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Abstract

In this paper, the notion of Birkhoff-James approximate orthogonality sets is
introduced for rectangular matrices and matrix polynomials. The proposed defi-
nition yields a natural generalization of standard numerical range and q-numerical
range (and also of recent extensions), sharing with them several geometric prop-
erties.
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1 Introduction

The numerical range (also known as the field of values) of a square matrix A ∈
C

n×n is the compact and convex set F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1}. The

compactness follows readily from the fact that F (A) is the image of the compact unit
sphere of C

n under the continuous mapping x 7−→ x∗Ax, and the convexity of F (A)
is the celebrated Hausdorff-Toeplitz Theorem [12, 29]. The numerical range has been
studied extensively for many decades, and it is useful in studying and understanding
matrices and operators (see [3, 4, 11, 13] and the references therein).

Stampfli and Williams [28, Theorem 4], and later Bonsall and Duncan [4, Lemma
6.22.1], observed that the numerical range of a matrix A ∈ C

n×n can be written

F (A) = {µ ∈ C : ‖A− λIn‖2 ≥ |µ− λ|, ∀ λ ∈ C}
=

⋂

λ∈C

{µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2} ,

where ‖ · ‖2 denotes the spectral matrix norm (i.e., that norm subordinate to the eu-
clidean vector norm) and In is the n×n identity matrix. Hence, F (A) is an infinite in-
tersection of closed (circular) disks D (λ, ‖A− λIn‖2) = {µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2}
(λ ∈ C). In this way, it is confirmed once again that F (A) is a compact and convex
subset of the complex plane that lies in the closed disk D(0, ‖A‖2).
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Inspired by the above intersection property, Chorianopoulos, Karanasios and Psar-
rakos [8] recently introduced a definition of numerical range for rectangular complex
matrices. In particular, for any A,B ∈ C

n×m with B 6= 0, and any matrix norm ‖ · ‖,
the numerical range of A with respect to B is defined as

F‖·‖(A;B) = {µ ∈ C : ‖A− λB‖ ≥ |µ− λ|, ∀ λ ∈ C} (1)

=
⋂

λ∈C

D (λ, ‖A− λB‖) . (2)

This set is obviously compact and convex, and satisfies basic properties of the standard
numerical range [8]. Moreover, it is nonempty if and only if ‖B‖ ≥ 1 [8, Corollary 4].

For a q ∈ [0, 1], the q-numerical range of a square matrix A ∈ C
n×n is defined as the

compact and convex set F (A; q) = {y∗Ax ∈ C : x, y ∈ C
n, x∗x = y∗y = 1, y∗x = q}.

This range was introduced in [22] as a generalization of the standard numerical range
F (A) (it is clear that F (A; 1) = F (A)), and has been systematically investigated in
the last two decades [5, 6, 19, 20]. In [1], Aretaki and Maroulas, motivated by the
definition of F‖·‖(A;B) in (1) and (2), introduced a definition for the q-numerical
range of rectangular complex matrices. Namely, for any A,B ∈ C

n×m with B 6= 0,
any q ∈ [0, 1], and any matrix norm ‖ · ‖, they define the q-numerical range of A with
respect to B as the compact and convex set

F‖·‖(A;B; q) = {µ ∈ C : ‖A− λB‖ ≥ |µ− qλ|, ∀ λ ∈ C} (3)

=
⋂

λ∈C

D (qλ, ‖A− λB‖) .

They have also obtained that [1]

1

q2
F‖·‖(A;B; q2) ⊆

1

q1
F‖·‖(A;B; q1) ; 0 < q1 < q2 ≤ 1 (4)

(generalizing Theorem 2.5 of [19]), and

F‖·‖(A;B; q) = F‖·‖(A; q−1B) ; 0 < q ≤ 1. (5)

By the latter relation and [8, Corollary 4], it follows that F‖·‖(A;B; q) is nonempty
if and only if ‖B‖ ≥ q (0 < q ≤ 1). Furthermore, it is immediate that for q = 0,
F‖·‖(A;B; 0) = D (0, infλ∈C ‖A− λB‖), extending Proposition 2.11 of [19].

For n = m, ‖ · ‖ = ‖ · ‖2 and B = In, we have that F‖·‖2
(A; In) = F (A)

and F‖·‖2
(A; In; q) = F (A; q) (0 ≤ q ≤ 1) [1, 4, 28], i.e., the ranges F‖·‖(A;B)

and F‖·‖(A;B; q) are direct generalizations of the numerical range F (A) and the q-
numerical range F (A; q), respectively.

In this article, we introduce a new range of values for rectangular matrices and
matrix polynomials, which is based on the notion of Birkhoff-James approximate
orthogonality and generalizes the numerical ranges F‖·‖(A;B) and F‖·‖(A;B; q). We
also show that it is quite rich in structure by establishing some of its main properties.
In the next section, we give the definition together with basic properties of this set for
rectangular matrices, and in Section 3, we study the case of matrix polynomials. In
Section 4, we obtain necessary and/or sufficient conditions for the boundary points,
and finally, in Section 5, we investigate the case of matrix norms induced by inner
products of matrices. Simple illustrative examples are also given to verify our results.
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2 Approximate orthogonality sets of matrices

The analysis in [8] is based on the properties of matrix norms and the Birkhoff-James
orthogonality [2, 14]; namely, for two elements χ and ψ of a complex normed linear
space (X , ‖ · ‖), χ is called Birkhoff-James orthogonal to ψ, denoted by χ ⊥BJ ψ, if
‖χ + λψ‖ ≥ ‖χ‖ for all λ ∈ C. This orthogonality is neither symmetric nor additive
[14]. However, it is homogeneous, i.e., χ ⊥BJ ψ if and only if aχ ⊥BJ bψ for any
nonzero a, b ∈ C.

Furthermore, for any ǫ ∈ [0, 1), we say1 that χ is Birkhoff-James ǫ-orthogonal to
ψ, denoted by χ ⊥ǫ

BJ ψ, if ‖χ+λψ‖ ≥
√

1 − ǫ2 ‖χ‖ for all λ ∈ C. It is straightforward
to see that this relation is also homogeneous. In an inner product space (X , 〈·, ·〉),
with the standard orthogonality relation ⊥, a χ ∈ X is called ǫ-orthogonal to a ψ ∈ X ,
denoted by χ ⊥ǫ ψ, if |〈χ, ψ〉| ≤ ǫ ‖χ‖ ‖ψ‖. Moreover, by [7, 9], χ ⊥ ψ if and only if
χ ⊥BJ ψ, and χ ⊥ǫ ψ if and only if χ ⊥ǫ

BJ ψ.
For any A,B ∈ C

n×m with ‖B‖ ≥ 1, using the Birkhoff-James ǫ-orthogonality for
ǫ = ǫB =

√

‖B‖2 − 1 / ‖B‖, one can verify that (see also Theorem 1 in [8])

F‖·‖(A;B) = {µ ∈ C : ‖A− (µ− λ)B‖ ≥ |λ|, ∀ λ ∈ C}

=

{

µ ∈ C :

∥

∥

∥

∥

1

λ
(A− µB) +B

∥

∥

∥

∥

≥ 1, ∀ λ ∈ C\{0}
}

=

{

µ ∈ C : ‖λ(A− µB) +B‖ ≥
√

1 − ǫ2B ‖B‖, ∀ λ ∈ C

}

=
{

µ ∈ C : B ⊥ǫB

BJ (A− µB)
}

.

In particular, if ||B‖ = 1, then F‖·‖(A;B) = {µ ∈ C : B ⊥BJ (A− µB)}.
By the above discussion, the next definition arises in a natural way.

Definition 1. For any A,B ∈ C
n×m with B 6= 0, any matrix norm ‖ · ‖, and any

ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality set of A with respect to B is defined
and denoted by

F ǫ
‖·‖(A;B) = {µ ∈ C : B ⊥ǫ

BJ (A− µB)}

=
{

µ ∈ C : ‖A− λB‖ ≥
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀ λ ∈ C

}

=
⋂

λ∈C

D
(

λ,
‖A− λB‖√
1 − ǫ2 ‖B‖

)

.

