . . , λ(i)

n } ; i = 1, 2, . . . ,m,

then the condition number of the eigenproblem of P (λ) is

k(P ) =

(

1 + max
s=1,2,...,n

{

1

|λ
(2)
s − λ

(1)
s |2

+ · · · +

m−1∏

i=1

1

|λ
(m)
s − λ

(i)
s |2

})1/2

×

(

1 + max
s=1,2,...,n

{

1

|λ
(m)
s − λ

(m−1)
s |2

+ · · · +

m∏

i=2

1

|λ
(i)
s − λ

(1)
s |2

})1/2

.

Proof. Since P (λ) is normal, it follows λ
(i)
s 6= λ

(j)
s , i 6= j, s = 1, 2, . . . , n. Recall

that

X = U

[

I (J2 − J1)
−1 · · ·

m−2∏

i=1

(Jm−1 − Ji)
−1

m−1∏

i=1

(Jm − Ji)
−1

]

,

and observe that

XX∗ = U

(

I + (J2 − J1)
−1 (J2 − J1)−1 + · · · +

m−1∏

i=1

(Jm − Ji)
−1 (Jm − Ji)−1

)

U∗.

If we denote by λmax(·) the largest eigenvalue of a square matrix, then

‖X‖2 = λmax(XX
∗) = 1 + max

s=1,2,...,n

{

1

|λ
(2)
s − λ

(1)
s |2

+ · · · +

m−1∏

i=1

1

|λ
(m)
s − λ

(i)
s |2

}

.

Similarly, we verify that

‖Y ‖2 = λmax(Y
∗Y ) = 1 + max

s=1,2,...,n

{

1

|λ
(m)
s − λ

(m−1)
s |2

+ · · · +

m∏

i=2

1

|λ
(i)
s − λ

(1)
s |2

}

,

and the proof is complete.

It is worth noting that since a (monic) normal matrix polynomial is “essentially

diagonal”, the condition number of its eigenproblem depends on the eigenvalues and

not on the eigenvectors. Furthermore, by the above theorem, it is apparent that if

m ≥ 2 and the mutual distances of the eigenvalues of the monic matrix polynomial

P (λ) are sufficiently large, then the condition number k(P ) is relatively close to 1,

i.e., the eigenproblem of P (λ) is well-conditioned. On the other hand, if m ≥ 2 and
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the mutual distances of the eigenvalues are sufficiently small, then k(P ) is relatively

large, i.e., the eigenproblem of P (λ) is ill-conditioned.

Theorem 5.4 implies practical lower and upper bounds for the condition number

k(P ). For convenience, we denote

Θ = max
λ, λ̂ ∈ σ(P )

λ 6= λ̂

|λ− λ̂| and θ = min
λ, λ̂ ∈ σ(P )

λ 6= λ̂

|λ− λ̂| ,

and assume that Θ, θ 6= 1.

Corollary 5.5. Let P (λ) be an n×n monic normal matrix polynomial of degree

m, and let (X,J, Y ) be the Jordan triple given by Proposition 5.3. Then the condition

number k(P ) satisfies

Θ2m − 1

Θ2m − Θ2(m−1)
≤ k(P ) ≤

θ2m − 1

θ2m − θ2(m−1)
.

Consider the matrix polynomial P (λ) in (2.1), and recall that its leading coeffi-

cient Am is nonsingular. By [6, 10], (X,J, Y ) is a Jordan triple of the monic matrix

polynomial P̂ (λ) = A−1
m P (λ) = Iλm + A−1

m Am−1λ
m−1 + · · · + A−1

m A1λ + A−1
m A0 if

and only if (X,J, Y A−1
m ) is a Jordan triple of P (λ). This observation and the proof

of Theorem 5.4 yield the next results.

Corollary 5.6. Let P (λ) = A1λ+A0 be an n×n normal linear pencil, and let

U∗P (λ)U be diagonal for some unitary U ∈ C
n×n. Then a Jordan triple of P (λ) is

(X,J, Y ) = (U, J, UA−1
1 ), and k(P ) = ‖A−1

1 ‖.

Theorem 5.7. Let P (λ) in (2.1) be normal, and let (X,J, Y ) be the Jordan triple

of the monic matrix polynomial P̂ (λ) = A−1
m P (λ) given by Proposition 5.3. Then for

the condition number k(P ) = ‖X‖
∥
∥Y A−1

m

∥
∥ , we have

‖Am‖
−1 Θ2m − 1

Θ2m − Θ2(m−1)
≤ k(P ) ≤

∥
∥A−1

m

∥
∥

θ2m − 1

θ2m − θ2(m−1)
.

Proof. As mentioned above, (X,J, Y ) is a Jordan triple of the monic matrix

polynomial P̂ (λ) if and only if (X,J, Y A−1
m ) is a Jordan triple of P (λ). Notice also

that P̂ (λ) is normal, and by the proof of Theorem 5.4,

√

Θ2m − 1

Θ2m − Θ2(m−1)
≤ ‖X‖ , ‖Y ‖ ≤

√

θ2m − 1

θ2m − θ2(m−1)
.

Furthermore, there is an n × n unitary matrix U such that D(λ) = U∗P (λ)U and

Dm = U∗AmU are diagonal. As a consequence, ‖Am‖ = ‖Dm‖ and
∥
∥A−1

m

∥
∥ =

∥
∥D−1

m

∥
∥.
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Since the matrix Y U ∈ C
nm×n is a block-column of m diagonal matrices of order n,

it is straightforward to see that

∥
∥Y A−1

m

∥
∥ =

∥
∥Y UD−1

m U∗
∥
∥ =

∥
∥Y UD−1

m

∥
∥ =

∥
∥Y D−1

m

∥
∥ .

The matrix Y ∗Y is also diagonal, and thus,

∥
∥Y D−1

m

∥
∥ =

∥
∥
∥

(
D−1

m

)∗
Y ∗Y D−1

m

∥
∥
∥

1/2

=
∥
∥
∥Y ∗Y

(
D−1

m

)∗
D−1

m

∥
∥
∥

1/2

.

Hence, it follows

‖Y ‖ ‖Dm‖
−1

≤
∥
∥Y D−1

m

∥
∥ ≤ ‖Y ‖

∥
∥D−1

m

∥
∥ .

By Corollary 5.5, the proof is completed.

Proposition 5.1 implies directly the following.

Corollary 5.8. Let P (λ) in (2.1) be normal, and let Q(λ) ∈ B(P, ε,w) for

some ε > 0. Then for any µ ∈ σ(Q)\σ(P ), it holds that

min
λ∈σ(P )

|µ− λ| ≤ εw(|µ|)
∥
∥A−1

m

∥
∥

θ2m − 1

θ2m − θ2(m−1)
.

Remark 5.9. In the construction of the above bounds, we have assumed that

Θ and θ are different than 1. Suppose that this assumption fails for a normal matrix

polynomial P (λ). Then, keeping in mind the Jordan triple (X,J, Y ) of P̂ (λ) =

A−1
m P (λ) given by Proposition 5.3 and the proofs of Theorems 5.4 and 5.7, one can

easily see that k(P ) ≥ m ‖Am‖
−1

when Θ = 1, and k(P ) ≤ m
∥
∥A−1

m

∥
∥ when θ = 1.

Finally, as an example, recall the monic normal matrix polynomial P (λ) in (3.1).

For the weights w0 = w1 = w2 = 1, Theorem 5.4 yields k(P ) = 2, i.e., the eigenprob-

lem of P (λ) is well-conditioned. Note also that θ = 1 and the value 2 coincides with

the upper bound given by Remark 5.9.
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