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Abstract

For a matrix polynomial P (λ) and a given complex number µ, we introduce
a (spectral norm) distance from P (λ) to the matrix polynomials that have µ as
an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to
the matrix polynomials that have µ as a multiple eigenvalue. Then we compute
the first distance and obtain bounds for the second one, constructing associated
perturbations of P (λ).
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1 Introduction

The distance from a matrix A ∈ C
n×n with simple eigenvalues to the set of matrices

with multiple eigenvalues, and its relationship with the conditioning of the eigen-
problem of A, were originally studied by Householder [8] and Wilkinson [16]. Several
bounds for this distance have been obtained by Ruhe [13], Wilkinson [17, 18, 19, 20]
and Demmel [2]. Nearness to matrices with (multiple) defective eigenvalues can also
explain transient behaviors of the matrix exponential [3].

Using Singular Value Decomposition (SVD) and standard arguments of matrix
analysis one can easily verify the following result, which was first published (in a
slightly different form) by Golub, Klema and Stewart [5] (see also [6, Theorem 2.5.3]).
Note that ‖ · ‖ denotes the spectral matrix norm, i.e., that norm subordinate to the
Euclidean vector norm.

Theorem 1 (Golub, Klema and Stewart, 1976) Let A ∈ C
n×n and µ ∈ C. Suppose

that the matrix Iµ − A has an SVD of the form

Iµ − A = U ΣV ∗ = U diag {s1(Iµ − A), s2(Iµ − A), . . . , sn(Iµ − A)} V ∗,
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where the matrices U, V ∈ C
n×n are unitary and s1(Iµ − A) ≥ s2(Iµ − A) ≥ · · · ≥

sn(Iµ − A) ≥ 0 are the singular values of Iµ − A. Then the distance from A to the
n × n matrices X that have µ as an eigenvalue of geometric multiplicity ≥ κ,

min {‖X − A‖ : µ is an eigenvalue of X with geometric multiplicity ≥ κ} ,

is equal to the singular value sn−κ+1(Iµ − A), and an optimal perturbation of A is

Xµ = Iµ − U diag {s1(Iµ − A), . . . , sn−κ(Iµ − A), 0, . . . , 0} V ∗.

The next theorem was recently proved by Malyshev [11], and gives the (spectral
norm) distance from A to the set of matrices with µ ∈ C as a multiple eigenvalue.
Here and elsewhere in the paper, when we consider a pair of a left singular vector
u ∈ C

n and a right singular vector v ∈ C
n of a matrix A ∈ C

n×n corresponding to
the singular value sj(A), we always assume that there is an SVD of A,

A = U ΣV ∗ = U diag {s1(A), s2(A), . . . , sn(A)}V ∗

(s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0) with u and v as the j-th columns of the unitary
matrices U and V , respectively. This means that these (unit) singular vectors are not
arbitrarily chosen, and they satisfy Av = sj(A)u and u∗A = sj(A)v∗.

Theorem 2 (Malyshev, 1999) The distance from a matrix A ∈ C
n×n to the set of

n × n matrices X that have a given µ ∈ C as a multiple eigenvalue,

min {‖X − A‖ : µ is a multiple eigenvalue of X} ,

is equal to the maximum (with respect to γ ≥ 0) singular value

s∗ = max
γ≥0

s2n−1

([

µI − A 0
γI µI − A

])

.

Furthermore, if s∗ corresponds to the value γ∗ > 0, then there is a pair

[

u1

u2

]

,

[

v1

v2

]

∈

C
2n (uk, vk ∈ C

n, k = 1, 2) of left and right singular vectors of s∗, respectively, such
that an optimal perturbation of A is Xµ = A + s∗ [u1 u2] [v1 v2]

†, where [v1 v2]
† is the

Moore-Penrose pseudoinverse of [v1 v2]. If s∗ corresponds to the value γ∗ = 0 and
u, v ∈ C

n is a pair of left and right singular vectors of Iµ − A for the singular value
s∗, respectively, then an optimal perturbation of A is Xµ = A + s∗uv∗.

In this article, we generalize the above theorems to the case of matrix polynomi-
als. In Section 3, we estimate the distance from a matrix polynomial to the set of
matrix polynomials that have a given complex number as an eigenvalue of geometric
multiplicity at least κ, and construct an optimal perturbation (Theorem 4). Then,
in Sections 4–6, we extend the methodology of Malyshev [11] (see also [12]), and
obtain lower and upper bounds for the distance from a matrix polynomial to matrix
polynomials that have a prescribed multiple eigenvalue (Theorems 11, 19 and 20).
Perturbations that lead to our upper bounds are also given. Moreover, in Section 7,
we confirm that our results in Sections 4–6 are direct generalizations of the results of
[11]. Finally, in Section 8, we present three illustrative examples.
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2 Definitions for matrix polynomials

Consider an n × n matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0, (1)

where λ is a complex variable and Aj ∈ C
n×n (j = 0, 1, . . . , m) with detAm 6= 0. The

study of matrix polynomials, especially with regard to their spectral analysis, has a
long history and important applications [4].

A scalar λ0 ∈ C is called an eigenvalue of P (λ) if the system P (λ0)x = 0 has a
nonzero solution x0 ∈ C

n. This solution x0 is known as a (right) eigenvector of P (λ)
corresponding to λ0. A nonzero vector y0 ∈ C

n that satisfies y∗0P (λ0) = 0 is called a
left eigenvector of P (λ) corresponding to λ0. The set of all eigenvalues of P (λ) is the
spectrum of P (λ), namely, σ(P ) = {λ ∈ C : detP (λ) = 0} , and since detAm 6= 0,
it contains no more than nm distinct (finite) elements. The algebraic multiplicity of
a λ0 ∈ σ(P ) is the multiplicity of λ0 as a zero of the (scalar) polynomial detP (λ),
and it is always greater than or equal to the geometric multiplicity of λ0, that is, the
dimension of the null space of the matrix P (λ0). A multiple eigenvalue of P (λ) is
called defective if its algebraic multiplicity is greater than its geometric one.

We are interested in perturbations of the matrix polynomial P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =
m
∑

j=0

(Aj + ∆j)λ
j , (2)

where the matrices ∆j ∈ C
n×n (j = 0, 1, . . . , m) are arbitrary. For a given parameter

ε > 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we
define the class of admissible perturbed matrix polynomials

B(P, ε, w) = {Q(λ) as in (2) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . , m} .

The weights wj (j = 0, 1, . . . , m) allow freedom in how perturbations are measured;
for example, in an absolute sense when w0 = w1 = · · · = wm = 1, or in a relative
sense when wj = ‖Aj‖ (j = 0, 1, . . . , m). Moreover, B(P, ε, w) is convex and compact
[1], with respect to the max norm ‖P (λ)‖∞ = max0≤j≤m‖Aj‖.

Next we introduce the distance from P (λ) to the set of matrix polynomials that
have a prescribed eigenvalue of algebraic multiplicity at least 2, or of a given geometric
multiplicity.

Definition 3 For the matrix polynomial P (λ) in (1) and a given µ ∈ C, we define
the distance from P (λ) to µ as a multiple eigenvalue by

Ea(µ) = min {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ as a multiple eigenvalue} ,

and the distance from P (λ) to µ as an eigenvalue with geometric multiplicity κ by

Eg,κ(µ) = min {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ as an eigenvalue

of geometric multiplicity at least κ} .

If P (λ) = Iλ − A for some A ∈ C
n×n, then σ(P ) coincides with the standard

spectrum of A, σ(A). If in addition, w = {w0, w1} = {1, 0}, then B(P, ε, w) =
{Iλ− (A+E) : ‖E‖ ≤ ε}, and the distances Eg,κ(µ) and Ea(µ) are given by Theorems
1 and 2, respectively.
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3 Computation of the distance Eg,κ(µ)

Consider the matrix polynomial P (λ) in (1), a set of weights w = {w0, w1, . . . , wm}
with w0 > 0, and perturbations Q(λ) of the form (2). For any λ ∈ C, the singular
values of P (λ), i.e., the nonnegative roots of the eigenvalue functions of P (λ)∗P (λ),
are denoted by s1(P (λ)) ≥ s2(P (λ)) ≥ · · · ≥ sn(P (λ)) ≥ 0. Observe that λ0 ∈ C is
an eigenvalue of P (λ) of geometric multiplicity κ if and only if the matrix P (λ0) is of
rank n − κ, or equivalently, if and only if

s1(P (λ0)) ≥ · · · ≥ sn−κ(P (λ0)) > sn−κ+1(P (λ0)) = · · · = sn(P (λ0)) = 0.