Apparently, the Birkhoff-James ǫ-orthogonality set F ǫ
‖·‖(A;B) is a compact and

convex subset of the complex plane that lies in the closed disk D(0, ‖A‖/(
√

1 − ǫ2 ‖B‖)).
By Lemma 3 in [8] (see also [14, Corollary 2.2]), F 0

‖·‖(A;B) is nonempty. Moreover,

for any ǫ1, ǫ2 ∈ [0, 1) with ǫ1 < ǫ2, Definition 1 yields F ǫ1
‖·‖(A;B) ⊆ F ǫ2

‖·‖(A;B), gen-

eralizing (4) (in combination with Theorem 5 below). Hence, the Birkhoff-James
ǫ-orthogonality set F ǫ

‖·‖(A;B) is always nonempty.

1With regard to the Birkhoff-James orthogonality, various definitions for approximate orthogo-
nality are proposed in [7, 9]. The definition given here seems to be the most suitable to the concept
of this work.
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The points of the Birkhoff-James ǫ-orthogonality set F ǫ
‖·‖(A;B) have a remarkable

geometric interpretation. In particular, a scalar µ ∈ C lies in F ǫ
‖·‖(A;B) if and only

if B ⊥ǫ
BJ (A − µB), or equivalently, if and only if ‖B + λ(A− µB)‖ ≥

√
1 − ǫ2 ‖B‖

for all λ ∈ C. This means that µ ∈ F ǫ
‖·‖(A;B) if and only if the one-complex-

dimensional affine space {B + λ(A − µB) : λ ∈ C} does not intersect the open ball
B◦(0,

√
1 − ǫ2 ‖B‖) = {M ∈ C

n×m : ‖M‖ <
√

1 − ǫ2 ‖B‖}, as illustrated in Figure 1.

o    B

Figure 1: Two affine spaces that contain B and do not intersect B◦(0,
√

1 − ǫ2 ‖B‖).

We remark that in the sequel, the zero matrix is always considered as a scalar
multiple of B.

Proposition 2. Let A,B ∈ C
n×m with B 6= 0, and 0 ≤ ǫ1 < ǫ2 < 1. If the matrix

A is not a scalar multiple of B, then F ǫ1
‖·‖(A;B) ⊂ F ǫ2

‖·‖(A;B), and in particular,

F ǫ1
‖·‖(A;B) lies in the interior of F ǫ2

‖·‖(A;B).

Proof. For any µ ∈ F ǫ1
‖·‖(A;B), we have

‖A− µB + (µ− λ)B‖ ≥
√

1 − ǫ21 ‖B‖ |µ− λ|, ∀ λ ∈ C,

or
‖λB +A− µB‖ ≥

√

1 − ǫ21 ‖B‖ |λ| >
√

1 − ǫ22 ‖B‖ |λ|, ∀ λ ∈ C\{0}.
Since matrix A is not a scalar multiple of B, there exists a real δ > 0 such that

δ ≤ min

{

min
|λ|≤1

{

‖λB +A− µB‖ −
√

1 − ǫ22 ‖B‖ |λ|
}

,

(

√

1 − ǫ21 −
√

1 − ǫ22

)

‖B‖
}

.

As a consequence,

δ ≤ inf
λ∈C

{

‖λB +A− µB‖ −
√

1 − ǫ22 ‖B‖ |λ|
}

,

and for any ξ ∈ D(0, δ/‖B‖),

‖λB +A− (µ+ ξ)B‖ ≥ ‖λB +A− µB‖ − ‖ξB‖ ≥
√

1 − ǫ22 ‖B‖ |λ|, ∀ λ ∈ C.

Hence, every point of the compact set F ǫ1
‖·‖(A;B) lies in the interior of F ǫ2

‖·‖(A;B).
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Corollary 3. Suppose A,B ∈ C
n×m such that B 6= 0 and A is not a scalar multiple

of B. Then for every ǫ ∈ (0, 1), the ǫ-orthogonality set F ǫ
‖·‖(A;B) has a nonempty

interior, and it cannot be degenerated to a singleton or a line segment.

If we allow the value 1 for the parameter ǫ, then the first two equalities in Definition
1 yield F 1

‖·‖(A;B) = C. Moreover, if A is not a scalar multiple of B, then the ǫ-

orthogonality set F ǫ
‖·‖(A;B) can be arbitrarily large for ǫ sufficiently close to 1.

Proposition 4. Suppose A,B ∈ C
n×m such that B 6= 0 and A is not a scalar

multiple of B. Then for any bounded region Ω ⊂ C, there is an ǫΩ ∈ [0, 1) such that
Ω ⊆ F ǫΩ

‖·‖(A;B).

Proof. Without loss of generality, we can assume that Ω is compact. Consider a

µ ∈ Ω, such that µ /∈ F ǫ
‖·‖(A;B) for every ǫ ∈ [0, 1). Then for every ǫk =

√

1 − 1
k2 ,

k = 2, 3, . . . , there exists a λk ∈ C such that

‖A− (µ− λk)B‖ <

√

√

√

√1 −
(

√

1 − 1

k2

)2

‖B‖ |λk|,

or

‖λkB +A− µB‖ < 1

k
‖B‖ |λk|, (6)

or

| ‖λkB‖ − ‖A− µB‖ | < 1

k
‖B‖ |λk|,

or

|λk| ‖B‖
(

1 − 1

k

)

< ‖A− µB‖ ≤ ‖A‖ + |µ| ‖B‖,

or

|λk| <
‖A‖ + |µ| ‖B‖
‖B‖

(

1 − 1
k

) ≤ 2
‖A‖ + |µ| ‖B‖

‖B‖ .

Thus, the sequence {λk}k∈N is always bounded, and hence, it has a converging sub-
sequence {λkt

}t∈N. If we assume that λkt
→ λ0, then by (6),

‖λkt
B +A− µB‖ < 1

kt
‖B‖ |λkt

|, ∀ t ∈ N,

or
lim

t
‖λkt

B +A− µB‖ = 0,

or
‖λ0B +A− µB‖ = 0,

where the latter relation is a contradiction since A is not a scalar multiple of B.
As a consequence, there is an ǫµ ∈ [0, 1) such that µ ∈ F

ǫµ

‖·‖(A;B). Without loss

of generality, we may assume that every µ ∈ Ω lies in the interior of F
ǫµ

‖·‖(A;B)

(choosing, if necessary, a larger ǫµ). Hence, Ω ⊆ ⋃

µ∈Ω Int[F
ǫµ

‖·‖(A;B)], where Int[ · ]
denotes the interior of a set. Since Ω is compact, there is a finite number of points
µ1, µ2, . . . , µs ∈ Ω such that Ω ⊆ ⋃s

i=1 Int[F
ǫµi

‖·‖ (A;B)]. Setting ǫΩ = max{ǫµi
: i =

1, 2, . . . , s}, Proposition 2 completes the proof.
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As mentioned above, for ‖B‖ ≥ 1 and ǫB =
√

‖B‖2 − 1 / ‖B‖, the ǫ-orthogonality
set F ǫB

‖·‖(A;B) coincides with the numerical range F‖·‖(A;B). It is also easy to see
that

F ǫ
‖·‖(A;B) =

{

µ ∈ C : ‖A− λB‖ ≥
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀ λ ∈ C

}

=

{

µ√
1 − ǫ2 ‖B‖

∈ C : ‖A− λB‖ ≥
∣

∣

∣
µ−

√

1 − ǫ2 ‖B‖λ
∣

∣

∣
, ∀ λ ∈ C

}

=
1√

1 − ǫ2 ‖B‖
{

µ ∈ C : ‖A− λB‖ ≥
∣

∣

∣
µ−

√

1 − ǫ2 ‖B‖λ
∣

∣

∣
, ∀ λ ∈ C

}

.

