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Abstract

In this paper, motivated by a problem posed by Wilkinson, we study the
coefficient perturbations of a (square) matrix polynomial to a matrix polynomial
that has a prescribed eigenvalue of specified algebraic multiplicity and index of
annihilation. For an n× n matrix polynomial P (λ) and a given scalar µ ∈ C, we
introduce two weighted spectral norm distances, Er(µ) and Er,k(µ), from P (λ) to
the n×n matrix polynomials that have µ as an eigenvalue of algebraic multiplicity
at least r and to those that have µ as an eigenvalue of algebraic multiplicity
at least r and maximum Jordan chain length (exactly) k, respectively. Then
we obtain a lower bound for Er,k(µ), and derive an upper bound for Er(µ) by
constructing an associated perturbation of P (λ).

Keywords: matrix polynomial, eigenvalue, algebraic multiplicity, index of annihilation,
perturbation, singular value, singular vector.
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1 Introduction and preliminaries

Wilkinson’s problem [14, 15] concerns computing the spectral norm distance (known as
Wilkinson’s distance) from an n×n matrix with n distinct eigenvalues to the set of n×n
matrices having multiple eigenvalues, and has a strong connection to ill-conditioning
of eigenvalue problems. Malyshev [9] provided a solution to Wilkinson’s problem
by obtaining a singular value characterization of Wilkinson’s distance. Recently,
Mengi [11] (extending Malyshev’s methodology) derived a singular value optimization
characterization for the smallest perturbation to a matrix that has an eigenvalue of
specified algebraic multiplicity. Papathanasiou and Psarrakos [13] studied the case
of polynomial eigenvalue problems, and applied Malyshev’s technique to derive lower
and upper bounds for a weighted distance from a given n × n matrix polynomial to
the n × n matrix polynomials that have a prescribed multiple eigenvalue.

Motivated by the above, we consider an n × n matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0, (1)

where λ is a complex variable and Aj ∈ C
n×n (j = 0, 1, . . . , m) with Am 6= 0. We also

assume that P (λ) is regular, that is, the determinant detP (λ) is not identically zero.
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The study of matrix polynomials, especially with regard to their spectral analysis, has
a long history and important applications; see [4, 8, 10] and the references therein.

A scalar λ0 ∈ C is called an eigenvalue of P (λ) if the system P (λ0)x = 0
has a nonzero solution x0 ∈ C

n. This solution x0 is known as a (right) eigen-
vector of P (λ) corresponding to λ0. The set of all eigenvalues of P (λ), σ(P ) =
{λ ∈ C : detP (λ) = 0}, is the spectrum of P (λ), and since P (λ) is regular, it contains
no more than nm finite elements. The algebraic multiplicity of a λ0 ∈ σ(P ) is the
multiplicity of λ0 as a zero of the (scalar) polynomial detP (λ), and it is always greater
than or equal to the geometric multiplicity of λ0, that is, the dimension of the null
space of matrix P (λ0). An eigenvalue of P (λ) is called semisimple if its algebraic and
geometric multiplicities are equal, and it is called defective otherwise.

Suppose that for an eigenvalue λ0 ∈ σ(P ), there exist x0, x1, . . . , xk ∈ C
n with

x0 6= 0, such that

ξ
∑

j=0

1

j!
P (j)(λ0)xξ−j = 0 ; ξ = 0, 1, . . . , k, (2)

where P (j)(λ) denotes the jth derivative of P (λ) and k+1 cannot exceed the algebraic
multiplicity of λ0. Then the vector x0 is clearly an eigenvector of λ0, and the vectors
x1, x2, . . . , xk are known as generalized eigenvectors. The set {x0, x1, . . . , xk} is called
a Jordan chain of length k +1 of P (λ) corresponding to the eigenvalue λ0. Moreover,
it is apparent that any set {x0, x1, . . . , xξ}, ξ = 0, 1, . . . , k − 1, is also a Jordan chain
of P (λ) corresponding to λ0. Any eigenvalue of P (λ) of geometric multiplicity p has p
maximal Jordan chains associated with p linearly independent eigenvectors, with total
number of eigenvectors and generalized eigenvectors equal to the algebraic multiplicity
of this eigenvalue. The largest length of Jordan chains of P (λ) corresponding to
λ0 ∈ σ(P ) is known as the index of annihilation of λ0 [7]. This index coincides with the
size of the largest Jordan blocks of the Jordan canonical form of P (λ) corresponding
to λ0, and it is equal to 1 if and only if the eigenvalue λ0 is semisimple; for details on
the Jordan structure of matrix polynomials, see [4, 8].