Suppose that µ ∈ C is not an eigenvalue of P (λ) with geometric multiplicity ≥ κ.
In this section, we compute the distance Eg,κ(µ) (i.e., the minimum ε > 0 such that
µ is an eigenvalue of some Q(λ) ∈ B(P, ε, w) of geometric multiplicity ≥ κ) and an
optimal perturbation of P (λ). We consider an SVD of the matrix P (µ),

P (µ) = Û Σµ V̂ ∗

= [û1 û2 · · · ûn] diag {s1(P (µ)), s2(P (µ)), . . . , sn(P (µ))} [v̂1 v̂2 · · · v̂n]∗ ,

and we define the matrix (see also [1, 15])

E = − Û diag {0, . . . , 0, sn−κ+1(P (µ)), . . . , sn(P (µ))} V̂ ∗

= − [ûn−κ+1 · · · ûn] diag {sn−κ+1(P (µ)), . . . , sn(P (µ))} [v̂n−κ+1 · · · v̂n]∗ .

By Theorem 1, the matrix P (µ) + E is a nearest matrix to P (µ) that has 0 as
an eigenvalue of geometric multiplicity ≥ κ. Then Ev̂j = −sj(P (µ))ûj and û∗

jE =
−sj(P (µ))v̂∗j for every j = n−κ+1, . . . , n, and ‖E‖ = sn−κ+1(P (µ)). We also define
the scalar polynomial w(λ) = wmλm + · · · + w1λ + w0 and the matrices

∆̂j =
wj

w(|µ|)

(

µ

|µ|

)j

E ; j = 0, 1, . . . , m,

where we set µ/|µ| = 0 whenever µ = 0. The matrix polynomial

∆̂(λ) =
m
∑

j=0

∆̂jλ
j

satisfies

∆̂(µ) =





m
∑

j=0

wj |µ|j


w(|µ|)−1E = E,

and for the perturbation

Q̂(λ) = P (λ) + ∆̂(λ) =
m
∑

j=0

(Aj + ∆̂j)λ
j (3)

of P (λ) (introduced in [15]), it is clear that

Q̂(µ)v̂j = P (µ)v̂j + ∆̂(µ)v̂j = 0 and û∗
j Q̂(µ) = û∗

jP (µ) + û∗
j∆̂(µ) = 0
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for every j = n − κ + 1, . . . , n. As a consequence, µ ∈ σ(Q̂) with geometric multi-
plicity ≥ κ, (right) eigenvectors v̂n−κ+1, . . . , v̂n and left eigenvectors ûn−κ+1, . . . , ûn.
Moreover, ‖∆̂j‖ = wj w(|µ|)−1sn−κ+1(P (µ)) (j = 0, 1, . . . , m), and hence, Q̂(λ) lies
on the boundary ∂B(P, sn−κ+1(P (µ))/w(|µ|), w).

Assume now that for a positive ε < sn−κ+1(P (µ))/w(|µ|), there is a Q(λ) =
P (λ) + ∆(λ) ∈ B(P, ε, w) that has µ as an eigenvalue of geometric multiplicity ≥ κ.
Then the matrix polynomial ∆(λ) is of the form

∆(λ) =

m
∑

j=0

∆jλ
j ,

where
‖∆j‖ ≤ εwj ; j = 0, 1, . . . , m,

and thus,

‖∆(µ)‖ ≤
m
∑

j=0

‖∆j‖ |µ|j ≤ ε
m
∑

j=0

wj |µ|j = εw(|µ|) < sn−κ+1(P (µ)).

This is a contradiction because the matrix Q(µ) = P (µ) + ∆(µ) is a perturbation of
the matrix P (µ) that has 0 as an eigenvalue of geometric multiplicity ≥ κ, and by
Theorem 1, ‖∆(µ)‖ ≥ sn−κ+1(P (µ)). Hence, we have the following result.

Theorem 4 Consider the matrix polynomial P (λ) in (1) and a scalar µ ∈ C. Then
the distance from P (λ) to µ as an eigenvalue of geometric multiplicity κ, is

Eg,κ(µ) =
sn−κ+1(P (µ))

w(|µ|) .

Furthermore, the perturbation Q̂(λ) in (3) lies on ∂B(P, Eg,κ(µ), w) and has µ as an
eigenvalue of geometric multiplicity ≥ κ.

If we consider the linear pencil P (λ) = Iλ−A and w = {w0, w1} = {1, 0}, then it
is apparent that the above theorem is a direct generalization of Theorem 1.

4 Bounds for the distance Ea(µ)

By the definition of the distances Ea(µ) and Eg,κ(µ) (recall Definition 3), and the
results of the previous section, it is obvious that

sn(P (µ))

w(|µ|) = Eg,1(µ) ≤ Ea(µ) ≤ Eg,2(µ) =
sn−1(P (µ))

w(|µ|) .

If sn(P (µ)) = sn−1(P (µ)), then (see also Proposition 14 of [1])

Ea(µ) = Eg,2(µ) = Eg,1(µ) =
sn(P (µ))

w(|µ|)

and an optimal perturbation of P (λ) is the matrix polynomial Q̂(λ) in (3) (for κ = 2).
Hence, for the distance Ea(µ), we may assume that sn(P (µ)) 6= sn−1(P (µ)) and study
perturbations of P (λ) that have µ as a defective eigenvalue of algebraic multiplicity
≥ 2 and geometric multiplicity 1. The next definition will be needed in the sequel.
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Definition 5 For the matrix polynomial P (λ) in (1) and a scalar γ ∈ C, we define
the 2n × 2n matrix polynomial

F [P (λ); γ] =

[

P (λ) 0
γP ′(λ) P (λ)

]

,

where P ′(λ) denotes the derivative of P (λ) with respect to λ.

Clearly, a λ0 ∈ C is an eigenvalue of P (λ) if and only if it is an eigenvalue of
F [P (λ); γ]. Furthermore, when γ 6= 0, λ0 is a multiple eigenvalue of P (λ) if and only
if the null space of the matrix F [P (λ0); γ] has dimension ≥ 2, as shown next.

Lemma 6 A scalar λ0 ∈ C is a multiple eigenvalue of P (λ) if and only if for any
nonzero γ ∈ C,

s2n−1(F [P (λ0); γ]) = s2n−1

([

P (λ0) 0
γP ′(λ0) P (λ0)

])

= 0.

Proof For any γ 6= 0, the singular value s2n−1(F [P (λ0); γ]) is equal to 0 if and
only if the null space of the matrix F [P (λ0); γ] has dimension at least 2, i.e., if and

only if there exist two (nonzero) linearly independent vectors

[

x1

y1

]

,

[

x2

y2

]

∈ C
2n

(xk, yk ∈ C
n, k = 1, 2) such that

F [P (λ0); γ]

[

xk

yk

]

=

[

0
0

]

; k = 1, 2

or equivalently,

P (λ0)xk = 0 and γP ′(λ0)xk + P (λ0)yk = 0 ; k = 1, 2.

These equations hold if and only if λ0 is a multiple eigenvalue of P (λ). In par-
ticular, if xk 6= 0 (for k = 1 or 2), then the vectors xk, yk ∈ C

n form a Jordan chain
of length 2, corresponding to λ0 ∈ σ(P ) (see [4] for the definition and properties of
Jordan chains of matrix polynomials). If x1 = x2 = 0, then y1, y2 ∈ C

n are linearly
independent eigenvectors corresponding to λ0 ∈ σ(P ). �

Corollary 7 For any λ0 ∈ C, we have that either, s2n−1(F [P (λ0); γ]) 6= 0 for every
γ 6= 0, or s2n−1(F [P (λ0); γ]) ≡ 0.

Proof Suppose that for a γ0 6= 0, s2n−1(F [P (λ0); γ0]) = 0. Then λ0 is a multiple
eigenvalue of P (λ), and thus, for every γ 6= 0, s2n−1(F [P (λ0); γ]) = 0. �

By Lemma 6, a scalar µ ∈ C is a multiple eigenvalue of a perturbation Q(λ) =
P (λ) + ∆(λ) if and only if µ is an eigenvalue of the 2n × 2n matrix polynomial

F [Q(λ); γ] =

[

Q(λ) 0
γQ′(λ) Q(λ)

]

(for some γ 6= 0) of geometric multiplicity ≥ 2.

Moreover, the results of Section 3 yield the following lemma.
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Lemma 8 If µ ∈ C is a multiple eigenvalue of a matrix polynomial Q(λ) = P (λ) +
∆(λ), then for every γ 6= 0,

s2n−1(F [P (µ); γ]) ≤
∥

∥

∥

∥

[

∆(µ) 0
γ∆′(µ) ∆(µ)

]∥

∥

∥

∥

( = ‖F [∆(µ); γ]‖ ) .

The next result leads directly to a lower bound of the distance Ea(µ).