Thus, keeping in mind [8, Proposition 8] and (5), we have the following results.

Theorem 5. For any A,B ∈ C
n×m with B 6= 0, and ǫ ∈ [0, 1), it holds that

F ǫ
‖·‖(A;B) = F‖·‖(q

−1
ǫ A;B; qǫ) = F‖·‖(q

−1
ǫ A; q−1

ǫ B),

where qǫ =
√

1 − ǫ2 ‖B‖. Equivalently, for any A,B ∈ C
n×m and q ∈ (0, 1], with

‖B‖ ≥ q,
F

ǫq

‖·‖(A;B) = F‖·‖(q
−1A;B; q) = F‖·‖(q

−1A; q−1B),

where ǫq =
√

‖B‖2 − q2 / ‖B‖.
Corollary 6. For any A,B ∈ C

n×m and q ∈ (0, 1], with ‖B‖ = q, it holds that

F‖·‖(A;B; q) = F 0
‖·‖(A;B) = {µ ∈ C : B ⊥BJ (A− µB)} .
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Figure 2: The sets F 0.5
‖·‖2

(A;B), F
√

0.5
‖·‖2

(A;B) and F
√

0.6
‖·‖2

(A;B).

As an example, we consider the 3 × 4 complex matrices

A =





4 + i 5 0 i 0
0 −3 2 0
0 0 0 −i 2



 and B =





1 0 0 0

0
√

2 0 0
0 0 −i 0





with ‖B‖2 =
√

2. The approximate orthogonality sets F 0.5
‖·‖2

(A;B), F
√

0.5
‖·‖2

(A;B) and

F
√

0.6
‖·‖2

(A;B) are illustrated (as the unshaded regions) in parts (a), (b) and (c) of Figure
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2, respectively, confirming Proposition 2. Note also that
√

0.5 =
√

‖B‖2
2 − 1 / ‖B‖2

and
√

0.6 =
√

‖B‖2
2 −

√
0.8 2 / ‖B‖2, and thus, Theorem 5 yields F

√
0.5

‖·‖2
(A;B) =

F‖·‖2
(A;B) and F

√
0.6

‖·‖2
(A;B) = F‖·‖2

(
√

0.8−1A;B;
√

0.8) = F‖·‖2
(
√

0.8−1A;
√

0.8−1B).
By the above discussion and Theorem 5, it is apparent that the Birkhoff-James

ǫ-orthogonality set F ǫ
‖·‖(A;B) is a generalization2 of the numerical ranges F‖·‖(A;B)

and F‖·‖(A;B; q), in the sense that it does not require any condition for the norm of
matrix B 6= 0 and it coincides with F‖·‖(A;B) and F‖·‖(A;B; q) for certain values of
ǫ. Furthermore, basic properties of the numerical range F‖·‖(A;B) obtained in [8] are
extended readily to F ǫ

‖·‖(A;B).

(P1) If A = bB for some b ∈ C, then F ǫ
‖·‖(bB;B) = {b}. The converse is not true in

general; for example, if the matrix norm ‖ · ‖ is induced by an inner product of
matrices, then F 0

‖·‖(A;B) is always a singleton (see Property (P7) below).

(P2) For any scalars a, b ∈ C, it holds that F ǫ
‖·‖(aA+ bB;B) = aF ǫ

‖·‖(A;B) + b.

(P3) Suppose the matrix norm ‖ · ‖ is induced by a vector norm (acting on C
n and

C
m) and n ≥ m, and let µ0 ∈ C be an eigenvalue of A with respect to B, with

an associate unit eigenvector x0 ∈ C
m; that is, (A − µ0B)x0 = 0. Then for

every ǫ ∈
[

√

‖B‖2 − ‖Bx0‖2 / ‖B‖, 1
)

, µ0 lies in F ǫ
‖·‖(A;B). (In combination

with Theorem 5, this property is a direct generalization of Theorem 2.7 in [19].)

(P4) If A 6= 0, then
{

µ−1 ∈ C : µ ∈ F ǫ
‖·‖(A;B), |µ| ≥ ‖A‖/‖B‖

}

⊆ F ǫ
‖·‖(B;A).

(P5) Int[F ǫ
‖·‖(A;B)] ⊆

{

µ ∈ C : ‖A− λB‖ >
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀ λ ∈ C

}

.

(P6) Suppose that f : (Cn1×m1 , ‖ · ‖) → (Cn2×m2 , |‖ · |‖) is a linear map such that
|‖f(M)|‖ = (≥ , ≤ ) ‖M‖ for every M ∈ C

n1×m1 . Then for any A,B ∈ C
n1×m1 ,

F ǫ
|‖·|‖(f(A); f(B)) = (⊇ , ⊆ ) F ǫ

‖·‖(A;B).

(P7) If the matrix norm ‖ · ‖ is induced by the inner product of matrices 〈·, ·〉 (this
is the case of the Frobenius norm ‖ · ‖F ), then

F ǫ
‖·‖(A;B) = D

(〈A,B〉
‖B‖2

,

∥

∥

∥

∥

A− 〈A,B〉
‖B‖2

B

∥

∥

∥

∥

ǫ√
1 − ǫ2 ‖B‖

)

.

If the matrix norm ‖ · ‖ is induced by a vector norm, then by Property (P3) (see
also [8, Proposition 17]), an eigenvalue µ0 of A with respect to B lies in F ǫ

‖·‖(A;B) if

there is an associated unit eigenvector x0 (i.e., (A−Bµ0)x0 = 0) such that ‖Bx0‖ ≥√
1 − ǫ2 ‖B‖. As a consequence, if the matrices A and B are square, say n×n, and B

is invertible with ‖B−1‖−1 ≥
√

1 − ǫ2 ‖B‖, then all the eigenvalues of A with respect
to B lie in F ǫ

‖·‖(A;B). In this case, we have the following result on the generalized

resolvent (A−zB)−1, z ∈ C (for the standard resolvent of operators, see [15, Theorem
V.3.2] and [28, Lemma 1]).

2We remark that the definitions of F‖·‖(A; B), F‖·‖(A; B; q) and F ǫ
‖·‖(A; B) are applicable to the

elements of any normed linear space.
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Proposition 7. Suppose the matrix norm ‖ · ‖ is induced by a vector norm. Let
ǫ ∈ [0, 1), and let A,B be two n × n matrices with B invertible and ‖B−1‖−1 ≥√

1 − ǫ2 ‖B‖. Then for any point ξ /∈ F ǫ
‖·‖(A;B), the distance d(ξ, F ǫ

‖·‖(A;B)) from ξ

to F ǫ
‖·‖(A;B) satisfies

d(ξ, F ǫ
‖·‖(A;B)) ≤ 1√

1 − ǫ2 ‖B‖ ‖(A− ξB)−1‖
.

Proof. For any µ ∈ F‖·‖(AB
−1; In),

|µ− λ| ≤ ‖AB−1 − λIn‖ ≤ ‖(A− λB)‖ ‖B−1‖ ≤ ‖A− λB‖√
1 − ǫ2 ‖B‖

, ∀ λ ∈ C,

and thus, F‖·‖(AB
−1; In) ⊆ F ǫ

‖·‖(A;B). By [18], for any convex set V that contains

F‖·‖(AB
−1; In) and any ξ /∈ V , we have d(ξ, V ) ≤ ‖(AB−1 − ξIn)−1‖−1. Setting

V = F ǫ
‖·‖(A;B) yields

d(ξ, F ǫ
‖·‖(A;B)) ≤ 1

‖(AB−1 − ξIn)−1‖ ≤ (
√

1 − ǫ2 ‖B‖)−1

‖B−1‖ ‖(AB−1 − ξIn)−1‖ ,

and the proof is complete.