We are interested in (additive) perturbations of the matrix polynomial P (λ) of
the form

Q(λ) = P (λ) + ∆(λ) =
m

∑

j=0

(Aj + ∆j)λ
j , (3)

where the matrices ∆j ∈ C
n×n (j = 0, 1, . . . , m) are arbitrary. For a given parameter

ε > 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we
define the class of admissible perturbed matrix polynomials

B(P, ε, w) = {Q(λ) as in (3) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . , m} ,

where ‖ · ‖ denotes the spectral matrix norm (i.e., the norm subordinate to the Eu-
clidean vector norm), and the polynomial w(λ) = wmλm + · · · + w1λ + w0. The
weights w0, w1, . . . , wm allow freedom in how perturbations are measured. More-
over, B(P, ε, w) is convex and compact, with respect to the max norm ‖P (λ)‖∞ =
max

0≤j≤m
‖Aj‖ [1].
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Now we can introduce weighted distances from P (λ) to the matrix polynomials
that have a prescribed eigenvalue of algebraic multiplicity at least r, and to those
that have a prescribed eigenvalue of algebraic multiplicity at least r and index of
annihilation (exactly) k.

Definition 1.1. For the matrix polynomial P (λ) in (1) and a given µ ∈ C, we define
the distance from P (λ) to µ as an eigenvalue of algebraic multiplicity at least r by

Er(µ) = inf {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ as an eigenvalue of

algebraic multiplicity at least r} ,

and the distance from P (λ) to µ as an eigenvalue of algebraic multiplicity at least r
and index of annihilation k by

Er,k(µ) = inf {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ as an eigenvalue of algebraic

multiplicity at least r and index of annihilation k} .

Notice that we have the identity Er(µ) = min
k=1,2,...,mn

Er,k(µ). Here, we allow values

of k greater than r because the optimal perturbed matrix polynomial Q(λ) may have
µ as an eigenvalue of (both) algebraic multiplicity and index of annihilation greater
than r.

The singular values of an n × n complex matrix A, i.e., the nonnegative square
roots of the eigenvalues of A∗A, are denoted by s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0.
It is apparent that for the matrix polynomial P (λ), σ(P ) = {λ ∈ C : sn(P (λ)) = 0},
and a scalar λ0 ∈ C is an eigenvalue of P (λ) of geometric multiplicity exactly p if and
only if s1(P (λ0)) ≥ · · · ≥ sn−p(P (λ0)) > sn−p+1(P (λ0)) = · · · = sn(P (λ0)) = 0.

If P (λ) = Iλ − A for some A ∈ C
n×n, then σ(P ) coincides with the standard

spectrum of A, σ(A), and if in addition w = {w0, w1} = {1, 0}, then B(P, ε, w) =
{Iλ − (A + E) : ‖E‖ ≤ ε}. In this case, Malyshev [9] (inspired by [12]) has proved
that

E2(µ) = sup
γ>0

s2n−1

([

Iµ − A 0
γI Iµ − A

])

.

Extending Malyshev’s methodology, Ikramov and Nazari [6] (for r = 3), and Mengi
[11] have obtained (always for P (λ) = Iλ − A and w = {w0, w1} = {1, 0}, i.e., for
constant matrices)

Er(µ) = sup
γi,j ∈C\{0}

srn−r+1





























Iµ − A 0 0 · · · 0
γ2,1I Iµ − A 0 · · · 0
γ3,1I γ3,2I Iµ − A · · · 0

...
...

...
. . .

