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Abstract. For a given complex square matrix A, we develop, implement and test a fast geometric

algorithm to find a unit vector that generates a given point in the complex plane if this point lies

inside the numerical range of A, and if not, the method determines that the given point lies outside

the numerical range.
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1. Introduction and preliminaries. The numerical range (also known as the

field of values) of a square matrix A ∈ C
n×n is the compact and convex set

F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1} ⊂ C.

The compactness follows readily from the fact that F (A) is the image of the compact

unit sphere of C
n under the continuous mapping x 7−→ x∗Ax, and the convexity

of F (A) is due to Toeplitz [12] and Hausdorff [8]. The concept of the numerical

range and related notions has been studied extensively for many decades. It is quite

useful in studying and understanding matrices and operators [7, 10], and has many

applications in numerical analysis, differential equations, systems theory etc (see e.g.

[1, 4, 5, 6]).

Our proposed algorithm to solve the inverse numerical range problem relies only

on the most elementary properties of F (A) other than its convexity. Namely, for

any matrix A ∈ C
n×n and any α, β ∈ C, F (αA + βIn) = αF (A) + β where In

denotes the n × n identity matrix. Here we call H(A) = (A + A∗)/2 and K(A) =

(A−A∗)/2 the hermitian and the skew-hermitian parts of A = H(A)+K(A) ∈ C
n×n,

respectively. These two matrices have numerical ranges F (H(A)) = ℜ(F (A)) ⊂ R

and F (K(A)) = i · ℑ(F (A)) ⊂ i · R. For a modern view of F (A) and its many

properties, see [10, Chapter 1] for example.
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Given a point µ ∈ F (A), we call a unit vector xµ ∈ C
n with µ = x∗

µAxµ a

generating vector for µ. Motivated by the influence of the condition “ 0 ∈ F (A) ”

on the behavior of the systems ẋ = Ax and xk+1 = Axk , Uhlig [13] posed the

inverse numerical range (field of values) problem: given an interior point µ of F (A),

determine a generating vector xµ of µ. He also proposed a complicated geometric

algorithm that initially generates points of F (A) that surround µ by using the fact

that points on the boundary ∂F (A) of F (A) and their generating vectors can be

computed by Johnson’s eigenvalue method [11]. Then Uhlig’s method [13] proceeds

with a randomized approach in the attempt to surround the desired point µ tighter

and tighter, and thereby iteratively refines the generating vector approximation.

In the sequel, Carden [2] observed the connection between the inverse numerical

range problem and iterative eigensolvers, and presented a simpler iterative algorithm

that relies on Ritz vectors as used in the Arnoldi method and yields an exact result

for most points in a few iterations. In particular, his method is based on

(a) the iterative construction of three points of F (A) that encircle µ and associated

generating vectors, and

(b) the fact that given two points µ1, µ2 ∈ F (A) and associated generating vectors,

one can determine a generating vector for any convex combination of µ1 and

µ2 by using a reduction to the 2 × 2 case.

The most expensive part of these iterative schemes to surround µ by numerical range

points with known generators lies in the number of attempted eigen-evaluations, each

at O(n3) cost for an n× n matrix A. Once µ is surrounded, the main remaining cost

is associated with the number of x∗Ax or x∗Ay evaluations, each at only O(n2)

cost.

In this note, we propose a much simpler geometric algorithm for solving the

inverse numerical range problem than either of [13] or [2]. The new algorithm is

faster and gives numerically accurate results where the previous methods often fail,

such as when µ lies in very close distance from the actual numerical range boundary

∂F (A), both if µ ∈ F (A) and µ /∈ F (A). It differs from Carden’s and Uhlig’s original

algorithms [2, 13] in the following ways:

(i) Rather than straight line interpolations of F (A) boundary points that have been

computed by Johnson’s method [11], we use the ellipses that are the images

z∗Az when z traverses a great circle on the complex unit sphere of C
n. These

complex great circles on the unit sphere map to ellipses under x 7→ x∗Ax,

as was established by Davis [3]. The use of ellipses instead of line segments

that are derived from two computed ∂F (A) points helps us obtain numerical

range generators for points on both sides of µ more readily and results in a

significant speed-up; see point (ii) below and Table 3 in the tests section.
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(ii) From two given points α1, α2 ∈ F (A)∩ℑ(µ)·R with ℜ(α1) ≤ ℜ(µ) ≤ ℜ(α2) and

their generating vectors, we compute a generating vector for µ by applying

Proposition 1.1 below (see [10, page 25]) instead of using a reduction to the

two-dimensional case as done in [2].