3 Approximate orthogonality sets of matrix polynomials

Consider an n×m matrix polynomial

P (z) = Alz
l +Al−1z

l−1 + · · · +A1z +A0, (7)

where z is a complex variable and Aj ∈ C
n×m (j = 0, 1, . . . , l) with Al 6= 0. The

study of matrix polynomials has a long history, especially with regard to their appli-
cations on higher order linear systems of differential equations (see [10, 17, 23] and
the references therein).

If n ≥ m, then a scalar µ0 ∈ C is said to be an eigenvalue of P (z) in (7) if
P (µ0)x0 = 0 for some nonzero vector x0 ∈ C

m. This vector x0 is called an eigenvector
of P (z) corresponding to µ0.

For an n× n matrix polynomial P (z), the (standard) numerical range of P (z) is
defined as

W (P (z)) = {µ ∈ C : x∗P (µ)x = 0, x ∈ C
n, x 6= 0}

= {µ ∈ C : 0 ∈ F (P (µ))} . (8)

This range and its properties have been studied extensively in [21, 24, 25, 26, 27].
Motivated by (8), and recalling (1), (3) and Definition 1, for an n × m matrix

polynomial P (z) as in (7), any nonzero matrix B ∈ C
n×m, and any matrix norm ‖ · ‖,

we define the numerical range of P (z) with respect to B (‖B‖ ≥ 1)

W‖·‖(P (z);B) =
{

µ ∈ C : 0 ∈ F‖·‖(P (µ);B)
}

(9)

= {µ ∈ C : ‖P (µ) − λB‖ ≥ |λ|, ∀ λ ∈ C}

=

{

µ ∈ C : B ⊥ǫB

BJ P (µ), ǫB =

√

‖B‖2 − 1

‖B‖

}

,

8



the q-numerical range of P (z) with respect to B (0 ≤ q ≤ 1, ‖B‖ ≥ q)

W‖·‖(P (z);B; q) =
{

µ ∈ C : 0 ∈ F‖·‖(P (µ);B; q)
}

(10)

= {µ ∈ C : ‖P (µ) − λB‖ ≥ q|λ|, ∀ λ ∈ C}

=

{

µ ∈ C : B ⊥ǫq

BJ P (µ), ǫq =

√

‖B‖2 − q2

‖B‖

}

,

and the Birkhoff-James ǫ-orthogonality set of P (z) with respect to B (0 ≤ ǫ < 1)

W ǫ
‖·‖(P (z);B) =

{

µ ∈ C : 0 ∈ F ǫ
‖·‖(P (µ);B)

}

(11)

=
{

µ ∈ C : ‖P (µ) − λB‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C

}

= {µ ∈ C : B ⊥ǫ
BJ P (µ)} . (12)

The closeness of these sets follows from the continuity of matrix norms, and for
q = 0, W‖·‖(P (z);B; 0) = C. Furthermore, by definitions (9), (10) and (11), Theorem
5 and Corollary 6 are extended readily to the case of matrix polynomials.

Theorem 8. Let P (z) be an n ×m matrix polynomial as in (7). For any nonzero
B ∈ C

n×m and ǫ ∈ [0, 1),

W ǫ
‖·‖(P (z);B) = W‖·‖(P (z);B; qǫ) = W‖·‖(P (z); q−1

ǫ B),

where qǫ =
√

1 − ǫ2 ‖B‖. Equivalently, for any B ∈ C
n×m and q ∈ (0, 1], with

‖B‖ ≥ q,
W

ǫq

‖·‖(P (z);B) = W‖·‖(P (z);B; q) = W‖·‖(P (z); q−1B),

where ǫq =
√

‖B‖2 − q2 / ‖B‖.

Corollary 9. For any B ∈ C
n×m and q ∈ (0, 1], with ‖B‖ = q, it holds that

W‖·‖(P (z);B; q) = W 0
‖·‖(P (z);B) = {µ ∈ C : B ⊥BJ P (z)} .

It is worth noting that for the linear pencil P (z) = Bz − A, the first equality of
Definition 1 and (12) yield W ǫ

‖·‖(Bz − A;B) = F ǫ
‖·‖(A;B). Furthermore, if a µ0 ∈ C

satisfies P (µ0) = 0, then it is immediate that µ0 ∈W ǫ
‖·‖(P (z);B).

If all the coefficient matrices of P (z) are scalar multiples of B, then the matrix
polynomial is written in the form P (z) = p(z)B for some scalar polynomial p(z).
Thus, for any ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality set

W ǫ
‖·‖(p(z)B;B) =

{

µ ∈ C : |p(µ) − λ| ‖B‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C

}

contains all zeros of p(z).
As in the case of constant matrices, the ǫ-orthogonality set W ǫ

‖·‖(P (z);B) is a

natural generalization of the numerical ranges W‖·‖(P (z);B) and W‖·‖(P (z);B; q),
and hence, in the remainder of the paper, we focus our interest on this set. In the
special case where n = m, B = In and ‖ · ‖ = ‖ · ‖2, it is clear that W‖·‖2

(P (z); In) =

9



{

µ ∈ C : 0 ∈ F‖·‖2
(P (µ); In)

}

= {µ ∈ C : 0 ∈ F (P (µ))} = W (P (z)), i.e., the defini-
tion of W‖·‖(P (z);B) introduced above is a direct extension of the definition of the
standard numerical range W (P (z)).

Consider an n × m matrix polynomial P (z) =
∑l

l=0Alz
l as in (7), a nonzero

matrix B ∈ C
n×m, a matrix norm ‖ · ‖, and an ǫ ∈ [0, 1).

Proposition 10. The following hold:

(i) For any scalar α ∈ C\{0}, W ǫ
‖·‖(αP (z);B) = W ǫ

‖·‖(P (z);B), W ǫ
‖·‖(P (αz);B) =

α−1W ǫ
‖·‖(P (z);B) and W ǫ

‖·‖(P (z + α);B) = W ǫ
‖·‖(P (z);B) − α.

(ii) If R(z) = A0z
l + · · · + Al−1z + Al = zlP (z−1) is the reverse matrix polynomial

of P (z), then W ǫ
‖·‖(R(z);B)\{0} =

{

µ ∈ C : µ−1 ∈W ǫ
‖·‖(P (z);B)\{0}

}

.

(iii) If the norm ‖·‖ is invariant under the conjugate operation · , and the coefficients
of P (z) and B are all real matrices, then W ǫ

‖·‖(P (z);B) is symmetric with respect
to the real axis.

(iv) Suppose the matrix norm ‖·‖ is induced by a vector norm. If there exist two unit
vectors x0 ∈ C

n and y0 ∈ C
m such that |x∗0By0| ≥

√
1 − ǫ2 ‖B‖, and x∗0Ajy0 = 0

for every j = 0, 1, . . . , l, then W ǫ
‖·‖(P (z);B) = C.

Proof. (i) It is easy to see that

W ǫ
‖·‖(αP (z);B) =

{

µ ∈ C :

∥

∥

∥

∥

P (µ) − λ

α
B

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖B‖
∣

∣

∣

∣

λ

α

∣

∣

∣

∣

, ∀ λ

α
∈ C

}

,

W ǫ
‖·‖(P (αz);B) =

{

α−1µ ∈ C : ‖P (µ) − λB‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C

}

,

and

W ǫ
‖·‖(P (z + α);B) =

{

µ− α ∈ C : ‖P (µ) − λB‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C

}

.

(ii) A nonzero µ ∈ C lies in W ǫ
‖·‖(R(z);B) if and only if

‖µlP (µ−1) − λB‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,

or equivalently, if and only if

∥

∥

∥

∥

P (µ−1) − λ

µl
B

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖B‖
∣

∣

∣

∣

λ

µl

∣

∣

∣

∣

, ∀ λ

µl
∈ C.