...
γr,1I γr,2I γr,3I · · · Iµ − A





























. (4)

In this work, our goal is to derive a primer estimation of the distances Er,k(µ)
and Er(µ) for matrix polynomials. Unfortunately, in the case of matrix polynomials,
Malyshev’s technique leads to lower and upper bounds for the distance E2(µ) and not
to its exact value [13]. Hence, to be able to exploit the definition of Jordan chains of
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matrix polynomials in (2) and avoid multivariable optimization problems, we consider
block-Toeplitz matrices of higher order with only one real parameter γ > 0 and its
powers instead of the r(r − 1)/2 complex parameters γ2,1, γ3,1, γ3,2, . . . , γr,r−1 in (4)
(see Definition 2.1 below and the discussion before Theorem 2.4). Generalizing results
of [13], in Section 2, we obtain a lower bound for Er,k(µ), and in Section 3, we construct
an upper bound for Er(µ) and an associated perturbation of P (λ). Simple numerical
examples are given in Section 4 to illustrate our results.

2 A lower bound for the distance Er,k(µ)

By Theorem 4 of [13], we know that if both the required algebraic and geometric
multiplicities of µ are equal to r (i.e., the index of annihilation is equal to 1), then
Er,1(µ) ≥ sn−r+1(P (µ))/w(|µ|). Hence, it follows that

E1(µ) =
sn(P (µ))

w(|µ|)
≤ Er(µ) ≤

sn−r+1(P (µ))

w(|µ|)
≤ Er,1(µ).

So, in the special case sn(P (µ)) = sn−1(P (µ)) = · · · = sn−r+1(P (µ)), it is clear
that Er(µ) = sn−r+1(P (µ))/w(|µ|), and an optimal perturbation of P (λ) is given by
[13, formula (3)]. Thus, in what follows, we assume that sn(P (µ)) 6= sn−r+1(P (µ))
and consider perturbations of P (λ) such that the perturbed matrix polynomial has
µ as a defective eigenvalue (i.e., k ≥ 2) of algebraic multiplicity at least r. The next
definition is necessary for the remainder.

Definition 2.1. For the matrix polynomial P (λ) in (1), a positive integer k and a
scalar γ ∈ C, we define the kn × kn matrix polynomial

Fk[P (λ); γ] =

















P (λ) 0 · · · 0

γ P (1)(λ) P (λ) · · · 0
γ2

2! P (2)(λ) γ P (1)(λ) · · · 0
...

...
. . .

...
γk−1

(k−1)! P (k−1)(λ) γk−2

(k−2)! P (k−2)(λ) · · · P (λ)

















.

We observe that a scalar λ0 ∈ C is an eigenvalue of P (λ) if and only if it is an
eigenvalue of Fk[P (λ); γ]. Furthermore, if λ0 is an eigenvalue of P (λ) of algebraic
multiplicity r and index of annihilation k, then for every γ 6= 0, the null space of
matrix Fk[P (λ0); γ] has dimension at least r (for γ = 1, see [5, Lemma 2.5] and [7]).

Lemma 2.2. Suppose λ0 ∈ C is an eigenvalue of P (λ) of algebraic multiplicity
at least r and index of annihilation k. Then for any nonzero γ ∈ C, we have
skn−r+1(Fk[P (λ0); γ]) = 0.

Proof. By hypothesis, we may assume that P (λ) has p Jordan chains corresponding
to λ0, namely,

{x1,0, x1,1, . . . , x1,k1
}, {x2,0, x2,1, . . . , x2,k2

}, . . . , {xp,0, xp,1, . . . , xp,kp
},

with x1,0, x2,0, . . . , xp,0 linearly independent eigenvectors, k − 1 = k1 ≥ k2 ≥ · · · ≥ kp

and (k1 + 1) + (k2 + 1) + · · · + (kp + 1) = r. Notice that the first Jordan chain,
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{x1,0, x1,1, . . . , x1,k1
}, is necessarily maximal. Then, recalling (2), we see that the r

vectors





























0
...
0

xi,0

γxi,1

γ2xi,2

...
γki−1xi,ki−1

γkixi,ki





























,





























0
...
0
0

xi,0

γxi,1

...
γki−2xi,ki−2

γki−1xi,ki−1





























, . . . ,

































0
...
0
0
0
0
...
0
0

xi,0

































∈ C
kn ; i = 1, 2, . . . , p (5)

satisfy

Fk[P (λ0); γ]





