Lemma 9 If µ ∈ C is a multiple eigenvalue of a perturbation Q(λ) = P (λ)+∆(λ) ∈
B(P, ε, w), then for every γ 6= 0,

ε ≥

∥

∥

∥

∥

[

∆(µ) 0
γ∆′(µ) ∆(µ)

]∥

∥

∥

∥

∥

∥

∥

∥

[

w(|µ|) 0
γw′(|µ|) w(|µ|)

]∥

∥

∥

∥

≥ s2n−1(F [P (µ); γ])

‖F [w(|µ|); γ]‖ .

Proof For the matrix polynomials ∆(µ) and ∆′(µ), we know that

‖∆(µ)‖ ≤
m
∑

j=0

‖∆j‖ |µ|j ≤ εw(|µ|) and
∥

∥∆′(µ)
∥

∥ ≤
m
∑

j=1

j ‖∆j‖ |µ|j−1 ≤ εw′(|µ|).

Hence, for any γ 6= 0, there is a unit vector

[

x
y

]

∈ C
2n (x, y ∈ C

n) such that

∥

∥

∥

∥

[

∆(µ) 0
γ∆′(µ) ∆(µ)

]∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

∆(µ) 0
γ∆′(µ) ∆(µ)

] [

x
y

]∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

∆(µ)x
γ∆′(µ)x + ∆(µ)y

]∥

∥

∥

∥

2

= ‖∆(µ)x‖2 +
∥

∥γ∆′(µ)x + ∆(µ)y
∥

∥

2

≤ ‖∆(µ)‖2 ‖x‖2 + |γ|2
∥

∥∆′(µ)
∥

∥

2 ‖x‖2

+2|γ| ‖∆(µ)‖
∥

∥∆′(µ)
∥

∥ ‖x‖‖y‖ + ‖∆(µ)‖2 ‖y‖2

≤ (εw(|µ|))2‖x‖2 + |γ|2(εw′(|µ|))2‖x‖2

+2|γ|(εw(|µ|))(εw′(|µ|))‖x‖‖y‖ + (εw(|µ|))2‖y‖2

=

∥

∥

∥

∥

[

εw(|µ|) ‖x‖
|γ|εw′(|µ|) ‖x‖ + εw(|µ|)‖y‖

]∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

εw(|µ|) 0
|γ|εw′(|µ|) εw(|µ|)

] [

‖x‖
‖y‖

]∥

∥

∥

∥

2

≤
∥

∥

∥

∥

[

εw(|µ|) 0
γεw′(|µ|) εw(|µ|)

]∥

∥

∥

∥

2

.

The proof is completed by Lemma 8. �

By the above lemma, it is clear that

s2n−1(F [P (µ); γ]) ≤ Ea(µ)

∥

∥

∥

∥

[

w(|µ|) 0
γw′(|µ|) w(|µ|)

]∥

∥

∥

∥

= Ea(µ)w(|µ|)
∥

∥

∥

∥

∥

[

1 0

γ w′(|µ|)
w(|µ|) 1

]∥

∥

∥

∥

∥

.
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Hence, the distance from P (λ) to µ as a multiple eigenvalue satisfies

Ea(µ) ≥ s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

∥

[

1 0

γ w′(|µ|)
w(|µ|) 1

]∥

∥

∥

∥

∥

−1

. (4)

Now we turn our attention to the derivation of an upper bound of Ea(µ). For our
discussion, it is necessary to define two n× 2 matrices related to the singular vectors
of F [P (µ); γ] corresponding to s2n−1(F [P (µ); γ]).

Definition 10 Let

[

u1(γ)
u2(γ)

]

,

[

v1(γ)
v2(γ)

]

∈ C
2n (uk(γ), vk(γ) ∈ C

n, k = 1, 2) be a

pair of left and right singular vectors of s2n−1(F [P (µ); γ]), respectively (for some γ).
Then we define the n × 2 matrices U(γ) = [u1(γ) u2(γ)] and V (γ) = [v1(γ) v2(γ)].

It is easy to see that

[

u1

u2

]

,

[

v1

v2

]

∈ C
2n (uk, vk ∈ C

n, k = 1, 2) is a pair of left

and right singular vectors corresponding to a singular value of F [P (µ); γ] (γ 6= 0) if

and only if

[

u1

(γ/|γ|)u2

]

,

[

v1

(γ/|γ|)v2

]

is a pair of left and right singular vectors of

F [P (µ); |γ|] corresponding to the same singular value. Hence, for convenience (and
without loss of generality), from this point and in the remainder of the paper, we
assume that the parameter γ is real nonnegative.

For any γ > 0 with rank(V (γ)) = 2, we will construct a matrix polynomial ∆γ(λ)
such that the perturbation Qγ(λ) = P (λ) + ∆γ(λ) has µ as a multiple eigenvalue.
First we consider the quantity

φ =
w′(|µ|)
w(|µ|)

µ

|µ|

(recall that w0 > 0, and that, by convention, µ/|µ| = 0 whenever µ = 0) and the
matrix

∆γ = −s2n−1(F [P (µ); γ])U(γ)

[

1 −γφ
0 1

]

V (γ)†,

where V (γ)† is the Moore-Penrose pseudoinverse of V (γ). Then we define the n × n
matrix polynomial

∆γ(λ) =
m
∑

j=0

∆γ,jλ
j

with

∆γ,j =
wj

w(|µ|)

(

µ

|µ|

)j

∆γ ; j = 0, 1, . . . , m,

and observe that ∆γ(µ) = ∆γ and ∆′
γ(µ) = φ∆γ .

Since

[

u1(γ)
u2(γ)

]

,

[

v1(γ)
v2(γ)

]

∈ C
2n is a pair of left and right singular vectors of

s2n−1(F [P (µ); γ]), respectively, it follows

[

P (µ) 0
γP ′(µ) P (µ)

] [

v1(γ)
v2(γ)

]

= s2n−1(F [P (µ); γ])

[

u1(γ)
u2(γ)

]

.
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As a consequence, for the matrix polynomial

Qγ(µ) = P (µ) + ∆γ(µ) =
m
∑

j=0

(Aj + ∆γ,j)λ
j (5)

we have (keeping in mind that the condition rank(V (γ)) = 2 implies V (γ)†V (γ) = I)

Qγ(µ)v1(γ) = P (µ)v1(γ) + ∆γv1(γ)

= s2n−1(F [P (µ); γ])u1(γ) − s2n−1(F [P (µ); γ])u1(γ)

= 0

and

γQ′
γ(µ)v1(γ) + Qγ(µ)v2(γ)

= γP ′(µ)v1(γ) + P (µ)v2(γ) + γ∆′
γ(µ)v1(γ) + ∆γ(µ)v2(γ)

= s2n−1(F [P (µ); γ])u2(γ) + γ φ∆γv1(γ) + ∆γv2(γ)

= s2n−1(F [P (µ); γ])u2(γ) − γ φ s2n−1(F [P (µ); γ])u1(γ)

− s2n−1(F [P (µ); γ])U(γ)

[

−γ φ
1

]

= s2n−1(F [P (µ); γ])u2(γ) − γ φ s2n−1(F [P (µ); γ])u1(γ)

+ γ φ s2n−1(F [P (µ); γ])u1(γ) − s2n−1(F [P (µ); γ])u2(γ)

= 0.

This means that if rank(V (γ)) = 2, then µ is a defective eigenvalue of Qγ(λ) with
v1(γ), v2(γ) ∈ C

n as an associated Jordan chain of length 2. Furthermore, it holds
that

‖∆γ,j‖ = wj
s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

U(γ)

[

1 −γ φ
0 1

]

V (γ)†
∥

∥

∥

∥

; j = 0, 1, . . . , m.

Thus, for any γ > 0 with rank(V (γ)) = 2, the distance Ea(µ) satisfies

Ea(µ) ≤ s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

U(γ)

[

1 −γ φ
0 1

]

V (γ)†
∥

∥

∥

∥

. (6)

For γ ≥ 0, we define

βlow(P, µ, γ) =
s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

∥

[

1 0

γ w′(|µ|)
w(|µ|) 1

]∥

∥

∥

∥

∥

−1

=
s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

[

1 −γ φ
0 1

]∥

∥

∥

∥

−1

(7)

and

βup(P, µ, γ) =
s2n−1(F [P (µ); γ])

w(|µ|)

∥

∥

∥

∥

U(γ)

[

1 −γ φ
0 1

]

V (γ)†
∥

∥

∥

∥

. (8)

Then (4) and (6) imply that these quantities are a lower bound and an upper bound
of Ea(µ).
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Theorem 11 Suppose P (λ) is a matrix polynomial as in (1) and µ ∈ C. Then for
every γ > 0, Ea(µ) ≥ βlow(P, µ, γ), and if rank(V (γ)) = 2, then Ea(µ) ≤ βup(P, µ, γ),
where the bounds βlow(P, µ, γ) and βup(P, µ, γ) are given by (7) and (8), respec-
tively. Furthermore, if rank(V (γ)) = 2, then Qγ(λ) in (5) lies on the boundary
of B(P, βup(P, µ, γ), w) and has µ as a defective eigenvalue.