(iii) It follows from the equalities ‖P (µ) − λB‖ = ‖P (µ) − λB‖ =
∥

∥P (µ) − λB
∥

∥

and |λ| = |λ| (µ, λ ∈ C).
(iv) For any µ ∈ C, it holds that

‖P (µ)− λB‖ = ‖x∗0‖ ‖P (µ)− λB‖ ‖y0‖ ≥ ‖x∗0P (µ)y0 − λ(x∗0By0)‖ ≥
√

1 − ǫ2 ‖B‖ |λ|

for every λ ∈ C.
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Proposition 11. Suppose the matrix norm ‖ · ‖ is induced by a vector norm and
n ≥ m, and let µ0 be an eigenvalue of P (z) with an associated unit eigenvector

x0 ∈ C
n. Then for every ǫ ∈

[

√

‖B‖2 − ‖Bx0‖2 / ‖B‖, 1
)

, µ0 lies in W ǫ
‖·‖(P (z);B).

Proof. Since ‖Bx0‖ ≥
√

1 − ǫ2 ‖B‖, it follows

‖P (µ0) − λB‖ ‖x0‖ ≥ ‖P (µ0)x0 − λBx0‖ = ‖λBx0‖ ≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C. 2

For a square matrix polynomial P (z) =
∑l

j=0Ajz
j , it is known that the numerical

range W (P ) is unbounded if and only if 0 ∈ F (Al) [21].

Theorem 12. Let P (z) be an n × m matrix polynomial as in (7), B ∈ C
n×m be

nonzero, and ǫ ∈ [0, 1).

(i) If W ǫ
‖·‖(P (z);B) is unbounded, then 0 ∈ F ǫ

‖·‖(Al;B).

(ii) Suppose 0 ∈ F ǫ
‖·‖(Al;B) and 0 is not an isolated point of W ǫ

‖·‖(R(z);B), where

R(z) =
∑l

j=0Al−jz
j = zlP (z−1). Then the ǫ-orthogonality set W ǫ

‖·‖(P (z);B) is
unbounded.

Proof. (i) Suppose that the ǫ-orthogonality set W ǫ
‖·‖(P (z);B) is unbounded, and let

µ ∈W ǫ
‖·‖(P (z);B)\{0}. Then it holds that

∥

∥

∥
Alµ

l +Al−1µ
l−1 + · · · +A1µ+A0 − λB

∥

∥

∥
≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,

or

|µl|
∥

∥

∥

∥

Al +Al−1
1

µ
+ · · · +A1

1

µl−1
+A0

1

µl
− λ

µl
B

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,

or
∥

∥

∥

∥

Al −
λ

µl
B

∥

∥

∥

∥

+

∥

∥

∥

∥

Al−1
1

µ
+ · · · +A1

1

µl−1
+A0

1

µl

∥

∥

∥

∥

≥
√

1 − ǫ2 ‖B‖
∣

∣

∣

∣

λ

µl

∣

∣

∣

∣

, ∀ λ ∈ C.

For the sake of contradiction, we assume that 0 /∈ F ǫ
‖·‖(Al;B), or equivalently, that

there exists a λ0 ∈ C such that ‖Al − λ0B‖ <
√

1 − ǫ2 ‖B‖ |λ0|. Since the set
W ǫ

‖·‖(P (z);B) is unbounded, for sufficiently large µ ∈ W ǫ
‖·‖(P (z);B), the quantity

∥

∥

∥
Al−1

1
µ + · · · +A1

1
µl−1 +A0

1
µl

∥

∥

∥
becomes smaller than the difference

√
1 − ǫ2 ‖B‖ |λ0|−

‖Al − λ0B‖. Then setting λ = λ0µ
l yields

∥

∥

∥

∥

Al −
λ

µl
B

∥

∥

∥

∥

+

∥

∥

∥

∥

Al−1
1

µ
+ · · · +A1

1

µl−1
+A0

1

µl

∥

∥

∥

∥

<
√

1 − ǫ2 ‖B‖
∣

∣

∣

∣

λ

µl

∣

∣

∣

∣

.

This is a contradiction.
(ii) Consider the reverse matrix polynomial R(z) =

∑l
j=0Al−jz

j = zlP (z−1). By

Proposition 10 (ii), W ǫ
‖·‖(R(z);B)\{0} =

{

µ ∈ C : µ−1 ∈W ǫ
‖·‖(P (z);B)\{0}

}

. Since

0 ∈ F ǫ
‖·‖(Al;B), it follows that 0 ∈ W ǫ

‖·‖(R(z);B). Moreover, since 0 is not an

isolated point of W ǫ
‖·‖(R(z);B), there is a sequence {µk}k∈N ⊂ W ǫ

‖·‖(R(z);B)\{0}
that converges to the origin. This means that the sequence {µ−1

k }k∈N ⊂W ǫ
‖·‖(P (z);B)

is unbounded. Hence, W ǫ
‖·‖(P (z);B) is also unbounded.
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The condition that the origin is not an isolated point of the set W ǫ
‖·‖(R(z);B)

is always satisfied in the case of standard numerical range W (P (z)). This can be
verified by the second part of the proof of [21, Theorem 2.3], the second part of [24,
Lemma in page 103], and the fact that the leading coefficient of P (z) is nonzero.

As in the case of constant matrices, the ǫ-orthogonality set W ǫ
‖·‖(P (z);B) can be

arbitrarily large for ǫ sufficiently close to 1.

Proposition 13. Let P (z) be an n × m matrix polynomial as in (7), B ∈ C
n×m

be nonzero, and ǫ ∈ [0, 1). Suppose also that Ω ⊂ C is a compact region such that
that for every µ ∈ Ω, P (µ) is not a nonzero scalar multiple of B. Then there is an
ǫΩ ∈ [0, 1) such that Ω ⊆W ǫΩ

‖·‖(P (z);B).

Proof. By Proposition 4, we have that for any µ ∈ Ω, there is an ǫµ ∈ [0, 1) such that
0 ∈ F

ǫµ

‖·‖(P (µ);B), or equivalently, µ ∈ W
ǫµ

‖·‖(P (z);B). The last part of the proof of
Proposition 4 implies the desired conclusion.

Finally, we consider an n×n matrix polynomial P (z) =
∑l

j=0Ajz
j and the norm

‖ · ‖2.

Proposition 14. Suppose µ0 ∈ W (P (z)), and let x0 ∈ C
n such that ‖x0‖2 = 1

and x∗0P (µ0)x0 = 0. Then for every ǫ ∈
[

√

‖B‖2
2 − |x∗0Bx0|2 / ‖B‖2, 1

)

, µ0 lies in

W ǫ
‖·‖2

(P (z);B).

Proof. Since |x∗0Bx0| ≥
√

1 − ǫ2 ‖B‖2, it is straightforward to verify that for every
λ ∈ C, ‖P (µ0) − λB‖2 ≥ ‖x∗0(P (µ0) − λB)x0‖2 = |λ| |x∗0Bx0| ≥

√
1 − ǫ2 ‖B‖2|λ|.

Corollary 15. For every ǫ ∈ [0, 1) such that the interior of disk D(0,
√

1 − ǫ2 ‖B‖2)
has an empty intersection with the standard numerical range F (B), it holds that
W (P (z)) ⊆W ǫ

‖·‖2
(P (z);B).

4 The boundary

By Definition 1, it is apparent that a µ0 ∈ C lies in the Birkhoff-James ǫ-orthogonality
set F ǫ

‖·‖(A;B) if and only if infλ∈C{‖A−λB‖−
√

1 − ǫ2 ‖B‖ |µ0−λ|} ≥ 0. Motivated
by the last part of the proof of Proposition 2, we specialize this characterization to
the boundary of F ǫ

‖·‖(A;B), ∂F ǫ
‖·‖(A;B).

Proposition 16. Let A,B ∈ C
m×n with B 6= 0, ǫ ∈ [0, 1), and µ0 ∈ F ǫ

‖·‖(A;B).

(i) The point µ0 lies on the boundary ∂F ǫ
‖·‖(A;B) if and only if

inf
λ∈C

{

‖A− λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ|
}

= 0.