0
...
0

xi,0

γxi,1

γ2xi,2

...
γξ−1xi,ξ−1

γξxi,ξ





























=







































0
...
0

P (λ0)xi,0

γ
1
∑

j=0

1
j! P (j)(λ0)xi,1−j

γ2
2
∑

j=0

1
j! P (j)(λ0)xi,2−j

...

γξ
ξ

∑

j=0

1
j! P (j)(λ0)xi,ξ−j







































= 0

for all i = 1, 2, . . . , p and ξ = 0, 1, . . . , ki. Hence, they lie in the null space of matrix
Fk[P (λ0); γ]. Moreover, one can verify that the vectors in (5) are linearly indepen-
dent, keeping in mind their block form and the linear independence of the eigenvec-
tors x1,0, x2,0, . . . , xp,0 ∈ C

n. As a consequence, the dimension of the null space of
Fk[P (λ0); γ] is greater than or equal to r (i.e., 0 is an eigenvalue of matrix Fk[P (λ0); γ]
of geometric multiplicity at least r), and thus, skn−r+1(Fk[P (λ0); γ]) = 0.

By this lemma, if a scalar µ ∈ C is a multiple eigenvalue of a perturbed matrix
polynomial Q(λ) = P (λ) + ∆(λ) (as in (3)) of algebraic multiplicity at least r and
index of annihilation k, then for any nonzero γ ∈ C, µ is an eigenvalue of the kn×kn
matrix polynomial Fk[Q(λ); γ] of geometric multiplicity at least r. This observation
and the discussion in Section 3 of [13] yield readily the following lemma.

Lemma 2.3. If µ ∈ C is an eigenvalue of a matrix polynomial Q(λ) = P (λ) + ∆(λ)
of algebraic multiplicity at least r and index of annihilation k, then for every γ 6= 0,

skn−r+1(Fk[P (µ); γ]) ≤ ‖Fk[∆(µ); γ]‖.

It is straightforward to verify that











u1

u2
...

uk











,











v1

v2
...

vk











∈ C
kn (uj , vj ∈ C

n, j =

1, 2, . . . , k) is a pair of left and right singular vectors corresponding to a singular
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value of Fk[P (µ); γ] (γ 6= 0) if and only if











u1

(γ/|γ|)u2
...

(γ/|γ|)k−1uk











,











v1

(γ/|γ|)v2
...

(γ/|γ|)k−1vk











is

a pair of left and right singular vectors of Fk[P (µ); |γ|] corresponding to the same
singular value. Hence, for convenience, and without loss of generality, from this point
and in the remainder of the paper, we assume that the parameter γ is real positive.

Theorem 2.4. Suppose µ ∈ C is an eigenvalue of a perturbed matrix polynomial
Q(λ) = P (λ) + ∆(λ) ∈ B(P, ε, w) of algebraic multiplicity at least r and index of
annihilation k. Then for every γ > 0,

ε ≥
‖Fk[∆(µ); γ]‖

‖Fk[w(|µ|); |γ|]‖
≥

skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); |γ|]‖
.

Proof. For the matrix polynomial ∆(λ) and its derivatives, we have

‖∆(µ)‖ ≤

m
∑

j=0

‖∆j‖ |µ|
j ≤ εw(|µ|)

and

∥

∥

∥
∆(i)(µ)

∥

∥

∥
≤

m
∑

j=i

j (j − 1) · · · (j − i + 1) ‖∆j‖ |µ|
j−i ≤ εw(i)(|µ|) ; i = 1, 2, . . . , r − 1.