Note that if µ is not a multiple eigenvalue of P (λ), then the upper bound
βup(P, µ, γ) and the lower bound βlow(P, µ, γ) can be strictly greater and less than
the distance Ea(µ), respectively. This is clear in Examples 1 and 3 below. On the
other hand, if µ is a multiple eigenvalue of P (λ), then βup(P, µ, γ) = βlow(P, µ, γ) = 0
and Qγ(λ) = P (λ) for every γ > 0, and Ea(µ) = 0.

If we denote by ‖ · ‖F the Frobenius norm of a matrix, then we see that

‖U(γ)‖F =

∥

∥

∥

∥

[

u1(γ)
u2(γ)

]∥

∥

∥

∥

= 1 and ‖V (γ)‖F =

∥

∥

∥

∥

[

v1(γ)
v2(γ)

]∥

∥

∥

∥

= 1.

Since the n × 2 matrices U(γ) and V (γ) are of rank 1 or 2, by [7, p. 315], it follows

√
2

2
≤ ‖U(γ)‖, ‖V (γ)‖ ≤ 1,

and thus, ‖V (γ)†‖ ≥ 1. Moreover, the difference of the proposed bounds satisfies

βup(P, µ, γ) − βlow(P, µ, γ)

=
s2n−1(F [P (µ); γ])

w(|µ|)

(

∥

∥

∥

∥

U(γ)

[

1 −γ φ
0 1

]

V (γ)†
∥

∥

∥

∥

−
∥

∥

∥

∥

[

1 −γ φ
0 1

]∥

∥

∥

∥

−1
)

≤ s2n−1(F [P (µ); γ])

w(|µ|)

(

∥

∥

∥

∥

[

1 −γ φ
0 1

]∥

∥

∥

∥

∥

∥

∥V (γ)†
∥

∥

∥−
∥

∥

∥

∥

[

1 −γ φ
0 1

]∥

∥

∥

∥

−1
)

,

and vanishes in a special case described next.
We observe that as γ −→ 0+ or φ −→ 0+,

βup(P, µ, γ) −→ sn(P (µ))

w(|µ|)
∥

∥

∥U(γ)V (γ)†
∥

∥

∥ ≤ sn(P (µ))

w(|µ|)
∥

∥

∥V (γ)†
∥

∥

∥

and

βlow(P, µ, γ) −→ sn(P (µ))

w(|µ|) = Eg,1(µ).

If γ −→ 0+ and
∥

∥U(0)V (0)†
∥

∥ = 1, then both bounds βup(P, µ, γ) and βlow(P, µ, γ)
converge to Eg,1(µ) = sn(P (µ))/w(|µ|). This special case is illustrated in Example 2
below.

5 A value of γ that ensures rank(V (γ)) = 2

In this section, we define and study a special value of the parameter γ > 0 that implies
rank(V (γ)) = 2.
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Definition 12 Let γ∗ ≥ 0 be a point where the singular value s2n−1(F [P (µ); γ]) at-
tains its maximum value (if any). For the sake of simplicity, we denote this maximum
value by s∗ = s2n−1(F [P (µ); γ∗]).

The case γ∗ > 0 is considered below, and the case γ∗ = 0 is treated in the next
section. In particular, we obtain a simplification of the upper bound βup(P, µ, γ) in
(8), which allows the connection of our results with the results in [11].

First we derive a sufficient condition for the existence of γ∗.

Lemma 13 Let B be an n × n matrix of rank ≥ 2. Then as γ −→ ∞ (γ ≥ 0),

s2n−1

([

P (µ) 0
γB P (µ)

])

−→ 0.

Proof Suppose µ /∈ σ(P ), i.e., the matrix P (µ) is nonsingular. Then for every γ ≥ 0,

[

P (µ) 0
γB P (µ)

]−1

=

[

P (µ)−1 0
−γP (µ)−1BP (µ)−1 P (µ)−1

]

and

s2n−1

([

P (µ) 0
γB P (µ)

])

=
1

s2

([

P (µ)−1 0
−γP (µ)−1BP (µ)−1 P (µ)−1

])

=
1

s2

([

P (µ)−1 0
γP (µ)−1BP (µ)−1 P (µ)−1

]) .

By Weyl’s Theorem [7, Theorem 4.3.7] (see also [7, Exersice 7.3.16]), it follows
that

s2

([

P (µ)−1 0
γP (µ)−1BP (µ)−1 P (µ)−1

])

≥ s2

([

0 0
γP (µ)−1BP (µ)−1 0

])

− s1

([

P (µ)−1 0
0 P (µ)−1

])

= γ s2(P (µ)−1BP (µ)−1) −
∥

∥P (µ)−1
∥

∥ .

Since rank(B) ≥ 2, we have s2(P (µ)−1BP (µ)−1) > 0. Thus, as γ −→ ∞,

s2n−1

([

P (µ) 0
γB P (µ)

])

−→ 0.

Suppose now that the matrix P (µ) is singular. For any δ > 0, there is a µδ ∈ C

sufficiently close to µ such that ‖P (µ) − P (µδ)‖ < δ and detP (µδ) 6= 0. By the first
part of the proof, there is a real γδ > 0 such that for every γ ≥ γδ,

s2n−1

([

P (µδ) 0
γB P (µδ)

])

< δ.

11



As a consequence, Weyl’s Theorem also yields

s2n−1

([

P (µ) 0
γB P (µ)

])

≤ s2n−1

([

P (µδ) 0
γB P (µδ)

])

+ ‖P (µ) − P (µδ)‖ < 2δ,

and the proof is complete. �

Corollary 14 If rank(P ′(µ)) ≥ 2, then as γ −→ ∞ (γ ≥ 0),

s2n−1(F [P (µ); γ]) −→ 0 and βlow(P, µ, γ) −→ 0.

By this corollary, it is obvious that if rank(P ′(µ)) ≥ 2, then there is a γ∗ ≥ 0 where
the singular value s2n−1(F [P (µ); γ]) attains its maximum, s∗ = s2n−1(F [P (µ); γ∗]).
Moreover, since the leading coefficient mAm of P ′(λ) is nonsingular, the spectrum
σ(P ′) has no more than n(m−1) elements, and if µ /∈ σ(P ′), then clearly rank(P ′(µ)) =
n ≥ 2.

The left and right singular vectors of F [P (µ); γ] corresponding to s2n−1(F [P (µ); γ])
possess a remarkable property, which will be useful in the sequel.

Lemma 15 Let µ ∈ C and γ ≥ 0 such that s2n−1(F [P (µ); γ]) > 0, and let

[

u1

u2

]

,
[

v1

v2

]

∈ C
2n (uk, vk ∈ C

n, k = 1, 2) be a pair of left and right singular vectors

corresponding to s2n−1(F [P (µ); γ]), respectively. Then it holds that u∗
2u1 = v∗2v1.

Proof Let

[

u1

u2

]

,

[

v1

v2

]

∈ C
2n be a pair of left and right singular vectors of

s2n−1(F [P (µ); γ]), respectively, i.e., they satisfy
[

P (µ) 0
γP ′(µ) P (µ)

] [

v1

v2

]

= s2n−1(F [P (µ); γ])

[

u1

u2

]

(9)

and

[u∗
1 u∗

2]

[

P (µ) 0
γP ′(µ) P (µ)

]

= s2n−1(F [P (µ); γ]) [v∗1 v∗2] . (10)

Multiplying (9) from the left by [u∗
2 0] and (10) from the right by

[

0
v1

]

, we get

u∗
2P (µ)v1 = s2n−1(F [P (µ); γ])u∗

2u1 and u∗
2P (λ)v1 = s2n−1(F [P (µ); γ])v∗2v1,

respectively. Since s2n−1(F [P (µ); γ]) > 0, it follows that u∗
2u1 = v∗2v1. �

Next we obtain that for every µ /∈ σ(P ′), the value γ = γ∗ ensures the condition
rank(V (γ)) = 2. In the remainder of this paper, we need Lemma 5 of [11] (see also
[14]).

Lemma 16 Let G(ζ) ∈ C
n1×n2 be an analytic matrix function on an open set Γ ⊆ R,

and let s1(G(ζ)) ≥ s2(G(ζ)) ≥ · · · ≥ smin{n1,n2}(G(ζ)) ≥ 0 be its singular values. If
sj(G(ζ)) > 0 at a local extremum ζ∗ ∈ Γ, then there is a pair of a left singular vector
u ∈ C

n1 and a right singular vector v ∈ C
n2 of G(ζ∗) corresponding to sj(G(ζ∗)) such

that Re(u∗G′(ζ∗)v) = 0.
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Applying this lemma to F [P (µ); γ] yields the following result.