(ii) If ǫ > 0, then µ0 ∈ ∂F ǫ
‖·‖(A;B) if and only if

min
λ∈C

{

‖A− λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ|
}

= 0,

i.e., if and only if there is a λ0 ∈ C such that ‖A−λ0B‖ =
√

1 − ǫ2 ‖B‖ |µ0−λ0|.
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Proof. (i) If µ0 is a boundary point of F ǫ
‖·‖(A;B), then for every δ > 0, there is a

λδ ∈ C such that
‖A− λδB‖ <

√

1 − ǫ2 ‖B‖ |µ0 − λδ| + δ. (13)

Since the difference ‖A− λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ| is nonnegative for every λ ∈ C,
it follows that infλ∈C{‖A− λB‖ −

√
1 − ǫ2 ‖B‖ |µ0 − λ|} = 0.

For the converse, suppose infλ∈C{‖A− λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ|} = 0, and for
the sake of contradiction, assume that µ0 ∈ Int[F ǫ

‖·‖(A;B)]. Then there is a real r > 0

such that D(µ0, r) ⊂ Int[F ǫ
‖·‖(A;B)], and hence,

D(µ0, r) ⊂ Int

[

D
(

λ,
‖A− λB‖√
1 − ǫ2 ‖B‖

)]

, ∀ λ ∈ C,

or
‖A− λB‖ −

√

1 − ǫ2 ‖B‖ |µ0 − λ| >
√

1 − ǫ2 ‖B‖ r, ∀ λ ∈ C,

or
inf
λ∈C

{

‖A− λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ|
}

≥
√

1 − ǫ2 ‖B‖ r > 0.

This is a contradiction.
(ii) Suppose ǫ > 0 and µ0 ∈ ∂F ǫ

‖·‖(A;B). Setting δ = 1/k and λδ = λk (k =

1, 2, . . . ) in (13) yields

‖A− λkB‖ <
√

1 − ǫ2 ‖B‖ |µ0 − λk| +
1

k
,

or

| ‖A‖ − ‖λkB‖ | <
√

1 − ǫ2 ‖B‖ |µ0 − λk| +
1

k
.

Next, we adapt arguments from the proof of Proposition 4. It is clear that
|λk| ‖B‖ − ‖A‖ <

√
1 − ǫ2 ‖B‖ (|µ0| + |λk|) + 1/k, and since ǫ > 0, we have

|λk| <
‖A‖ +

√
1 − ǫ2 ‖B‖ |µ0| + 1

‖B‖ (1 −
√

1 − ǫ2)
.

Hence, the sequence {λk}k∈N is always bounded, and thus, it has a converging subse-
quence {λkt

}t∈N. If we assume that λkt
→ λ0, then

‖A− λkt
B‖ <

√

1 − ǫ2 ‖B‖ |µ0 − λkt
| + 1

kt
, ∀ t ∈ N,

or

lim
t

(

‖A− λkt
B‖ −

√

1 − ǫ2 ‖B‖ |µ0 − λkt
| − 1

kt

)

≤ 0,

or
‖A− λ0B‖ −

√

1 − ǫ2 ‖B‖ |µ0 − λ0| ≤ 0,

where the latter relation is possible only as an equality.
The converse follows readily from (i).
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If ǫ > 0, then the above proposition implies that for any µ0 ∈ ∂F ǫ
‖·‖(A;B), there is

a generating disk D
(

λ0,
‖A−λ0B‖√
1−ǫ2 ‖B‖

)

such that µ0 ∈ ∂D
(

λ0,
‖A−λ0B‖√
1−ǫ2 ‖B‖

)

. As a conse-

quence, since F ǫ
‖·‖(A;B) is convex and lies in D

(

λ0,
‖A−λ0B‖√
1−ǫ2 ‖B‖

)

, we have the following

corollaries (see also Corollary 3).

Corollary 17. If 0 < ǫ < 1, then the boundary ∂F ǫ
‖·‖(A;B) does not have any flat

portions.

Corollary 18. Suppose 0 < q < 1 and ‖B‖ ≥ q. Then for any µ0 ∈ ∂F‖·‖(A;B; q),
there is a λ0 ∈ C such that ‖A − λ0B‖ = |µ0 − qλ0|. In particular, the boundary of
the q-numerical range F‖·‖(A;B; q) does not have any flat portions.

On the other hand, if ‖B‖ = 1, then F 0
‖·‖(A;B) = F‖·‖(A;B) might have flat

portions; see, for example, Proposition 20 in [8]. Hence, in Proposition 16 (ii), the
condition ǫ > 0 cannot be omitted.

The properties of a point µ of the standard numerical range W (P (z)) are strongly
related to the properties of the origin as a point of F (P (µ)) [16, 24, 26]. Parts (i) and
(ii) of the following theorem are generalizations of Theorem 1.1 in [24] and Theorem
2 in [16], respectively. (We denote the derivative of P (z) by P ′(z).)

Theorem 19. Suppose P (z) is an n×m matrix polynomial as in (7), B ∈ C
n×m is

nonzero, ǫ ∈ [0, 1), and µ0 ∈W ǫ
‖·‖(P (z);B).

(i) If µ0 ∈ ∂W ǫ
‖·‖(P (z);B), then 0 ∈ ∂F ǫ

‖·‖(P (µ0);B).

(ii) If 0 ∈ ∂F ǫ
‖·‖(P (µ0);B)\F ǫ

‖·‖(P
′(µ0);B) and P (µ0) 6= 0, then µ0 lies on the bound-

ary ∂W ǫ
‖·‖(P (z);B).

Proof. (i) Since µ0 ∈ W ǫ
‖·‖(P (z);B), it is clear that 0 ∈ F ǫ

‖·‖(P (µ0);B). For the

sake of contradiction, we assume that the origin lies in the interior of F ǫ
‖·‖(P (µ0);B),

Int[F ǫ
‖·‖(P (µ0);B)]. Then by Proposition 16 (i), there exists a δ > 0 such that

inf
λ∈C

{

‖P (µ0) − λB‖ −
√

1 − ǫ2 ‖B‖ |µ0 − λ|
}

> δ,

and hence,

‖P (µ0) − λB‖ − δ >
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C.

Also, we have

P (z) = P (µ0) + (z − µ0)P
′(µ0) + (z − µ0)E(z, µ0), (14)

where ‖E(z, µ0)‖ = o(1) as |z − µ0| → 0. As a consequence, there is a real r > 0
such that for every µ ∈ D(µ0, r), |µ − µ0| ‖P ′(µ0) + E(µ, µ0)‖ ≤ δ. Thus, for every
µ ∈ D(µ0, r), it holds that

‖P (µ0) − λB‖ − |µ− µ0| ‖P ′(µ0) + E(µ, µ0)‖ >
√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,
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or

‖P (µ0) + (µ− µ0)P
′(µ0) + (µ− µ0)E(µ, µ0) − λB‖ >

√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,

or
‖P (µ) − λB‖ >

√

1 − ǫ2 ‖B‖ |λ|, ∀ λ ∈ C,

and hence, µ0 is an interior point of W ǫ
‖·‖(P (z);B); this is a contradiction. Thus, the

origin is a boundary point of F ǫ
‖·‖(P (µ);B).

(ii) For the sake of contradiction, assume that µ0 ∈ Int[W ǫ
‖·‖(P (z);B)]. Hence,

there is a δ > 0 such that D(µ0, δ) ⊂ Int[W ǫ
‖·‖(P (z);B)]. Recall (14), and observe

that since 0 /∈ F ǫ
‖·‖(P

′(µ0);B), there is a λ1 ∈ C such that ‖P ′(µ0) − λ1B‖ <√
1 − ǫ2 ‖B‖ |λ1|. By choosing δ sufficiently small, we may assume that for every

µ in the (closed) circular annulus D(µ0, δ, δ/2) = {µ ∈ C : δ/2 ≤ |µ − µ0| ≤ δ}, it
holds that

‖E(µ, µ0)‖ + ‖P ′(µ0) − λ1B‖ <
√

1 − ǫ2 ‖B‖ |λ1|,
or

‖(µ− µ0)P
′(µ0) + (µ− µ0)E(µ, µ0) − (µ− µ0)λ1B‖ <

√

1 − ǫ2 ‖B‖ |λ1| |µ− µ0|.