Thus, for any γ > 0, there is a unit vector ŷ =











y1

y2
...

yk











∈ C
kn with y1, y2, . . . , yk ∈ C

n

such that

‖Fk[∆(µ); γ]‖2 = ‖Fk[∆(µ); γ] ŷ‖2 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















∆(µ)y1

γ∆(1)(µ)y1 + ∆(µ)y2
...

k−1
∑

i=0

γi

i! ∆(i)(µ)yk−i















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

= ‖∆(µ)y1‖
2 +

∥

∥

∥
γ∆(1)(µ)y1 + ∆(µ)y2

∥

∥

∥

2
+ · · · +

∥

∥

∥

∥

∥

k−1
∑

i=0

γi

i!
∆(i)(µ)yk−i

∥

∥

∥

∥

∥

2

≤ ‖∆(µ)‖2 ‖y1‖
2 + γ2

∥

∥

∥
∆(1)(µ)

∥

∥

∥

2
‖y1‖

2

+ 2 γ ‖∆(µ)‖
∥

∥

∥
∆(1)(µ)

∥

∥

∥
‖y1‖‖y2‖ + ‖∆(µ)‖2 ‖y2‖

2

+ · · · + ‖∆(µ)‖2 ‖yk‖
2
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≤ (εw(|µ|))2‖y1‖
2 + γ2(εw(1)(|µ|))2‖y1‖

2

+ 2 γ(εw(|µ|))(εw(1)(|µ|))‖y1‖‖y2‖ + (εw(|µ|))2‖y2‖
2

+ · · · + (εw(|µ|))2‖yk‖
2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















εw(|µ|) ‖y1‖

γεw(1)(|µ|) ‖y1‖ + εw(|µ|)‖y2‖
...

k−1
∑

i=0

γi

i! εw(i)(|µ|)‖yk−i‖















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ ε2 ‖Fk[w(|µ|); γ]‖2 .

The proof is completed by Lemma 2.3.

As mentioned before, for k = 1, Er,1(µ) ≥ sn−r+1(P (µ))/w(|µ|) [13, Theorem 4].

Corollary 2.5. For any γ > 0, the inequalities

Er,k(µ) ≥
skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); γ]‖
; k = 1, 2, . . . , r

and

Er(µ) ≥ min
k=1,2,...,nm

skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); γ]‖

hold.

Let us denote by η(r, k) the smallest integer that is greater than or equal to n− r−1
k

.
One can see that

skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); γ]‖
−→

sη(r,k)(P (µ))

w(|µ|)
≤ En−η(r,k)+1,1(µ)

as γ −→ 0+.

3 An upper bound for the distance Er(µ)

The technique applied in the proof of Theorem 11 of [13] can be extended for the
derivation of an upper bound for the distance Er(µ) from P (λ) in (1) to the n × n
matrix polynomials that have µ ∈ C as an eigenvalue of algebraic multiplicity at least
r. The following definition is necessary.

Definition 3.1. For any γ > 0 and r ∈ {2, 3, . . . , n}, let











u1(γ)
u2(γ)

...
ur(γ)











,











v1(γ)
v2(γ)

...
vr(γ)











∈ C
rn

(uj(γ), vj(γ) ∈ C
n, j = 1, 2, . . . , r) be a pair of left and right singular vectors of

srn−r+1(Fr[P (µ); γ]), respectively. Then we define the n × r matrices

U(γ) = [u1(γ) u2(γ) · · · ur(γ) ] and V (γ) = [ v1(γ) v2(γ) · · · vr(γ) ] .
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For any γ > 0 with rank(V (γ)) = r ∈ {2, 3 . . . , n}, we will construct a perturba-
tion ∆γ(λ) such that the perturbed matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ) has µ
as a defective eigenvalue with an associated (not necessarily maximal) Jordan chain
of length r. First we define the quantities

φi =
w(i)(|µ|)

(i!)w(|µ|)

(

µ

|µ|

)i

; i = 1, 2, . . . , r,

setting µ/|µ| = 0 whenever µ = 0, and recalling that w0 > 0. We also consider the
r × r upper triangular Toeplitz matrix

Θγ = [θi,j ] =















1 −γφ1 γ2(φ2
1 − φ2) γ3(2φ1φ2 − φ3 − φ3

1) · · ·
0 1 −γφ1 γ2(φ2

1 − φ2) · · ·
0 0 1 −γφ1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .















,

whose entries above the main diagonal are given by the recursive formulae

θi,j = − θi,iγ
j−iφj−i − θi,i+1γ

j−(i+1)φj−(i+1) − · · · − θi,j−1γφ1 ; 1 ≤ i < j ≤ r. (6)

Denoting by V (γ)† the Moore-Penrose pseudoinverse of V (γ), we consider the
n × n matrix

∆γ = −srn−r+1(Fr[P (µ); γ])U(γ)ΘγV (γ)†,

and define the matrices

∆γ,j =
wj

w(|µ|)

(

µ

|µ|

)j

∆γ ; j = 0, 1, . . . , m

and the matrix polynomial

∆γ(λ) =

m
∑

j=0

∆γ,jλ
j .

We observe that ∆γ(µ) = ∆γ , and for i = 1, 2, . . . , r,

∆(i)
γ (µ) =

m
∑

j=i

j (j − 1) · · · (j − i + 1)
wj

w(|µ|)

(

µ

|µ|

)j

∆γ µj−i

= ∆γ
1

w(|µ|)

m
∑

j=i

j (j − 1) · · · (j − i + 1)wj

(

µ

|µ|

)i ( µ

|µ|

)j−i

µj−i

= ∆γ
w(i)(|µ|)

w(|µ|)

(

µ

|µ|

)i

= (i!)φi∆γ .

Since u(γ), v(γ) ∈ C
rn are a left and a right singular vector of srn−r+1(Fr[P (µ); γ]),

respectively, it holds that

Fr[P (µ); γ] v(γ) = srn−r+1(Fr[P (µ); γ])u(γ). (7)
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Denote also by e1, e2, . . . the vectors of the standard basis, i.e., the columns of the ide-
ntity matrix. If rank(V (γ)) = r (∈ {2, 3, . . . , n}), or equivalently, if V (γ)†V (γ) = Ir

(the r × r identity matrix), then the perturbed matrix polynomial

Qγ(λ) = P (λ) + ∆γ(λ) =

m
∑

j=0

(Aj + ∆γ,j)λ
j (8)

satisfies

Qγ(µ) v1(γ) = P (µ) v1(γ) + ∆γ v1(γ)

= srn−r+1(Fr[P (µ); γ])u1(γ) − srn−r+1(Fr[P (µ); γ])U(γ) e1

= srn−r+1(Fr[P (µ); γ])u1(γ) − srn−r+1(Fr[P (µ); γ])u1(γ)

= 0.

By straightforward computations, setting φ0 = 1 and recalling (6) and (7), we
verify that for every i = 1, 2, . . . , r − 1,

i
∑

j=0

1

j!
γj Q(j)

γ (µ) vi−j+1(γ)

=
i

∑

j=0

1

j!
γj P (j)(µ) vi−j+1(γ) +

i
∑

j=0

1

j!
γj ∆(j)

γ (µ) vi−j+1(γ)

= srn−r+1(Fr[P (µ); γ])ui+1(γ) −
i

∑

j=0

γj φj ∆γ vi−j+1(γ)

= srn−r+1(Fr[P (µ); γ])



ui+1(γ) −
i

∑

j=0

γj φj U(γ)ΘγV (γ)† vi−j+1(γ)





= srn−r+1(Fr[P (µ); γ])



ui+1(γ) −
i

∑

j=0

γj φj U(γ)Θγ ei−j+1





= srn−r+1(Fr[P (µ); γ])



ui+1(γ) −
i

∑

j=0

i−j+1
∑

ξ=1

γj φj θξ,i−j+1 uξ(γ)





= srn−r+1(Fr[P (µ); γ])



ui+1(γ) − θi+1,i+1 ui+1(γ) −
i

∑

ξ=1





i+1
∑

j=ξ

γi−j+1 φi−j+1 θξ,j



uξ(γ)





= − srn−r+1(Fr[P (µ); γ])





i
∑

ξ=1





i+1
∑

j=ξ

γi−j+1 φi−j+1 θξ,j



 uξ(γ)





= 0.