(iii) If in the initial two eigenanalyses of the hermitian matrices H(A) and −iK(A),

the subsequently generated ellipse intersections with the line ℑ(z) = ℑ(µ)

do not give us a generating vector pair with numerical range points to the

left and right of µ, then we bisect the relevant supporting angles in A(θ) =

cos(θ)H(A) + sin(θ) i K(A) and perform further eigenanalyses of A(θ) until

the resulting great circle generated ellipses inside F (A) either satisfy part (ii)

above and we can solve the inverse problem by Proposition 1.1, or until one

of the matrices A(θ) becomes definite. In the latter case, we conclude that

µ /∈ F (A) and we stop.

Proposition 1.1. [10, page 25] Let A ∈ C
n×n be a matrix whose numerical

range F (A) is not a singleton, and let a and c be two real axis points of F (A) with

a < 0 < c. Suppose that xa, xc ∈ C
n are two unit vectors that generate x∗

aAxa = a

and x∗

cAxc = c.

(a) For x(t, ϑ) = eiϑxa + t xc ∈ C
n, α(ϑ) = e−iϑx∗

aAxc + eiϑx∗

cAxa and t, ϑ ∈ R,

we have x(t, ϑ)∗Ax(t, ϑ) = c t2 + α(θ) t + a and α(−ϑ) ∈ R when ϑ =

arg(x∗

cAxa − xT
a A xc).

(b) For t1 =
(

−α(−ϕ) +
√

α(−ϕ)2 − 4 a c
)

/(2 c), we have

x(t1,−ϕ) 6= 0 and
x(t1,−ϕ)∗

‖x(t1,−ϕ)‖2

A
x(t1,−ϕ)

‖x(t1,−ϕ)‖2

= 0.

2. The algorithm. For A ∈ C
n×n and µ an interior point of F (A), we replace

the problem of finding a unit vector x ∈ C
n with x∗Ax = µ (= x∗µ In x) with the

equivalent problem

x∗(A − µ In)x = 0

immediately. Thus, without loss of generality, we assume that µ = 0 and look for a

unit vector x0 such that x∗

0Ax0 = 0; i.e., we simply replace A by A − µ In if µ 6= 0.

First we construct up to four ∂F (A) points pi and their generating unit vectors xi

(i = 1, 2, 3, 4), by computing the extreme eigenvalues with associated unit eigenvectors

xi for H(A) = (A + A∗)/2 and K(A) = (A − A∗)/2. By setting pi = x∗

i Axi, we

obtain four F (A) points pi that mark the extreme horizontal and vertical extensions

of F (A). These we denote by rM and rm for the maximal and minimal horizontal

extension F (A) points, respectively, and likewise by iM and im for the extreme

vertical F (A) points. If any one of these lies within 10−13 of zero in absolute terms,
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then we accept the corresponding unit vector as the desired generating vector. If on

the other hand, one of the hermitian matrices H(A) and iK(A) is found to be definite

during the eigenanalyses, then we stop knowing that µ /∈ F (A).

Next we determine the real axis intersections of the great circle ellipses that pass

through each feasible pair of our computed ∂F (A) points pi = x∗Ax, pj = y∗Ay.

Here, a feasible pair refers to their imaginary parts having opposite signs. If among

these there are real axis points on both sides of zero, then we compute a generating

unit vector for 0 ∈ F (A) by using Proposition 1.1, and the inverse problem is solved.

Otherwise, we study the quadratic expression whose zeros determine the coordinate

axes F (A) points on the ellipses through the points x∗Ax, y∗Ay ∈ ∂F (A) and that

are generated by the points in C
n on the great circle through x and y. It is

(t x + (1 − t) y)∗A (t x + (1 − t) y) = (x∗Ax + y∗Ay − (x∗Ay + y∗Ax)) t2(2.1)

+ (−2 y∗Ay + (x∗Ay + y∗Ax)) t + y∗Ay.

This is a quadratic polynomial equation over the complex numbers, and we are inter-

ested only in the solutions whose imaginary parts are equal to zero in order to apply

Proposition 1.1 if possible. Setting the imaginary part of expression (2.1) equal to

zero leads to the following polynomial equation with real coefficients:

t2 + g t +
p

f
= 0(2.2)

for q = ℑ(x∗Ax), p = ℑ(y∗Ay) and r = ℑ(x∗Ay + y∗Ax), so that f = p + q − r

and g = (r − 2 p)/f . Equation (2.2) has two real solutions ti, i = 1, 2, and these

supply two generating vectors xi = ti x + (1− ti) y (i = 1, 2) for two real axis points.