Hence, we can define

ξ = min
µ∈D(µ0,δ,δ/2)

{

|µ− µ0|
(

√

1 − ǫ2 ‖B‖ |λ1| − ‖P ′(µ0) + E(µ, µ0) − λ1B‖
)}

> 0.

Since 0 ∈ ∂F ǫ
‖·‖(P (µ0);B), Proposition 16 (i) implies that there is a λ0 ∈ C such that

‖P (µ0) − λ0B‖ <
√

1 − ǫ2 ‖B‖ |λ0| + ξ.

Consequently, for every µ ∈ D(µ0, δ, δ/2),

‖P (µ0)−λ0B‖ <
√

1 − ǫ2 ‖B‖ |λ0|+|µ−µ0|
(

√

1 − ǫ2 ‖B‖ |λ1| − ‖P ′(µ0) + E(µ, µ0) − λ1B‖
)

,

or
‖P (µ) − (λ0 + λ1(µ− µ0))B‖ <

√

1 − ǫ2 ‖B‖ (|λ0| + |λ1(µ− µ0)|).
Observe now that λ0 and λ1 do not depend on µ, and thus, we can choose a µ̂ ∈
D(µ0, δ, δ/2) such that arg(λ1(µ̂− µ0)) = arg(λ0). Then it follows

‖P (µ̂) − (λ0 + λ1(µ̂− µ0))B‖ <
√

1 − ǫ2 ‖B‖ |λ0 + λ1(µ̂− µ0)| ,

and hence, µ̂ /∈W ǫ
‖·‖(P (z);B); this is a contradiction.

Definition (11), Proposition 2 and Theorem 19 (i) yield the following.

Proposition 20. Let P (z) be an n ×m matrix polynomial as in (7), B ∈ C
n×m be

nonzero, and 0 ≤ ǫ1 < ǫ2 < 1. Then W ǫ1
‖·‖(P (z);B) ⊆ W ǫ2

‖·‖(P (z);B), and for any

µ ∈W ǫ1
‖·‖(P (z);B) such that P (µ) 6= 0, µ lies in the interior of W ǫ2

‖·‖(P (z);B).
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Proof. For any µ ∈ W ǫ1
‖·‖(P (z);B), the origin lies in F ǫ1

‖·‖(P (µ);B) ⊆ F ǫ2
‖·‖(P (µ);B),

and thus, µ ∈ W ǫ2
‖·‖(P (z);B). Moreover, if µ ∈ W ǫ1

‖·‖(P (z);B) with P (µ) 6= 0, then

the matrix P (µ) cannot be a scalar multiple of B and Proposition 2 implies that the
origin lies in the interior of F ǫ2

‖·‖(P (µ);B). Hence, by Theorem 19 (i), µ is an interior

point of W ǫ2
‖·‖(P (z);B).

Corollary 21. For any scalar b ∈ C, ǫ ∈ [0, 1) and q ∈ (0, 1], we have that
W ǫ

‖·‖(P (z); bB) = W ǫ
‖·‖(P (z);B), and W‖·‖(P (z); bB; q) = (⊇ , ⊆ ) W‖·‖(P (z);B; q)

if |b| = (> , < ) 1.

Proof. Since the Birkhoff-James ǫ-orthogonality is homogeneous,

W ǫ
‖·‖(P (z); bB) = {µ ∈ C : bB ⊥ǫ

BJ P (µ)} = {µ ∈ C : B ⊥ǫ
BJ P (µ)} .

Moreover,

W‖·‖(P (z); bB; q) =

{

µ ∈ C : bB ⊥ǫ
BJ P (µ), ǫ =

√

|b|2‖B‖2 − q2

|b| ‖B‖

}

=

{

µ ∈ C : B ⊥ǫ
BJ P (µ), ǫ =

√

‖B‖2 − q2/|b|2
‖B‖

}

.

The proof is completed by Proposition 20.

Corollary 22. Suppose the matrix norm ‖ · ‖ is induced by a vector norm, and let
x0 ∈ C

n and y0 ∈ C
m be two unit vectors such that |x∗0By0| = ‖B‖. Then for any

ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality set W ǫ
‖·‖(P (z);B) contains all zeros of

the scalar polynomial x∗0P (z)y0 = x∗0Aly0z
l + · · · + x∗0A1y0z + x∗0A0y0. Moreover, for

any µ ∈ C such that P (µ) 6= 0 and x∗0P (µ)y0 = 0, it holds that µ ∈ Int[W ǫ
‖·‖(P (z);B)]

for every ǫ ∈ (0, 1).

Proof. Let µ0 ∈ C be a zero of the scalar polynomial x∗0P (z)y0. Then for every λ ∈ C,
‖P (µ0) − λB‖ ≥ ‖x∗0 [P (µ0) − λB] y0‖ ≥ ‖B‖ |λ|. Thus, µ0 lies in W 0

‖·‖(P (z);B), and
Proposition 20 completes the proof.

The last result of the section is partially complementary to Proposition 20 and
gives a sufficient condition for the appearance of isolated points.

Proposition 23. Let P (z) be an n × m matrix polynomial as in (7), B ∈ C
n×m

be nonzero, and 0 ≤ ǫ < 1. If there is a µ0 ∈ C such that P (µ0) = 0 and 0 /∈
F ǫ
‖·‖(P

′(µ0);B), then µ0 is an isolated point of W ǫ
‖·‖(P (z);B).

Proof. As in the proof of Theorem 19 (see (14)), we have

P (z) = P (µ0) + (z − µ0)P
′(µ0) + (z − µ0)E(z, µ0),

where P (µ0) = 0 and ‖E(z, µ0)‖ = o(1) as |z − µ0| → 0. Since 0 /∈ F ǫ
‖·‖(P

′(µ0);B),

there is a λ0 such that ‖P ′(µ0) − λ0B‖ <
√

1 − ǫ2 ‖B‖ |λ0|, and by choosing a suffi-
ciently small δ > 0, we may assume that for every µ ∈ D(µ0, δ)\{µ0},

‖E(µ, µ0)‖ + ‖P ′(µ0) − λ0B‖ <
√

1 − ǫ2 ‖B‖ |λ0|,
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or

‖(µ− µ0)P
′(µ0) + (µ− µ0)E(µ, µ0) − (µ− µ0)λ0B‖ <

√

1 − ǫ2 ‖B‖ |λ0| |µ− µ0|,

or
‖P (µ) − λ0(µ− µ0)B‖ <

√

1 − ǫ2 ‖B‖ |λ0(µ− µ0)|.
As a consequence, W ǫ

‖·‖(P (z);B) ∩ D(µ0, δ) = {µ0}, and µ0 is an isolated point of

W ǫ
‖·‖(P (z);B).

5 The case of norms induced by inner products

Let A,B ∈ C
n×m with B 6= 0, and ǫ ∈ [0, 1), and suppose that the matrix norm ‖ · ‖

is induced by the inner product of matrices 〈·, ·〉. Then by Property (P7) (see also
Proposition 13 in [8]), the Birkhoff-James ǫ-orthogonality set of A with respect to B
is a closed disk, namely,

F ǫ
‖·‖(A;B) = D

(〈A,B〉
‖B‖2

,

∥

∥

∥

∥

A− 〈A,B〉
‖B‖2

B

∥

∥

∥

∥

ǫ√
1 − ǫ2 ‖B‖

)

.