Dividing by γi 6= 0 yields

i
∑

j=0

1

j!
Q(j)

γ (µ)
(

γ−(i−j) vi−j+1(γ)
)

= 0.
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As a consequence, if rank(V (γ)) = r (∈ {2, 3, . . . , n}), then µ is a defective eigenvalue
of Qγ(λ) with

{

v1(γ), γ−1v2(γ), γ−2v3(γ), . . . , γ−(r−1)vr(γ)
}

as an associated Jordan
chain of length r (recall the definition of Jordan chains in (2)).

Furthermore, we see that

‖∆γ(µ)‖ = ‖∆γ‖ = srn−r+1(Fr[P (µ); γ])
∥

∥

∥
U(γ)ΘγV (γ)†

∥

∥

∥

and

‖∆γ,j‖ = wj
srn−r+1(Fr[P (µ); γ])

w(|µ|)

∥

∥

∥U(γ)ΘγV (γ)†
∥

∥

∥ ; j = 0, 1, . . . , r.

Hence, we have the next result, which is a direct generalization of the second part of
Theorem 11 in [13].

Theorem 3.2. Let P (λ) be a matrix polynomial as in (1), µ ∈ C, and r ∈ {2, 3, . . . , n}.
Then for every γ > 0 such that rank(V (γ)) = r, it holds that

Er(µ) ≤
srn−r+1(Fr[P (µ); γ])

w(|µ|)

∥

∥

∥U(γ)ΘγV (γ)†
∥

∥

∥ ,

and Qγ(λ) in (8) lies on the boundary of B
(

P, srn−r+1(Fr[P (µ);γ])
w(|µ|)

∥

∥U(γ)ΘγV (γ)†
∥

∥ , w
)

and has µ as a defective eigenvalue with a (not necessarily maximal) Jordan chain of
length r.

We remark that for r ≥ 3, it is not easy to find values of γ for which the condition
“rank(V (γ)) = r” is ensured, as it was done in [13] for r = 2. On the other hand, in
all our experiments, this rank condition appears to hold generically.

4 Numerical examples

To illustrate the proposed (lower and upper) bounds and their tightness, we begin
with the special case of constant matrices.

Example 4.1. Consider the 6×6 smoke matrix that can be generated by the Matlab
command gallery(‘smoke’,6), the corresponding linear pencil L(λ) = I6λ−S, the
weights w = {w0, w1} = {1, 0}, and the scalar µ = 0.3841+i 0.6767. By [11], we know
that

E3(0.3841 + i 0.6767) = E3,3(0.3841 + i 0.6767) = 0.3270.

The graphs of our lower bound for E3,3(0.3841 + i 0.6767) (see Corollary 2.5) and our
upper bound for E3(0.3841 + i 0.6767) (see Theorem 3.2) are depicted in Figure 1 for
γ ∈ (0, 5]. For γ = 0.6748, Corollary 2.5 implies the lower bound 0.3145. Moreover, for
γ = 0.5004, Theorem 3.2 yields the upper bound 0.4694 and an associated perturbed
matrix S + ∆ with ‖∆‖ = 0.4694, which has µ = 0.3841 + i 0.6767 as a defective
eigenvalue of algebraic multiplicity 3 and geometric multiplicity 1.
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Figure 1: Lower and upper bounds for E3(0.3841 + i 0.6767), 0 < γ ≤ 5.
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Figure 2: Lower bound for E3,3(−1.1105) and upper bound for E3(−1.1105), 0 < γ ≤ 5.

For our second example, we consider a real quadratic matrix polynomial.