Lemma 17 Let µ ∈ C, γ∗ > 0 be a point of local extremum of s2n−1(F [P (µ); γ]), and

s∗ = s2n−1(F [P (µ); γ∗]) > 0. Then there exists a pair

[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

∈ C
2n

(uk(γ∗), vk(γ∗) ∈ C
n, k = 1, 2) of left and right singular vectors of s∗, respectively,

such that

1. u2(γ∗)
∗P ′(µ)v1(γ∗) = 0, and

2. the n × 2 matrices U(γ∗) = [u1(γ∗) u2(γ∗)] and V (γ∗) = [v1(γ∗) v2(γ∗)] satisfy
U(γ∗)

∗U(γ∗) = V (γ∗)
∗V (γ∗).

Proof By Lemma 16, we know that there is a pair

[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

∈ C
2n

(uk(γ∗), vk(γ∗) ∈ C
n, k = 1, 2) of left and right singular vectors of s∗, respectively,

such that

0 = Re

(

[u1(γ∗)
∗ u2(γ∗)

∗]
dF [P (µ); γ∗]

dγ

[

v1(γ∗)
v2(γ∗)

])

= Re

(

[u1(γ∗)
∗ u2(γ∗)

∗]

[

0 0
P ′(µ) 0

] [

v1(γ∗)
v2(γ∗)

])

= Re
(

u2(γ∗)
∗P ′(µ)v1(γ∗)

)

.

Multiplying the relation (9) (for γ = γ∗) from the left by [u1(γ∗)
∗ − u2(γ∗)

∗] and the

relation (10) from the right by

[

v1(γ∗)
−v2(γ∗)

]

, we obtain

u1(γ∗)
∗P (µ)v1(γ∗) − γ∗u2(γ∗)

∗P ′(µ)v1(γ∗) − u2(γ∗)
∗P (µ)v2(γ∗)

= s∗(u1(γ∗)
∗u1(γ∗) − u2(γ∗)

∗u2(γ∗))

and
u1(γ∗)

∗P (µ)v1(γ∗) + γ∗u2(γ∗)
∗P ′(µ)v1(γ∗) − u2(γ∗)

∗P (µ)v2(γ∗)

= s∗(v1(γ∗)
∗v1(γ∗) − v2(γ∗)

∗v2(γ∗)),

respectively. Then it follows

2γ∗u2(γ∗)
∗P ′(µ)v1(γ∗) = s∗ (v1(γ∗)

∗v1(γ∗) − v2(γ∗)
∗v2(γ∗)

−u1(γ∗)
∗u1(γ∗) + u2(γ∗)

∗u2(γ∗)),

where the right hand side of the equation is a real number. Consequently, the number
u2(γ∗)

∗P ′(µ)v1(γ∗) is also real, and hence, u2(γ∗)
∗P ′(µ)v1(γ∗) = 0. This means that

u1(γ∗)
∗u1(γ∗) − u2(γ∗)

∗u2(γ∗) = v1(γ∗)
∗v1(γ∗) − v2(γ∗)

∗v2(γ∗),

where u1(γ∗)
∗u1(γ∗) + u2(γ∗)

∗u2(γ∗) = v1(γ∗)
∗v1(γ∗) + v2(γ∗)

∗v2(γ∗) = 1. As a con-
sequence,

u1(γ∗)
∗u1(γ∗) = v1(γ∗)

∗v1(γ∗) and u2(γ∗)
∗u2(γ∗) = v2(γ∗)

∗v2(γ∗). (11)
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By these equations and Lemma 15, it is straightforward to see that U(γ∗)
∗U(γ∗) =

V (γ∗)
∗V (γ∗). �

Now we can prove that for every µ /∈ σ(P ′), the matrices U(γ∗) and V (γ∗) can be
chosen to be of full (column) rank.

Lemma 18 If µ ∈ C\σ(P ′), γ∗ > 0, and

[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

are the singular

vectors of the previous lemma, then v1(γ∗) 6= 0 and rank(U(γ∗)) = rank(V (γ∗)) = 2.

Proof Both parts of the lemma will be proved by contradiction. For γ = γ∗ > 0, (10)
is written

[u1(γ∗)
∗ u2(γ∗)

∗]

[

P (µ) 0
γ∗P

′(µ) P (µ)

]

= [s∗v1(γ∗)
∗ s∗v2(γ∗)

∗] .

If we assume that v1(γ∗)
∗ = 0, then the first equality in (11) implies u1(γ∗)

∗ = 0.
Thus,

γ∗u2(γ∗)
∗P ′(µ) = 0.

Since det P ′(µ) 6= 0, it follows that u2(γ∗) = 0. This is a contradiction because
u1(γ∗)

∗u1(γ∗) + u2(γ∗)
∗u2(γ∗) = 1, and hence, v1(γ∗) 6= 0.

Assume now that rank(U(γ∗)) < 2 or rank(V (γ∗)) < 2. Recall (11), and observe
that u2(γ∗) = 0 if and only if v2(γ∗) = 0. In this case, (9) implies γ∗P

′(µ)v1(γ∗) = 0.
Since P ′(µ) is invertible, it follows that v1(γ∗) = 0; this is a contradiction. As a
consequence, u2(γ∗) and v2(γ∗) are nonzero, and there is a scalar c 6= 0 such that
u1(γ∗) = c u2(γ∗) and v1(γ∗) = c v2(γ∗). In this case, (9) yields

P (µ)v2(γ∗) = s∗u2(γ∗) and γ∗P
′(µ)v1(γ∗) + P (µ)v2(γ∗) = s∗u2(γ∗),

and as a consequence, P ′(µ)v1(γ∗) = 0. Since detP ′(µ) 6= 0 and v1(γ∗) 6= 0, we have
a contradiction. �

Before writing the upper bound of Theorem 11 for γ = γ∗, once again we explicitly
construct a suitable perturbation of P (λ) as in (5). In particular, for the pair of

singular vectors

[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

∈ C
2n of Lemma 17, we define the matrix

∆γ∗ = −s∗U(γ∗)

[

1 −γ∗φ
0 1

]

V (γ∗)
†

(recall that s∗ = s2n−1(F [P (µ); γ∗]) > 0 and rank(V (γ∗)) = 2) and the associated
perturbation

Qγ∗(λ) =
m
∑

j=0

(Aj + ∆γ∗,j)λ
j =

m
∑

j=0

(

Aj +
wj

w(|µ|)

(

µ

|µ|

)j

∆γ∗

)

λj . (12)

From the relation U(γ∗)
∗U(γ∗) = V (γ∗)

∗V (γ∗) of Lemma 17, it follows that the
n× 2 matrices U(γ∗) and V (γ∗) have the same nonzero singular values and the same
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associated right singular vectors. Thus, there exists an n× n unitary matrix W such
that U(γ∗) = WV (γ∗). Consequently, the upper bound (8) for the distance Ea(µ) is

βup(P, µ, γ∗) =
s∗

w(|µ|)

∥

∥

∥

∥

U(γ∗)

[

1 −γ∗ φ
0 1

]

V (γ∗)
†

∥

∥

∥

∥

=
s∗

w(|µ|)

∥

∥

∥

∥

V (γ∗)

[

1 −γ∗ φ
0 1

]

V (γ∗)
†

∥

∥

∥

∥

,

and, keeping in mind Lemma 18, we have the main result of this section.

Theorem 19 Suppose that µ ∈ C\σ(P ′), γ∗ > 0 is a point of maximum value
of s2n−1(F [P (µ); γ]), and s∗ = s2n−1(F [P (µ); γ∗]) > 0. Then there exists a pair
[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

∈ C
2n (uk(γ∗), vk(γ∗) ∈ C

n, k = 1, 2) of left and right singu-

lar vectors of s∗, respectively, such that

Ea(µ) ≤ βup(P, µ, γ∗) =
s∗

w(|µ|)

∥

∥

∥

∥

V (γ∗)

[

1 −γ∗ φ
0 1

]

V (γ∗)
†

∥

∥

∥

∥

,

and the matrix polynomial Qγ∗(λ) in (12) lies on ∂B(P, βup(P, µ, γ∗), w) and has µ as
a defective eigenvalue.

If the singular value s∗ of the matrix F [P (µ); γ∗] is simple, then the pair of singular

vectors

[

u1(γ∗)
u2(γ∗)

]

,

[

v1(γ∗)
v2(γ∗)

]

in the above theorem can be chosen arbitrarily (as far

as they correspond to the same SVD of F [P (µ); γ∗]). On the other hand, if s∗ is
a multiple singular value, then we can estimate these singular vectors by using the
second part of the proof of [11, Lemma 5].

6 The non-generic case γ∗ = 0

Suppose that the singular value s2n−1(F [P (µ); γ]) attains its maximum at γ∗ = 0,
and consider the matrix

F [P (µ); γ∗] = F [P (µ); 0] =

[

P (µ) 0
0 P (µ)

]

.