It is worth mentioning that this relation (independently from the proof of [8, Proposi-
tion 13]) can be confirmed by the observation that the Birkhoff-James ǫ-orthogonality
coincides with the inner product ǫ-orthogonality [7, 9]. In particular, a scalar µ ∈ C

lies in F ǫ
‖·‖(A;B) if and only if

B ⊥ǫ (A− µB),

or equivalently, if and only if

|〈B,A− µB〉| ≤ ǫ ‖B‖ ‖A− µB‖,

or equivalently, if and only if

〈B,A− µB〉 〈A− µB,B〉 ≤ ǫ2‖B‖2〈A− µB,A− µB〉,

or equivalently, if and only if

|〈A,B〉|2
‖B‖4

− µ
〈B,A〉
‖B‖2

− µ
〈A,B〉
‖B‖2

+ |µ|2 ≤ ǫ2
(‖A‖2

‖B‖2
− µ

〈B,A〉
‖B‖2

− µ
〈A,B〉
‖B‖2

+ |µ|2
)

,

or equivalently, if and only if

∣

∣

∣

∣

µ− 〈A,B〉
‖B‖2

∣

∣

∣

∣

2

(1 − ǫ2) ≤ ǫ2

‖B‖2

∥

∥

∥

∥

A− 〈A,B〉
‖B‖2

B

∥

∥

∥

∥

2

.

Consider now an n×m matrix polynomial P (z) =
∑l

j=0Ajz
j as in (7). Then by

(12), we have

W ǫ
‖·‖(P (z);B) = {µ ∈ C : B ⊥ǫ

BJ P (µ)}
= {µ ∈ C : B ⊥ǫ P (µ)}
= {µ ∈ C : |〈P (µ), B〉| ≤ ǫ ‖B‖ ‖P (µ)‖} . (15)
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As a consequence,

W ǫ
‖·‖(P (z);B) =

{

µ ∈ C : |〈P (µ), B〉|2 ≤ ǫ2‖B‖2‖P (µ)‖2
}

=
{

µ ∈ C : 〈P (µ), B〉〈B,P (µ)〉 ≤ ǫ2‖B‖2〈P (µ), P (µ)〉
}

=







µ ∈ C : 〈
l
∑

j=0

Ajµ
j , B〉〈B,

l
∑

j=0

Ajµ
j〉 ≤ ǫ2‖B‖2〈

l
∑

j=0

Ajµ
j ,

l
∑

j=0

Ajµ
j〉







=







µ ∈ C :
l
∑

i,j=0

〈Ai, B〉〈B,Aj〉µiµj − ǫ2‖B‖2
l
∑

i,j=0

〈Ai, Aj〉µiµj ≤ 0







.

Writing µ = u+ iv (u, v ∈ R), the function

pǫ(u, v) =
l
∑

i,j=0

〈Ai, B〉〈B,Aj〉(u+ iv)i(u− iv)j − ǫ2‖B‖2
l
∑

i,j=0

〈Ai, Aj〉(u+ iv)i(u− iv)j

is a scalar polynomial in u, v ∈ R of total degree 2l, with real coefficients. Thus, the
boundary ∂W ǫ

‖·‖(P (z);B) lies on the algebraic curve

{u+ iv ∈ C : pǫ(u, v) = 0, u, v ∈ R} .

Furthermore, for ǫ = 0, we have

W 0
‖·‖(P (z);B) =

{

µ ∈ C : 〈Al, B〉µl + · · · + 〈A1, B〉µ+ 〈A0, B〉 = 0
}

. (16)

As a consequence, Proposition 20 yields the following result which is similar to Corol-
lary 22.

Corollary 24. For any ǫ ∈ [0, 1), all zeros of the scalar polynomial 〈P (z), B〉 =
〈Al, B〉zl + · · · + 〈A1, B〉z + 〈A0, B〉 lie in the ǫ-orthogonality set W ǫ

‖·‖(P (z);B).

Moreover, for any µ ∈ C such that P (µ) 6= 0 and 〈P (µ), B〉 = 0, it holds that
µ ∈ Int[W ǫ

‖·‖(P (z);B)] for every ǫ ∈ (0, 1).

The above discussion allows the construction of empty approximate orthogonal-
ity sets for matrix polynomials. In particular, if 〈Aj , B〉 = 0, j = 1, 2, . . . , l, and
〈A0, B〉 6= 0, then the polynomial 〈P (z), B〉 = 〈A0, B〉 is constant and nonzero, and
by (16), W 0

‖·‖(P (z);B) = ∅. In this special case, we may also say thatW 0
‖·‖(P (z);B) =

{∞}, since the Birkhoff-James ǫ-orthogonality set of the reverse matrix polynomial
R(z) =

∑l
j=0Al−jz

j , W 0
‖·‖(R(z);B) =

{

µ ∈ C : 〈A0, B〉µl = 0
}

, coincides with the

origin. This is compatible to Proposition 10 (ii), Theorem 12, and the fact that for
any ǫ ∈ (0, 1), W ǫ

‖·‖(P (z);B) = {µ ∈ C : |〈A0, B〉| ≤ ǫ ‖B‖ ‖P (µ)‖} is unbounded and

contains a set of the form {z ∈ C : |z| ≥ r} for some real r > 0.
In our last example, we consider the 3 × 2 quadratic matrix polynomial

P (z) =





1 0
0 1
0 0.8



 z2 +





1 i
0 −1

0.5 0.1



 z +





2 1
3 1

−0.1 0



 ,
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Figure 3: Birkhoff-James ǫ-orthogonality sets of P (z) (left part) and R(z) (right part).

its reverse matrix polynomial

R(z) =





2 1
3 1

−0.1 0



 z2 +





1 i
0 −1

0.5 0.1



 z +





1 0
0 1
0 0.8



 ,

and the matrix

B =





0.6 0
0 0.9
0 0.2



 .

For the Frobenius norm, and by applying (15), we have drawn the boundaries of the ǫ-
orthogonality setsW ǫ

‖·‖F
(P (z);B), ǫ = 0.3, 0.5, 0.7, 0.85, 0.9, 0.93, andW ǫ

‖·‖F
(R(z);B),

ǫ = 0.4, 0.46, 0.48, 0.5, in the left and right parts of Figure 3, respectively. Note that
W 0.5

‖·‖F
(R(z);B) coincides with the complex plane excluded the lemniscus containing

the origin. The sets W ǫ
‖·‖F

(P (z);B) and W ǫ
‖·‖F

(R(z);B) become unbounded when
ǫ = 0.9288 and ǫ = 0.4928, respectively, and the origin meets the Birkhoff-James
ǫ-orthogonality sets of the corresponding leading coefficients, confirming Theorem
12. Propositions 10 (ii), 13 and 20 are also apparently verified. Furthermore, the
zeros 0.0843 ± i 1.1216 of the polynomial 〈P (z), B〉 = 1.66z2 − 0.28z + 2.1 lie in
W ǫ

‖·‖F
(P (z);B), and the zeros 0.0667± i 0.8866 of the polynomial 〈R(z), B〉 = 2.1z2−

0.28z + 1.66 lie in W ǫ
‖·‖F

(R(z);B), confirming Corollary 24.

Acknowledgment. The authors wish to thank an anonymous referee for his valuable
comments.

19



References

[1] A. Aretaki and I. Maroulas, Investigating the numerical range and q-numerical range of
nonsquare matrices, preprint, 2010.

[2] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.

[3] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and
of Elements of Normed Algebras, London Mathematical Society Lecture Note Series,
Cambridge University Press, New York, 1971.

[4] F.F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture
Notes Series, Cambridge University Press, New York, 1973.

[5] M.-T. Chien and H. Nakazato, The boundary of the q-numerical range of a reducible
matrix, Linear and Multilinear Algebra, 55 (2007), 275–292.

[6] M.-T. Chien, H. Nakazato and P. Psarrakos, On the q-numerical range of matrices and
matrix polynomials, Linear and Multilinear Algebra, 53 (2005), 357–374.

[7] J. Chmielinski, On an ε-Birkhoff orthogonality, J. Ineq. Pure and Appl. Math., 6 (2005),
Article 79.

[8] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of
rectangular matrices, Linear and Multilinear Algebra, 57 (2009), 459–475.

[9] S.S. Dragomir, On approximation of continuous linear functionals in normed linear
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