Example 4.2. Let

P (λ) =





1 0 0
0 2 0
0 0 3



λ2 +





0 1 0
0 3 1
0 −1 6



λ +





2 1 0
−1 3 0
0 0 10





and w = {w0, w1, w2} = {10, 6.1108, 3} (the norms of the coefficient matrices). For
the scalar µ = −1.1105, by Example 2 of [13] (see also Proposition 17 and Theorem
18 in [1]), we know that

E2(−1.1105) = E2,2(−1.1105) = E1(−1.1105) = 0.1002. (9)

The graphs of our lower bound for E3,3(−1.1105) and our upper bound for E3(−1.1105)
are illustrated in Figure 2 for γ ∈ (0, 5]. Setting γ = 0.5530 and γ = 0.6518, we get
the lower bound 0.1048 and the upper bound 0.3177, respectively. It is worth noting
that these bounds are clearly compatible with (9). Furthermore, Theorem 3.2 yields
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Figure 3: Lower bound for E3,2(2) and upper bound for E3(2), 0 < γ ≤ 5.

the perturbed matrix polynomial

Q(λ) =





0.5323 −0.0453 −0.6286
0.1664 1.6410 0.4567
−0.0043 −0.0977 2.7268



λ2 +





0.9526 1.0922 1.2805
−0.3389 3.7312 0.0696
0.0087 −0.8009 6.5565



λ

+





0.4411 0.8490 −2.0955
−0.4454 1.8035 1.5225
−0.0142 −0.3258 9.0893





that lies on the boundary of B (P, 0.3177, w), and has µ = −1.1105 as a defective
eigenvalue of algebraic multiplicity 3 and geometric multiplicity 1, with an associated

eigenvector x =

[

0.9571
0.2890
−0.0194

]

.

The matrix polynomial in our last example is triangular, and hence, we can directly
compute a (non optimal) perturbation with the desired properties.

Example 4.3. Consider the 4 × 4 quadratic matrix polynomial

P (λ) =









2λ2 − 5λ + 4 0 2λ + 1 −λ + 6
0 λ2 + 2λ − 5 −λ2 0
0 0 2λ2 − i 8 iλ
0 0 0 λ2 − λ + 15









and the weights w = {w0, w1, w2} = {1, 1, 1}. The graphs of the proposed lower
bound for E3,2(2) and upper bound for E3(2) are plotted in Figure 3 for γ ∈ (0, 5]. As
γ −→ 0+ and for γ = 1.1827, we get the lower bound 0.4093 for E3,2(2) and the upper
bound 1.6357 for E3(2), respectively. The exact values of the distances E3,2(2) and
E3(2) are not known, but these bounds are consistent with the fact that the matrix
polynomial

R(λ) =









λ2 − 4λ + 4 0 2λ + 1 −λ + 6
0 λ2 + λ − 6 −λ2 0
0 0 λ2 − i 9 iλ
0 0 0 λ2 + 16








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lies on the boundary of B (P, 1, w), and has µ = 2 as a defective eigenvalue of alge-
braic multiplicity 3 and index of annihilation 2. Recalling the comment in the last
paragraph of Section 2 (and applying the methodology in [13, Section 3]), we also
observe that the lower bound 0.4093 coincides with the distance E2,1(2).

Corollary 2.5 and Theorem 3.2 provide an infinite number of lower bounds of
Er,k(µ) and upper bounds of Er(µ), respectively, in such a way that the best lower/upper
bound is given by the maximum/minimum of these bounds over all γ > 0. Since these
optimization problems are over only one real variable, in our examples above, we apply
the standard grid search with respect to γ ∈ (0, 5]. The difficulty with this brute-force
approach is that it usually requires too many bound evaluations.

Alternatively, we can use golden section search [3, pp. 656–659], or Brent’s method
[2, Chapter 5]. The latter algorithm is based on the combination of inverse quadratic
interpolation and golden section search, and one of its implementations is the Matlab
function fminbnd. As it is expected, these two derivative-free optimization methods
compute at best a local extremum, and there is no guarantee that the global extremum
will be found (so, the grid search with a few grid points can be used to initiate an
interval of the global optimum). For example, we consider the upper bound of the
distance E3(−1.1105) in Example 2 (see Figure 2). Applying fminbnd on the interval
(0, 2], we get the global minimum 0.3177 at γ = 0.6518 after 8 iterations. Over
the interval (0, 5], fminbnd finds the local minimum 0.4449 at γ = 2.9905 after 10
iterations.

Acknowledgment. The author is grateful to the anonymous referees for their valu-
able comments and suggestions.
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