The condition s∗ = s2n−1(F [P (µ); 0]) > 0 implies that s∗ = sn(P (µ)) > 0, i.e.,
µ /∈ σ(P ), and we have two cases (with respect to the singular values of P (µ)),
namely,

s∗ = sn(P (µ)) = sn−1(P (µ)) and s∗ = sn(P (µ)) < sn−1(P (µ)).

Case 1: s∗ = sn−1(P (µ)) = sn(P (µ)).

This case was already discussed at the beginning of Section 4, and we have that

Ea(µ) = Eg,2(µ) = Eg,1(µ) =
sn(P (µ))

w(|µ|) ,
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and an optimal perturbation of P (λ) is the matrix polynomial Q̂(λ) in (3) (for κ = 2).

Case 2: s∗ = sn(P (µ)) < sn−1(P (µ)).

Let u, v ∈ C
n be a pair of left and right singular vectors of P (µ) corresponding to

s∗ = sn(P (µ)), respectively. First we obtain that u∗P ′(µ)v = 0, following the steps
of Malyshev’s methodology [11]. Only here we use the fact that the local extremum
γ∗ = 0 is a maximum.

Consider the analytic matrix function (with respect to γ ∈ R)

F [P (µ); γ] =

[

P (µ) 0
γP ′(µ) P (µ)

]

for such small |γ| > 0, where s2n−2(F [P (µ); γ]) > s2n−1(F [P (µ); γ]). We denote this
range of γ by Γ. (Note that the definition of Γ is always possible since s2n−1(F [P (µ); 0])
= sn(P (µ)) < sn−1(P (µ)) = s2n−2(F [P (µ); 0]).) By Theorem S6.3 of [4] (see also
Theorem II-6.1 of [9]), F [P (µ); γ] has analytic unordered singular values s̃2n−1(γ)
and s̃2n(γ) satisfying s̃2n−1(0) = s̃2n(0) = s∗. Without loss of generality, the neigh-
borhood Γ can be chosen sufficiently small such that for every γ ∈ Γ, s̃2n−1(γ) and
s̃2n(γ) are not greater than s∗. We also consider a pair ũ2n−1(γ), ṽ2n−1(γ) of left and
right singular vectors of s̃2n−1(γ), and a pair ũ2n(γ), ṽ2n(γ) of left and right singular
vectors of s̃2n(γ). All singular vectors are analytic and with respect to the same SVD
of the matrix F [P (µ); γ].

Since s̃2n−1(0) = s̃2n(0) = s∗ = sn(P (µ)) < sn−1(P (µ)), it follows that

ũ2n−1(0) =

(

w11u
w21u

)

, ũ2n(0) =

(

w12u
w22u

)

,

ṽ2n−1(0) =

(

w11v
w21v

)

and ṽ2n(0) =

(

w12v
w22v

)

,

where the matrix

[

w11 w12

w21 w22

]

∈ C
2×2 is unitary. Then there exists a unit vector

[

α
β

]

∈ C
2 such that

[

w11 w12

w21 w22

] [

α
β

]

=
1

√

1 + |u∗P ′(µ)v|2

[

1
u∗P ′(µ)v

]

.

Consider the unit vectors

x(γ) = α ũ2n−1(γ) + β ũ2n(γ) and y(γ) = α ṽ2n−1(γ) + β ṽ2n(γ),

for which x(0), y(0) is a pair of left and right singular vectors of F [P (µ); 0] corre-
sponding to s∗. Then for every γ ∈ Γ,

F [P (µ); γ]y(γ) = α s̃2n−1(γ)ũ2n−1(γ) + β s̃2n(γ)ũ2n(γ)

= [ũ2n−1(γ) ũ2n(γ)]

[

α s̃2n−1(γ)
β s̃2n(γ)

]

.
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Hence, since s̃2
2n−1(γ) and s̃2

2n(γ) are analytic with local maximum at γ = 0, it follows

0 =
d

dγ

(

|α|2s̃2
2n−1(γ) + |β|2s̃2

2n(γ)
)

∣

∣

∣

∣

γ=0

=
d

dγ
(y(γ)∗F [P (µ); γ]∗F [P (µ); γ]y(γ))

∣

∣

∣

∣

γ=0

.

The condition y(γ)∗y(γ) = 1 implies that dy∗(0)
dγ

y(0) + y∗(0)dy(0)
dγ

= 0, and differ-
entiating y(γ)∗F [P (µ); γ]∗F [P (µ); γ]y(γ) at γ = 0 yields

0 =
d

dγ
(y(γ)∗F [P (µ); γ]∗F [P (µ); γ]y(γ))

∣

∣

∣

∣

γ=0

=

(

dy(γ)∗

dγ
F [P (µ); γ]∗F [P (µ); γ]y(γ) + y(γ)∗

dF [P (µ); γ]∗

dγ
F [P (µ); γ]y(γ)

+ y(γ)∗F [P (µ); γ]∗
dF [P (µ); γ]

dγ
y(γ) + y(γ)∗F [P (µ); γ]∗F [P (µ); γ]

dy(γ)

dγ

)∣

∣

∣

∣

γ=0

= s2
∗

(

dy(0)∗

dγ
y(0) + y(0)∗

dy(0)

dγ

)

+ s∗

(

y(0)∗
[

0 (P ′(µ))∗

0 0

]

x(0) + x(0)∗
[

0 0
P ′(µ) 0

]

y(0)

)

= s∗

(

y(0)∗
[

0 (P ′(µ))∗

0 0

]

x(0) + x(0)∗
[

0 0
P ′(µ) 0

]

y(0)

)

.

Furthermore, we can see that

x(0) = α

[

w11u
w21u

]

+ β

[

w12u
w22u

]

= u ⊗
([

w11 w12

w21 w22

] [

α
β

])

= u ⊗





1
√

1 + |u∗P ′(µ)v|2

[

1
u∗P ′(µ)v

]





=
1

√

1 + |u∗P ′(µ)v|2

[

u
(u∗P ′(µ)v)u

]

,

and similarly,

y(0) =
1

√

1 + |u∗P ′(µ)v|2

[

v
(u∗P ′(µ)v)v

]

.

As a consequence,

y(0)∗
[

0 (P ′(µ))∗

0 0

]

x(0) = x(0)∗
[

0 0
P ′(µ) 0

]

y(0) =
|u∗P ′(µ)v|2

1 + |u∗P ′(µ)v|2
,

and thus,

0 =
d

dγ
(y(γ)∗F [P (µ); γ]∗F [P (µ); γ]y(γ))

∣

∣

∣

∣

γ=0

= 2s∗
|u∗P ′(µ)v|2

1 + |u∗P ′(µ)v|2
,

17



which implies u∗P ′(µ)v = 0.
We define now the constant matrix polynomial

∆0(λ) = ∆0,0 = −s∗uv∗

with ‖∆0,0‖ = s∗ = w0(s∗/w0) (recall that w0 > 0). Then the perturbation

Q0(λ) = P (λ) + ∆0,0 = Amλm + · · · + A1λ + A0 + ∆0,0 (13)

of P (λ) lies on the boundary of B(P, s∗/w0, w), and satisfies

Q0(µ)v = P (µ)v − s∗uv∗v = s∗u − s∗u = 0,

u∗Q0(µ) = u∗P (µ) − s∗u
∗uv∗ = s∗v

∗ − s∗v
∗ = 0

and
u∗Q′

0(µ)v = u∗P ′(µ)v = 0.

Thus, by Proposition 16 of [1], µ is a multiple eigenvalue of Q0(λ).
The main results of this section can be summarized in the following.

Theorem 20 If µ ∈ C\σ(P ), s2n−1(F [P (µ); γ]) attains a maximum value at γ∗ = 0
and s∗ = s2n−1(F [P (µ); 0]) = sn(P (µ)) (> 0), then Ea(µ) ≤ s∗/w0. Furthermore,
if u, v ∈ C

n is a pair of left and right singular vectors of P (µ) corresponding to s∗,
respectively, then the matrix polynomial Q0(λ) in (13) lies on ∂B(P, s∗/w0, w) and
has µ as a multiple eigenvalue.

Remark 21 If we allow perturbations only of the constant coefficient of P (λ), i.e.,
if w0 > 0 and w1 = w2 = · · · = wm = 0, then w(|µ|) = w0 and φ = w′(|µ|) = 0.
As a consequence, if the singular value s2n−1(F [P (µ); γ]) attains its maximum s∗ at
γ∗ ≥ 0, then the definition of βlow(P, µ, γ) in (7), and Theorems 19 and 20 imply that

Ea(µ) = βlow(P, µ, γ∗) = βup(P, µ, γ∗) =
s∗
w0

.