Normalization then gives two unit vector generators as desired. A set of great circle

image points (•) and their two real axis crossings (+) are depicted in Figure 1 for a

specific matrix A that will be described in the next section.

If, unlike Figure 1, none of the feasible ellipses gives us two real axis numerical

range points to either side of zero initially, then we check whether their collective set

does. If not, we compute more eigenanalyses for A(θ) = cos(θ)H(A) + sin(θ) iK(A)

with angles θ other than θ = 0 and θ = π/2 as done at start-up with H(A) and

iK(A), respectively. If for example all original ellipses intersect the real axis to the

right of zero and ℑ(rm) < 0, then we bisect the third quadrant and compute the

largest eigenvalue and associated eigenvector xnew of A(3π/4) to find a ∂F (A) point

that lies between iM and rm. If this point lies below the real axis, then we check

the ellipse intersections of the great circle images through the generating vector of

iM and xnew, otherwise we do the same for the generator of rm and xnew. Thus,

we proceed by angle bisection until we encounter a definite matrix A(θ) indicating

that µ /∈ F (A), or an ellipse that intersects the real axis to the left of zero and we

can solve the inverse problem by using Proposition 1.1. The number of iterations by
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Figure 2.1. Numerical range boundary (–) with extreme horizontal extension ∂F (A) points rm

(�) and rM (�), and extreme vertical extensions of F (A) at iM (�) and im (�). Image points

(• ) of the great circle through the generating vectors of iM and rm, and its real axis crossings (+)

(and an earlier one). Zero in C at o.

angle bisection has generally been low, normally below 4 and possibly up into the

teens only when zero lies within 10−13 of the boundary ∂F (A) in absolute terms.

Overall, the most expensive parts of our algorithm are the eigenanalyses of A(θ)

at O(n3) cost. The remainder of the program requires a number of quadratic form

evaluations in the form of x∗Ay as in Proposition 1.1(a) and in equations (2.1) and

(2.2) at O(n2) cost, as well as sorts, finds etc at even lower O(n) or O(1) computational

cost.

3. Tests. The 45 × 45 complex matrix whose numerical range is depicted in

Figure 2.1 is constructed from the complex matrix B ∈ C
45×45 in [9, p. 463]. This

matrix B is the sum of the Fiedler matrix F = (|i − j|) and i times the Moler

matrix M = UT U for the upper triangular matrix U with ui,j = −1 for j >

i; i.e., B = F + iM . We obtain A for Figure 2.1 by adding −3 + i 5 times the

matrix of all ones and shifting by µ = −200 + i 500, or in MATLAB notation,

A=B+(-3+5i)*ones(45)-(-200+500i)*eye(45). Here are some run comparisons for
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the algorithms of [2, 13] and our algorithm:

n = 45 execution time eigenanalyses error |x∗Ax − 0|

wberpoint from [13] 0.1 to 0.15 sec 3 10−10 to 9 · 10−11

inversefov from [2] 0.0071 sec 3 3.6 · 10−13

this paper’s algorithm 0.0042 sec 2 2.3 · 10−13

Table 1

Note that wberpoint relies on randomly generated vectors in C
n and therefore its run

data will vary with the chosen random vectors accordingly. For the same type of 500×

500 matrix B, we consider the matrix generated by A=B+(-3+5i)*ones(500)-(-200

+500i)*eye(500) and denote it by A500,500. The computed data is as follows:

n = 500 execution time eigenanalyses error |x∗Ax − 0|

wberpoint from [13] 2.3 to 4.8 sec 0 to 1 (eigs) 5 · 10−10 to 4 · 10−12

inversefov from [2] 0.75 sec 2 (eig) 3.7 · 10−11

this paper’s algorithm 0.24 sec 4 (eigs) 6 · 10−13

Table 2

The 500×500 matrix A500,500 has one tight cluster of 493 relatively small eigenvalues

of magnitudes around 540 and 7 separate eigenvalues of increasing magnitudes up

to 11.2 · 104. Our inverse numerical range routine as well as those of [2, 13] use

the Krylov type eigensolver eigs in MATLAB for large dimensional matrices A for

its better speed in finding the largest and/or smallest eigenvalue(s) of A(θ) that we

need. Since all iteration matrices A(θ) = cos(θ)H(A) + sin(θ) i K(A) are hermitian,

their eigenvalues are well conditioned. But their tight clustering and large magnitude

discrepancies make the Lanczos method of eigs quite unsuitable when used with the