Moreover, an optimal perturbation of P (λ) that lies on ∂B(P, s∗/w0, w) and has µ as
a multiple eigenvalue is given by (12) when γ∗ > 0, and by (13) when γ∗ = 0.

7 Connection with Malyshev’s results

Suppose that the matrix polynomial P (λ) is of the form P (λ) = Iλ − A for some
A ∈ C

n×n, and the set of weights is w = {w0, w1} = {1, 0}, i.e., we consider the
standard eigenproblem associated to matrix A. Then obviously,

P ′(λ) = I, w(|µ|) = w0 = 1 and φ = w′(|µ|) = 0

(see also Remark 21). The existence of γ∗ is ensured, and if γ∗ > 0, then the upper
bound of Theorem 19 is βup(P, µ, γ∗) = s∗

∥

∥V (γ∗)V (γ∗)
†
∥

∥ = s∗ and coincides with the
lower bound βlow(P, µ, γ∗). Hence, the distance from P (λ) = Iλ−A (or equivalently,
from matrix A) to µ ∈ C as a multiple eigenvalue is Ea(µ) = s∗, and the perturbation
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Figure 1: The graphs of the bounds βup(P,−2 + i, γ) and βlow(P,−2 + i, γ).

Qγ∗(λ) in (12) is written Qγ∗(λ) = Iλ −
(

A + s∗U(γ∗)V (γ∗)
†
)

. Moreover, if γ∗ = 0,
then the upper bound of Theorem 20 and the lower bound βlow(P, µ, 0) are equal to
s∗. Thus, the distance from P (λ) = Iλ − A to µ ∈ C as a multiple eigenvalue is
Ea(µ) = s∗, and the perturbation Q0(λ) in (13) is written Q0(λ) = Iλ− (A + s∗uv∗).
This means that our results in the previous three sections are direct generalizations
of Malyshev’s results [11] to the case of matrix polynomials.

For example, we consider the matrix

A =





−1 −2 −3
0 −4 −5
0 0 −6 + i



 ,

the corresponding linear matrix polynomial P (λ) = Iλ−A and the scalar µ = −2+ i.
The graphs of the upper bound βup(P,−2+i, γ) and the lower bound βlow(P,−2+i, γ)
(γ ∈ [0, 8]) are plotted in Figure 1, and they meet at the point (0.9249, 0.9639),
which is marked as “o”. Consequently, γ∗ = 0.9249 and the maximum value of
s5(F [P (−2 + i); γ]) is s∗ = s5(F [P (−2 + i); 0.9249]) = 0.9639. By Theorem 11, it
follows that Ea(−2 + i) = 0.9639, the matrix polynomial

Q0.9249(λ) = Iλ − (A + ∆)

= Iλ −





−1.3608 + i 0.7100 −1.7947 − i 0.1331 −3.0561 + i 0.0407
0.3571 − i 0.3035 −3.7284 + i 0.3732 −5.1005 − i 0.0209
−0.1042 − i 0.2500 −0.6269 − i 0.4520 −5.7867 + i 0.9972





(or equivalently, the matrix A + ∆) has µ = −2 + i as a defective eigenvalue, and
‖∆‖ = 0.9639.

8 Numerical examples

We present three numerical examples to illustrate our results and verify the quality
of the bounds βup(P, µ, γ) and βlow(P, µ, γ). The matrix polynomials of the first two
examples were borrowed from [1], and all the computations were performed in Matlab.
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For our discussion, it is necessary to recall the definition of the ε-pseudospectrum of
the matrix polynomial P (λ),

σε,w(P ) = {λ ∈ C : det Q(λ) = 0, Q(λ) ∈ B(P, ε, w)}
= {λ ∈ C : det Q(λ) = 0, ‖∆j‖ ≤ εwj , j = 0, 1, . . . , m} ,

i.e., the set of the eigenvalues of all perturbations of P (λ) in B(P, ε, w). The pseu-
dospectrum σε,w(P ) is a closed subset of the complex plane, has no more than nm
connected components, and it is bounded if and only if sn(Am) > εwm. The suggested
references on pseudospectra of matrix polynomials are [1, 10, 15]. The following result
of Boulton, Lancaster and Psarrakos (see Lemma 8, Corollary 15 and Theorem 18 (i)
of [1]) is also necessary.

Proposition 22 Suppose that, as the parameter ε > 0 increases, two different con-
nected components of σε,w(P ) (6= C) meet at µ ∈ C. If µ 6= 0, then it is a multiple
eigenvalue of a perturbation Q(λ) ∈ ∂B(P, ε, w) and

Ea(µ) = Eg,1(µ) =
sn(P (µ))

w(|µ|) (= ε).

The special case of self-intersection points of pseudospectra described in this
proposition is the only known to the authors (non-trivial) case of scalars µ 6= 0
where one can estimate the true value of the distance Ea(µ), and it is illustrated in
the first two examples. It is also worth noting that in this special case, we always
have Ea(µ) = βlow(P, µ, 0), i.e., the maximum of our lower bound coincides with the
exact value of the distance.

Example 1 Consider the matrix polynomial

P (λ) =

[

1 0
0 1

]

λ2 +

[

−2 1
0 −4

]

λ +

[

1 0
0 4

]

and the set of weights w = {1, 1, 1}. The boundaries of the ε-pseudospectra of P (λ)
for ε = 0.005, 0.0091, 0.02, 0.03 are drawn in Figure 2. The eigenvalues of P (λ), 1
and 2, are marked in the figure as “+”, σ0.005,w(P ) has two connected components
and σ0.0091,w(P ) is connected with a node point µ = 1.4145 (marked as an asterisk).
By Proposition 22 and the relative discussion, µ = 1.4145 is a multiple eigenvalue of
a matrix polynomial Q(λ) ∈ ∂B(P, 0.0091, w) and

Ea(1.4145) = Eg,1(1.4145) = 0.0091 =
s2(P (1.4145))

w(1.4145)
= βlow(P, 1.4145, 0).

In Figure 3, the graphs of the upper bound βup(P, 1.4145, γ) and the lower bound
βlow(P, 1.4145, γ) are plotted for γ ∈ [0, 8]. The vertical line corresponds to the value
γ∗ = 0.7738, and the bounds βup(P, 1.4145, 0.7738) and βlow(P, 1.4145, 0.7738) are
marked as “o”. The maximum value of s3(F [P (1.4145); γ]) is

s∗ = s3(F [P (1.4145); 0.7738]) = 0.0471,
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Figure 3: The graphs of the bounds βup(P, 1.4145, γ) and βlow(P, 1.4145, γ).

and one can see that

0.0077 = βlow(P, 1.4145, 0.7738) ≤ Ea(1.4145) = 0.0091

≤ βup(P, 1.4145, 0.7738) = 0.0243.

A matrix polynomial that lies on the boundary of B(P, 0.0243, w) and has µ =
1.4145 as a defective eigenvalue of algebraic multiplicity 2 and geometric multiplicity

1, with associated eigenvector v1(0.7738) =

[

0.8051
−0.1061

]

, is

Q0.7738(λ) =

[

1.0054 0.0156
0.0121 1.0140

]

λ2 +

[

−1.9946 1.0156
0.0121 −3.9860

]

λ+

[

1.0054 0.0156
0.0121 4.0140

]

.

This matrix polynomial is given by (5) and (12), and it is directly computable by the
procedures described in Sections 4 and 5. Thus, Theorems 11 and 19 are confirmed.
Furthermore,

|u2(0.7738)∗P ′(1.4145)v1(0.7738)| = 1.4471 · 10−10
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Figure 4: The graphs of the bounds βup(P, 3, γ) and βlow(P, 3, γ).

and
‖U(0.7738)∗U(0.7738) − V (0.7738)∗V (0.7738)‖ = 2.3778 · 10−9,

verifying Lemma 17.
Consider now the scalar µ = 3. The graphs of the upper bound βup(P, 3, γ)

and the lower bound βlow(P, 3, γ) (γ ∈ [0, 8]) are plotted in Figure 4. The verti-
cal line corresponds to the value γ∗ = 1.4952 and the bounds βup(P, 3, 1.4952) and
βlow(P, 3, 1.4952) are marked as “o”. In this figure, we see that

0.1131 = βlow(P, 3, 1.4952) ≤ Ea(3) ≤ βup(P, 3, 1.4952) = 0.2375.

The perturbation of P (λ) in (12) that lies on ∂B(P, 0.2375, w) and has µ = 3 as
a defective eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1, with

associated eigenvector v1(1.4952) =

[

0.5845
−0.3104

]

, is

Q1.4952(λ) =

[

0.7840 −0.0581
−0.0328 0.8614

]

λ2+

[

−2.2160 0.9419
−0.0328 −4.1386

]

λ+

[

0.7840 −0.0581
−0.0328 3.8614

]

.