MATLAB default setting for the Ritz estimate residual tolerance opts.tol to the

machine constant eps
.
= 2.2 · 10−16. To gain convergence of eigs in our algorithm

for A500,500 we have to use opts.tol values between 10−5 and 10−3 instead. This

apparently has no ill effect on our inverse problem accuracy. Likewise changing the

opts.tol setting inside the code of [2] does, however, not help since its call of eigs

crashes. Therefore, the current code inversefov in [2] is of limited use in clustered

eigen-situations. On the other hand, [2] works well as does ours, when using the much

more expensive Francis QR based dense eigensolver eig of MATLAB. Note that our

code with its very loose Lanzcos based eigensolver still obtains a generating vector

for µ that is almost two orders of magnitude better than what eig can achieve in

inversefov from [2]. Finally, if we use our code with eig instead for this A500,500,

the run time will go up comparably but the error comes in at only around 3.5 ·10−12.

Our next example features a 10 × 10 matrix A generated by the MATLAB com-

mand A= randn(10)+(3+3i)*ones(10). A’s numerical range is elongated as shown
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Figure 3.1. Numerical range boundary (–) with extreme horizontal extension ∂F (A − µ I10)

points rm (�) and rM (�), and extreme vertical extensions at iM (�) and im (�). Numerical

range real axis points (+): several to the left and one to the right of zero, as well as intermediate

∂F (A) points (♦) of 4 angle bisecting steps.

in Figure 3.1, where we have shifted the origin by µ = 22.5 + i 20.

For the chosen µ = 22.5+ i 20, our method finds a generating vector after 4 angle

bisections since according to Figure 3.1 then there are known generating vectors for

real axis points to the left and right of zero and Proposition 1.1 applies. If we move

µ closer to the edge of F (A) by increasing ℜ(µ), the computed data for this example

is as follows:

µ C number inversefov from [2] this paper’s algorithm

sec eig error sec eig error

22.83543 + i 20 −5 · 10−8 0.09 12 8 · 10−13 0.045 14 10−15

22.835430065 + i 20 −3 · 10−10 0.11 17 5 · 10−12 0.045 14 3.6 · 10−15

22.8354300651 + i 20 −2.4 · 10−10 0.21 35 3 · 10−12 0.047 14 10−15

22.835430065417 + i 20 −7 · 10−13 * * * 0.049 16 10−15

22.835430065418 + i 20 4 · 10−13 * * * µ outside F (A)

Table 3
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Here the ‘C number’ denotes the generalized Crawford number and indicates the

minimal distance of µ from the boundary of the numerical range of A−µ I10. It was

computed via Craw2circ.m of [15, 16]. As long as the generalized Crawford number of

a given point µ ∈ C is negative, the point lies inside the numerical range. The third

data row of the Table 3 exhibits the best that could be achieved with inversefov from

[2]; if µ is changed to 22.8354300652 + i 20 for example, inversefov fails altogether

while our algorithm works correctly for three more digits or 15 digit precision in µ.

Note how the origin approaches ∂F (A) in successive data rows from order 10−8 to

order 10−13, and that in our algorithm the number of eigenanalyses hardly increases

here. The 5th data line above indicates that our algorithm determined that the point

µ = 22.835430065418+ i 20 to lie outside the numerical range of A with a distance of

order 4 · 10−13 from its boundary. This also took 16 eigenanalyses.

Our last example comes from [13, Example 7] and uses a 188× 188 Jordan block

J for the eigenvalue 1 + i 3 (with all co-diagonals equal to 1) as test matrix. Here,

both [2] and our algorithm use 3 eigenanalyses; our algorithm finds a generating unit

vector for the point µ = 1.707+i 3.707 that lies inside F (A) within 10−5 of ∂F (A) in

0.17 seconds with accuracy of order 10−17 while inversefov from [2] uses 0.2 seconds

with 9 · 10−16 accuracy. For this example, wberpoint of [13, Example 7] achieves an

accuracy of 3.8 · 10−10 in almost 1 second and uses 7 eigenanalyses.

4. Conclusions and comments. We have developed, implemented and tested

a short, quick and accurate inverse numerical range algorithm that finds a generating

complex unit vector of any field of values point in its interior. The proposed method

relies on geometric ideas for computations in the realm of the matrix numerical range

and is frugal with its O(n3) eigenanalyses that are – at this time – apparently necessary

to proceed here.

To also look for imaginary axis field of values points below and above µ in the

complex plane and their generators might offer another, quite natural improvement

as well, but first tries with a thus expanded version of our subroutine Cvectinterpol

inside [14] have shown but little speed-up, if any, and that idea has been abandoned.

Finally, we remark that our code was tested using MATLAB2009b on both MACs

and PCs.
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