By Figure 4, it is also clear that for every γ ∈ (0, 2.9), the lower bound βlow(P, 3, γ)
is greater than Eg,1(3) = s2(P (3))/w(3) = βlow(P, 3, 0) = 0.0611. �

In the first part of the following example, we consider a self-intersection point of
a pseudospectrum where both the minimum of our upper bound and the maximum
of our lower bound coincide with the true value of the distance Ea(µ).

Example 2 Let

P (λ) =





1 0 0
0 2 0
0 0 3



λ2 +





0 1 0
0 3 1
0 −1 6



λ +





2 1 0
−1 3 0
0 0 10





and let w = {10, 6.1108, 3} (the norms of the coefficient matrices). Figure 5 contains
the boundaries of the ε-pseudospectra of P (λ) for ε = 0.05, 0.1002, 0.16. The eigen-
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Figure 6: The graphs of the bounds βup(P,−1.1105, γ) and βlow(P,−1.1105, γ).

values of P (λ), 0.0877±i 1.4940, −1.0590±i 1.6051 and −0.7787±i 0.8958, are marked
as “+”, σ0.05,w(P ) has six connected components and σ0.1002,w(P ) is connected with
a node point µ = −1.1105 (marked as an asterisk). As in Example 1,

Ea(−1.1105) = Eg,1(−1.1105) = 0.1002 =
s3(P (−1.1105))

w(1.1105)
= βlow(P,−1.1105, 0).

The graphs of the bounds βup(P,−1.1105, γ) and βlow(P,−1.1105, γ) for γ ∈ [0, 8]
are drawn in Figure 6, where the vertical line corresponds to the value γ∗ = 0.6824.
The maximum value of s5(F [P (−1.1105); γ]) is s∗ = s5(F [P (−1.1105); 0.6824]) =
2.3769, and

0.0939 = βlow(P,−1.1105, 0.6824) ≤ Ea(−1.1105) = 0.1002

≤ βup(P,−1.1105, 0.6824) = 0.1452.

It is worth mentioning that since the matrices

V (0) =





−0.3393 0
−0.9334 0
0.1173 0



 and U(0) =





0.4841 0
0.8689 0
0.1029 0




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satisfy
∥

∥U(0)V (0)†
∥

∥ = 1,

βup(P,−1.1105, 0) = βlow(P,−1.1105, 0) = Ea(−1.1105) = 0.1002

(recall the commentary at the end of Section 4). Furthermore, (5) yields a matrix
polynomial that lies on the boundary of B(P, 0.1002, w) and has µ = −1.1105 as
a defective eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1, with

corresponding eigenvector v1(0) =





−0.3393
−0.9334
0.1173



. This matrix polynomial is

Q0(λ) =





0.9506 −0.1358 0.0171
−0.0886 1.7562 0.0306
−0.0105 −0.0289 3.0036



λ2 +





0.1006 1.2767 −0.0348
0.1805 3.4966 0.9376
0.0214 −0.9412 5.9926



λ

+





1.8354 0.5472 0.0569
−1.2954 2.1874 0.1021
−0.0350 −0.0963 10.0121



 .

If we set µ = 3 + i, then by Theorem 4, the distance from P (λ) to 3 + i as an
eigenvalue of geometric multiplicity 2 is

Eg,2(3 + i) =
s2(P (3 + i))

w(|3 + i|) =
32.1524

59.3240
= 0.5420.

Using the methodology proposed in Section 3, we obtain the matrix polynomial

Q̂(λ) =





0.4134 + i 0.0607 −0.1918 + i 0.0808 −0.0090 − i 0.0002
0.0403 − i 0.0302 0.4100 + i 0.2467 −0.0611 − i 0.0173
−0.0037 + i 0.0010 0.0599 + i 0.0176 3.0019 + i 0.0016



λ2

+





−1.1726 − i 0.2606 0.5773 + i 0.0325 −0.0172 − i 0.0062
0.0974 − i 0.0325 −0.2315 − i 0.5476 0.8931 − i 0.0727
−0.0077 − i 0.0004 −0.8955 + i 0.0727 6.0025 + i 0.0043



λ

+





0.3144 − i 1.0114 0.3269 − i 0.1683 −0.0235 − i 0.0185
−0.8319 + i 0.0000 −1.7334 − i 2.5223 −0.1283 − i 0.1682
−0.0118 − i 0.0046 0.1245 + i 0.1669 10.0017 + i 0.0080





in (3), which lies on ∂B(P, 0.5420, w) and has µ = 3 + i as an eigenvalue of geometric
multiplicity 2.

The graphs of the bounds βup(P, 3 + i, γ) and βlow(P, 3 + i, γ) (γ ∈ [0, 8]) are
plotted in Figure 7. The vertical line corresponds to the value γ = 1.9, which is
different than γ∗ = 2.0680, and the bounds βup(P, 3+ i, 1.9) and βlow(P, 3+ i, 1.9) are
marked as “o”. It is straightforward to see that

0.2149 = βlow(P, 3 + i, 1.9) ≤ Ea(3 + i) ≤ βup(P, 3 + i, 1.9) = 0.4901,

where our upper bound is smaller than Eg,2(3 + i) = 0.5420. The perturbation of
P (λ) in (5) that lies on ∂B(P, 0.4901, w) and has µ = 3 + i as a defective eigenvalue

24



0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

upper bound

lower bound

Figure 7: The graphs of the bounds βup(P, 3 + i, γ) and βlow(P, 3 + i, γ).

of algebraic multiplicity 2 and geometric multiplicity 1, with associated eigenvector

v1(0.6824) =





0.8076
0.1593 − i 0.0078
0.0050 − i 0.0028



, is

Q1.9(λ) =





0.3586 + i 0.0490 0.0819 + i 0.1531 0.0015 + i 0.0067
0.0108 − i 0.0215 0.5621 + i 0.2087 −0.0570 − i 0.0132
0.0003 + i 0.0010 0.0695 + i 0.0095 3.0025 + i 0.0014



λ2

+





−1.2710 − i 0.3184 1.0597 + i 0.3487 −0.0014 + i 0.0140
0.0347 − i 0.0345 0.0870 − i 0.5229 0.8983 − i 0.0622
−0.0001 + i 0.0020 −0.8718 + i 0.0631 6.0039 + i 0.0042



λ

+





0.1915 − i 1.1520 0.9122 + i 0.5722 −0.0094 + i 0.0211
−0.9282 − i 0.0356 −1.2517 − i 2.3192 −0.1257 − i 0.1493
−0.0012 + i 0.0031 0.1664 + i 0.1643 10.0038 + i 0.0086



 . �

In our last example, the maximum value of the lower bound βlow(P, µ, γ) (with
respect to γ ≥ 0) significantly differs from the exact distance Ea(µ); this was not clear
in the previous two examples.

Example 3 Consider the matrix polynomial

P (λ) =

[

1 0
0 1

]

λ2 +

[

−5 0.1
0 0

]

λ +

[

0 0
0 9

]

and the set of weights w = {1, 1, 1}. The boundaries of the ε-pseudospectra of P (λ)
for ε = 0.3, 0.5, 0.7 are drawn in Figure 8. The eigenvalues of P (λ), 0, 5 and ±i 3, are
marked in the figure as “+”, and each pseudospectrum is compact with four connected
components. By the continuity of the eigenvalues with respect to the entries of the
coefficient matrices, it follows that every matrix polynomial in B(P, 0.7, w) has four
distinct eigenvalues (see Theorem 2.3 of [10]). Hence, for every µ ∈ C, Ea(µ) > 0.7.

For µ = 6, we see that maxγ≥0 βlow(P, 6, γ) = βlow(P, 6, 3.7670) = 0.3729 and
minγ≥0 βup(P, 6, γ) = βup(P, 6, 3.8115) = 1.1455 (where both values of γ are different
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Figure 8: Pseudospectra with four connected components.
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Figure 9: The graphs of the bounds βup(P, 6, γ) and βlow(P, 6, γ).

than γ∗ = 3.7846). Hence, it follows

max
γ≥0

βlow(P, 6, γ) = 0.3729 < 0.7 < Ea(6) ≤ 1.1455 = min
γ≥0

βup(P, 6, γ).

In Figure 9, the graphs of the upper bound βup(P, 6, γ) and the lower bound βlow(P, 6, γ)
are plotted for γ ∈ [3.7, 3.9]. The horizontal line between these two graphs corresponds
to the lower bound 0.7. The matrix polynomial

Q3.8115(λ) =

[

0.6184 0.1258
0.1333 −0.1235

]

λ2+

[

−5.3816 0.2258
0.1333 −1.1235

]

λ+

[

−0.3816 0.1258
0.1333 7.8765

]

is given by (5), lies on the boundary of B(P, 1.1455, w), and has µ = 6 as a defective
eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1 with corresponding

eigenvector v1(3.8115) =

[

0.2880
0.4987

]

. �
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